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Abstract. We present a new method for solving stochastic differential equations based on
Galerkin projections and extensions of Wiener’s polynomial chaos. Specifically, we represent the
stochastic processes with an optimum trial basis from the Askey family of orthogonal polynomials
that reduces the dimensionality of the system and leads to exponential convergence of the error.
Several continuous and discrete processes are treated, and numerical examples show substantial
speed-up compared to Monte-Carlo simulations for low dimensional stochastic inputs.
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1. Introduction. Wiener first defined ‘Homogeneous Chaos’ as the span of Her-
mite polynomial functionals of a Gaussian process [19]; Polynomial Chaos is defined as
the member of that set. According to the Cameron-Martin theorem [3], the Fourier-
Hermite series converge to any L2 functional in the L2 sense. In the context of
stochastic processes, this implies that the homogeneous chaos expansion converges
to any processes with finite second-order moments. Therefore, such an expansion
provides a means of representing a stochastic process with Hermite orthogonal poly-
nomials. Other names such as ‘Wiener chaos’, ‘Wiener-Hermite chaos’, etc., have also
been used in the literature. In this paper, we will use the term Hermite-Chaos.

While Hermite-Chaos is useful in the analysis of stochastic processes, efforts have
also been made to apply it to model uncertainty in physical applications. In this
case, the continuous integral form of the Hermite-Chaos is written in the discrete
form of infinite summation which is further truncated. Ghanem & Spanos [9] com-
bined the Hermite-Chaos expansion with finite element method to model uncertainty
encountered in various problems of solid mechanics, e.g., [7], [8], [9], etc. In [20], the
polynomial chaos was applied to modeling uncertainty in fluid dynamics applications.
The algorithm was implemented in the context of spectral/hp element method and
various benchmark tests were conducted to demonstrate convergence in prototype
flows.

Although for any arbitrary random process with finite second-order moments, the
Hermite-Chaos expansion converges in accord with Cameron-Martin theorem [3], it
has been demonstrated that the convergence rate is optimal for Gaussian processes,
in fact the rate is exponential [15]. This can be understood from the fact that the
weighting function of Hermite polynomials is the same as the probability density func-
tion of the Gaussian random variables. For other types of processes the convergence
rate may be substantially slower. In this case, other types of orthogonal polynomials,
instead of Hermite polynomials, could be used to construct the chaos expansion. In
an early work by Ogura [16], a chaos expansion based on Charlier polynomials was
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proposed to represent the Poisson processes, following the theory of ‘discrete chaos’
by Wiener [19].

An important class of orthogonal polynomials are the members of the so-called
Askey-scheme of polynomials [1]. This scheme classifies the hypergeometric orthog-
onal polynomials that satisfy some type of differential or difference equation and
indicates the limit relations between them. Hermite polynomials are a subset of the
Askey-scheme. Each subset of the orthogonal polynomials in the Askey-scheme has
different weighting function in their orthogonality relationship. It has been realized
that some of these weighting functions are identical to the probability function of
certain random distributions. For example,

• Hermite polynomials are associated with the Gaussian distribution.
• Laguerre polynomials with the Gamma distribution.
• Jacobi polynomials with the Beta distribution.
• Charlier polynomials with the Poisson distribution.
• Meixner polynomials with the negative Binomial distribution.
• Krawtchouk polynomials with the Binomial distribution, and
• Hahn polynomials with the Hypergeometric distribution.

This finding opens the possibility of representing stochastic processes with different
orthogonal polynomials according to the property of the processes.

The close connection between stochastic processes and orthogonal polynomials has
long been recognized. Despite of the role of Hermite polynomials in the integration
theory of Brownian motion ([19] and [11]), many birth-and-death models were related
to specific orthogonal polynomials. The so-called Karlin-McGregor representation
of the transition probabilities of a birth-and-death process is in terms of orthogonal
polynomials [12]. In [16] and [5], the integral relation between the Poisson process and
the Charlier polynomials was found. In [17] the role of the orthogonal polynomials
from Askey-scheme in the theory of Markov processes was studied and the connection
between the Krawtchouk polynomials and the binomial process was established.

In this paper, we extend the work by Ghanem & Spanos for Hermite-Chaos expan-
sion [9] and Ogura for Charlier-Chaos expansion [16]. We propose an Askey-scheme
based polynomial chaos expansion for stochastic processes which includes all the or-
thogonal polynomials in the above list. We demonstrate numerically the optimal
(exponential) convergence rate of each Wiener-Askey polynomial chaos expansion for
their corresponding stochastic processes by solving a stochastic ordinary differential
equation, for which the exact solutions can be obtained. It is also shown that if
for a certain process the optimal Wiener-Askey polynomial chaos expansion is not
employed, the solution also converges but the rate is clearly slower. This approach
will provide a guideline for representing stochastic processes in physical applications
properly.

In practical applications, one often does not know the analytical form of the dis-
tribution of the process, or if known, it may not be one of the basic distributions, e.g.
Gaussian, Poisson, etc.. In this case, one can choose a set of Wiener-Askey polyno-
mial chaos expansion and conduct a numerical projection procedure to represent the
process. This issue will be addressed in the present paper as well.

This paper is organized as follows: In the next section we review the theory of the
Askey-scheme of hypergeometric orthogonal polynomials, and in section 3 we review
the theory of the original Wiener’s polynomial chaos. In section 4 we present the
framework of Wiener-Askey polynomial chaos expansion for stochastic processes. In
section 5 we present numerical solutions of a stochastic ordinary differential equation
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with different Wiener-Askey chaos expansions. The choice of the particular Wiener-
Askey chaos is based on the distribution of the random input, and we demonstrate the
exponential convergence rate with the appropriately chosen Wiener-Askey basis. In
section 6, we address the issue of representing an arbitrary random distribution and
we show that although the Wiener-Askey polynomial chaos converges in general, the
exponential convergence is not realized if the optimal type of Wiener-Askey chaos is
not chosen. We conclude the paper with a discussion on possible extensions and appli-
cations to more complicated problems. An appendix of the definitions and properties
of the orthogonal polynomials discussed in this paper is included for completeness.

2. The Askey-scheme of Hypergeometric Orthogonal Polynomials. The
theory of orthogonal polynomials is relatively mature and several books have been
devoted to their study (e.g., [18], [2], [4], etc.). However, more recent work has
shown that an important class of orthogonal polynomials belong to the Askey-scheme
of hypergeometric polynomials [1]. In this section, we briefly review the theory of
hypergeometric orthogonal polynomials. We adopt the notation of [14] and [17].

2.1. The Generalized Hypergeometric Series. We first introduce the Pochham-
mer symbol (a)n defined by

(a)n =

{

1, if n = 0,
a(a+ 1) · · · (a+ n− 1), if n = 1, 2, 3, . . . .

