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Abstract– Consider the problem of value iteration for
solving Markov stochastic games. One simply iterates
backwards, via a Jacobi-like procedure. The convergence
of the Gauss-Seidel form of this procedure is shown for
both the discounted and ergodic cost problems, under ap-
propriate conditions, with extensions to problems where
one stops when a boundary is hit or if any one of the play-
ers chooses to stop, with associated costs. Generally, the
Gauss-Seidel procedure accelerates convergence.
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I. Introduction

We consider two-player, zero-sum, finite-state, Markov
stochastic games. There are N states and, unless noted
otherwise, we suppose that the controls are feedback and
not randomized. In state i, player 1’s (the minimizing
player) control is denoted by ui and that of player 2 (the
maximizing player) is denoted by vi. The convergence of
the value iteration procedure (see (2.2) below) for Markov
stochastic games for a discounted cost function (or where
there is an absorbing boundary) was established in [9],
[13]. The convergence of the Gauss-Seidel procedure was
first established for the control problem in [12]. It is
widely used and is no less fast and is generally faster
than the Jacobi procedure; see, for example, [7], [12] and
[11, Chapter 6]. It will be seen that the Gauss-Seidel
procedure can be viewed as an iteration with a modified
transition matrix Q. The references discuss the nature
of the transition probability that Q represents and show
why it is faster. In particular, it has a smaller spectral
radius than the transition matrix of the original problem.
The ordering of the states in the iteration plays an impor-
tant role in getting the best acceleration of convergence.
If there is an absorbing set, then it is best to order the
states so that the mean flow is toward that set. In prac-
tice, where there is no absorbing set, the ordering is often
changed from cycle to cycle, say “reversing direction,” to
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provide a greater mixing, which also accelerates conver-
gence. See [7], [12] and [11, Chapter 6] for a discussion
of preferred orderings, a point that we do not have the
space to deal with here, but is the same for the control
and the game problem.
The convergence of the Gauss-Seidel form has not yet

been established for the game problem. Under appro-
priate conditions, the convergence will be established for
the discounted and ergodic cost functions, and for related
problems such as where there is an absorbing boundary
or optional stopping.
The ui, vi take values in compact sets that might de-

pend on i. Define the control vectors u = {ui, i ≤ N},
v = {vi, i ≤ N}. Let {p̃ij(ui, vi); i, j ≤ N} denote the
transition probabilities under controls u, v, and define
pij(ui, vi) = ρp̃ij(ui, vi), where ρ ∈ (0, 1) is the dis-
count factor. Define the degenerate transition matrix
P (u, v) = {ρpij(ui, vi); i, j ≤ N}. Hence the row sums
of P (u, v) are 1 − ρ. The cost rate when in state i and
under ui, vi is the function ki(ui, vi). Let {Xn} denote
the random variables of chain. Then the discounted cost
under u, v is

Ci(u, v) = E
u,v
i

∞X
n=1

ρnkXn
(uXn

, vXn
),

where Eu,vi denotes the expectation under u, v and with
initial state i. It is always supposed that the pij(ui, vi)
and ki(ui, vi) are continuous in the ui, vi. Define the vec-
tor K(u, v) = {ki(ui, vi); i ≤ N}.
In addition, unless noted otherwise, we assume that

the Isaacs condition holds; namely, that for any N -vector
H = {hi, i ≤ N},
sup
v
inf
u
[P (u, v)H +K(u, v)] = inf

u
sup
v
[P (u, v)H +K(u, v)] .

(1.1)
In vector forms such as (1.1), it is always supposed that
the inf and sup are taken line by line, so that the ith line
is supvi infui [

P
j pij(ui, vi)hi+ki(ui, vi)] and involves the

inf and sup over ui and vi only. The condition (1.1) is
used for notational simplicity. Otherwise, one must ran-
domize the controls. Then, when the number of control
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values is finite, the control is replaced by the vector of
probabilities, and the analog of (1.1) holds. If the controls
take values in a continuum and (1.1) does not hold, then
the randomization is more complicated, but the results
can be readily extended. The condition (1.1) commonly
holds for the games arising as numerical approximations
to stochastic differential games under the conditions of
[6], [8].
Section 2 concerns the discounted cost problem and

also remarks on cases where there is forced stopping on
hitting a boundary or with optional stopping. The er-
godic cost problem is dealt with in Section 3 and the cost
under u, v is

