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ABSTRACT

In this paper we address a basic problem in machine perception: the
tracing of "line-like" structures appearing in an image. It is shown
that this problem can profitably be viewed as the process of finding
skeletons in a gray scale image after observing (1) that line detection
does not necessarily depend on gradient information, but rather 1is
approachable from the standpoint of measuring total intensity variation,
and (2) that smoothing the original image produces an approximate
distance transform. An effective technique for extracting the
delineating skeletons from an lmage is presented, and examples of this
approach using aerial, industrial, and radiographic imagery are shown.

I INTRODUCTION

For many tasks In scene analysis, there may not exist general
solutions independent of purpose or intended application. However, for
the task of linear delineation, one can easily find 1image subsets for
which a panel of human observers would be almost unanimous in their
interpretation without having to agree on the explicit criteria
underlying thelr decisions} our goal is to produce a computer system
that can perform the delineation task at close to human levels for at
least these more obvious cases, especlally where semantic knowledge is
not required. 1In this paper we present some new ways of looking at the
problem of Ilinear delineation and provide techniques that are
significantly more general and effective than previously reported
methods for this task.

I1 PROBLEM DEFINITION

For the purposes of this paper, we define linear delineation as the
task of generating a set of lists of points, for a given 2-D image, such
that the points in each list fall sequentially along what any reasonable
human observer would describe as a clearly visible "line-like" structure
in the image. Practical examples of this task might be to delineate the
roads, rivers, and rail lines in an aerial photograph, or to trace the
paths taken by blood vessels In a radiographic anglogram, or to locate
the wiring paths on a printed c¢irecuit board; however, our goal in this
paper is not to look for specific real-world objects or to assign
semantic labels to the detected linear structures, but rather to find
what a human observer might choose as the most perceptually obvious



occurrences of such structures. We further distinguish between the
problems of (1) detecting the edges or contours of extended objects, and
(2) delineating those objects whose appearance 1s adequately represented
by a central skeleton -- only the second problem 1s addressed.

III  LINES AND EDGES

While most approaches to linear delineation do not distinguish
between lines and edges, and even use edge detection as a necegsary
first step in the delineation task, a critical concept advanced in this
paper 1s the distinction between line and edge detection.

Edge detection 18 based on the concept of finding a discontinuity
{in intensity or some other locally measurable attribute such as color
or texture) between two adjacent but distinet regions in an 1image.
However, in a digital representation of an image, a smooth surface can
always be fit to the sample values of the integer raster. Thus, edge
detection must be based on parameters or thresholds set by assumptions
about the nature of the image. Even if edge points are marked only at
those locations at which there are first derivative maxima, or zeros of
the second derivative, ultimately, an arbitrary decision is made 1in
deciding when the corresponding gradient 1s large enough to be called a
discontinuity.

Intuitively, a "line-like” or 1linear structure 1s a (connected)
region that is very long relative to 1its width, and has a ridge or
skeleton along which the intensities change slowly and are distinguished
from intensities outside the region; the width need not be constant, but
any changes In width should occur in a smooth manner. To simplify the
discussion, we will assume the linear structures are distinguished by
their ridgepoints being brighter than the surrounding background, but
any other gpecified attribute, which is locally detectable, would be an
acceptable substitute. It 1s important to recognize the fact that a
clearly visible 1line in an image may not have locally detectable edges
and thus no locally measurable width, or possibly only one detectable
edge, or even two edges which are significantly separated and
nonparallel as might occur in a local widening of a river. It 15 also
generally the case that linear structures have no visible internal
detall that is essential to their delineation.

As a point of interest, it might be noted that the mechanisms for
generating subjective edge and line 1llusions are quite different;
subjective edges appear to require a 3-D interpretation, while
subjective lines appear to be produced by adaptation phenomena.



IV SMOOTHING, DISTANCE TRANSFORMS, AND THE GRAY SCALE SKELETON

If we can find the edges of a linear structure, we can generate a
distance transform and extract a skeleton as the desired dellneation
(e.g., Rosenfeld [1], Fischler {2]). However, as noted in the preceding
section, linear structures do not always have locally detectable edges,
and, since all of the generally known techniques for deriving a skeleton
require a complete contour, some other approach 1s required. The
classical skeletonizing techniques intimately link the contour/edges of
a region and its gskeleton, and it is Just this 1linkage that we wish to
break.