(2.1)

In terms of Gamma function, we have

(a)n =
Γ(a+ n)

Γ(a)
, n > 0. (2.2)

The generalized hypergeometric series rFs is defined by

rFs(a1, · · · , ar; b1, · · · , bs; z) =
∞
∑

k=0

(a1)k · · · (ar)k
(b1)k · · · (bs)k

zk

k!
, (2.3)

where bi 6= 0,−1,−2, . . . for i = {1, . . . , s} to ensure the denominator factors in the
terms of the series are never zero. Clearly, the ordering of the numerator parameters
and of the denominator parameters are immaterial. The radius of convergence ρ of
the hypergeometric series is

ρ =







∞ if r < s+ 1,
1 if r = s+ 1,
0 if r > s+ 1.

(2.4)

Some elementary cases of the hypergeometric series are:
• Exponential series 0F0,
• Binomial series 1F0,
• Gauss hypergeometric series 2F1.

If one of the numerator parameters ai, i = 1, . . . , r is a negative integer, say
a1 = −n, the hypergeometric series (2.3) terminates at the nth-term and becomes a
polynomial in z,

rFs(−n, · · · , ar; b1, · · · , bs; z) =
n
∑

k=0

(−n)k · · · (ar)k
(b1)k · · · (bs)k

zk

k!
. (2.5)
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2.2. Properties of the Orthogonal Polynomials. A system of polynomials
{Qn(x), n ∈ N} where Qn(x) is a polynomial of exact degree n and N = {0, 1, 2, . . . }
or N = {0, 1, . . . , N} for a finite nonnegative integer N , is an orthogonal system of
polynomials with respect to some real positive measure φ if the following orthogonality
relations are satisfied

∫

S

Qn(x)Qm(x)dφ(x) = h2nδnm, n,m ∈ N , (2.6)

where S is the support of the measure φ and the hn are nonzero constants. The
system is called orthonormal if hn = 1.

The measure φ often has a density w(x) or weights w(i) at points xi in the discrete
case. The relations (2.6) then become

∫

S

Qn(x)Qm(x)w(x)dx = h2nδnm, n,m ∈ N , (2.7)

in the continuous case, or

M
∑

i=0

Qn(xi)Qm(xi)w(xi) = h2nδnm, n,m ∈ N , (2.8)

in the discrete case where it is possible that M =∞.
The density w(x), or weights w(i) in the discrete case, is also commonly referred

as the weighting function in the theory of orthogonal polynomials. It will be shown
later that the weighting functions for some orthogonal polynomials are identical to
certain probability functions. For example, the weighting function for the Hermite
polynomials is the same as probability density function of the Gaussian random vari-
ables. This fact plays an important role in representing stochastic processes with
orthogonal polynomials.

All orthogonal polynomials {Qn(x)} satisfy a three-term recurrence relation

−xQn(x) = AnQn+1(x)− (An + Cn)Qn(x) + CnQn−1(x), n ≥ 1, (2.9)

where An, Cn 6= 0 and Cn/An−1 > 0. Together with Q−1(x) = 0 and Q0(x) = 1, all
Qn(x) can be determined by the recurrence relation.

It is well known that continuous orthogonal polynomials satisfy the second-order
differential equation

s(x)y′′ + τ(x)y′ + λy = 0, (2.10)

where s(x) and τ(x) are polynomials of at most second and first degree, respectively,
and

λ = λn = −nτ ′ − 1

2
n(n− 1)s′′ (2.11)

are the eigenvalues of the differential equation; the orthogonal polynomials y(x) =
yn(x) are the eigenfunctions.

In the discrete case, we introduce the forward and backward difference operator,
respectively

∆f(x) = f(x+ 1)− f(x) and ∇f(x) = f(x)− f(x− 1). (2.12)
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The difference equation corresponding to the differential equation (2.10) is

s(x)∆∇y(x) + τ(x)∆y(x) + λy(x) = 0. (2.13)

Again s(x) and τ(x) are polynomials of at most second and first degree, respectively;
λ = λn are eigenvalues of the difference equation, and the orthogonal polynomials
y(x) = yn(x) are the eigenfunctions.

All orthogonal polynomials can be obtained by repeatedly applying the differential
operator as follows

Qn(x) =
1

w(x)

dn

dxn
[w(x)sn(x)] . (2.14)

In the discrete case, the differential operator (d/dx) is replaced by the backward dif-
ference operator ∇. A constant factor can be introduced for normalization. Equation
(2.14) is referred as the generalized Rodriguez formula, named after J. Rodriguez who
first discovered the specific formula for Legendre polynomials.

2.3. The Askey-scheme. The Askey-scheme, which can be represented as a
tree structure shown in figure 2.1, classifies the hypergeometric orthogonal polynomi-
als and indicates the limit relations between them. The ‘tree’ starts with the Wilson
polynomials and the Racah polynomials on the top. They both belong to the class

4F3 of the hypergeometric orthogonal polynomials (2.5). The Wilson polynomials are
continuous polynomials and the Racah polynomials are discrete. The lines connecting
different polynomials denote the limit transition relationships between them, which
imply that polynomials at the lower end of the lines can be obtained by taking the
limit of one parameter from their counterparts on the upper end. For example, the

limit relation between Jacobi polynomials P
(α,β)
n (x) and Hermite polynomials Hn(x)

is

lim
α→∞

α−
1
2
nP (α,α)

n

(

x√
α

)

=
Hn(x)

2nn!
,

and between Meixner polynomials Mn(x;β, c) and Charlier polynomials Cn(x; a) is

lim
β→∞

Mn

(

x;β,
a

a+ β

)

= Cn(x; a).

For a detailed account of the limit relations of Askey-scheme, the interested reader
should consult [14] and [17].

The orthogonal polynomials associated with the Wiener-Askey polynomials chaos
include: Hermite, Laguerre, Jacobi, Charlier, Meixner, Krawtchouk and Hahn poly-
nomials. A survey with their definitions and properties can be found in the appendix
of this paper.