γ(u, v) = lim
n

1

n
Eu,vi

nX
l=1

kXl
(uXl

, vXl
). (1.2)

In Section 3, it is first shown that the game ver-
sion of a classical value iteration method converges.
Then this is adapted to the Gauss-Seidel procedure.
If controls ûn, v̂n are used at time n, then write

p
(n)
ij (û

n, v̂n; ûn−1, v̂n−1; · · · ; û1, v̂1) for the n-step transi-
tion probabilities. The ergodic cost problem uses the ad-
ditional assumption that there is an ² > 0, a state j0, and
an integer m ≤ N , such that

p
(m)
ij0
(ûm, v̂m; ûm−1, v̂m−1; · · · ; û1, v̂1) ≥ ² (1.3)

for all possible controls. This is a standard condition for
the ergodic cost problem in the control literature [15]. See
also [1, Vol 2] and [7, pp156—158]. Of particular interest
are Markov chain games that arise as numerical approx-
imations of games with diffusion models as in [6], [8],
where (1,3) will commonly hold under the assumptions
on the nondegeneracy of the diffusion in [6].
To date, there have not been proofs of the convergence

of the Gauss-Seidel method for either the game or the con-
trol problem with ergodic cost criteria. Indeed, it does
not always converge, even under (1.3) for ergodic models.
But, it will converge if (1.3) holds for a modified transi-
tion probability. This will be discussed further in Section
3. The modified condition holds for the chains obtained
as approximations in [6] under the nondegeneracy con-
ditions used there. These chains are obtained via the
Markov chain approximation methods of [11]. The book
[4] discusses other numerical procedures, based on nonlin-
ear programming methods and (under some smoothness
conditions) develops a convergent modified Newton pro-
cedure that has the rate of the policy iteration procedure
whenever that converges. The paper [5] discusses what
might be called a type of combined value iteration and
approximation in policy space method. The paper [3]
numerically compares a variety of approaches and shows
that the policy iteration algorithm performs best when it
converges (which is not always the case). The papers [2],

[14] discuss a variety of modifications of value and policy
iteration.

II. The Discounted Cost Problem and
Extensions

Until further notice, we consider the discounted cost
case. Let C̄i denote the value of the game when starting
in state i and define C̄ = {C̄i; i ≤ N}. In vector form, the
equation for the value is

C̄ = sup
v
inf
u

£
P (u, v)C̄ +K(u, v)

¤
= inf

u
sup
v

£
P (u, v)C̄ +K(u, v)

¤
.

(2.1)
In all such vector equations, The inf sup is taken by line;
the ith line is over ui, vi. Recall that the discounting
is incorporated into the P (u, v), Hence, for any integer
m ≥ 1, Pm(ûm, v̂m; · · · ; û1, v̂1) is a contraction (in the
Euclidean norm sense) uniformly in the choices of the
controls {ûn, v̂n}. A unique solution C̄ exists and is the
value [4, Theorem 3.1.1]. Let ū, v̄ denote any controls
that realize (2.1).
Our aim is the computation of C̄, hence of optimizing

controls as well. A variety of computational methods are
available. In [9], [10], [13] it was shown that, for any C0,
the Cn in the iteration in value space algorithm

Cn+1 = sup
v
inf
u
[P (u, v)Cn +K(u, v)] (2.2)

converge to C̄.
The Gauss-Seidel procedure for the game problem is

the iteration in value space with successive substitutions,
taken in the order i = 1, 2, . . .,

Cn+1i = sup
vi

inf
ui

⎡⎣i−1X
j=1

pij(ui, vi)C
n+1
j +

NX
j=i

pij(ui, vi)C
n
j + ki(ui, vi)

⎤⎦ .
(2.3)

