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ABSTRACT

Perception of depth is a central problem in machine vislon. Stereo
is an attractive technique for depth perception because, compared to
monocular techniques, it leads to more direct, unambiguous, and
quantitative depth measurements, and unlike such "active" approaches as
radar and laser ranging, 1t 1s suitable 1in almost all application

domains.

We broadly define computational stereo as the recovery of the
three-dimensional characteristice of a scene from multiple images taken
from different points of view. The first part of the paper ldentifies
and discusses each of the functional components of the computational
stereo paradigm: image acquisition, camera modeling, feature
acquisition, matching, depth determination, and interpolation. The
second part discusses the criteria that are important for evaluating the
effectiveness of various computational stereo techniques. The third

part surveys a representative sampling of computational stereo research.
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I INTRODUCTTION

This paper surveys and evaluates computational methods for the
recovery of depth information from multiple images. We identify the
major functional components that comprise these methods, list various
alternative algorithms for 1implementing them, and discuss the domain-
dependent and application-dependent constraints that favor some

alternatives over others.

The scope of this paper is primarily restricted to research in the
image wunderstanding (IU) community. TU is a program of research in
machine vision originated and largely supported by the Advanced Research
Projects Agency (ARPA) of the Department of DPefense. IU researchers
have drawn on stereo work from other areas, especlally cartography,
psvchology, and neurophysiology. We will not try to cover all the TU
research relevant to stereo, but instead will select a cross—section of
the most widely-known work  that covers all the important and

significantly different approaches to the stereo problem.

Much of the research in image-understanding has been devoted to
recovering the range and orientation of surfaces and objects deplcted in
imaged data. The earliest work concentrated on an artificial domain --
the "blocks world” [Rob65]. Significant {(but not necessarily
extendable) advances were made in this simple domain; in particular, it
was shown that edge and vertex labeling schemes could provide
constraints that allowed one to correctly partition a complex scene,
[Guz68], [Wal75]. More recent work, which has concentrated on real
- world problems, can be divided into three classes: {1) those methods
that start with range information directly provided by an active sensor,
{2) those methods that depend on monocular information available in a
single image (or perhaps several images from a single viewpoint under
different lighting), and (3) those methods that use two or more images
taken from different viewpoints and perhaps at different times. We are
concerned here with this third eclass, which we shall refer to as

"generalized stereo.”



The generalized stereo paradigm Includes conventional stereo, as
well as what is often called optie flow. In conventional stereo two
images are recorded simultaneously by laterally displaced cameras
{figure 1). 1In optic flow two or more images are recorded sequentially,
usually with a single camera that moves along an arbitrary path. In a
sense, conventional stereo can be considered to be a speclial case of

optic flow, and the same geometrical formalisms apply to both.

Stereo is an attractive source of Information for machine
perception becase 1t leads to direct range measurements, and, unlike
monocular approaches, does not merely infer depth or orientation through
the use of photometric and statistical assumptions. Once the stereo
images are brought into polnt-to-point correspondence, the recovery of
range values 18 a relatively straightforward matter. Furthermore,
stereo 1s a passive method. Active ranging methods that use structured
light, laser rangefinders, or other active sensing techniques are useful
in tightly controlled domains, such as industrial automation
applications, but are clearly unsultable for more general machine vision

problems.

Perhaps the most common use of computational stereo 1s 1In the
interpretation of aerial Images. Other applications are passive
navigation for autonomous vehiecle guildance, and industrial automation
applications. Each domaln has different requirements that can affect the

design of a complete stereo system.

II THE COMPUTATIONAL STEREO PARADIGM

Research on computational solutions for the generalized stereo
problem has followed a single paradigm, although there have been several
distinet variations, both in method and intent. The paradigm involves
the following steps.

* TImage acquisition

* Camera modeling



* TFeature acquisition
* Matching
* Distance (depth) determination

* TInterpolation

A Image Acquisition

The most Iimportant factor affecting 1Image acquisition is the
specific application for which the stereo computation i1s intended.
Three applications have received the most attention: the interpretation
of aerial photographs for automated cartography; guldance and obstacle
avoldance for autonomous vehicle control; and the modeling of human

stereo vision.

Aerial photo-interpretation wusually ilnvolves low-resolution images
of a wvariety of terrailn types. Aerial stereo 1mages may be either
vertical, in which the camera axes point wvertically downward as nearly
as possible, or oblique, 1in which the camara axes are intentionally
directed between the horizontal and vertical directions (figure 2).
Vertical stereo images are easler to complle into precise cartographic
measurements, but oblique stereo lmages cover more terrain and require

less stringent control of the alrcraft.

Stereo for autonomous vehilcle control has been studied in two
contexts: as a passive navigation ald for drone aircraft {Han80], and as
part of a control system for surface vehicles [Mor79], [Mor8l],
[Genn80]. The images used for aircraft navigatlon are similar to the
aerlal photographs used for cartography, except that long sequences of
lmages are used, and multispectral sensors are often employed. The
images used for surface vehicle control are quite different —-- they are

horizontal, comparatively high—-resolution images.

Research on computational models of human stereo vision has largely
employed synthetic random-dot stereograms for experimental investigation
[Mart76], [Marx77], [Griw7/9], [Grim80], [Grim8l]; the primary reason for
this is that random~dot stereograms exclude all monocular depth cues,

and the exact correspondences are known. Because the parameters of



random-dot stereograms, such as nolse and density, can be controlled,
they allow systematic comparison of human and machine performance. This
does not imply that experiments with natural imagery has been ignored in

research on human stereo vision (for example, see [Grim80]).

Perhaps the most significant and widely recognized difference in
scene domains is the difference between scenes containing cultural
features such as buildings and roads, and those containing only natural
objects and surfaces such as mountains, flat or “rolling” terrain,
foliage, and water. Important stereo applications range over both
domains. Low-resolution aerial Imagery, for example, usually contains
mostly natural features, although cultural features are sometimes found.
Industrial applications, on the other hand, tend to involve man—made
objects exclusively. Cultural features present special problems. For
example, periodiec structures such as the windows of buildings and road
grids can confuse a stereo matcher. The relative abundance of occlusion
edges in a cify scene also causes problems because large portions of the
images may be unmatchable. Cultural objects often have large surfaces
with nearly uniform albedo that are difficult to match because of a lack
of detail. Stereo systems that have been described in the literature
are usually targeted at specific scene domains, and there is seldom any

attempt to validate the methods in other domains.