3. The Original Wiener Polynomial Chaos. The Homogeneous Chaos ex-
pansion was first proposed by Wiener [19]; it employs the Hermite polynomials in
terms of Gaussian random variables. According to the theorem by Cameron & Mar-
tin [3], it can approximate any functionals in L2(C) and converges in the L2(C)
sense. Therefore, Hermite-Chaos provides a means for expanding second-order ran-
dom processes in terms of orthogonal polynomials. Second-order random processes
are processes with finite variance, and this applies to most physical processes. Thus,
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dual Hahn
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4F3(4)

3F2(3)

2F1(2)

1F1(1) 2F0(1)

2F0(0)

Fig. 2.1. The Askey scheme of orthogonal polynomials

a general second-order random process X(θ), viewed as a function of θ as the random
event, can be represented in the form

X(θ) = a0H0

+
∞
∑

i1=1

ai1H1(ξi1(θ))

+

∞
∑

i1=1

i1
∑

i2=1

ai1i2H2(ξi1(θ), ξi2(θ))

+

∞
∑

i1=1

i1
∑

i2=1

i2
∑

i3=1

ai1i2i3H3(ξi1(θ), ξi2(θ), ξi3(θ))

+ · · · , (3.1)

whereHn(ξi1 , . . . , ξin) denotes the Hermite-Chaos of order n in the variables (ξi1 , . . . , ξin),
where the Hn are Hermite polynomials in terms of the standard Gaussian variables ξ
with zero mean and unit variance. Here ξ denotes the vector consisting of n indepen-
dent Gaussian variables (ξi1 , . . . , ξin). The above equation is the discrete version of
the original Wiener polynomial chaos expansion, where the continuous integrals are
replaced by summations. The general expression of the polynomials is given by

Hn(ξi1 , . . . , ξin) = e
1
2
ξT ξ(−1)n ∂n

∂ξi1 · · · ∂ξin
e−

1
2
ξT ξ. (3.2)
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For notational convenience, equation (3.1) can be rewritten as

X(θ) =
∞
∑

j=0

âjΨj(ξ), (3.3)

where there is a one-to-one correspondence between the functions Hn(ξi1 , . . . , ξin) and
Ψj(ξ). The polynomial basis {Ψj} of Hermite-Chaos forms a complete orthogonal
basis, i.e.,

< ΨiΨj >=< Ψ2
i > δij , (3.4)

where δij is the Kronecker delta and < ·, · > denotes the ensemble average. This is
the inner product in the Hilbert space determined by the support of the Gaussian
variables

< f(ξ)g(ξ) >=

∫

f(ξ)g(ξ)W (ξ)dξ (3.5)

with weighting function

W (ξ) =
1

√

(2π)n
e−

1
2
ξT ξ. (3.6)

What distinguishes the Hermite-Chaos expansion from other possible expansions is
that the basis polynomials are Hermite polynomials in terms of Gaussian variables
and are orthogonal with respect to the weighting function W (ξ) that has the form of
n-dimensional independent Gaussian probability density function.

4. The Wiener-Askey Polynomial Chaos. The Hermite-Chaos expansion
has been proved to be effective in solving stochastic differential equations with Gaus-
sian inputs as well as certain types of non-Gaussian inputs [9], [8], [7], [20]; this can
be justified by the Cameron-Martin theorem [3]. However, for general non-Gaussian
random inputs, the optimal exponential convergence rate will not be realized. In some
cases the convergence rate is in fact severely deteriorated.

In order to deal with more general random inputs, we introduce the Wiener-
Askey polynomial chaos expansion as a generalization of the original Wiener-Chaos
expansion. The expansion basis is the complete polynomial basis from the Askey-
scheme (see section 2.3). Similar to section 3, we represent the general second-order
random process X(θ) as

X(θ) = a0I0

+

∞
∑

i1=1

ci1I1(ζi1(θ))

+

∞
∑

i1=1

i1
∑

i2=1

ci1i2I2(ζi1(θ), ζi2(θ))

+
∞
∑

i1=1

i1
∑

i2=1

i2
∑

i3=1

ci1i2i3I3(ζi1(θ), ζi2(θ), ζi3(θ))

+ · · · , (4.1)
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where In(ζi1 , . . . , ζin) denotes the Wiener-Askey polynomial chaos of order n in terms
of the random vector ζ = (ζi1 , . . . , ζin). In the Wiener-Askey chaos expansion, the
polynomials In are not restricted to Hermite polynomials but rather can be all types of
the orthogonal polynomials from the Askey-scheme in figure 2.1. Again for notational
convenience, we rewrite equation (4.1) as

X(θ) =

∞
∑

j=0

ĉjΦj(ζ), (4.2)

where there is a one-to-one correspondence between the functions In(ζi1 , . . . , ζin) and
Φj(ζ). Since each type of polynomials from the Askey-scheme form a complete basis
in the Hilbert space determined by their corresponding support, we can expect each
type of Wiener-Askey expansion to converge to any L2 functional in the L2 sense in
the corresponding Hilbert functional space as a generalized result of Cameron-Martin
theorem ([3] and [16]). The orthogonality relation of the Wiener-Askey polynomial
chaos takes the form

< ΦiΦj >=< Φ2
i > δij , (4.3)

where δij is the Kronecker delta and < ·, · > denotes the ensemble average which is
the inner product in the Hilbert space of the variables ζ

< f(ζ)g(ζ) >=

∫

f(ζ)g(ζ)W (ζ)dζ, (4.4)

or

< f(ζ)g(ζ) >=
∑

ζ

f(ζ)g(ζ)W (ζ) (4.5)

in the discrete case. HereW (ζ) is the weighting function corresponding to the Wiener-
Askey polynomials chaos basis {Φi}: see the appendix for detailed formulas.

As pointed out in appendix, some types of orthogonal polynomials from the Askey-
scheme have weighting functions the same as the probability function of certain types
of random distributions. In practice, we then choose the type of independent vari-
ables ζ in the polynomials {Φi(ζ)} according to the type of random distributions as
shown in table 4.1. It is clear that the original Wiener polynomial chaos corresponds

Random variables ζ Wiener-Askey chaos {Φ(ζ)} Support

Continuous Gaussian Hermite-Chaos (−∞,∞)
Gamma Laguerre-Chaos [0,∞)
Beta Jacobi-Chaos [a, b]

Uniform Legendre-Chaos [a, b]
Discrete Poisson Charlier-Chaos {0, 1, 2, . . . }

Binomial Krawtchouk-Chaos {0, 1, . . . , N}
Negative Binomial Meixner-Chaos {0, 1, 2, . . . }
Hypergeometric Hahn-Chaos {0, 1, . . . , N}

Table 4.1

The correspondence of the type of Wiener-Askey polynomial chaos and their underlying random
variables (N ≥ 0 is a finite integer).

to the Hermite-Chaos and is a subset of the Wiener-Askey polynomial chaos. The
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Hermite-, Laguerre- and Jacobi-Chaos are continuous chaos, while Charlier-, Meixner-
, Krawtchouk- and Hahn-Chaos are discrete chaos. It is worthy mentioning that the
Legendre polynomials, which is a special case of the Jacobi polynomials with param-
eters α = β = 0 (section A.1.3), corresponds to an important distribution — the
uniform distribution. Due to the importance of the uniform distribution, we list it
separately in the table and term the corresponding chaos expansion as the Legendre-
Chaos.

