SR Internetional

IO

International
SN A
N o | 7 ™

COMMUNICATION AND INTERACTION
IN MULTI-AGENT PLANNING

December 9, 1984

Technical Note 313

By: Michael Georgeff, Computer Scientist

Artificial Intelligence Center
Computer Science and Technology Division

APPROVED FOR PUBLIC RELIEASE:
DISTRIBUTION UNLIMITED

SRI Project 8871

This research was supported in part by
ONR Contract N00014-80-C-0206 and in
part by AFOSR Contract ['40620-79-C-018.

This paper appeared in Proceedings of the
National Con ference on Arti ficial Intelligence,
Washington, D.C. (1083).

333 Ravenswood Ave. ®* Menio Park, CA 94025
14151 326-6200 ¢ TWX: 910-373-2046 o Telex: 334-486

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
09 DEC 1984 2. REPORT TYPE
4. TITLEAND SUBTITLE 5a. CONTRACT NUMBER

Communication and Interaction in Multi-Agent Planning £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

SRI International,333 Ravenswood Avenue,Menlo Park,CA,94025 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THISPAGE 17
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Abstract

A method for synthesizing multi-agent plans from simpler single-agent plans is described.
The idea is to insert communication acts into the single-agent plans so that agents can synchron-
ize activitics and avoid harmful interactions. Unlike most previous planning systems, actions
are represented by sequences of states, rather than as simple state change operators. This
allows the expression of more complex kinds of interaction than would otherwise be possible.
An efficient method of interaction and safety analysis is then developed and used to identify
critical regions in the plans. An essential feature of the method is that the analysis is performed
without generating all possible interleavings of the plans, thus avoiding a combinatorial explo-
sion. Finally, communication primitives are inserted into the plans and a supervisor process

created to handle synchronization.

§1 Introduction

One of the things robots and other agents need to be able to do is to organize their
activities so that they can co-operate with one another and avoid conflicts. For example, we
might want two robots to co-operate in building a component, one holding some part while the
other attaches some other part to it, or we might want each to pursue different goals, making
sure that they both don't attempt to use the same resource at the same time. QOne way to
organize such robots is to carefully time each of their activities in such a way that this sort
of co-operation and conflict avoidance is guaranteed. However, in many real-world situations,
it is not possible to time events with enough accuracy to enable this approach to work. and
some run-time Synchronization of activities 1s needed. Further, because these robots like to be
as autonomous as possible, pursuing their own goals at their own speed, we should not impose
ordering constraints on their activities unless it is absolutely necessary. Such synchronization

can only be achieved by getting the robots {or some observers) to talk to each other or to some

-2 -

supervising agent.

This paper describes a relatively simple ﬁlethod for achieving this synchronization,
given that the plans of the individual robots have already been constructed. The method also
extends to single-agent planning, where one tries to achieve subgoals separately and defers
decisions as to how these subplans will finally be interleaved (e.g., as in NOAH [Sacerdoti
77]). Note that we are not concerned with some of the more problematic issues in multi-agent
planning, such as questions of beliel or persuasion {e.g., [Konolige 82|). Similarly, the type of
communication act that is involved is particularly simple, and provides no information other

than synchronizing advice (cf. [Appelt 82]).

Most approaches to planning view actions (or events) as a mapping from an old
situation into a new situation {e.g., [McCarthy 68, Sacerdoti 77]). However, in cases where
multiple agents can interact with one another, this approach fails to adequately represent some
important features of actions and events {e.g., see [Allen 81, McDermott 82]). For example,
consider the action of tightening a nut with a spanner. To represent this action by the
cbanges tbat it brings about misses the fact that a particular tool was utilized during the
performance of tbe action. And, of course, this sort of information is critical in allocating
resource usage and preventing conflicts. Wilkins [Wilkins 82] recognized this problem witb the
STRIPS formulationr, and extended the representation of actions to include a description of the
resources used during the action. However, these resources are limited to being objects, and
one cannot specify such properties of an action (or action instance} as “I will always remain to
the north of the building”, which might help other agents in planning to avoid a potentially

harmful interaction.