Taking the sup inf in (2.3) is equivalent to solving a ma-
trix game. Except for this sup inf, it is just the standard
Gauss-Seidel method for iteratively solving linear equa-
tions. The convergence proof in Theorem 2.1 adapts the
method of [7], [12]. The ordering of the states can vary
with n.
Before proceeding, it is convenient to define a transi-

tion probability Q(u, v) and cost vector K̂(u, v) that play
a crucial role in the analysis. This Q will be the effec-
tive transition probability that determines the behavior
of the Gauss-Seidel procedure. Consider the set of linear
equations in an unknown D = {Dij}, where the vector
C is given, solved by successive substitution in the order
i = 1, 2, . . . , N :

Di =

⎡⎣i−1X
j=1

pij(ui, vi)Dj +
NX
j=i

pij(ui, vi)Cj + ki(ui, vi)

⎤⎦ .
(2.4)
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This uniquely defines a matrix Q(u, v) = {qij(u, v); i, j ≤
N} and vector K̂(u, v) = {k̂i(u, v); i ≤ N} such that D =

Q(u, v)C + K̂(u, v). In detail, by successive substitutions
in (2.4), we find that

q1j(u, v) = p1j(u1, v1), 1 ≤ j ≤ N,
q21(u, v) = p21(u2, v2)q11(u, v),

q2j(u, v) = p2j(u2, v2) + p21(u2, v2)q1j(u, v), 2 ≤ j ≤ N.
In general,

qij(u, v) = pij(ui, vi) +
i−1X
k=1

pik(ui, vi)qkj(u, v), j ≥ i,

qij(u, v) =
i−1X
k=1

pik(ui, vi)qkj(u, v), 1 ≤ j < i.

(2.5)
Q(u, v) can also be defined from (2.4) in terms of the
upper and lower triangular matrices formed from P (u, v),
but we prefer to write the details. Also,

k̂1(u, v) = k1(u1, v1),

k̂2(u, v) = p21(u2, v2)k̂1(u, v) + k2(u2, v2),

and, in general,

k̂i(u, v) =
i−1X
k=1

pij(ui, vi)k̂j(u, v) + ki(ui, vi). (2.6)

Note that, for our discounted cost problem where the dis-
count factor is incorporated into the pij(ui, vi), Q(u, v) is
a degenerate transition matrix since the row sums satisfyP

j qij(u, v) ≤ ρ for all i and controls. If there is no dis-
counting (i.e., ρ = 1), then the row sums are always unity.
These facts are easily proved by induction, starting with
i = 1.

Theorem 2.1. For any C0, the Cn in (2.3) converges to
C̄.

Proof. Since

C̄i = sup
vi

inf
ui

⎡⎣i−1X
j=1

pij(ui, vi)C̄j +
NX
j=i

pij(ui, vi)C̄j + ki(ui, vi)

⎤⎦ ,
(2.7)

by successive substitutions, we can write (2.1) in the
equivalent form

C̄ = sup
v
inf
u

h
Q(u, v)C̄ + K̂(u, v)

i
= Q(ū, v̄)C̄ + K̂(ū, v̄).

(2.8)
Similarly, with un, vn realizing (2.3), the following is
equivalent to (2.3):

Cn+1 = sup
v
inf
u

h
Q(u, v)Cn + K̂(u, v)

i
= Q(un, vn)Cn + K̂(un, vn).

(2.9)

In (2.8) and (2.9), it is understood that the inf and sup
are again taken line by line, in the order i = 1, 2 . . .. The
inf and sup in line 1 are over u1 and v1, and in turn, that
in line i are over ui, vi.
For any u, v, and i = 1, . . . , N , (2.1) yields

i−1X
j=1

pij(ūi, vi)C̄j +
NX
j=i

pij(ūi, vi)C̄j + ki(ūi, vi)

≤ C̄i = sup
vi

inf
ui

⎡⎣i−1X
j=1

pij(ui, vi)C̄j +
NX
j=i

pij(ui, vi)C̄j + ki(ui, vi)

⎤⎦
=

i−1X
j=1

pij(ūi, v̄i)C̄j +
NX
j=i

pij(ūi, v̄i)C̄j + ki(ūi, v̄i)

≤
i−1X
j=1

pij(ui, v̄i)C̄j +
NX
j=i

pij(ui, v̄i)C̄j + ki(ui, v̄i).