5. Applications of Wiener-Askey Polynomial Chaos. In this section we
apply the Wiener-Askey polynomial chaos to solution of stochastic differential equa-
tions. We first introduce the general procedure of applying the Wiener-Askey poly-
nomial chaos, then we solve a specific stochastic ordinary differential equation with
different types of random inputs. We demonstrate the convergence rates of Wiener-
Askey expansion by comparing the numerical results with the corresponding exact
solution.

5.1. General Procedure. Let us consider the stochastic differential equation

L(x, t, θ;u) = f(x, t; θ), (5.1)

where u := u(x, t; θ) is the solution and f(x, t; θ) is the source term. Operator L
generally involves differentiations in space/time and can be nonlinear. Appropriate
initial and boundary conditions are assumed. The existence of random parameter θ is
due to the introduction of uncertainty into the system via boundary conditions, initial
conditions, material properties, etc. The solution u, which is regarded as a random
process, can be expanded by the Wiener-Askey polynomial chaos as

u(x, t; θ) =

P
∑

i=0

ui(x, t)Φi(ζ(θ)). (5.2)

Note here the infinite summation has been truncated at the finite term P . The above
representation can be considered as a spectral expansion in the random dimension θ,
and the random trial basis {Φi} is the Askey-scheme based orthogonal polynomials
discussed in section 4. The total number of expansion terms is (P + 1), and is de-
termined by the dimension (n) of random variable ζ and the highest order (p) of the
polynomials {Φi};

(P + 1) =
(n+ p)!

n!p!
(5.3)

Upon substituting equation (5.2) into the governing equation (5.1), we obtain

L
(

x, t, θ;

P
∑

i=0

uiΦi

)

= f(x, t; θ). (5.4)

A Galerkin projection of the above equation onto each polynomial basis {Φi} is then
conducted in order to ensure the error is orthogonal to the functional space spanned
by the finite-dimensional basis {Φi},

〈

L
(

x, t, θ;

P
∑

i=0

uiΦi

)

,Φk

〉

= 〈f,Φk〉 , k = 0, 1, · · · , P. (5.5)
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By using the orthogonality of the polynomial basis, we can obtain a set of (P + 1)
coupled equations for each random mode ui(x, t) where i = {0, 1, . . . , P}. It should
be noted that by utilizing the Wiener-Askey polynomial chaos expansion (5.2), the
randomness is effectively transferred into the basis polynomials. Thus, the gov-
erning equations for the expansion coefficients ui resulted from equation (5.5) are
deterministic. Discretizations in space x and time t can be carried out by any conven-
tional deterministic techniques, e.g., Runge-Kutta solvers in time and the spectral/hp
element method in space for high accurate solution in complex geometry [13].

5.2. Stochastic Ordinary Differential Equation. We consider the ordinary
differential equation

dy(t)

dt
= −ky, y(0) = ŷ, (5.6)

where the decay rate coefficient k is considered to be a random variable k(θ) with
certain distribution and mean value k̄. The probability function is f(k) for the con-
tinuous case or f(ki) for the discrete case. The deterministic solution is

y(t) = y0e
−k̄t (5.7)

and the mean of stochastic solution is

ȳ(t) = ŷ

∫

S

e−ktf(k)dk or ȳ(t) = ŷ
∑

i

e−kitf(ki) (5.8)

corresponding to the continuous and discrete distributions, respectively. The inte-
gration and summation are taken within the support defined by the corresponding
distribution.

By applying the Wiener-Askey polynomial chaos expansion (4.2) to the solution
y and random input k

y(t) =

P
∑

i=0

yi(t)Φi, k =

P
∑

i=0

kiΦi (5.9)

and substituting the expansions into the governing equation, we obtain

P
∑

i=0

dyi(t)

dt
Φi = −

P
∑

i=0

P
∑

j=0

ΦiΦjkiyj(t). (5.10)

We then project the above equation onto the random space spanned by the orthogonal
polynomial basis {Φi} by taking the inner product of the equation with each basis.
By taking < .,Φl > and utilizing the orthogonality condition (4.3), we obtain the
following set of equations:

dyl(t)

dt
= − 1

< Φ2
l >

P
∑

i=0

P
∑

j=0

eijlkiyj(t), l = 0, 1, . . . , P, (5.11)

where eijl =< ΦiΦjΦl >. Note that the coefficients are smooth and thus any standard
ODE solver can be employed here. In the following the standard second-order Runge-
Kutta scheme is used.
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5.3. Numerical Results. In this section we present numerical results of the
stochastic ordinary differential equation by the Wiener-Askey polynomial chaos ex-
pansion. For the purpose of benchmarking, we will arbitrarily assume the type of
distributions of the decay parameter k and employ the corresponding Wiener-Askey
chaos expansion, although in practice there is certainly more favorable assumptions
about k depending on the specific physical background. We define the two error
measures for the mean and variance of the solution

εmean(t) =

∣

∣

∣

∣

ȳ(t)− ȳexact(t)

ȳexact(t)

∣

∣

∣

∣

, εvar(t) =

∣

∣

∣

∣

σ(t)− σexact(t)

σexact(t)

∣

∣

∣

∣

, (5.12)

where ȳ(t) = E[y(t)] is the mean value of y(t) and σ(t) = E
[

(y(t)− ȳ(t))
2
]

is the

variance of the solution. The initial condition is fixed to be ŷ = 1 and the integration
is performed up to t = 1 (nondimensional time units).

5.3.1. Gaussian Distribution and Hermite-Chaos. In this section the dis-
tribution of k is assumed to be a Gaussian random variable with probability density
function

f(k) =
1√
2π

e−x
2/2 (5.13)

which has zero mean value (k̄ = 0) and unit variance (σ2k = 1). The exact stochastic
mean solution is

ȳ(t) = ŷet
2/2. (5.14)

The Hermite-Chaos from the Wiener-Askey polynomial chaos family is employed as
a natural choice due to the fact that the random input is Gaussian. Figure 5.1 shows
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Fig. 5.1. Solution with Gaussian random input by 4th-order Hermite-Chaos; Left: Solution of
each random mode, Right: Error convergence of the mean and the variance.

the solution by the Hermite-Chaos expansion. The convergence of errors of the mean
and variance as the number of expansion terms increases is shown on semi-log plot,
and it is seen that the exponential convergence rate is achieved. It is also noticed that
the deterministic solution remains constant as the mean value of k is zero; however
the mean of the stochastic solution (random mode with index 0, y0) is nonzero and
grows with time.
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5.3.2. Gamma Distribution and Laguerre-Chaos. In this section we as-
sume the distribution of the decay parameter k is the Gamma distribution with PDF
of the form

f(k) =
e−kkα

Γ(α+ 1)
, 0 ≤ k <∞, α > −1. (5.15)

The mean and variance of k are: µk = k̄ = α + 1 and σ2k = α + 1, respectively. The
mean of stochastic solution is

ȳ(t) = ŷ
1

(1 + t)α+1
. (5.16)

The special case of α = 0 corresponds to another important distribution: the exponential
distribution. Because the random input has a Gamma distribution, we employ the
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Fig. 5.2. Solution with Gamma random input by 4th-order Laguerre-Chaos; Left: Solution of
each mode (α = 0: exponential distribution), Right: Error convergence of the mean and the variance
with different α.