Surpriaingly, something equivalent to a distance transform that
works on gray scale images, and on binary images as well, 1s already
avallable. To achleve our purpose, we need only observe that the
intensities 1in a properly smoothed image can be considered to be the
values of an approximate distance transform. What 1s the best smoothing
function for general wuse? Actually, it doesn“t seem to make much
difference 1in many cases. Most digital images have been processed by
low-pass optical and electronic systems that have inserted the required
minimum level of smoothing. The viewpoint that the smoothed image can
be considered to be a distance transform 1s the essentlal element.
However, if we start with a binary image, or a very nolsy image, then
additional smoothing 1s often desirable. Since we are not concerned
with blurring edges, and we would 1ike to eliminate or blur any
structure or texture internal to the Ilinear regions, we want the
smoothing function to have a width of approximately that of the region
to be delineated. If the width of the smoothing function 1s increased
further, the thinner linear structures are eventually eliminated. Thus,
1f we wish to find all possible Ilinear structures without prior
knowledge of the content of the image, the processing should be repeated
with a get of smoothing filters having a spectrum of widths. Actually,
no more than two or three filtering steps should ever be required. For
example, to trace all the linear structures (diameters up to 20 pixels)
in a noilsy radiographic angiogram, a single filter of width 20 was used
(see Figure 1). Smoothing introduced by the acquisition process was
sufficlent to produce excellent results in tracing the linear structures
in aerlal imagery (see Figures 4 and 5).

V  RIDGES (OR VALLEYS), OFERATORS, AND NEIGHBORHOODS

Having produced an approximate distance transform via smoothing, we
now must deal with the problem of locating the ridgepoints that denote
the spines (skeletons) of the linear structures. When an exact distance



transform is derived from a complete contour, noise is not a problem and
the skeleton has assured geometric properties that make it easy to
detect; finding the ridgepoints of an approximate distance transform is
conslderably more complex.

We traditionally distinguish between 1locally and globally
detectable features: local features are detectable by an intensity
pattern which can be observed through a small peep-hole centered on the
feature, while global features are ambiguous in a small area. The model
or description of the local feature 18 generally compiled into an
intensity patch (matched filter or operator) which can be convolved with
the image to detect the corresponding feature. In the case of an exact
distance transform, a 3X3 pixel operator 1s sufficient to detect
ridgepoints (a 2X2 operator 1s sufficient for the Labeled Distance
Transform (Fischler [2])); for the approximate distance transform, a
small fixed-size operator is ineffective.

The principal utility of a local operator is that the number of
data patterns the operator might encounter is smazll enough to allow one
to enumerate a decision for each such pattern. If we further agree to
use a small square window of the image as our 1local domain, and to use
either table look-up or convolution as the basls for decision making,
then a uniform mechanization can be employed to implement a large number
of distinct {and generally wunrelated) local operators. The
attractiveness of this second implementation aspect has led to the
situation that almost all low level (local) scene analysis 1s done using
such peep-hole type operators. The disadvantage of this approach is
that the concept of local 1s relative to the size of the entity of
interest, and either one must know this size in advance, or use a whole
famlly of operators of increasing size, where the larger operators lose
the advantages that led to their use in the first place. In the case of
line detection, where the 1line width can vary over a wide range of
values, the conventional operator concept is Inappropriate.

Based on these general 1ssues (even more than on the immediate
problem at hand), we have consldered other realizations of general
"local” decislon-making processes that satisfy the previously stated
conditions, but do not necessarily lend themselves to a convolution type
mechanization. In particular, restricting our attention to finding the
maxima and minima of functions of the displacement along a space curve
defined over the 1lmage, satisfies our requirements for computational and
decision-making simplicity even when the curve traverses the entire
image. While the space curve might assume any shape (e.g., follow the
contour of an object), the analysis itself 1s independent of the shape;
for the linear delineation problem, we used image intensity as =a
function of displacement along horizontal and vertical scan lines.
Since maxima and minima are symmetrical attributes, we will only discuss
the problem of labeling maximal points along the curve.



The problem of finding the ridgepoints of an approximate distance
transform can be viewed as the problem of finding the ridgepoints (local
maxima) of an exact distance transform to which some amount of nolse has
been added. We are not concerned about the possibility of making
isolated (incoherent) incorrect decisions, because we have developed
effective 1linking and pruning methods, described in the next section,
that are capable of eliminating such errors. Our main problem is that
we cannot count on finding either large local gradients or using known
line width to determine some minimum significant gradient threshold to
identify valld ridgepoints; additionally, noise will introduce many
false 1local maxima. Thus, we must use total 1intensity change, rather
than rate of change, to detect valld ridgepoints, and we must have an
effective way of determining such total change even in the presence of
local variation 1Introduced by noise. {While it 15 not Iimmediately
obvious that total intensity change, rather than rate of change, will
recover the perceptually obvious 1linear features, our experiments
indicate that this is indeed the case.) .