(2.10)
In vector notation, this can be written as

P (ū, v)C̄ +K(ū, v) ≤ C̄ ≤ P (u, v̄)C̄ +K(u, v̄).

It can also be written as

Q(ū, v)C̄ + K̂(ū, v) ≤ C̄ ≤ Q(u, v̄)C̄ + K̂(u, v̄). (2.11)

For any u, v, (2.3) or, equivalently, (2.9) yields

Q(un, v)Cn + K̂(un, v)

≤ Cn+1 = sup
v
inf
u

h
Q(u, v)Cn + K̂(u, v)

i
≤ Q(u, vn)Cn + K̂(u, vn).

(2.12)
Selecting (u, v) = (un, vn) in (2.11) and (u, v) = (ū, v̄) in
(2.12) yields

Q(un, v̄)
¡
Cn − C̄

¢
=
h
Q(un, v̄)Cn + K̂(un, v̄)

i
−
h
Q(un, v̄)C̄ + K̂(un, v̄)

i
≤ Cn+1 − C̄
≤
h
Q(ū, vn)Cn + K̂(ū, vn)

i
−
h
Q(ū, vn)C̄ + K̂(ū, vn)

i
= Q(ū, vn)

¡
Cn − C̄

¢
.

.

(2.13)
Iterating yields£

Q(un, v̄) · · ·Q(u1, v̄)
¤ ¡
C1 − C̄

¢
≤ Cn+1 − C̄ ≤

£
Q(ū, vn) · · ·Q(ū, v1)

¤ ¡
C1 − C̄

¢
.
(2.14)

For the discounted problem the row sums of Q(u, v)
satisfy

P
j qij(u, v) ≤ ρ for all i and controls. Hence

Cn → C̄ as n→∞.

Stopping when hitting a boundary set. Now, we
allow ρ ∈ (0, 1], so that the discounting can be dropped if
desired. Suppose that the process stops when a boundary
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set is hit and that the mean time to reach the boundary
set is bounded, uniformly in the controls and initial con-
dition. Thus we can suppose that the boundary set is
absorbing and has zero cost. Without loss of general-
ity, let 0 denote the boundary state. Let P (u, v) still
denote the matrix of transition probabilities among the
states 1, . . . , N only. With C̄ = {C̄i; 1 ≤ i ≤ N} and
Cn = {Cni ; 1 ≤ i ≤ N} the products on either side of
(2.14) go to zero. Thus Cn → C̄. It is preferable if state
1 is connected to the boundary and the states are or-
dered so that the “mean flow” is toward the boundary as
one goes from the lower to the higher numbered states,
where possible. The transition matrix Q associated with
such an ordering has a faster absorption of the process at
the boundary, which implies a faster convergence of the
algorithm [7], [12] and [11, Chapter 6].

Optional stopping problems. As in the above para-
graph, let ρ ∈ (0, 1]. Various forms of optional stop-
ping can be handled. There are now three ways that the
process can be stopped. One is by hitting a predefined
stopping set, denoted by state 0, as in the previous para-
graph. Call the time τ0. Otherwise, either player can
decide to have the game stopped. The associated times
are called τi for player i. After stopping for whatever rea-
son, the state goes to absorbing 0, with zero holding cost
there. The P (u, v) represents the transition probabilities
only among the states 1, . . . , N . For given functions gi(·),
the cost is now

Ci(u, v) = E
u,v
i

min{τ0,τ1,τ2}−1X
n=0

kXn
(uXn

, vXn
)

+Eu,vi g1(Xτ1)I{τ1≤τ2,τ1<τ0} +E
u,v
i g2(Xτ2)I{τ2<min{τ1,τ0}}.