Laguerre-Chaos as the specific Wiener-Askey chaos (see table 4.1). Figure 5.2 shows
the evolution of each solution mode over time, together with the convergence of the
errors of the mean and the variance with different values of parameter α. The special
case of exponential distribution is included (α = 0). Again the mean of stochastic
solution and deterministic solution show significant difference. As α becomes larger,
the spread of the Gamma distribution is larger and this leads to larger errors with
fixed number of Laguerre-Chaos expansion. However, the exponential convergence
rate is still realized.

5.3.3. Beta Distribution and Jacobi-Chaos. We now assume the distribu-
tion of the random variable k to be the Beta distribution with probability density
function of the form

f(k;α, β) =
(1− k)α(1 + k)β

2α+β+1B(α+ 1, β + 1)
, −1 < k < 1, α, β > −1, (5.17)

where B(α, β) is the Beta function defined as B(p, q) = Γ(p)Γ(q)/Γ(p+ q). We then
employ the Jacobi-Chaos expansion which has the weighting function in the form of
the Beta distribution. An important special case is α = β = 0 when the distribution
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Fig. 5.3. Solution with Beta random input by 4th-order Jacobi-Chaos; Left: Solution of each
mode (α = β = 0: Legendre-Chaos), Right: Error convergence of the mean and the variance with
different α and β.

becomes the uniform distribution and the corresponding Jacobi-Chaos becomes the
Legendre-Chaos.

Figure 5.3 shows the solution by the Jacobi-Chaos. On the left is the evolution
of all random modes of the Legendre-Chaos (α = β = 0) with uniformly distributed
random input. In this case, k has zero mean value and the deterministic solution
remains constant, but the mean of stochastic solution grows over time. The con-
vergence of errors of the mean and the variance of the solution with respect to the
order of Jacobi-Chaos expansion is shown on the semi-log scale, and the exponential
convergence rate is obtained with different sets of parameter values α and β.

5.3.4. Poisson Distribution and Charlier-Chaos. We now assume the dis-
tribution of the decay parameter k to be Poisson of the form

f(k;λ) = e−λ
λk

k!
, k = 0, 1, 2, . . . , λ > 0. (5.18)

The mean and variance of k are: µk = k̄ = λ and σ2k = λ, respectively. The analytic
solution of the mean stochastic solution is

ȳ(t) = ŷe−λ+λe
−t

. (5.19)

The Charlier-Chaos expansion is employed to represent the solution process and the
results with fourth-order expansion are shown in figure 5.4. Once again we see the
noticeable difference between the deterministic solution and the mean of stochastic
solution. Exponential convergence rate is obtained for different values of parameter
λ.

5.3.5. Binomial Distribution and Krawtchouk-Chaos. In this section the
distribution of the random input k is assumed to be binomial

f(k; p,N) =

(

N

k

)

pk(1− p)N−k, 0 ≤ p ≤ 1, k = 0, 1, . . . , N. (5.20)

The exact mean solution of (5.6) is

ȳ(t) = ŷ
[

1−
(

1− e−t
)

p
]N

. (5.21)
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Fig. 5.4. Solution with Poisson random input by 4th-order Charlier-Chaos; Left: Solution of
each mode (λ = 1), Right: Error convergence of the mean and the variance with different λ.
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Fig. 5.5. Solution with binomial random input by 4th-order Krawtchouk-Chaos; Left: Solution
of each mode (p = 0.5, N = 5)), Right: Error convergence of the mean and the variance with
different p and N .

Figure 5.5 shows the solution with 4th-order Krawtchouk-Chaos. With different
parameter sets, Krawtchouk-Chaos expansion correctly approximates the exact solu-
tion, and the convergence rate with respect to the order of expansion is exponential.

5.3.6. Negative Binomial Distribution and Meixner-Chaos. In this sec-
tion we assume the distribution of the random input of k is the negative binomial
distribution

f(k;β, c) =
(β)k
k!

(1− c)βck, 0 ≤ c ≤ 1, β > 0, k = 0, 1, . . . . (5.22)

In case of β being integer, it is often called the Pascal distribution. The exact mean
solution of (5.6) is

ȳ(t) = ŷ

(

1− ce−t

1− c

)−β
. (5.23)

The Meixner-Chaos is chosen since the random input is negative binomial (see
table 4.1). Figure 5.6 shows the solution with 4th-order Meixner-Chaos. Exponential
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Fig. 5.6. Solution with negative binomial random input by 4th-order Meixner-Chaos; Left:
Solution of each mode (β = 1, c = 0.5)), Right: Error convergence of the mean and the variance
with different β and c.

convergence rate is observed by the Meixner-Chaos approximation with different sets
of parameter values.

5.3.7. Hypergeometric Distribution and Hahn-Chaos. We now assume
the distribution of the random input k is hypergeometric

f(k;α, β,N) =

(

α
k

)(

β
N−k

)

(

α+β
N

) , k = 0, 1, . . . , N, α, β > N. (5.24)
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Fig. 5.7. Solution with hypergeometric random input by 4th-order Hahn-Chaos; Left: Solution
of each mode (α = β = 5, N = 4)), Right: Error convergence of the mean and the variance with
different α, β and N .

In this case, the optimal Wiener-Askey polynomial chaos is the Hahn-Chaos (table
4.1). Figure 5.7 shows the solution by 4th-order Hahn-Chaos. It can be seen from the
semi-log plot of the errors of the mean and variance of the solution that exponential
convergence rate is obtained with respect to the order of Hahn-Chaos expansion for
different sets of parameter values.
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5.4. Efficiency of Wiener-Askey Chaos Expansion. We have demonstrated
the exponential convergence of the Wiener-Askey polynomial chaos expansion. From
the results above, we notice that it normally takes an expansion order P = 2 ∼ 4 for
the error of the mean solution to reach the order of O(10−3). Equation (5.11) shows
that the Wiener-Askey chaos expansion with highest order of P results in a set of
(P + 1) coupled ODEs. Thus, the computational cost is slightly more than (P + 1)
times of that of a single realization of the deterministic integration. On the other
hand, if the Monte-Carlo simulation is used, it normally requires O(104) ∼ O(105)
number of realizations to reduce the error of the mean solution to O(10−3). For
example, if k is an exponentially distributed random variable, the error convergence
of the mean solution of the Monte-Carlo simulation is shown in table 5.1.