In this paper we sbow bow representing actions as sequences of states allows us to take
account of both co-operative and harmful interactions between multiple agents. We assume

that the duration of an action is not fixed, and that we can orly know that an action has been

-3 -

completed by asking the agent that performed the action (or some observer of the action). This
does not mean to say that we cannot take into account the expected duration times of actions,
but rather that we are concerned with problems where this information is not sufficient for
forming an adequate plan. For example, if some part in a machine fails, then knowing that
delivery of a new part takes about 24 hours can help in planning the repair, but a geod plan

will probably want a local supervisor or agent to be notified on delivery of the part.

§2 Formalizing the Problem

We consider an action to be a sequence S;, Sa,...5, of sets of states, intuitively those
states over which the action takes place.* The domasn of the action is the initial set of states
Si, and the range is the fnal set of states S,. The intermediate sets of states Ss,...S,—; are

called the moments of the action.

A planning problem P consists of a set of states, S; a designated set of initial states,

I.in S; a set of primitive actions, A, which can be performed by the various agents operating
in the domain; and a set of goal states, G, 1n S. For any given planning problem, a single-agent
[unconditionall plan P is a description of a sequence of actions a;,az,...an from A such that
i. ay is applicable to all initial states [(i.e., the domain of a; contains [)
ii. for all i,1 < i < n, the action a; is applicable to all states in the range of a;_,
iil. ap achieves the goal G (i.e., the range of a, is contained in).

A multi-agent plan for a problem P is a collection of plans for subprobiems of # which

are synchronized to be applicable to all initial states [and to achieve the goal G.

We will describe the problem domazin using a predicate-calculus-like representation

*More generally, an action may be a set of such sequences. While this generalization can casily
be accommodated within the formalism, it needlessly complicates our exposition.

_ 4 -

and assume that all actions satisfy the so-called “STRIPS assumption” [Nilsson 80]. Under the
STRIPS assumption, all conditions that cannot be proved [under some suitable restriction] to

have changed by the performance of an action are assumed to remain unchanged.

Further, we are only concerned with problems in which the components of a world
state involving distinct agents are sufficiently decoupled to permit us to assume that the
effects of actions of one agent are largely independent of any other. Although violation of
this restriction would not affect the validity of any solutions obtained, we would then be less

certain of finding solutions, even if they existed.

The representation of actions that we will use is a generalization of the standard
STRIPS representation. Each action description contains a pre-condition and a post-condilion,
denoting the domain and range of the action. In addition, we need to represent what happens
during the action. This is achieved by specifying an unordered set of conditions to denote
the moments (intermediate state sets) of the action. We will call these conditions the during
conditions of the action. Again, under the STRIPS assumption, all other conditions are assumed

to remain unchanged during the performance of the action, unless it can be proved otherwisc.

For example, here is a possible description for the blocks world action that places one

block on another:

puton(x,y)

pre: holding(x) and clear(y)
during: { holding(x) and clear(y), holding(x) and on(x,y) }

post: clear(x) and handempty and on(x,y)

In the above problem domain, we could assume also that there was a stalic domarn

constratnt [Rosenschein 82] saying that holding(x) always implies clear(x).

_5 -

§3 The Method

Let us assume that, given a planning problem, we have decomposed the original go:l
into appropriate subgoals. Without loss of generality, we will only consider decomposition into
two subgoals. Also assume that we have separately generated plans for solving each of these
subgoals (using some simple search technique, {or example). Our problem now is to combine the
two plans into a multi-agent plan that avoids conflicts and allows as many actions to proceed

in parallel as possible.

The first thing we have to work out is the manner in which individual actions may
interact with one another. Then we need to determine which of the [easible situations are
“unsafe” (i.e., could lead us into deadlock) and finally we need to insert synchronization
primitives into the two subplans (single-agent plans) so that these unsafe situations can be

avoided.