Qur approach is to evaluate two attributes of each of the detected
intensity maxima along the space curves (in this case, horizontal and
vertical scan lines), which we call the "local” and "global” maxima
values. The local maxima value of a polnt is the total intensity
difference from the point to the highest of its immediate left and right
intensity minima along the curve. The left (right) global maxima value
of a point i8 the total intensity difference from the point to the
lowest intensity value found moving to the left {(right) prior to
encountering a point with an intensity wvalue greater than that of the
given point; the global maxima value of the point is the smaller of its
left and right global values. In the case of a plateau, only the center
point is treated as a maximal point and evaluated as previously
described. If a point {(or pointe) on a plateau has 2an immediate
neighbor with a higher intensity wvalue, it is not a maximal point and it
is not assigned either a local or global wvalue (actually, for
implementation purposes, non-maximal points are assigned zero values);
on the other hand, every maximal point will have both a local and global
value where the global value equals or exceeds the local value.
Figure 2 provides some examples 1illustrating the operations Just
described.

We have been proceeding under the assumption that a large local
intensity maxima (LIM) denotes a slgnificant event, but, in the presence
of large varlations in 1image intensity or noise, the global intensity
maxima (GIM) would be a better detector of significant intensity
variation; however, in a well-smoothed or relatively noise-free image,
there might be very 1little difference In the information contained in
the LIM and GIM measures. There is also the issue of deciding what is a
large-enough value, of either the LIM or GIM, to indicate significance.
In our unsmoothed image data, about 1/3 of the points were maximal
points, and, in a smoothed image, this percentage is much smaller (see
Table 1). Given the linking and pruning techniques we describe in the



next sectlon, 1t might be possible to return all the maximal polnts in a
binary mask and still extract the desired 1line structure from the
background nolse contalned in such a mask. However, it makes much more
gense to first eliminate those maximal polnts that do not have enough
intensity wvariation to be perceptually distingulshable from a flat
background. {It would even appear that we could, without losing
essentlal informatlon, eliminate those maximal points with a total
variation 1less than that required to perceive them against a random-
nolse fleld with the same statlistical wvarlation as the measured
variation over some surrounding neighborhood in the image.)

Rather than attempting to find some optimal threshold setting (in
the gense of maximum nolse elimination without any loss of 1linear
structure), which would be difficult or impossible to automatically
determine at this level of informatlon organization, we 1teratively
adjust our threshold settings to satlgfy a constraint based on a
complexity measure. These program-determined thresholds typlcally allow
at least two to ten times the number of ridgepoints (maxima) to be
retained above that which would result by manually setting the
thresholds to  achieve visually acceptable results. The  final
elimination of ‘“non-significant” maxima 1s achleved later i1in the
processing at a higher level of organization.

Vi CLUSTERING, LINKING, PRUNING, NODE ANALYSIS, RANKING, AND FINAL
DELINEATION

Based on the avallability of a binary overlay deplcting the
locations of the major linear structures contained in the given gray
scale 1image, obtalned as described in the preceding section, we have
been able to demonstrate that.

(1) The linking step in the delineation process can
effectively be based on the single attribute of geometric
proximity, and that a clustering or assoclatlon step,
followed by the construction of a Minlmum Spanning Tree
{MST) through the points of each cluster (Fischler [3],
Zahn [4]), will correctly 1ink the ridgepolnts along the
skeletons of the linear structures.

{2) The desired delineations will be embedded 1in trees
containing additional branches that are either minor
linear structures or nolse, and that simple pruning
techniques can eliminate most of this wunwanted detall
{see Figure 3; note that tree pruning can effectively
achieve simplifications that would be difficult, 1f not
impossible, at lower levels of organization of the
information).



(3) Having properly linked the ridgepoints and pruned some of
the smaller branches of the resulting trees, we can
extract long coherent paths by a declslon procedure
applied at each node of each tree. This decision
procedure, based on the local branch attributes of
intensity, connectivity, and directionality at each node,
asslgnes path connectivity through a node by splitting off
incompatible branches; any remaining ambiguities (more
than two branches entering a node) are resolved by
choosing those palrings that result in the longest paths.

(4) The paths obtained in the tree partitioning step can be
rank ordered with respect to perceptual quality by a
metric based on the path attributes of total length,
contrast, and continuity.