In summary, the key parameters associated with image acquisition

are:

* Seene domain

* Timing
— Simul taneous
- Nearly simultaneocus
= Radically different times

* Time of day (lighting and presence of shadows)
* Photometry (including spectral coverage)

* TResolution

* Fileld of view

* Relative camera positioning {(length and orientation,
relative to the scene, of the sterec base line).



The 1ssues assoclated with the scene domain are percentage of:

* QOcclusion

* Man-made objects (straight edges, flat surfaces)
* Continuous surfaces of some minimal extent

* Textureless area

* Area containing repetitive structure.

B. Camera Modeling

The key problem in automated sterec 1s to find corresponding points
in the stereo 1images. Corresponding points are the projections of a
single point 1n the three-dimensional scene. The difference 1n the
positions of two corresponding polnts in thelr respective 1mages 1is
called "parallax™ or "disparity”. Disparity is a function of both the
position of the point iIn the scene, and of the position, orlentatioen,
and physical characteristics of the stereo cameras. When these camera
attributes are known, corresponding image points can be mapped into
three-dimensional scene locations. A camera model 1s a representation
of the important geometrical and physical attributes of the stereo
cameras. It may have a relative component, which relates the coordinate
system of one camera to the other, and is Independent of the scene; and
it may have an absolute component, which relates one of the camera

coordinate systems to the fixed coordinate system of the scene.

In addition to providing the function which maps pailrs of
correponding points Into scene polnts, a camera model can be used to
constrain the search for matches of corresponding points to one
dimension (figure 3). Any point in the three-dimensional world space,
together with the centers of projection of two camera systems, defines
an eplpolar plane. The intersectlon of an epipolar plane with an image
plane 1s called an epipolar 1line. Every polnt on a given epipolar line
in one Image must correspond to a polnt on the corresponding epipolar
line in the other image. The search for a match of a point In the first
image may therefore be 1limited to a one-dimensional neighborhood in the
second image plane, as opposed to a two—-dimensional nelighborhoecd, with

an enormous reduction in computational complexity.



When the stereo cameras are located and oriented such that there 1s
only a horizontal displacement between them, then disparity can only
occur in the horizontal direction, and the stereo images are sald to be
"in correspondence.” When a stereo palr 1s 1in correspondence the
eplpolar lines are coincident with the horizontal scan lines -- a
convenlent situation because the matching process can be accomplished in
a relatively simple and efficient manner. Stereo systems that have been
primarily concerned with modeling human ability have employed this
constraint [Grim80,Marr77]. In practical applications, however, the
stereo palr may not be 1n correspondence. In aerial stereo
photogrammetry, for example, the camera axis may typlcally be tilted as
much as two to three degrees from vertical [Thomb66]. The implication
here is that points on a scan line in one image will not fall on a
single scan line 1in the second image of the sterec palr, and thus, the
computational cost to employ the epipolar constraint 1s significantly
increased. It 1s possible, however, to reproject the stereo images onto
a common plane parallel to the stereo baseline such that they are in

correspondence.

The difference in position and orientation of two stereo cameras is
called the relative camera model. Relative camera models are required
for depth determination, and also allow one to exploit the eplipolar
constraint. In most cases, considerable a priori knowledge of the
relative camera model is avallable, but it is often not as accurate as
desired. Gennery [Genn79] has developed a method for solving for the
relative camera model from a few sparse matches. His method accounts
for differences in azimuth, elevation, pan, tilt, roll, and focal length
(figure 4). '

Fischler and Bolles [Fisc81] have provided a number of results with
respect to the minimum number of points needed to obtain a solution to
the camera modeling problem, given a single image and a set of
correspondences between points in the 1image and thelr spatial
(geographic) locations; they also provide a technique for solving for

the complete camera model, even when the glven correspondences contain a



large percentage of errors. While thls work was directed at the problem
of establishing a mapping between an image and an exlsting geographic
database, it 1s possible to apply the results to the stereo problem, and
in fact, ¢tying the stereo pair to an existing database offers the
possibility of employing scene dependent constraints beyond those
available from the 1lmaging geometry.

Camera modeling can be extended to include distortions introduced
in the image—making process. Significant image distortion will degrade
the accuracy of depth measurements made by a steres system unless
corrected. Two kinds of image distortion are commonly found: radial and
tangential. Radial distortion causes 1image points to be displaced
perpendicular to the optical axls and may occur 1in the form of pin-
cushion distortion (i.e., positive radial distortion) or barrel
distortion (i.e., negative radial distortion). Tangential distortion is
caused by Iimperfect centering of lens elements, resulting 1in 1image
displacements‘ perpendicular to the radial lines. Moravec described a
method to correct for distortlon using a square pattern of dots [Mor79].
Fourth degree polynomials are found that transform the measured
positions of the dots and thelr neighborhoods to their nominal

positions.
In summary, the Important Issues 1n camera modeling are:

* A priori knowledge of camera positions and parameters
* Solutions using a few sparse matches

* A priori knowledge of the geographic locations (three-
dimenslonal scene coordinates) of selected scene objects
and features

* Ability to deal with matching errors

* Compensation for lmage distortion



c. Feature Acquisition

Featureless areas of nearly homogeneous brightness cannot be
matched with confidence. Accordingly, most work in computational stereo
has 1ncluded some form of selective feature detection, the particular

form of which is closely coupled with the matching strategy used.