3.1 Interaction Analysis

Qur first task is to establish which situations occurring in the two single-agent plans
are incompatible with one another. For example, if, in one single-agent plan, a situation occurs
where block A is on top of block B, and, in the other single-agent plan, a situation occurs where
block B is required to be clear, then these two situations are clearly incompatible. Similarly,
if one agent expects a component of some assembly to be held by some other agent, and thm
other agent is not holding it, then the situations are again incompatible. We will now make

this notion a little more precise.

Counsider two (single-agent) plans P and @, and let p and ¢ be some state descriptions
occurring at some point in the action sequences for P and @, respectively. We will denote by
< p,q> the situation (set of states) where both p and q hold. If p and q are contradictory [i.e.,

we can prove that p and ¢ cannot both be true at the same time), then of course <p,q> will

-8 -

denote the empty set and we will say that <p,g> i3 unsatisfieble. Otherwise, we will say that

<p.q> is satisfiable.

Now consider what happens when we try to execute actions in parallel. Let us begin
by describing the sequence of state sets defining an action by a sequence of conditions. Then,
given two actions @ = py,pa,...Pm and b = q;,4=,...qn, what can we say about the way they

can be executed?

Assume we are in some situation <py,q;>. To establish feasibility and safety, we
need to know what are the possible successor situations. Say that, at this given instant, action
a continues next, while action b remains at its current point of execution. Then, clearly, in the
next situation p;y, will hold. But will g; also hold in this new situation? In the general case,
we would need to use the properties of the problem domain to determine what in fact does
happen next. However, under the STRIPS assumption, we are guaranteed that ¢; holds in this
new situation, provided <p;;,,¢;>> is satisfiable. Similarly, if action & proceeds before action
a, then p; will continue to hold in the new situation, provided again that this new situation

is satisfiable. Thus the possible successors of the situation <p; g;> are just <p;yi.q;> and

<PirQi+1>-

The STRIPS assumption is thus seen to be very important, because it allows us to
determine the manner in which actions can be interleaved solely on the basis of satisfiability of
the pairwise combination of the conditions defining the actions. If this were not the case, we
would have to examine every possible interleaving of the actions, inferring as we went just whit
the successor situations were and whether or not they were satisfiable. Even without taking
into account the cost of performing the necessary inferences, the complexity of this process is
of order (n+m)!/(n! m!), compared with a complexity of order n X m if we make the STRIPS
assumption {and thus need only examine all possible pairs of conditions). Furthermore, in the

general case it would not be possible to specify the during conditions as an unordered set — we

-7 -

would have to specify the actual order in which these conditions occur during the performance
of the action. This complicates the representation of actions and, in any case, may not be

information that we can readily provide.

We are now in a position to determine how actions as a whole can be safely executed.
Consider two plans P = a,,az,...0, and Q@ = by, bo, .. .b,, and assume actions a; and b, are

next to be executed.

One possibility is that actions a; and b; can he executed in parallel. Because we have no
control over the rates of the actions, all interleavings of the actions must therefore be possible.
Under the STRIPS assumption, this will be the case if, and ornly if, all situations <p,q> are
satisfiable, where p and q are any condition defining the actions a; and b;, respectively. Such

actions will be said to commute.

Alternatively, action a; could be executed while b; is suspended (or vice versa). For
this to be possible, we require that the preconditions of b; he satisfied on termination of
some action that follows a; in plan P. We will in fact impose somewhat stronger restrictions
than this, and require that the preconditions of b; be satisfied on termination of a; itsclf.”
This amounts to assuming that the preconditions for one of the actions appearing in one of
the plans are unlikely to be achieved by the other plan (or that, in worlds where interactions
are rare, so is serendipity). It is clear that, for actions satisfying the STRIPS assumption,
and under the restriction given above, action a; can be executed while b; is suspended if, and
only if, {1) the situation consisting of the preconditions of both actions is satisfiable and (2)
the situation consisting of the postcondition of a; and the precondition of b; is satisfiable. If

actions a; and b; have this property, we will say that a; has precedence over b;.

*This is simply a restriction on the solutions we allow, and simplifies the analysis. The fact
that one of the plans might fortuitously achieve the preconditions for one or more acticns
in the other plan does not fnvelidate any solution we might obtain — it just means that the
solution we obtain will not make constructive use of that fact.