N 1× 102 1× 103 1× 104 1× 105

εmean 4.0× 10−2 1.1× 10−2 5.1× 10−3 6.5× 10−4

Table 5.1

Error convergence of the mean solution by Monte-Carlo simulation: N is the number of real-
izations and εmean is the error of mean solution defined in (5.12); Random input has exponential
distribution.

Monte-Carlo simulations with other types of random inputs as discussed in this
paper have also been conducted and the results are similar. The actual numerical
values of the errors with given number of realizations may vary depending on the
property of random number generators used, but the order of magnitude should be
the same. Techniques such as variance reduction are not used. Although such tech-
niques, if applicable, can greatly speed up Monte-Carlo simulation by an order or more
depending on the specific problem, the advantage of Wiener-Askey polynomial chaos
expansion is obvious. For the ordinary differential equation discussed in this paper,
speed-up of order O(103) ∼ O(104) compared with straight Monte-Carlo simulations
can be expected. However, for more complicated problems where there exist multi-
dimensional random inputs, the multi-dimensional Wiener-Askey chaos is needed.
The total number of expansion terms increases fast for large dimensional problems
(see equation(5.3)). Thus the efficiency of the chaos expansion can be reduced.

6. Representation of Arbitrary Random Inputs. As demonstrated above,
with appropriately chosen Wiener-Askey polynomial chaos expansion according to the
type of the random input, optimal exponential convergence rate of the chaos expansion
can be realized. In practice, we often encounter distributions of random inputs not
belonging to the basic types of distributions listed in table 4.1, or even when they
do belong to certain basic types, the correspondence is not explicitly known. In this
case, we need to project the input process onto the Wiener-Askey polynomial chaos
basis directly in order to solve the differential equation.

Let us assume in the stochastic ODE of equation (5.6) that the distribution of
the decay parameter k is known in the form of probability function f(k). The repre-
sentation of k by the Wiener-Askey polynomial chaos expansion takes the form

k =

P
∑

i=0

kiΦi, ki =
< kΦi >

< Φ2
i >

, (6.1)

where the operation < ·, · > denotes the inner product in the Hilbert space spanned
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by the Wiener-Askey chaos basis {Φi}, i.e.,

ki =
1

< Φ2
i >

∫

kΦi(ζ)g(ζ)dζ, or ki =
1

< Φ2
i >

∑

j

kΦi(ζj)g(ζj), (6.2)

where g(x) and g(xi) is the probability function of the random variable ζ in the
Wiener-Askey polynomial chaos for continuous and discrete cases, respectively. The
underlying assumption here is that the random variable ζ is fully dependent on the
target random variable k. We notice that the above equations are mathematically
meaningless due to the fact that the support of k and ζ are likely to be different. In
other words, the random variables k and ζ could belong to two different probability
spaces (Ω,A, P ) with different event space Ω, σ-algebra A and probability measure
P .

6.1. Analytical Approach. In order to conduct the above projection, we need
to transform the fully correlated random variables k and ζ to the same probability
space. Under the theory of probability this is always possible. In practice, it is
convenient to transform them to the uniformly distributed probability space u ∈
U(0, 1). In fact, the inverse procedure is an important technique for random number
generation where one first generates the uniformly distributed numbers as the seeds
and then performs the inverse transformation according to the desired distribution
function. Without loss of generality, we discuss in detail the case when k and ζ are
continuous random variables.

Let us assume that the random variable u is uniformly distributed in (0, 1) and
the probability density functions for k and ζ are f(k) and g(ζ), respectively. A
transformation of variables in probability space shows that

du = f(k)dk = dF (k), du = g(ζ)dζ = dG(ζ), (6.3)

where F and G are the distribution function of k and ζ, respectively,

F (k) =

∫ k

−∞
f(t)dt, G(ζ) =

∫ ζ

−∞
g(t)dt. (6.4)

If we require the random variables k and ζ to be transformed to the same uniformly
distributed random variable u, we obtain

u = F (k) = G(ζ). (6.5)

After inverting the above equations, we obtain

k = F−1(u) ≡ h(u), ζ = G−1(u) ≡ l(u). (6.6)

Now that we have effectively transformed the two different random variables k and
ζ to the same probability space defined by u ∈ U(0, 1), the projection (6.2) can be
performed, i.e.,

ki =
1

< Φ2
i >

∫

kΦi(ζ)g(ζ)dζ

=
1

< Φ2
i >

∫ 1

0

h(u)Φi(l(u))du. (6.7)
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In general the above integral can not be integrated analytically. However, it can
be efficiently evaluated with the Gauss quadrature in the closed domain [0, 1] with
sufficient accuracy. The analytical forms of the inversion relations (6.6) are known for
some basic distributions: Gaussian, exponential, Beta, etc [6].

The above procedure works equally well for the discrete distributions, where the
inversion procedure is slightly modified and the integral in (6.7) is replaced by sum-
mation.

6.2. Numerical Approach. The procedure described above requires the dis-
tribution functions F (k) and G(ζ) be known and the inverse functions F−1 and G−1

exist and be known as well. In practice, these conditions are not always satisfied.
Often we only know the probability function f(k) for a specific problem. The proba-
bility function g(ζ) is known from the choice of Wiener-Askey polynomial chaos but
the inversion is not always known either. In this case, we can perform the projec-
tion (6.2) directly by the Monte-Carlo integration, where a large ensemble of random
numbers k and ζ are generated. The requirement of k and ζ being transformed to the
same probability space u ∈ U(0, 1) by equation (6.5) implies that each pair of k and
ζ has to be generated from the same seed of uniformly generated random number
u ∈ U(0, 1).

6.3. Results. In this section we present numerical examples of representing an
arbitrarily given random distribution. More specificly, we present results of using
Hermite-Chaos expansion for some non-Gaussian random variables. Although in
theory, Hermite-Chaos converges and it has been successfully applied to some non-
Gaussian processes ([8], [20]), we demonstrate numerically that optimal exponential
convergence rate is not realized.

6.3.1. Approximation of Gamma distribution by Hermite-Chaos. Let
us assume that the decay parameter k in the ODE (5.6) is a random variable with
Gamma distribution (5.15). We consider the specific case of α = 0. In this case k is
a random variable with exponential distribution with PDF of the form

f(k) = e−k, k > 0. (6.8)

The inverse of its distribution function F (k) (equation (6.6)) is known as

h(u) ≡ F−1(u) = − ln(1− u), u ∈ U(0, 1). (6.9)

We then use Hermite-Chaos to represent k instead of the optimal Laguerre-Chaos.
The random variable ζ in equation (6.7) is a standard Gaussian variable with PDF

g(ζ) = 1√
2π
e−ζ

2/2. The inverse of the Gaussian distribution G(ζ) is known as

l(u) ≡ G−1(u) = sign

(

u− 1

2

)(

t− c0 + c1t+ c2t
2

1 + d1t+ d2t2 + d3t3

)

, (6.10)

where

t =

√

− ln [min(u, 1− u)]
2

and

c0 = 2.515517, c1 = 0.802853, c2 = 0.010328,
d1 = 1.432788, d2 = 0.189269, d3 = 0.001308.
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Fig. 6.1. Approximation of exponential distribution with Hermite-Chaos; Left: The expansion
coefficients, Right: The PDF of different orders of approximations.