(2.15)
The controls ui, vi can now take the new value stop as
well as the original values used in Theorem 2.1. Let
ki(ui, vi) ≥ ² > 0 for all i, ui, vi values other than the
value stop, and suppose that g1(·) 6= g2(·) but g1(i) ≥
g2(i). Extend the definition of the ki(·) to include the
control value stop, by writing ki(stop, vi) = g1(i) and let
ki(ui, stop) = g2(i) if ui 6= stop and let it be zero other-
wise. Then the Gauss-Seidel algorithm can be written as
(2.3). We have g2(i) ≤ Cni ≤ g1(i). Similarly (2.1) holds
and g2(i) ≤ C̄i ≤ g1(i).
Let (un, vn) satisfy (2.3) and (ū, v̄) satisfy (2.1). Due

to the positivity of ki(ui, vi), for ui and/or vi not equal
to stop, if player 1 uses un and player 2 uses some
v̂n at time n, then P (un, ṽn) · · ·P (u0, v̂0) → 0 and
Q(un, ṽn) · · ·Q(u0, v̂0) → 0 as n → ∞ uniformly in the
{v̂n} choices. Analogously, Q(ū, ṽn) · · ·Q(ū, v̂0) → 0 for
all {v̂n} choices. Using these facts and following the
logic of the proof of Theorem 2.1 yields the convergence
Cn → C̄ for this problem.

III. The Ergodic Cost Problem

Now ρ = 1 and P (u, v) is the transition matrix for a
controlled Markov chain which is ergodic under any u, v.
We adapt the procedure of [7, pp156—158], originally due
to White [15]. Let e denote the N -vector, all of whose
components are unity.

A Jacobi procedure. We first consider the analog of
the simple backwards iteration (Jacobi) procedure (2.2),
whose convergence for the game with ergodic payoffs has
not been proved to date in the literature. For arbitrary
W 0, define the vectors Wn, wn recursively by

Wn = supv infu
£
P (u, v)wn−1 +K(u, v)

¤
wn =Wn −Wn

j0e,
(3.1)

where j0 is defined above (1.3). There is a value for the
game [4, Section 5.2]. The value γ̄ is given by

W̄ + γ̄e = sup
v
inf
u

£
P (u, v)W̄ +K(u, v)

¤
. (3.2)

As for the control problem, the value of W̄ is unique, up
to the addition of a vector with constant components, and
the value of γ̄ is unique. An alternative way of writing
(3.2) is as

W̄ = supv infu [P (u, v)w̄ +K(u, v)]

w̄ = W̄ − W̄j0e.
(3.2a)

Theorem 3.1. wn converges to the value γ̄ of the game.

Proof. Recall the condition (1.3) and the definitions of
m and j0 there. Let u

n, vn be the selected controls in
(3.1). Define cn =W

n
j0
e. Then, for any u, v,

P (un, v)wn−1 +K(un, v)

≤Wn = P (un, vn)wn−1 +K(un, vn)

≤ P (u, vn)wn−1 +K(u, vn).
(3.3)

Let (u, v) = (un−1, vn−1) in (3.3) and use the definition
of wn in (3.1) to get

P (un, vn−1)wn−1 +K(un, vn−1)− cn
≤ wn ≤ P (un−1, vn)wn−1 +K(un−1, vn)− cn.

Replacing n with n − 1 in (3.3) and letting (u, v) =
(un, vn) yields, for i ≤ N ,
P (un−1, vn)wn−2 +K(un−1, vn)− cn−1
≤ wn−1 ≤ P (un, vn−1)wn−2 +K(un, vn−1)− cn−1.

The last two inequalities yield

P (un, vn−1)
¡
wn−1 − wn−2

¢
− (cn − cn−1) ≤ wn − wn−1

≤ P (un−1, vn)
¡
wn−1 − wn−2

¢
− (cn − cn−1) .

(3.4)
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Iterating (3.4) m− 1 times leads to
P (un, vn−1) · · ·P (un−m+1, vn−m)(wn−m − wn−m−1)
−(cn − cn−m) ≤ wn − wn−1

≤ P (un−1, vn) · · ·P (un−m, vn−m+1)(wn−m − wn−m−1)
−(cn − cn−m).

(3.5)
Define δwn = wn−wn−1 = {δwni ; i ≤ N}. Then the right
hand inequality of (3.5) yields, for i ≤ N ,
δwni ≤X
j

pij(u
n−1, vn;un−2, vn−1; · · · ;un−m, vn−m+1)δwn−mj

−
£
Wn
j0 −Wn−m

j0

¤
.