Details of the procedures discussed In this sectlon are presented
in the appendix.

VI1I  EXPERIMENTAL RESULTS

Figures 4-10 present the results of applying the dellneation
algorithm to aerial, Industrial, and medlcal 1lmages. Our goal was to be
able to take imagery from arblitrary domains, and without any human
intervention (e.g., parameter adjustment or attention focusing), produce
high quality delineation of the obvlious linear structures. The results
show that we have accomplished much of what we originally intended. The
delineations achleved by the uniform parameter settings are quite good
in all the 1mages with the exception of the anglogram (which 1s
extremely nolsy, and does not really satisfy the criteria of having
"clearly visible” 1linear structure); and even here, by mnaking an
approprlate selection of two parameters, the smoothing dlameter and the
asgoclation distance (required in the clustering step), we obtain very
good results. By using the values produced by the ranking step of the
delineation algorithm, we believe it should be possible to automatically
gsearch the parameter space (of approximately 10 to 100 parameter
combinations) to optimize the processing for any given Image. We are
currently Investigating thls possibility.



VIIT  CONCLUDING COMMENTS

We have presented the viewpoint that the problem of delineating the
obvious linear structures in an image 1s distinct from that of finding
edges or contours, and 1s best viewed as the process of finding
skeletons in gray scale images (i.e., that 1line detection does not
necessarily depend on gradient information, but rather is approachable
from the standpoint of detecting total intensity varlation); as a
necessary step in this process, we have suggested that an approximate
gray scale distance transform can be attained by smoothing the original
image. We have described an effective technique for finding ridgepoints
(points on the delineating skeleton), and, in the process, ralsed some
important questions about the conventional approach to designing "local
operators.”

The competence of the ridgepoint algorithm to abstract the linear
structure of an image 1s apparent by inspection of Figures &4 through 10.
This effectiveness 1s, Iin a sense, a "paychological discovery.” It
would appear that ridgepoints are important perceptual primitives which
may play a significant role in a wvariety of other tasks (e.g.,
perception of surface shape). A significant feature of “"ridgepoints” is
that their 1locations are Iindependent of any monotonic intensity
transformation of the 1image, and their geometric configuration 1is
independent of a change of scale. These are precisely the properties we
would expect of a perceptual primitive, but are lacking in the commonly
employed gradient dependent primitives, such as "edgepoints.”

Starting with both the binary overlay (produced as discussed in the
main body of thils paper) and the original gray scale image, we have
demonstrated via examples that the remaining steps 1in the delineation
process can be effectively achileved.

Qur goal in this work has been to approach human 1levels of
performance in finding perceptually obvious delineations 1in Images
selected at random from a reasonably broad class of scene domains, and
without any human intervention or prior knowledge about the image
content. We believe that this goal can be achieved through extension
and refinement of the techniques described in this paper.
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Appendix A

This appendix describes the procedures invoked by the delineation
algorithm. These include :

a) Smoothing

b) Ridgepoint Detection

c¢) Asgsoclation (grouping or clustering) and Thresholding
d) Linking

e) Pruning

f) Linear Segment Extraction

g) Linear Segment Decomposition

h) Linear Segment Evaluation

SMOOTHING

a) Purpose: enhance connectivity, especlally of "thick" lines, in
the presence of noise (e.g., along nolsy plateaus -- see Figure 11).

b) Algorithm: 2-D Caussian smoothing approximated by a 1-D
binomial mask iteratively convolved with the image in the horlzontal and
vertical directions (e.g., a mask of diameter five is the sequence
<1 4 6 4 1>).

c¢) Parameter Space: mask diameter is the only adjustable
parameter. Values of <0 3 5 10 20> would probably be adequate for any
256X256 image. In our experiments, we used values of 0 or 3 for all the
images except the wvery nolsy anglogram which required a smoothing
diameter of 20 for best results.

d) Parameter Selection: since smoothing can alter connectivity,
and thus topology, and since topology cannot be evaluated locally, there
is a strong possibility that there is8 no 1low level test which can be
used to select a best smoothing mask. In general, an 1deal smoothing
mask should have a diameter equal to the width of the 1line whose
connectivity 1t is enhancing. If the mask dlameter is smaller, it is
leas effective; 1f the mask diameter is larger, it will eventually
eliminate or shift the 1ine”s location (see Figure 12). Ideally, one
should separately process the image with each of the available smoothing
masks and plece together the best delineations after a final evaluation.
The precise control structure for such an approach is still wunder
investigation. The alternative we are using at present is to set the
mask size to the diameter of the the smallest width lines we wish to
ensure are included in the delineation. In our experiments we used the
following values:
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D = 0 for low resolution aerial images where line
widths of 1-2 pixels are common. We depend
on the smoothing already introduced by the
limited bandwlidth of the image acquisition system.