Approaches that apply area matching often use an “interest
operator” to locate places 1in one 1mage that can be matched with
confidence to corresponding points in the second image of a stereo pair.
One way to do this is to select areas that have high image intensity
varlance. These areas will not be pgood features, however, 1if the
variance 1is due only to brightness differences 1in the direction
perpeﬁdicular to the epipolar line. These areas can be culled by
demanding that the two~-dimensional autocorrelation function have a
distinct peak [Han74]. A widely used interest operator is the Moravec
operator {Mor79], which selects points that have high variance between
adjacent pixels 1in four directions. Hannah has modified this operator
to consider ratios of the variances in the four directions, as well as
ordinary image intensity varlance over larger areas, and this modified
operator seems to locate a better selection of both strong and subtle

features [Han80].

Feature detection 1s more centrally important to those approaches
that directly match features in the stereoc images (rather than simply
using the features to choose areas for correlation matching). The
features wmay vary 1n size, direction, and dimensionality. Point-like
features are good candidates for matching when the camera model 1is
unknown and the matches are not constrained to eplpolar linmes. This is
because, unlike linear features, polnts are unambiguously located in the
image and can be matched 1in any direction. Linear features must be
oriented across the eplpolar lines if they are to be matched accurately.
An advantage of poilnt-llke features 1s that they can be matched without
concern for perspective distortion. In area-correlation approaches
point-like features are often used to obtain the camera model prior to

more extensive matching. The 1local intensity values around a point can



be used to establish initial confidences of matches in a way similar to

area correlation [Bar80].

If the camera model is known a priori or derived in a preliminary
step, edge elements can be used as primitive matching features. Many
distinct edge models have been proposed as the basis for edge-detecting
algorithms. In the case of "strong” edges, most of the resulting
algorithms yield similar results for operators of comparable sizes.
Often the same underlying model appears 1n different implementations;
S, ;éro-crossings in the second derivative are equivalent to local
maxima in the Ffirst derivative, and most of the conventional edge
detection methods search for approximations to maxima of the first
derivative of image intensity. More important are the issues governing
the conditions under which "weak" edges found by different algorithms
are reliable features for matching. Size, direction, and magnitude

(i.e., contrast) have been been used as features in making match

decisions, buf theilr relative merit is not established.

For the most part, low level features have been used for stereo.
What we mean by "low level” 1is that the features depend only on local
monocular intensity patterns, and are based on the assumption that more-
or-less sharp intensity gradients are due to physically significant
structural, reflectance, and 1llumination events in the scene (as
opposed to being artifacts of the camera location). Higher level
features that depend on more sophisticated semantic analysis have been
largely unused (Ganaparthy described a system for matching vertices in
blocks-world stereo scenes across very large viewing angles [Gan75]).
The ability to classify edges as occlusion or nonocclusion boundaries
[WitBl], for example, could be very useful to a stereo systenm,
egpeclally 1in the difficult domains that include a wealth of cultural

features.

In summary, the propertles of local features that are important to

the computational stereo problem are:

* Dimensionality (point-like versus edge-like)
* Size (spatial frequency)

* Contrast



* Semantic content
* Density of occurence
* Easily measurable attributes

* Uniqueness/distinguishability.

D. Matching

Image matching 1s a core area in scene analysis and will not be
covered in in full detail in this paper. Instead, we will focus on
those portions of the image—matching problem that are directly relevant
to stereo modeling. Features that distinguish stereo image matching
from image matching in general are the following:

* The important differences in the stereo images are due to
the different viewpoints, and not, for example, due to
changes 1in the scene. We therefore seek a match between
two images, as opposed to a match between an image and an
abstract model (although matching to an abstract model may
be an important step in determining the Iimage-to—-image
matching).

* Most of the significant changes will ocecur in the
appearance of nearby objects and 1in occlusions. Additional
changes 1in both geometry and photometry can be introduced
in the film development and scanning steps, but can usually
be avoided by careful processing. If the 1mages are
recorded at very different times there may be significant
lighting effectsz

* Stereo modeling generally requires that, ultimately, a

dense grid of points be matched.

Ideally, we would 1like to find the correspondences (i.e., the
matched locations) of every individual pixel in both images of a stereo
palr. However, 1t 1s obvious that the Iinformation content in the
intensity value of a single pixel is too low for unambiguous matching.
In practice, coherent collections of pixels are matched. These
collections are determined and matched in two distinct ways:

* Area Matching: Regularly sized neighborhoods of a pixel are

the basle wunits that are matched. This approach 1is
justified by the “continuity assumption,” which asserts
that at the level of resolution at which stereo matching is
feasible, most of the image deplets portions of continuous
surfaces; therefore, adjacent pixels 1in an 1mage will

10



generally represent contiguous points in space. This
approach is almost invariably accompanied by correlation
based matching techniques to establish the correspondences.

* Feature Matching: “"Semantiec features” (with known physical
properties and/or spatial geometry), or "intensity anomaly
features” (isolated anomalous  1Intensity patterns not
necessarily having any physical significance), are the
basic units that are matched. (See the discussion in the
preceding section on feature acquisition.) Semantic
features of the generic type 1Include occlusion edges,
vertices of 1linear structures, and prominent surface
markings; domain-specific semantic features might include,
for example, the corner or peak of a bullding, or a road
surface marking; intensity anomaly features I1nclude zero-
crossings and image patches found by the Moravec interest
operator. Methods used for feature matching often include
symbolic classification techniques, as well as correlation.

Obviously, feature matching alone cannot provide the desired dense

depth map so0 it must be augmented by a model-based interpretation step
(e.g., we recognize the edges of bulldings and assume that the
intermediate .space is occupled by planer walls and roofs), or by area
matching. When wused in conjunction with area matching, the feature
matches are generally conslidered to be more reliable and can constrain

the search for correlation matches.

To further reduce the possibility of error caused by an ambiguous
match, a number of hilerarchical and global matching techniques have been
employed, I1ncluding relaxation matching and various “coarse-fine”

hierarchical matching strategies.

The correlation-matching approach attempts to resolve ambigulty by
using as much local information as possible to make decisions about
potential matches, but each match decision is made independently of the
others. The relaxatlon—labeling approach [BarB80] uses a relatively
small amount of local information for each potential match, and attempts
to resolve ambiguity by finding consensuses among subsets of the total
population of matches. It relies on the three-dimensional continuilty of
surfaces to be reflected in the two—-dimensional continuity of disparity.