-8 -

Note that it is possible for both actions to have precedeuce over each other, meaning
that either can be executed while the other is suspended. Also, neither action may have
precedence over the other, in which case neither can be executed. In the latter casc, we will

say that the actions conflict.

In problem domains that are best described by predicate calculus or some parameterized
form of action description, the above conditions need to be determined for the instances of the
actions that occur in the particular plans under consideration. However, in many cases these
conditions can be established for the primitive actions, irrespective of the particular instaoce.
For example, in the blocks world, handempty conflicts with holding(x), irrespective of the
value of x. Furthermore, one can often establish relatively simple ssolation conditions under
whicl classes of actions will or will not commute irrespective of the particular instance. Tlus
although the deductions necessary for determining satisfaction of situations may be time con-

suming, much of the analysis can be done once only for any given problem domain.

3.2 Safety Analysis

We can now use these properties to set up the safety conditions for individual aclions.
Consider two plans P == ay, aa,...am and @ = by,bo,...5,. Let begin(a) denote the beginniug
of an action a and end(a) the termination of the action. Let the initial conditions of the plans
P and @ be denoted by end(ag) and end(by), respectively. For each pair of actions a; and §;

occurring in P and @ we ther have the following:

i. If a; and b; do not commute, then <begin(a;), begin(b;)> is unsafe.

ii. If a; does not have precedence over bj;, then <begin(a;), end(b;j—1)> is unsafe.
The set of all such unsafe situations is called the tnteraction set.

However, we still need to determine whether these unsafe situations give rise to other

_ 9

unsafe situations — that is, we must determine which of all the possible situations occurring in
the execution of the plans P and @ could result in deadlock. The rules that govern the salety

of a given situation ¢ are as follows:

i. [If s = <begin{a;), begin(b;})>, then s is unsafe if either successor situations are unsafe.
ii. If 3 = <begin(a;), end(b;)>, then s is unsafe if <end(a;), end(b;)> is unsafe.

i. [If s = <end(a;),end(b;)>, then s is unsafe if both successor situations are unsafe.

iv. Together with those situations occurring in the interaction set, these are all the unsafe

sttuations.

Unfortunately, to use these rules to determine which of all feasible situations are
unsafe requires the examination of all possible interleavings of the actions comprising the plans,
and the complexity of this process increases exponentially with the number of actions involved.
However, in the kinds of problem domain that we are considering, actions rarely interact with
each otber, and as a result long subsequences of actions often commute. The following theorem,

which is not difficult to prove, allows us to make use of this fact.

Commutativity Theorem. Let a),az,...a,, be a [consecutive] subsequence of actions in
a plan P and by,ba,...b, be a subsequence of actions tn a plan Q. If all the actions a;,
1<i<m, commute with the actions b;, 1 <3 <n, then all possible situations occurring
in all possible interleavings of these sequences will be unsafe if, and only if, the siluations
<end(a,,), begin(by) > and <begin(a,),end(bn)> are unsafe. Further, all situations occurring

in all interleavings of these sequences will be safe if, and only if, <end(a,.), end(b,)> 15 safe.

This theorem means that, if any two subsequences of actions commute with each other,
then we need only consider those situations that occur on the “boundaries” of the sequences.
Exactly what states within those boundaries are safe and unsafe depends only on the safety
or otherwise of the boundary states, and this can be determined in a straightforward manner.

As commutativity i1s common when interactions are rare, this result allows us to avoid the

- 10 -

exploration of a very large number of interleavings and to substantially reduce the complexity
of the problem. In particular, actions that commute with all actions in the other plan can

simply be removed from consideration.

We will pow use these results as a basis for our method of safety analysis. Assume
we have constructed two single-agent plans and have performed the interaction analysis. All
references to actions that commute with the other plan in its entirety (i.e., which do not
appear in the interaction set) are removed from the plans, and the beginning and termination
points of the remaining actions are explicitly represented. We will say that tbe resulting
plans are stmplified. Then, beginning with the initial situation, the conditions of safety given
above are applied recurstvely to determine all situations that are feasible yet unsafe. [lowever,
whenever we reach a situation where following subsequences of actions commute, we use the
commutativity theorem to avoid the explicit exploration of all possible interleavings of these

%
subsecjuences.