D=3 for all the remaining "normal” imagery.

D = 20 for the very noilsy anglogram.

e) Comments: ¥For a given line of nominally constant width, the
quality of 1its delineation plotted as a function of smoothing mask
diameter, 1s a parabolic function peaking where mask size equals line
dlameter. This is the only method we have found so far to get a good
estimate of line width.

RIDGEPOINT DETECTION

a) Purpose: to locate a set of points which contain the points
comprising the linear structures In an Image. These points should be
dense along the ridge-lines (skeletons) and relatively sparse elsewhere.
In addition to location, for each point we also wish to obtain a measure
of "contrast” between the point and the background.

b) Algorithm: ridgepoints (maxpoints) are detected by searching
for 1local (intensity or other attribute) maxima along horizontal and
vertical scan 1lines. Each ridgepoint is assigned two numerical values
which are measures of its "local” and "global” contrast. These values
are determined ag shown in Figure 2, and the larger of each of the two
values determined for the horizontal and vertical directions, are
retalned for each of the two attributes.

¢) Parameter Space: with the possible exception of scan-line
positioning, the algorithm for ridgepoint detection has no internal
parameters.

d) Parameter Selection: A dense set of horizontal and vertiecal
scan lines was used 1in all of our experiments. Since this selection
produced excellent results, nothing else was considered.

e) Comments: The competence of the ridgepoint algorithm to
abstract the 1linear structure of an image is apparent by Inspection of
Figures 4-10. A significant feature of "ridepoints” is that their
locations are independent of any monotonic intemsity transformation of
the image, and their geometric configuration 1s independent of a change
of scale.
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ASSOCIATION AND THRESHOLDING

a) Purpose: To partition the ridgepoints, detected in the image,
into independent coherent subsets at some maximum level of complexity.

b) Algorithm: Points are initially grouped into mutually exclusive
clusters such that every point in a cluster is within some maximum 2-D
Eucledian distance from at least one other point in the cluster. The
technique used is a fast “two pass” algorithm deseribed in (Firschein
and Fischler [5]). If the number of points in a cluster is greater than
some preset complexity threshold, then the cluster is thinned by
eliminating those points with the lowest contrast (1i.e., raising the
"contrast threshold”); a separate contrast threshold is thus determined
independently for each cluster in a image. If the elimination of low
contrast points causes the distance condition to be violated, the
cluster is decomposed into subclusters which now assume independent
status, and the above procedure Is iteratively invoked.

c) Parameter Space: The 256X256 1image contains 65,000 pixel
locations, and the total number of ridgepoints in a typical scene can
vary from 10,000 to 25,000 points. An initial contrast thresholding 1is
done to reduce the number of ridgepoints to about 10 percent of the
image. At present, the global contrast threshold is always set to be
twice the wvalue selected for the local contrast threshold. Typical
values obtained for local contrast range from 2 to 20 intensity units
for a picture with an intensity range of 0 to 255 intensity units.

The complexity threshold (the maximum number of points 1in a
cluster) is based on both the competence of subsequent techniques, and
on computer system constraints. It is currently set at 1500 points.
The contrast thresholds for a cluster are adjusted by the algorithm to
satisfy the complexity threshold constraint.

The distance threshold employed by the assoclation algorithm is
based on the assumption that the clearly visible Ilinear structures in
the image will be continuous, and only a slight allowance need be made
for acquisition and quantization noise. Values of 2 and 3 are the only
distances considered; this allows gaps of 1 and 2 pixels, respectively.

d) Parameter Selection: The complexity threshold, with a setting
of 1500, allows anywhere from two to ten times more ridgepoints to
appear In a cluster than will be retained in the £final delineation
extracted from that cluster; it is extremely conservative, and even
doubling or halving 1its value generally has salmost no effect on the
final delineation. The distance threshold is set to "2" for normal
images, and to "3" for exceptionally noisy images which have been
smoothed with a very large diameter filter mask. In our experiments, a
distance threshold of 2 was used for all the images except the anglogram
where we used a distance threshold of 3.

12



LINKING

a) Purpose: To connect the elements of each c¢luster into a graph
(or tree) in which branches delineate potential linear structures in the
image.

b) Algorithm: Ridgepoints are linked (connected to thelr nearest
Eucledian distance nelghbors) using a Minimum Spanning Tree (MST)
algorithm (Reingold [6]).