A method for avolding ambiguity that can be applied to both correlation

11



matching [Mor79] and feature point matching [Marr77] 1s the so—called
"coarse~fine" strategy. In this approach coarse disparities are found
relatively quickly, but with low accuracy. These gross disparities are
used to constrain finer-resolution matching. Even with a coarse-fine
strategy, however, some ambiguity at each level of resolution 1is
inevitable. The best combination of ambiguity avoldance and ambiguity

resolution 1s a major research 1ssue.

Matching is complicated by several factors related to the geometry
of the stereo images. Some areas that are visible 1In one image may be
occluded in the other, and this can lead to incorrect matches. Periodic
structures 1n the scene can confuse a matcher when the lmage features
generated by these structures are close together compared to the
disparity of the features, because the matcher may confuse a feature in
one lmage with features from nearby parts of the structure in the other
image. If there is a large amount of relief in the scene (for example,
a vertlcal obétruction that projects above the ground plane in an aerial
view) then corresponding features may actually be reversed in their

posltions in the two stereoc images.

In summary, key attributes which differentiate matching techniques

include:

* Local versus global ambiguity resolution

* Area (dense) versus feature (sparse) matching.

The constraints used to both limit computation and reduce ambiguity

include:

* Epipolar
* Continuity
* Hierarchical (e.g., coarse-fine matching)

* Sequentilal (e.g., feature tracking in sequential views).

Criteria that can be used to evaluate (or compare) different

matching techniques include:

* Accuracy (match precision measured to the sub-pixel level)
* Relilabllity (resistance to gross classification errors)

* Generality (applicability to different scene domains)

12



* Predictability (avallability of performance models)

* Complexity {cost of 1implementation; computational
requirements).

E. Distance Determination

With few exceptlons, work in iImage understanding has not dealt with
the specific problem of distance determination. The matching problem
has been considered the hardest and most significant problem in
computational stereo. Once accurate matches have been found the
determination of distance is a relatively simple matter of
triangulation. Nevertheless, this step presents significant
difficulties, especially if the matches are somewhat 1inaccurate or

unreliable.

To a first approximation, the error in stereo distance measurements
is directly proportional to the positional error of the matches and
inversely préportional to the length of the stereo baseline.
Lengthening the stereo baseline complicates the matching problem by
increasing the range of disparity (i.e., the area that must be searched)
and the difference in appearance of the features being matched. Various
matching strategies have been used to overcome this problem {coarse/fine
strategies, cooperative or relaxation-labeling approaches, and matching

of several incremental stereo views).

In many cases, matches are made to an accuracy of only a pixel.
However, both the area correlation and the feature-matching approaches
can provide better accuracy. Sub-pixel accuracy using area correlation
requires interpolation over the correlation surface. Some feature
detection methods c¢an locate features to accuracies better than one
pixel, but this depends on the type of operator that is used, and there

are no generally applicable techniques.

Another approach is to settle for one-pixel accuracy, but to use
multiple views [Mor79]. A match from a particular pair of views
represents a depth estimate with uncertainty that depends on the

accuracy of the match and on the length of the stereo baseline. Matches

13



from many palrs of views can be statistically averaged to find a more
accurate estimate. The contribution of a match to the £final depth
estimate can be weighted according to any of the factors that bear on

the confidence of the match and on its accuracy.

In summary, improved depth measurements can be obtained in several

ways, each Involving some additional computational cost:

* Sub-pixel estimation
* TIncreased stereo baseline

* Statistical averaging over several views.

F. Interpolation

As previously mentioned, sterec applications usually demand a dense
array of depth estimates that the feature matching approach cannot
provide because features are sparsely and irregularly distributed over
the 1images. The area correlation—matching approach 1s more suited to
obtalning dense wmatches, although it tends to be unreliable In areas of
low information. Consequently, some kind of interpolation step 1s

usually required.

The most stralghtforward way to create the dense depth array from a
sparse array 1Is simply to treat the sparse array as a sampling of a
continuous depth function, and to approximate the continuous function
using a conventional interpolation method (for example, by fitting
splines). Assuming the sparse depth array 1s complete enough to capture
the important changes in depth, this approach may be adequate. Aerial
stereophotographs of rolling terrain, for example, might be handled in
this way. In many applications, however, the continuous depth function

model will not be appropriate because of occlusion edges.

Grimson [Grim81] has noted that the absence of matchable features
implies a limit on the wvariability of the surface to be interpolated,
and has proposed an interpolation procedure based on this observation.
From a slightly different point of view, monocular "shape-fromshading”
techniques (e.g., [Horn75]), employing the matched features to establish

14



boundary conditions, and the smooth intervening surface to assure the
validity of integration, can provide an interpolation procedure with an

acceptable physical justification.

Another approach to the interpolation problem is to fit a priorzi
geometric models to the sparse depth array. Normally, model fitting
would be preceded by c¢lustering to find the subsets of polnts in the
three-dimensional world space that correspond to significant structures
in the scene. Each cluster would then be fit to the best availlable
model, thereby instantiating the model”s free variables and providing an
interpolation function. This approach has been wused to find ground
planes [Arn78], elliptical structures in stereophotographs [Gen80], and
smooth surfaces 1n range data acquired with a laser rangefinder
[Duda79].

111 EVALUATION CRITERIA

In evaluating the effectiveness of various computer stereo
techniques we must consider a wide range of performance metrics. We
must consider both quantitative measurements, such as accuracy, as well
as fundamentally qualitative but nonetheless iImportant measurements,
such as domain sensitivity. Finding an optimum combination of
techniques for an integrated system is difficult because of complex
trade-offs 1n a large design space. The following criteria are
appropriate for evaluating both complete stereo systems and the
components of such systems. More speclalized criteria relevant to
individual components of stereo systems were presented in previous
sections of this paper.