The formula is from Hastings [10] and the numeric values of the constants have abso-
lute error less than 4.5× 10−4 (also see [6]).

In figure 6.1 we show the result of the approximation of the exponential distri-
bution by the Hermite-Chaos. The expansion coefficients ki are shown on the left,
and we see the major contributions of the Hermite-Chaos approximation are from the
first three terms. The PDF of different orders of the approximations are shown on the
right, together with the exact PDF of the exponential distribution. We notice that
the third-order approximation gives fairly good result and fifth-order Hermite-Chaos
is very close to the exact distribution. The Hermite-Chaos does not approximate the
PDF well at x ∼ 0 where the PDF reaches its peak at 1. In order to capture this
rather sharp region, more Hermite-Chaos terms are needed.

The above result is the representation of the random input k for the ODE of
equation (5.6). If the optimal Wiener-Askey chaos is chosen, in this case the Laguerre-
Chaos, only one term is needed to represent k exactly. We can expect if the Hermite-
Chaos is used to solve the differential equation in this case, the solution would not
retain the exponential convergence as realized by the Laguerre-Chaos.

In figure 6.2 the errors of mean solution defined by equation (5.12) with Laguerre-
Chaos and Hermite-Chaos to the ODE of equation (5.6) are shown. The random
input of k has exponential distribution which implies that the Laguerre-Chaos is
the optimal Wiener-Askey polynomial chaos. It is seen from the result that the
exponential convergence rate is not obtained by the Hermite-Chaos as opposed to the
Laguerre-Chaos.

6.3.2. Approximation of Beta distribution by Hermite-Chaos. We now
assume the distribution of k is Beta distribution; see equation (5.17). We return to
the more conventional definition of Beta distribution in the domain [0, 1]

f(k) =
1

B(α+ 1, β + 1)
kα(1− k)β , α, β > −1, 0 ≤ k ≤ 1. (6.11)

Figure 6.3 shows the PDF of first-, third- and fifth-order Hermite-Chaos approxi-
mations to the Beta random variable. The special case of α = β = 0 is the important
uniform distribution. It can be seen that the Hermite-Chaos approximation converges
to the exact solution as the number of expansion terms increases. Oscillations are ob-
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Fig. 6.3. PDF of approximations of Beta distributions by Hermite-Chaos; Left: α = β = 0,
the uniform distribution, Right: α = 2, β = 0.

served near the corners of the square. This is in analogy with the Gibb’s phenomena
which occurs when Fourier expansions are used to approximate functions with sharp
corners. Since all Wiener-Askey polynomial chaos expansions can be considered as
spectral expansions in the random dimension, the oscillations here can be regarded
as the stochastic Gibb’s phenomena. For uniform distribution, Hermite-Chaos does
not work very well due to the stochastic Gibb’s phenomena even when more higher-
order terms are added. On the other hand, the first-order Jacobi-Chaos expansion is
already exact. In addition to the exponential convergence, the proper Wiener-Askey
basis leads to dramatic lowering of dimensionality of the problem.

7. Conclusion. We have proposed a Wiener-Askey polynomial chaos expansion
to represent stochastic processes and further model the uncertainty in practical appli-
cations. The Wiener-Askey polynomial chaos can be regarded as the generalization
of the homogeneous chaos first proposed by Wiener in 1938. The original Wiener ex-
pansion employs the Hermite polynomials in terms of Gaussian random variables. In
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the Wiener-Askey chaos expansion, the basis polynomials are those from the Askey-
scheme of hypergeometric orthogonal polynomials, and the underlying variables are
random variables chosen according to the weighting function of the polynomials. A
general guideline of choosing the optimal Wiener-Askey polynomial chaos according
to the random inputs is given. By solving a stochastic ordinary differential equa-
tion, we demonstrate numerically that the Wiener-Askey polynomial chaos exhibits
exponential convergence rate. For any given type of random input, the Wiener-Askey
polynomial chaos converges in general, although the exponential rate is not retained
if the optimal chaos is not chosen. The Wiener-Askey polynomial chaos proposed in
the present paper can deal with general random inputs more effectively than the orig-
inal Wiener-Hermite chaos. It can be extended to more complex stochastic systems
governed by partial differential equations without any fundamental difficulties.

Appendix A. Some Important Orthogonal Polynomials in Askey-scheme.

In this section we briefly review the definitions and properties of some important
orthogonal polynomials from Askey scheme, which are discussed in this paper for the
Wiener-Askey polynomial chaos.

A.1. Continuous Polynomials.

A.1.1. Hermite Polynomial Hn(x) and Gaussian Distribution.
Definition:

Hn(x) = (2x)n 2F0

(

−n
2
,−n− 1

2
; ;− 1

x2

)

. (A.1)

Orthogonality:

1√
π

∫ ∞

−∞
e−x

2

Hm(x)Hn(x)dx = 2nn!δmn. (A.2)

Recurrence relation:

Hn+1(x)− 2xHn(x) + 2nHn−1(x) = 0. (A.3)

Rodriguez formula:

e−x
2

Hn(x) = (−1)n dn

dxn

(

e−x
2
)

. (A.4)

The weighting function is w(x) = e−x
2

from the orthogonality condition (A.2).
After rescaling x by

√
2, the weighting function is the same as the probability density

function of a standard Gaussian random variable with zero mean and unit variance.

A.1.2. Laguerre Polynomial L
(α)
n (x) and Gamma Distribution.

Definition:

L(α)
n (x) =

(α+ 1)n
n!

1F1(−n;α+ 1;x). (A.5)

Orthogonality:

∫ ∞

0

e−xxαL(α)
m (x)L(α)

n (x)dx =
Γ(n+ α+ 1)

n!
δmn, α > −1. (A.6)
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Recurrence relation:

(n+ 1)L
(α)
n+1(x)− (2n+ α+ 1− x)L(α)

n (x) + (n+ α)L
(α)
n−1(x) = 0. (A.7)

Rodriguez formula:

e−xxαL(α)
n (x) =

1

n!

dn

dxn
(

e−xxn+α
)

. (A.8)

Recall that the Gamma distribution has the probability density function

f(x) =
xαe−x/β

βα+1Γ(α+ 1)
, α > −1, β > 0. (A.9)

Despite of the scale parameter β and a constant factor Γ(α+1), it is the same as the
weighting function of Laguerre polynomial.