¢) Parameter Space: There are no internal parameters in the MST
algorithm.

PRUNING

a) Purpose: To eliminate ridgepoints which do not fall along the
major linear structures in the image.

b) Algorithm: Baged on the assumption that insignificant linear
segments (and accidental aligmments of nolse that might produce
ridgepoints) will result 1in short terminal branches, or produce gaps
near the terminal ends of branches, we lteratively delete from the tree
terminal branches with fewer than (1/3)X("SHORT") points, and those
segments at the ends of terminal branches which have a gap prilor to
encountering at least "SHORT" contiguous points; when no additlonal
polnts can be deleted by further iterations, those terminal branches
with fewer than "SHORT" points are also deleted.

¢) Parameter Space: The single internal parameter "SHORT" 1s set
to the length of the shortest linear segment we would be willing to
conslder as significant in the final output. Without knowing anything
about the image domaln, thils parameter 1s based on purely psychologlical
considerations.

d) Parameter Selection: "SHORT™ has been hardwired to a value of
15 for 256X256 images; this value gives generally good results both in
eliminating nolse and in retaining slgnificant structure.

e) Comments: Eliminating noise segments at the spanning tree level
of organization, as opposed to simply eliminating i1solated or low
contrast ridgepoints, 1s a major contributor to the excellent
performance of the complete delineatlon algorlthm. In an experiment
with 20 randomly generated binary overlays, representing detected
ridgepoints (ridgepoint density 10X%), no randomly formed linear segments
survived this filltering step.

13



LINEAR SEGMENT EXTRACTION

a) Purpose: To extract Iindividual coherent Ilinear segments from
the MST.

b) Algorithm: It is assumed that the MST for a given cluster,
after the pruning step, may contain a number of inter-twined
perceptually significant linear segments. The problem is to determine
at each node of the MST which branches should be linked to each other,
and which branches should be split off as end-point {(terminal) portions
of separate Ilinear segments. The algorithm considers each node of the
tree in some arbitrary order; at each node 1t measures four attributes
of each incoming pair of branches: the "angle”™ the branches form with
thelr vertex at the given node, the difference between the average
intensity grayscale values of the branches, whether both branches are
terminal branches, and whether either of the branches has a gap
immediately adjacent to the given node. A "mismatch" score is computed
for each combinatorially selected pair of branches, and that pair with
the lowest score 1s designated the “control pair.”

If the score computed for the control palr is greater than a
locally computed “compatibility threshold,” the node will be deleted
from the MST, and the MST thus decomposed into a number of smaller
disjolnt trees; none of the branches entering the given node will be
connected to each other in the final delineation.

If the mismatch score computed for the control palr 1s less than
the compatibility threshold, then the control pair, and any other
segment which when paired with one of the segments in the control pair
has a score almost as good as that of the control pair (within 5Z) will
remain connected to the given node. All other branches will be split
off from the given node but will be joined at a corresponding node of a
new tree and then subjected to the procedure just described {this allows
more than one pair of branches, entering a given node, to be linked into

.a continuous path).

After all of the nodes have been subjected to the above procedure,
the maximum length paths in all of the resulting trees will be extracted
as Independent linear segments. Branches split off from the maximum
length paths form new trees which are recursively processed in the same
Way.

Parameter Space: This procedure has five parameters; these are the
compatibility threshold and weighting factors assigned to each of the
attributes in computing the incompatibility score for a palr of branches
entering a given node. All attributes are computed using, at most, the
elght points closest to the node along each of the entering branches.

a) Compatibility Threshold: computed for each node as 207 of the
average grayscale value (AGSV) of all the branches entering the node.
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b) Penalty for two branches meeting at an acute
angle = (6Z)X(AGSV).

c) Reward for two branches meeting at an angle of at least 145
degrees = (8Z)X(AGSV).

d) Penalty for both branches being terminal
branches = (5Z)X(AGSV).

e) Penalty for either (or both) branches having a gap immediately
adjacent to the given node = (4Z)X(AGSV).

f) Penalty for difference in average gray scale value of the two
branches = (actual gray scale difference).

Parameter Selection: The problem of measuring local similarity, and
best geometric continuation, of a set of line segments entering a common
node, is at a level of complexity requiring a rule-based system to make
a determination in reasonable agreement with human perceptual
Judgements. The particular attributes chosen were ones which seemed
relevant and could be easily measured (line-width would have been
included as an attribute if we had a good way of measuring it locally;
our method of measuring the "angle” between two segments will be
lmproved in the near future). The selected values of the welghting
factors were based on informal experiments, and then hard-wired into the
system.