(1) Disparity - what range of disparity is handled? One
possible advantage of automated stereo analysis i1s that
computer methods may be able to handle larger angular
disparities than humans c¢an. Larger disparities lead to

more accurate depth measurements, but also to more
difficult wmatching problems.

{(2) Coverage - what percentage of the scene 1s matched?
Also, how widely are the matches distributed? Clearly,

15



(3)
(4)

(5)

(6)

(7)

(8)

large, featureless, homogeneous areas cannot be readily
matched. What kinds of Interpolation techniques can be
used in such areas? What monocular techniques can be
used to enhance coverage (for example, photometric
evidence for smooth surfaces)?

Accuracy

Reliability - how many false matches are made compared to
valid matches? What methods are effective for detecting
and eliminating false matches?

Domain sensitivity - what range of scene domains can be
handled?

Efficiency - actual timings of stereo systems will
probably not be useful because of nonoptimal

implementations and differences in hardware. Comparisons
based on computational complexity can be made, however.
How does the time required for stereo compilaticn scale
with the image size, with the range of disparity, and
with other important parameters? How amenable to
hardware implementation are the different methods? What
efficliency 1s needed for useful automated stereo systems?

Human englneering - how are the results displayed
(perspective 3D plots, false coloring, countour plots,
vector fields, etec.)? What are the best methods? Is
human interaction allowed?

Sources of data for experlmental wvalidation - what kind
of three-dimensional measurements are used to test
performance? Three possibilities are:

Synthetic 1images or images of scaled models.

* Advantages: cheap, certainty about
actual depths, control over
secondary parameters

* Disadvantage: not representative of
any real image domain

Ground surveys.

* Advantages: realistic, certainty about
actual depths

* Disadvantage: expensive (hence limited
number of sites that can be
surveyed)

Compare to human performance.

* Advantages: realistic, reasonably
inexpensive

* Disadvantages: susceptible to human
errors, limlted accuracy
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IV SURVEY

This survey covers a representive sampling of the image
understanding work relevant to computational stereo. While not
exhaustively covering the fleld, it does contain examples of all the
significantly different approaches to the steps in the computational
gtereo paradigm. The work discussed in the survey i1s grouped according

to the research centers where the primary investigators were resident.

Carnegie~Mellon University

An 1terative image registration technique with an application to
gtereoc vision, [Luc81]

The emphasis in this work 1s on image reglistration, but there is
also direct application to stereo matching. The general approach is to
refine an estimate of the disparity of a region by using image intensity
gradlent iInformation. This is done by inferring a correction to the a
priorl disparity of the region from the local intensity differences
between the images and from the intensity gradient of one of the images.
The correction 1s computed iteratively untill the disparity converges to
a final estimate. This method 1s closely related to a class of image
matching techniques introduced by Limb and Murphy [Limb753]. A similar
technique was used by Fennema and Thompson [Fenn79] to match images of
nmoving objects. The method can be used to find not only disparity, but
also brightness and contrast differences between the 1lmages, as well as
the parameters relating the two camera systems {(in conjunction with the

relative camera model solution presented in {Genn79]).

The algorithm will converge to the correct answer when the
disparity i1s no larger than one—-half of the wavelength of the largest
frequency component in the 1mages. This 1mplies that the method should
be used with a coarse—fine strategy. It will not work well where there

are sharp changes in depth, such as at the edge of an object.
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Control Data Corporation

A flexible approach to digital stereo mapping, [Henn78}

This work 1s concerned with the automation of stereo—-mapping
functions. The primary concerns have been with handling different kinds
of terraln and sensors, efficient hardware implementation, and the

development of an interactive mapplng systen.

A regularly spaced grid of points in the left image 1s matched in
the right image. Matching i1s accomplished by searching along the
corresponding eplpolar line 1in the right image for a maximum correlation
patch, which 1s warped to account for predicted terrain relief
(estimated from previous matches). Sub—pixel matches are obtained by
fitting a quadratic to the correlation coefficlents and picking the

interpolated maximum.

"Tuning parameters” may be dynamilcally altered to adapt the system
to sensor and terraln varlations. Tuning parameters include grid sizes;
patch size and shape; number of correlation sites along the search
segment; and rellability thresholds for the correlation coefficient,
standard deviation, prediction functilon range, and slope of the
correlation function. The intent is to choose the smallest feasible
patch, subject to the need to compensate for noise and lack of intensity

variation in the image.

A continuilty constraint is wused to limit the search for matches.
The rate of change of disparity 1s assumed to be continuous. This
constralnt 1s also used to shape the correlation patches 1In the left

image.

The reliability of matching i1s continuously monltored to signal
when parameters become Ilnappropriate or when ‘the photometry prevents
valid matching. Reliability is estimated with a combination of factors,
including correlation coefficients, patch standard deviation (are
features present?), distances of actual from predicted correlation

maxima, and slopes of the correlation functions.
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The system is implemented on a highly parallel configuaration of 4
CDC Flexible Processors, each capable of 8 MIPS.

A somewhat different approach has been taken for three—dimensional
modeling of cultural sites (e.g., building complexes) from high-
resolutlon images. The baslc idea is to ldentify corresponding points
of intersection between epipolar lines and edges 1n the two Images of a
stereo pair. Non-matched edges are assumed to be due to nolse or
occlusions. Depth along an epipolar 1line (corresponding to a three-
dimensional profile 1line in the scene) is assumed to vary linearly
between contiguous pairs of matched Intersections. Speclal techniques
are developed to deal with occlusions and "reversals.” Edge-tracking
across sequential epipolar lines (the continuity constraint) contributes

to reliability.

Lockheed-

Bootstrap stereo, [Han80]

The goal of this study is navigation of an autonomous aerial
vehicle using passively sensed images. Ground control polnts are used
to determine the vehicle”s 1nitial 1location, and the corresponding
camera model 1s used to locate further control points. The process can
be 1iterated to contlnuously find new control points along the flight
path. Major components of the system are camera calibration, new
control point selectlon, matching, and control point position
determination. The complete system consists of several navigation

"speclalists,” including ones using instrumentation (altimeter, airspeed

indicator, attitude gyros), dead reckoning, landmarks, and stereo.