A.1.3. Jacobi Polynomial P
(α,β)
n (x) and Beta Distribution.

Definition:

P (α,β)
n (x) =

(α+ 1)n
n!

2F1

(

−n, n+ α+ β + 1;α+ 1;
1− x

2

)

. (A.10)

Orthogonality:
∫ 1

−1

(1− x)α(1 + x)βP (α,β)
m (x)P (α,β)

n (x)dx = h2nδmn, α > −1, β > −1, (A.11)

where

h2n =
2α+β+1

2n+ α+ β + 1

Γ(n+ α+ 1)Γ(n+ β + 1)

Γ(n+ α+ β + 1)n!
.

Recurrence relation:

xP (α,β)
n (x) =

2(n+ 1)(n+ α+ β + 1)

(2n+ α+ β + 1)(2n+ α+ β + 2)
P
(α,β)
n+1 (x)

+
β2 − α2

(2n+ α+ β)(2n+ α+ β + 2)
P (α,β)
n (x)

+
2(n+ α)(n+ β)

(2n+ α+ β)(2n+ α+ β + 1)
P
(α,β)
n−1 (x). (A.12)

Rodriguez formula:

(1− x)α(1 + x)βP (α,β)
n (x) =

(−1)n
2nn!

dn

dxn
[

(1− x)n+α(1 + x)n+β
]

. (A.13)

The Beta distribution has the probability density function

f(x) =
(x− a)β(b− x)α

(b− a)α+β+1B(α+ 1, β + 1)
, a ≤ x ≤ b, (A.14)

where B(p, q) is the Beta function defined as

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
. (A.15)

It is clear that despite of a constant factor the weighting function of Jacobi polynomial
w(x) = (1−x)α(1+x)β from (A.11) is the same as the probability density function of
Beta distribution defined in domain [−1, 1]. When α = β = 0, the Jacobi polynomials
become the Legendre polynomials and the weighting function is a constant which
corresponds to the important uniform distribution.
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A.2. Discrete Polynomials.

A.2.1. Charlier Polynomial Cn(x; a) and Poisson Distribution.
Definition:

Cn(x; a) = 2F0

(

−n,−x; ;−1

a

)

. (A.16)

Orthogonality:

∞
∑

x=0

ax

x!
Cm(x; a)Cn(x; a) = a−nean!δmn, a > 0. (A.17)

Recurrence relation:

−xCn(x; a) = aCn+1(x; a)− (n+ a)Cn(x; a) + nCn−1(x; a). (A.18)

Rodriguez formula:

ax

x!
Cn(x; a) = ∇n

(

ax

x!

)

, (A.19)

where ∇ is the backward difference operator (2.12).
The probability function of Poisson distribution is

f(x; a) = e−a
ax

x!
, k = 0, 1, 2, . . . . (A.20)

Despite of a constant factor e−a, it is the same as the weighting function of Charlier
polynomials.

A.2.2. Krawtchouk Polynomial Kn(x; p,N) and Binomial Distribution.
Definition:

Kn(x; p,N) = 2F1

(

−n,−x;−N ;
1

p

)

, n = 0, 1, . . . , N. (A.21)

Orthogonality:

N
∑

x=0

(

N

x

)

px(1−p)N−xKm(x; p,N)Kn(x; p,N) =
(−1)nn!
(−N)n

(

1− p

p

)n

δmn, 0 < p < 1.

(A.22)
Recurrence relation:

−xK(x; p,N) = p(N − n)Kn+1(x; p,N)− [p(N − n) + n(1− p)]Kn(x; p,N)

+ n(1− p)Kn−1(x; p,N). (A.23)

Rodriguez formula:

(

N

x

)(

p

1− p

)x

Kn(x; p,N) = ∇n

[(

N − n

x

)(

p

1− p

)x]

. (A.24)

Clearly, the weighting function from (A.22) is the probability function of the
binomial distribution.
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A.2.3. Meixner Polynomial Mn(x;β, c) and Negative Binomial Distri-
bution.

Definition:

Mn(x;β, c) = 2F1

(

−n,−x;β; 1− 1

c

)

. (A.25)

Orthogonality:

∞
∑

x=0

(β)x
x!

cxMm(x;β, c)Mn(x;β, c) =
c−nn!

(β)n(1− c)β
δmn, β > 0, 0 < c < 1. (A.26)

Recurrence relation:

(c− 1)xMn(x;β, c) = c(n+ β)Mn+1(x;β, c)− [n+ (n+ β)c]Mn(x;β, c)

+ nMn−1(x;β, c). (A.27)

Rodriguez formula:

(β)xc
x

x!
Mn(x;β, c) = ∇n

[

(β + n)xc
x

x!

]

. (A.28)

The weighting function is

f(x) =
(β)x
x!

(1− c)βcx, 0 < p < 1, β > 0, x = 0, 1, 2, . . . . (A.29)

It can verified that it is the probability function of negative binomial distribution. In
the case of β being integer, it is often called the Pascal distribution.

A.2.4. Hahn Polynomial Qn(x;α, β,N) and Hypergeometric Distribu-
tion.

Definition:

Qn(x;α, β,N) = 3F2(−n, n+α+β+1,−x;α+1,−N ; 1), n = 0, 1, . . . , N. (A.30)

Orthogonality: For α > −1 and β > −1 or for α < −N and β < −N ,

N
∑

x=0

(

α+ x

x

)(

β +N − x

N − x

)

Qm(x;α, β,N)Qn(x;α, β,N) = h2nδmn, (A.31)

where

h2n =
(−1)n(n+ α+ β + 1)N+1(β + 1)nn!

(2n+ α+ β + 1)(α+ 1)n(−N)nN !
.

Recurrence relation:

−xQn(x) = AnQn+1(x)− (An + Cn)Qn(x) + CnQn−1(x), (A.32)

where

Qn(x) := Qn(x;α, β,N)
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and










An = (n+α+β+1)(n+α+1)(N−n)
(2n+α+β+1)(2n+α+β+2)

Cn = n(n+α+β+N+1)(n+β)
(2n+α+β)(2n+α+β+1) .

Rodriguez formula:

w(x;α, β,N)Qn(x;α, β,N) =
(−1)n(β + 1)n

(−N)n
∇n[w(x;α+ n, β + n,N − n)], (A.33)

where

w(x;α, β,N) =

(

α+ x

x

)(

β +N − x

N − x

)

.

If we set α = −α̃− 1 and β = −β̃ − 1, we obtain

w̃(x) =
1

(

N−α̃−β̃−1
N

)

(

α̃
x

)(

β̃
N−x

)

(

α̃+β̃
N

)

.

Apart from the constant factor 1/
(

N−α̃−β̃−1
N

)

, this is the definition of hypergeometric
distribution.
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