Comments: It is obvious that the selected attributes, our method of
measuring them, and the assigned weighting factors, can all be improved
by a more systematlic study of their psychological implications;
nevertheless, the currently implemented procedure seems to make very few
poor decisions and does not appear subject to major improvement.

LINEAR SEGMENT DECOMPOSITION

Purpose: To split 1individual 1linear segments that are not
perceptually "homogenous.”

Algorithm: The preceding procedure for linear segment extraction
accomplishes this operation when two or more segments come together at a
common point (node). However, it is possible that exactly two distinct
segments can accldentally meet at their nominal end-points, and a
speclal procedure may be required to check for this situation. No
algorithm 1s currently included for this purpose. However, the linear
segment extraction algorithm could be applied at every point along a
given line segment to achieve this purpose 1f desired.
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LINEAR SEGMENT EVALUATION

Purpose: To rank order a given set of linear segments with respect
to perceptual quality (e.g., given two alternative potential
delineations, which one is more acceptable from a perceptual standpoint;
or assuming we wish to restrict our "sketch” of an image to the "best" N
linear segments, how the selection is to be made).

Algorithm: This procedure separately measures two attributes of
each line segment -- its photometric quality (contrast with the
background) and its geometric quality (coherent length and smoothness).
Photometric quality i1is measured by simply summing the Local Maxima
values assigned to each point of the segment. Geometric quality is
computed by adding the number of points in the segment to the distance
between end points of the segment and then subtracting three times the
number of gaps, and also the number of locations at which the segment
has discontinuity in local smoothness. Numerical values are normalized
by converting them into rank orderings for all of the segments being
evaluated. The final score assigned to each segment 1s the sum of its
photometric and geometric orderings, with the geometric score weighted
twice that of the photometric score.

Parameter Space: Four quantities are measured for each 1line
segment: contrast, number of points, number of gaps, and number of
discontinuities in smoothness. The final ranking 1is a weighted
combination of the values of these attributes.

Parameter Selection: The relative weightings assigned to the
attributes, as described above, were determined by 1nformal
experimentation and the hard-wired into the system.

Comments: More than any other of the preceding steps 1in the
delineation process, evaluation must be based on psychological factors,
and thus effective performance depends on observing and modeling human
behavior in this task. Our presently implemented algorithm, described
above, 15 a first wunsophisticated attempt to achieve this goal -- its
main defects are lack of an effective way to measure local width and
local smoothness. This particular procedure, while not currently
essential to the overall performance of the delineation algorithm, can
play a vital role in automatically adjusting the heuristically set
parameters of the other procedures through performance evaluation feed-
back. 1In order to take advantage of such an approach, the psychological
model underlying this procedure, and the methods for measuring the
relevant attributes, still need significant improvement. Other work now
underway is addressing some of these issues (reference Fischler and
Bolles [7]).
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{a) ORIGINAL GRAY SCALE IMAGE {b) INTENSITY PROFILES OF ORIGINAL IMAGE

{ct SMOOTHED GRAY SCALE IMAGE (d} INTENSITY PROFILES OF SMOOTHED IMAGE

{e} TERRAIN MAP OF INTENSITY SURFACE OF (fi LINEAR FEATURE POINTS FOUND IN VALLEYS
SMOOTHED IMAGE OF INTENSITY SURFACE

FIGURE 1 IMAGE SMOOTHING, AND FINDING LINEAR FEATURE POINTS IN THE INTENSITY
VALLEYS OF A RADIGGRAPHIC IMAGE (ANGIOGRAM)
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(s} A SINGLE CLUSTER OF LINEAR FEATURE POINTS {b} A SINGLE CLUSTER OF LINEAR FEATURE POINTS

e} CLUSTER AFTER PRUNING (d) CLUSTER AFTER PRUNING

{e} THE TWO LINEAR SEGMENTS EXTRACTED {fi THE LINEAR SEGMENT EXTRACTED
{one horizonta! line and one vertical line) :

FIGURE 3 PRUNING AND LINEAR SEGMENT EXTRACTION FROM A SINGLE CLUSTER
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{a) ORIGINAL GRAY SCALE IMAGE: DROAD2 {b} DETECTED LINEAR FEATURE {INTENSITY
MAXIMA) POINTS