Camera calibration i1s achieved with standard least—-squares methods

to determine position and orientation of the camera.

New control point selection involves an adaptation of the Moravec
operator that wuses ratios of variance along pairs of orthogonal

directions (instead of simply the variance in four directions).
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Control point matching 1s accomplished with normalized cross—
correlation using a splraling grid search. Coarse matchlng 1s used to
approximately register the Images and to initlalize second-order
prediction polynomials. Autocorrelation 1in the nelighborhood of a
matched point is used to evaluate the match. (The autocorrelation score
indicates what constitutes a “good” .match, and can therefore be used to
select matches. This 1s a better alternative than using a global
threshold on the normalized cross—correlation score.) Subpixel matching
accuracy 1s achieved through parabolic interpolation of the correlation

values.

The University of Minnesota

The Image Correspondence Problem, [Barr79]
Disparity analysis of Images, [Bar80]}

Polnts are matched in two Images that differ because of stereo or
object motion. The Moravec operator 1s used to select polnt features in
both images. 4n Initial collection of possible matches 1s established
by linking each point in the first Image with possible matching points
in the second image. (A point in the second image 1s considered a
possible match if it is In a square area centered on the position of the
polnt In the first Image.) Each point from the first Image Is
considered an object that 1s to be classified according to 1its
disparity, and each of its possible matches establishes a label denoting
one of several possible classifications. Each object also has a special
label denoting ‘"no-match.” An 1Initial confidence for each disparity
label is determined based on the mean-square-difference of small regions
surrounding the possible matching points. The estimates are iteratively
lwproved with a relaxation—labeling algorithm that uses the continuity
constraint. Support for each label of a particular object i1s calculated
from the neighboring objects. If relatively many nearby objects have
similar labels with high confidence, the label is strongly supported and

its confidence increases. If no labels are strongly supported, the
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confidence of the "no-match™ label increases. After a few iterations
(about 8) the confidence estimates converge to unique disparity
classifications for each point. (Convergence 1s not guaranteed

theoretically, but is observed experimentally).

MIT
(1) Cooperative computation of stereo disparity, [Marr76]

A parallel, "cooperative” computational model for human stereo
vision is proposed. This feature matching method uses two constralnts to
match random—dot stereograms. The features that are matched are the dots
themselves. The constralnts are: uniqueness, which requires that every
feature have a unique disparity (a consequence of imaged points on three
dimensional surfaces having unique depths); and continuity, which
requires that disparity varies smoothly almost everywhere {except at
relatively rare occlusion boundaries). These constraints are applied
locally over several iterations with an algorithm very much 1like
relaxation-labeling. Multiple disparity assignments of a point 1inhibit
one—another, and local collections of similar disparities support one-
another. Although  this algorithm successfully fused rand om—dot
stereograms, the authors rejected it as a model of human stereopsis and

proposed a new model described below.

(2) A computational theory of human stereo vision, [Marr77]
A computer implementation of a theory of human stereo vision,
[Grim79]
Aspects of a theory of human sterec vision, [Grim80]
From Images to Surfaces, [Grim8l])

Matching of features occurs at different spatial scales. The
matches found at the larger scales establish a rough correspondence for
the smaller scales, thereby reducing the number of false matches.
Features of different sizes are found by convolving the Image with the
Laplacian of a Gaussian mask. The size of the features 1s determined by

the standard deviation (the "size constant”) of the Gaussian mask.
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Masks of four different sizes are used, separated by one spatlal octave
(i.e., each mask 1s twice the size of the next smaller one). Features
are selected at the zero—-crossings in the result (i.e., where the result
changes sign). The zero—-crossings after a second difference operation
correspond to extrema after a first difference operation. This method
is therefore a way of finding edge-like features at different scales.
In the Implementation a true Laplaclan operator was not used; Instead,
the difference of two clrcularly symmetric Gaussilans was used as a close
approximation. The convolutions were done on a LISP machine augmented
by speclal-purpose hardware. In the original theory, line terminations
were to be used as features, along with zero-crossings, but this has not

been implemented.

Zero-crossings where the gradient 1is oriented vertically are
ignored (The 1mplicit camera model has the epipolar lines oriented
horizontally.). Other zerxo-crossings are located to an accuracy of one
pixel and tﬁeir orientations (determined by the gradient of the
convolution values) are recorded in inerements of 30 degrees. 1t is
possible to 1interpolate the location of a =zero-crossing to better than

one pixel accuracy.

Matching within at any given scale proceeds independently of other
scales. First, a zero—crossing is located 1in one Iimage. The region
surrounding the same location in the second image 1s then divided into
three pools =-- two larger "convergent” and "divergent” pools, and a
smaller zero—disparity pool centered on the predicted match locatilon.
The three pools together span a reglon twice the width of the central
positive region of the convolution mask. Zero—crossings from pools in
the second Image can match the zero-crossing from the first image only
if they result from convolutions of the same size mask, have the same
sign, and have approximately the same orlentation. TIf a unique match is
found (i.e., only one of the pools has a =zero-crossing satisfying the
above criteria), the match 1s accepted as valid. If two or three
candidate matches are found, they are saved for future disambiguation.

Once all matches have been found (ambiguous or not), the ambiguous ones
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are resolved by searching through the neighborhoods of points to
determine the dominant disparity (convergent, divergent, or zero). This

1s the familiar continulty constraint.

It may be the case that the disparity of a region 1s greater than
the range handled by the matcher. This 1s detected from the percentage
of unmatched zero—crossings. Marr and Pogglo showed that the
probabllity of a zero—crossing having at least one candidate match if
the disparity is outside the range of the matcher 1s about 0.7, but is
much higher if the disparity is within the range of the matcher.

The lower frequency matching channels are used to bring the higher
frequency channels into range. In human stereopsis this is accomplished
by vergence eye movements. The possibility of using other sources of
information to guide eye movement (in particular, texture contours) was

mentioned by Grimson [Grim80].