3.3 [nteraction Resolution

The set of unsafe situations is next analyzed to identify contiguous scquences of
unsafe situations. These represent critical regions in the single-agent plans. Once these critical
regions have been determined, standard operating-system methods can be used to enforce
synchronization of the actions in the plans so that conflicting critical regions will not both be

entered at the same time.

We will use CSP primitives [Hoare 1978] for handling this syncbronization. A program
in that formalism 1s a collection of sequential processes each of which can include interprocess

communication operations. Syntactically, an interprocess communication operation names the

“*In fact, the analysis of safety can be further simplified. These details need not concern us
here, our intention being primarily to establish the importance of the STRIPS assumption
and the commutativity theorem to avoid a combinatorial explosion.

- 11 -

source or destination process and gives the information to be transmitted. [a Hoare's notation,

the operation “send s to process P” is written
P!s

and the operation “receive s {rom process P" is
P?s

Semantically, when a process reaches a communication operation, it waits for the
corresponding process to reach the matching communication operation. At that point the

operation is performed and both processes resume their execution.

The synchronization is achieved as follows. At the beginning and end of each critical
region R we set up a communication command to a supervisor S, respectively Stbegin-R and
Slend-R. The supervisor then ensures that no critical regions are allowed to progress at the
same time. Placing the communication commands in the original single-agent plans is clearly
straightforward. So all we now have to do is construct the scheduler, which is a standard

operating-systems problem.

3.4 Example

We will consider an example where two robots are required to place some metal stock

in a lathe, one making a bolt and the other a nut. Only one robot can use the lathe at a time.

We will not formally provide the details of the actions and tbe problem domain, but.
only sufficient to give the idea behind the analysis and the solution. The fact that the lathe
can only be used by one robot at a time is represented as a static constraint on the problem

domain.

The actions are informally as follows:

- 12 -

movel: agent 1 moves to the lathe
move2: agent 2 moves to the lathe
placel: agent 1 places metal stock in lathe
place2: agent 2 places metal stock in lathe
boltl: agent 1 makes a bolt

nut2: agent 2 makes a nut

endl: agent 1 moves to end

end2: agent 2 moves to end

The preconditions and during conditions for actions boltl and nut2 include the con-
straint that the lathe must be in the possession of the appropriate agent, as do the postcondi-

tions and during conditions for actions placel and place2.
Assume that a simple planner produces the following single-agent plans:

movel — placel — boltl — endl

move2 — place2 — nut2 — end2

The following precedence and commutativity properties can then be established:

i. actions boltl and nut2 conflict with one another

il. actions placel and place2 each have precedence over the other, but do not commute.
ili. action boltl has precedence over place2, but not vice versa.

iv. action nut2 has precedence over placel, but not vice versa.

We now proceed to determine the unsafe situations. First, the interaction set is determined:

< begin(boltl),begin(nut2)> < begin(boltl),end(place2)>
< end(placel),begin(nut2)> < begin(placel),begin{place2)>
< begin(boltl),begin(place2)> < end(placel),begin(place2)>

< begin(placel),begin(nut2)> < begin(placel),end{place2)>

- 13 -

We next form the simplified solutions:

begin{placel) — end{placel) — begin(boltl) — end(boltl)

begin(place2) — end(place2) — begin(nut2) — end(nut2)

Then we perform the safety analysis, which, in this case, returns the set of unsafe situations
unchanged from the interaction set. On concatenating consecutive elements, we get only two

critical regions: begin(placel) — end(boltl) conflicts with begin(place2) — end{nut2).
Finally we insert CSP commands into the original plans:

Solution for agent 1 (P)

movel — Slbegin{placel) — placel — boltl — Slend(boltl)— endl

Solution for agent 2 (Q)

move2 — Slbegin(place2) — place2 — nut2 — Slend(nut2) — end2

Solution for the synchronizer (S)*

[not N ; P?begin(placel) — M := true
[not M ; Q?begin(place2) — N := true
[] true ; P?end(boltl) — M := false

] true ; Q?end(nut2) — N := false]
Both M and N are initially set to “false”.