{c) THRESHOLDED LINEAR FEATURE POINTS (d} SEGMENTS FOUND IN THRESHOLDED LINEAR
FEATURE POINTS

e} SEGMENTS WITH 30 OR MORE POINTS {fi 10 HIGHEST RANKED SEGMENTS

FIGURE ¢ EXAMPLE SHOWING THE SEQUENCE OF STEPS IN THE DELINEATION
PROCESS FOR A LOW BESOLUTION AERIAL IMAGE {(DROAD2)
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{INTENSITY MAXIMA} POINTS

{d} SEGMENTS FOUND IN THRESHOLDED
{c) THRESHOLDED LINEAR FEATURE POINTS LINEAR FEATURE POINTS

(e) SEGMENTS WITH 30 OR MORE POINTS it} 9 HIGHEST RANKED SEGMENTS

FIGURE 5 EXAMPLE SHOWING THE SEQUENCE OF STEPS N THE DELINEATION
PROCESS FOR A LOW RESOLUTION AERIAL IMAGE (AFRGAD1)
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. N (b} DETECTED LINEAR FEATURE
(@} ORIGINAL GRAY SCALE IMAGE: FARM-UL (ONTENSITY MAXIMA) POINTS

(¢! THRESHOLDED LINEAR FEATURE POINTS (d} SEGMENTS FOUND IN THRESHOLDED
LINEAR FEATURE POINTS

{e} SEGMENTS WITH 30 OR MORE POINTS {f)} 27 HIGHEST RANKED SEGMENTS

FIGURE 6 EXAMPLE SHOWING THE SEQUENCE OF STEPS IN THE DELINEATION
PROCESS FOR A HIGH RESOLUTION AERIAL IMAGE (FARM-UL)
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G CALE IMAGE: MARIN2 {by DETECTED LINEAR FEATURE
) ORIGINAL GRaY S {INTENSITY MAXIMA} POINTS

oy B Sk e {d) SEGMENTS FOUND IN THRESHOLDED
tc} THRESHOLDED LINEAR FEATURE POINTS LINEAR FEATURE POINTS

{a) SEGMENTS WiTH 30 OR MORE POINTS tf) 10 HIGHEST RANKED SEGMENTS

FIGURE 7 EXAMPLE SHOWING THE SEQUENCE OF STEPS N THE DELINEATION
PROCESS FOR A HIGH RESOLUTION AERIAL IMAGE (MARIN2)
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. (b} DETECTED LINEAR FEATURE
fa} ORIGINAL GRAY SCALE IMAGE: PCB1 (INTENSITY MAXIMA) POINTS

fe} THRESHOLDED LINEAR FEATURE POINTS {d) SEGMENTS FOUND IN THRESHOLDED
LINEAR FEATURE POINTS

(e} SEGMENTS WITH 30 OR MORE POINTS {f) 24 HIGHESY RANKED SEGMENTS

FIGURE § EXAMPLE SHOWING THE SEQUENCE OF STEPS IN THE DELINEATION
PROCESS FOR A PRINTED CIRCUIT BOARD IMAGE (PCBT)
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b=

{3) ORIGINAL GRAY SCALE IMAGE: ANGIOSA v} DETECTED LINEAR FEATURE
{INTENSITY MAXIMA} POINTS

{c} THRESHOLDED LINEAR FEATURE POINTS {4} SEGMENTS FOUND IN THRESHGLDED
LINEAR FEATURE POINTS

{e} SEGMENTS WITH 30 OR MORE POINTS {f) 6 HIGHEST RANKED SEGMENTS

FIGURE 9 EXAMPLE SHOWING THE SEQUENCE OF STEPS IN THE DELINEATION
PROCESS FOR A RADIOGRAPHIC ANGIOGRAM (ANGIO5A)
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{(a) ORIGINAL GRAY SCALE IMAGE: TURTLE (b} EXTRACTED LIME SEGMENT FOR TURTLE

{} ORIGINAL GRAY SCALE IMAGE: TREE (d) EXTRACTED LINE SEGMENT FOR TREE

(fi EXTRACTED LINE SEGMENT FOR HOUSE

FIGURE 1 EXTRACTION OF LINEAR SEGMENTS FROM PENCIL DRAWINGS
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FIGURE 11

SMOOTHING WITH AN APPROPRIATE MASK WILL ENHANCE
LINE STRUCTURE
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b. Gray scale Intensities after smoothing with mask of diameter 21.
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Upper right segment has been eliminated.

FIGURE 12 SMOOTHING WITH A LARGE DIAMETER MASK MAY ELIMINATE OR

SHIFT SEGMENTS
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