Recently, Grimson has presented results on the Interpolation of
surfaces over the sparse depth map [GrimBl]. He wuses a "surface
conslstency constraint,” which states that an absence of zero-crossings
implies that the surface shape cannot change radically. Surfaces must
then be found which satisfy not only the explicit conditlons at the
matched feature points, but also the implicit conditions imposed by a
lack of zero-crossings between the points. The important assumptions
are that the 11lumination 1s constant, the albedo is roughly constant,

and the surface material 1s Isotropic.

SRI International

{1) Parametric correspondence and chamfer matching: two new
techniques for image matching, [Barr77]
A method for matching lmages to a three—-dimensional symbolic
reference map 1s presented. The reference map includes point landmarks,
represented with three-dimensional coordinates; 1linear landmarks,

represented as curve fragments with 1lists of three-dimensional
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coordinates; and volumetric structures, represented as wire-frame
models. A predicted image 1s generated from an expected viewpolnt by
projecting three-dimensional coordinates onto image coordinates and
suppressing hidden 1lines. The predicted Image 1g matched to image
features, and the error 1s used to adjust the viewpoint approximation.
The matching is done by “"chamfering.” The Image feature array is first
transformed Into an array of numbers representing the distance to the
nearest feature point and a similarity measure is computed by summing

the distance array values at the predicted feature locations.

(2) The SRI road expert: image-to-database correspondence, [Boll78]

The problem of matching an image to a geographic database 1is
studied. The 1mages may wvary for several reasons: different camera
parameters, lighting conditions, cloud cover, etc. The method that is
presented begins with an estimate of the camera parameters, including
estimates of uncertainties. It refines the estimated correspondence by
locating landmarks in the image and comparing their image locations to
their predicted locations. The uncertainties of the camera parameter
estimates are modeled as a jolnt normal distribution. This model
implies elliptical uncertainty regions 1in the lmage. The location of
one feature constrains the uncertainty of others to relative uncertainty
regions (These are also ellipses, but are usually significantly smaller
than the unconstrained regions). Two kinds of matches between landmarks
and Image features are used: point—-to-point and point—-on—a—-line. The
point—to-point matches yield more information for refining the camera
parameters, but the point-on—a-line matches are more numerous and
cheaper to find. A modified wversion of Gennery”s calibration method

[Genn79] is used to refine the camera parameters.

(3) Random sample consensus: a paradigm for model fitting with
applications to image analysis and automated cartography, [Fisc81]

A method for fitting a model to experimental data 1s developed
(RANSAC) and applied to the "location determination problem” (i.e.,

glven a set of control points with known positions in some coordinate
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frame, determine the spatial location from which an image of the control
points was obtained). The method 1is radically different from
conventional methods, such as least-squares minimization, which begin
with large amounts of data and then attempt to eliminate invalid points.
RANSAC wuses a small, randomly chosen set of points and then enlarges
this set with consisteant data when possible. This strategy avoids a
common problem with least squares and similar methods; that 1s, a few
gross errors, or even z single one, can lead to very bad solutions. 1In
practice, RANSAC can be used as a method for selecting and verifying a
set of points that can be confidently fit to a model with a conventional

method (such a least-squares minimization).

Stanford

(1) Stereo—-camera calibration, [Genn79]

A method for determining the relative position and orientation of
two cameras from a set of matched points is developed. The calibration
accounts for difference in azimuth, elevation, pan, tilt, roll, and
focal length. The basic method 1s a least-squares minimization of the
errors of the distances of polnts in 1Image two from their predicted
locations, as determined by thelr positions 1n 1Iimage one and an
estimated relative camera model. The nonlinear optimization problem 1is

solved by iterating on a linearization of the problem.

(2) Local context in matching edges for stereo vision, [Arn78]

This approach matches corresponding features 1instead of matching
areas using cross correlation. Two kinds of local feature detectors are
used: the Moravec interest operator for sparse points that are used for
solving for the relative camera model, and the Heuckel edge operator for
a larger number of points that are matched after the relative éamera
model 1s known. The approach uses a continuity constraint to resolve
ambiguity. If a scene 1s continouous in three dimensions then adjacent
matching edge elements should be continuous in direction and disparity.

Intensities on either side of the edge should also be consistent.
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The HMoravec operator 1s used to select about 50 points. A
coarse/fine search finds matches for some of these points, and Gennery’s
camera model solver 1s used to determine the parameters that relate the
two camera positions. A dominant plane, which is assumed to be a ground
plane, is fit to the matches (few points may lie below the ground plane,
some may be above it, and as many as possible 1lie on it). The Hueckel
edge operator 1s applied to both images (3.19 pixel radius), and the
results are transformed into a normalized coordinate system in which

polnts on the dominant plane have zero disparity.

Each edge element in the left plcture 15 matched to nearby
candidates in the right image (there are usually about eight candidates)
based on the angle and brightness information supplied by the Hueckel
operator. Each edge element in the left image 1s then linked to all its
neighbors (in the left image) that seem to arise from the same physical
edge. (Two edge elements are neighbors if they are close, have roughly
the same angie, and similar brightness. Three or four are typically
found.) The linked neighbors of an edge element vote to determine which
of the candidate disparities 1s most consistent (i.e, which 1is the
appropriate wmatching element in the right image).

Some problems caused by the Hueckel operator are identified (for
example, 1t 1s wunreliable for corners, textured areas, and slow
gradients). Relaxatlon 1s suggested as a way to wuse context in a more
controlled way (see [Bar79]). The system works well in scenes of man-
made objects, but poorly 1n natural scenes (the opposite of area

correlation).

(3) Object detection and measurement using stereo
vision, [Genn80]
This study uses stereo or rangefinder data to detect and measure
objects, and although it does not deal with the watching problem, it is
relevant to the interpolation and Interpretation problems. The system

1s intended for autonomous vehlcle guidance and obstacle avoidance.
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First, the ground surface 1is found as described by Arnold in
[Arn78]. Above-ground points are clustered with a minimal spanning tree
approach, and ellipsoids are fit with a modified least—squares method.
Two types of errors are considered: the amount by which the points in a
cluster being £fit miss lying on the ellipsoid, and the amount by which
the ellipsoid occludes any points as seen from the camera.
(Or thographic projection, not central projection, 18 assumed.) In
addition, there 1s an a priorl bias to make any small ellipsoids

approximately spherical.