The solution obtained is, of course, the obvious one. Both agents must advise the
supervisor that they wish to put stock in the lathe, and can only proceed to do so when given
permission. Both agents must also advise the supervisor when they have finished with the

lathe. On his part, the supervisor makes sure that only one agent at a time is putting stock

*The form “[] <guard> — <command>" is a guerded command (see [Hoare 78]), and
the command following the symbol “— ™ can only be executed if the execution of the guard
(i.e. the boolean expression and the input command preceding “— ") does not fail.

- 14 -

into the lathe and using it. Notice that the synchronizer allows any interleaving or parallel]
execution of the single-agent plans that does not lead to deadlock. Further, the synchronizer

allows the plans to be continually executed, which is useful for production-line planning.

Although the problem described above involved the avoidance of harmful interactions
{mutual exclusion), the method can equally well be applied to problems that require co-
operation between agents. The reason is that unless the actions are synchronized to provide
the required co-operation, situations will arise which are unsatisfiable. For example, if two
agents are required to co-operate to paint a block of wood, one holding the picce and the other
painting it, then any situation where one agent was painting the wood while the other was not

holding it would be unsatisfiable.

The multi-agent plan synthesizer described in this paper has been used to solve a
number of tasks involving both co-operation and interaction avoidance. These problems tnclude
two arms working co-operatively to bolt subassemblies together, some typical blocks world

problems requiring “non-linear” solutions, and various “readers and writers” problems.

§4 Conclusions

We have presented a simple and eflicient technique for forming flexible multi-agent

plans from simpler single-agent plans. The critical features of the approach are that

1. actions are represented as sequences of states, thus allowing the expression of more complex

kinds of interaction than would be possible if simple state change operators were used, and

ii. the STRIPS assumption and commutativity conditions are used to avoid the explicit
generation of all possible interleavings of the actions comprising the plans, thus avoiding
a combinatorial explosion.

While the approach does not guarantee solutions to some classes of problem invelviag

- 15 -

complex interactions between single-agent plans, it has wide applicability in many real-world
settings, such as in automated factories and co-operative robot assembly tasks. Future work

will extend the formalism to include conditional plans and hierarchical planning techniques.

Acknowledgment

The author wishes to acknowledge the contribution of Graham Eddy in helping to

clarify the ideas in this paper.

— 16 -

References

[1 Allen, J.F., “A General Model of Action and Time”, Usniversity of Rochester, Comp.
Sci. Report TR 07, 1981.

[2] Appelt, D. “Planning Natural Language Utterances”, in Research on Distributed Aridficia!
Intelligence, Interim Report, Al Center, SRI laternational, Menlo Park, Ca., 1082,

o

[3] Hoare, C.A.R., “Communicating Scquential Processes”, Comm. ACM, YVal. 21, pp

666-677, 1978.

[1] Konolige, K. “A First Order Formalization of Knowledge and Action for a Multingent

Planning System”, in Research on Distributed Artificial Intelligernce, 1982,

[5] McCarthy, J., in Minsky (ed.) Programs with Common Sense, MIT Press. Cambiricdee,
Mass., 1968.

[6] McDermott, D., “A Temporal Logic for Reasoning about Processes and Plans”, Yale

University Comp. Sci. Research Report 198, 1981.
[7] Nilsson, N.J. Principles of Artificial Intelligence, Tioga Press, Palo Alto, Ca., 1$50.

(8] Rosenschein, S. “Plan Synthesis: A Logical Perspective”, Proc. [JCAI-81, Vancouver,
Canada, pp. 331-337, 1981,

[9] Sacerdoti, E.D. 4 Structure for Plans and Belhaviour, Elsevier, North Holland, MNew

York, 1977.

[10] Wilkins, D.E., “Parallelism in Planning and Problem Solving: Reasoning about Resources™,

Tech Note 258, Al Center, SRI [nternational, Mealo Park, Ca., 1932.

- 17 -