After ellipsoids have been fit to the original clusters, it may
become apparent that the initial clustering, based on only local
information, did not  produce a good segmentation. In this case, the
initial clusters are either split or merged and another set of

ellipsolds 1s fit to them.

{4) Visual mapping by a robot rover, [Mor79]
Rover visual obstacle avoidance, [Mor81]

This 1s a study of autonomous vehicle guidance. Severe noise
problems are overcome by use of redundancy. An early approach that used
only motion stereo was found to be unworkable because of matching errors
and uncertain camera models. A subsequent approach used "slider stereo”
to obtain nine stereo views. A calibration step determines the camera’s

focal length and distortion from a digitized test pattern.

An interest operator 1s wused to select good features for matching.
First, for each point in the central 1mage it computes the wvariance
between adjacent pixels in four directions over a square (3x3 pixel)
nelghborhood centered on the point; next, 1t selects the minimum
variance as its interest measure; and finally, it chooses feature points
where the interest measure is locally maximal. Intultively, each chosen
polnt must have relatively high variance in several directions, and must
be more "interesting” than its immediate neighbors. The interest

operator 1s used on reduced versions of the images.
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A binary search correlator matches 6x6 pixel areas, denoted by
features found by the Interest operator in the central image, to areas
in each side image. The search begins at the lowest resolution (x16
reduction) and proceeds to the higher resolutions. 1In this way, points
chosen from the center view are found 1n the other eight views. The
uncertainty of the depth measurement assoclated with a match 1is
inversely proportional to the 1length of the stereo baselinme. To obtain
more accurate depths, the measurements are averaged by consldering each
of the stereo baselines obtalned from the thirty-six combinations of
nine views taken two at a time. A measurement from a particular pair
contributes a normal distribution, with a mean at the estimated
distance, and a standard deviation inversely proportional to the stereo
baseline. The contributions are also normalized according to the
correlation coefficients of the matches and according to the degree of
y=disparity. (A low correlation coefficlent or a large y-disparity
causes the peak value of the distribution to be scaled down, thereby
reducing the contribution of the depth measurement.) The peak 1in the

sum of these distributions glves a very rellable depth measurement.

Depth measurements are used to help navigate the vehicle, which
moves in approximately one-meter Increments. Vehicle motion 1Is deduced
from depth measurements at two successive positions by comparing the
differences of point positions, which should be the same in both views.
This approach to navigation is similar to the "bootstrap stereo"” method

[Han80] deseribed previously.
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v CONCLUSTONS

Automated computational stereo cannot simply duplicate the steps
and procedures currently employed when a human iInterpreter 1s an
integral part of the process. There is at present no reasonable way to
duplicate the human ability to invoke semantic and physical knowledge to
filter out gross errors in the various steps, and especlally in the
matching steps. Techniques that are highly tolerant of errors (such as
RANSAC) will have to be substituted for those that depend on reliable
manually filtered data ({such as least—-squares estimation of camera
parameters). Constraints indirectly Invoked by the human interpreter
must be made explicit and embedded directly i1into the automated
procedures (e.g., the fact that all vertical edges depicted in an image
must pass through a common vanishing point). Automated stereo, not
limited by the two-image constraint of the human, can partially
compensate for the lack of a human knowledge base by "simultaneously”
processing a large number of views of a scene to resolve amblguity, and
by approaching some of the problems from a quantitative (model-based)
approach rather than the qualitative (constraint-based) approach of

humans.
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FIGURE 1. STEREO

Two camera systems are shown. The focal points are at Fgq and F, the image
planes are lg and |, and the principal axes are z and z', A point P in the
three-dimensional scene is projected onto Py in the left image and onto P,

in the right image. The disparity of P is the difference in the positions of

its projections onto the two stereo image planes. The disparity of P depends
on its location in the scene and on the geometrical relation between the
camera systems. In most cases the location of P can be determined from its
stereo projections.
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FIGURE 2. VERTICAL AND OELIQUE AERIAL IMAGERY

Aerial images are usually recorded in long sequences from an aircraft. Verti-
cal images are made with the camera aligned as closely as possible with the
true vertical. Obliqgue images are made by intentionally aligning the camera
between the true vertical and horizontal directions. Obligue views that include
the horizon are called “high oblique’, Even though oblique views are some-
what more difficult to analyze than vertical views, they cover more area and
are therefore used for lower cost of image acquisition.
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FIGURE 3. THE EPIPOLAR CONSTRAINT

Left and right camera systems are shown, The line connecting the focal points
of the camera systems is called the stereo baseline. Any plane containing the
stereo baseline is called an epipolar plane. Suppose a point P in the scene is
projected onto the left image. Then the line connecting P and the left focal
point, together with the stereo baseline, determines a unique epipolar plane.
The projection of P in the right image must therefore lie along the line which
is the intersection of this epipolar plane with the right image plane. {The
intersection of an epipolar plane with an image plane is called an epipolar

line,) If the geometrical relationship between the two camera systems is known,
we need only search for a match along the epipolar line in the right image.
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FIGURE 4. CAMERA MODELING

Camera systems are modeled as transforms of three-dimensional coordinate
systems. The transforms include translational, rotational, perspective, and
scaling components, There are many ways to choase parameters for camera
transforms, and this figure illustrates one choice. A reference system is shown
with unprimed coordinates. If this reference system is fixed to the scene we
have an absolute camera model, and if it is attached to another camera system
we have a relative camera model, The camera coordinate system, shown with
primed coordinates, is aligned with the image plane. The translational compo-
nent of the transform is specified by the location of the center of projection
{i.e., the focal point of the camera) in the reference system. The rotational
component is specified by a pan angle, a tilt angle, and a roll angle. The
distance from origin of the camera coordinate system to the center of pro-
jection is equal to the focal length f,
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