(3.6)
Since wnj0 = 0 for all n, we have δwnj0 = 0. This, with
(3.6) and (from (1.3))

p
(m)
ij0
(un−1, vn;un−2, vn−1; · · · ;un−m, vn−m+1) ≥ ² > 0

for all i, n, and controls, yields for i ≤ N
max
i

δwni ≤ (1− ²)max
j

δwn−mj −
£
Wn
j0 −Wn−m

j0

¤
.

Analogously, using the fact that miniw
n
i ≤ 0 and that

pij0(u
n, vn−1;un−1, vn−2; · · · ;un−m+1, vn−m) ≥ ²

for all i, n, the left hand inequality of (3.5) yields, for
i ≤ N ,

min
i
δwni ≥ (1− ²)min

j
δwn−mj −

£
Wn
j0 −Wn−m

j0

¤
.

Hence, for all i, where we define [maxi−mini]ai =
maxi ai −mini ai,h
max
i
−min

i

i
δwni ≤ (1− ²)

h
max
i
−min

i

i
δwn−mi , (3.7)

which implies that wn converges to, say, w̄. Hence Wn

converges to, say, W̄ , and the limits satisfy (3.2a). Hence,
(3.2) holds with γ̄ = w̄j0 .

The Gauss-Seidel procedure. The Gauss-Seidel form
of (3.1) is, in order i = 1, 2, . . . ,

Wn
i = sup

vi

inf
ui

∙ i−1X
j=1

pij(ui, vi)W
n
j

+
NX
j=i

pij(ui, vi)

∙
Wn−1
j −Wn−1

j0

¸
+ ki(ui, vi)

¸
,

.

(3.8)

Recall the definition of Q(u, v) and K̂(u, v) from Section
2. Then, in matrix notation, (3.8) can be written as

Wn = supv infu

h
Q(u, v)wn−1 + K̂(u, v)

i
,

wn =Wn −Wn
j0e.

(3.9)

The condition (1.3) is no longer sufficient for convergence.

For arbitrary controls {ûn, v̂n}, let q(n)ij (û
n, v̂n; · · · ; û1, v̂1)

denote the i, jth element of Q(ûn, v̂n) · · ·Q(û1, v̂1). We
now require the additional condition that there are ² >
0, j0, and an integer m, such that for all controls {ûn, v̂n}
and all i,

q
(m)
ij0
(ûm, v̂m; ûm−1, v̂m−1; · · · ; û1, v̂1) ≥ ² > 0. (3.10)

The condition is discussed below the theorem.

Discussion of (3.10). Consider a one dimensional re-
flected diffusion on the finite interval [A,B], B > A, and
let the variance be strictly positive. Approximate this by
an N -dimensional Markov chain via the methods of [11].
The reflecting states are 1 and N , which correspond to A
and B, resp. If the discretization interval is small enough,
then each state communicates with its immediate neigh-
bors only, with probabilities that are bounded away from
zero, uniformly in the controls. Then infu,v,i qi,2(u, v) > 0
and we can use any m ≥ 1 and j0 = 2 in (3.10). This is
a consequence of the form of the Gauss-Seidel iteration,
which connects states to those that are lower in the order
of the iteration. An analogous result holds for the mul-
tidimensional case, if the diffusion being approximated is
non-degenerate. See [11] for details concerning the ap-
proximation, which is the same for the game problem.

Theorem 3.2. wn converges to the value γ̄ of the game.

Proof. The proof is just an adaptation of that of Theo-
rem 3.1, analogously to the way that the proof of Theo-
rem 2.1 is an adaptation of the proof of the convergence
of the classical procedure (2.2) of value iteration for the
discounted cost problem. Let un, vn be the selected val-
ues in (3.8) or (3.9). Then the inequalities (3.3) hold

with (Q, K̂) replacing (P,K). Analogously to the devel-
opment in Theorem 3.1, this and (3.10) imply (3.7) and
the theorem.

IV. Conclusions.

For solving optimization problems for control and
games for finite-state Markov chain models via value it-
eration, the Gauss-Seidel method is faster than the Ja-
cobi procedure. The proof of convergence for the control
problem is well known, but was not available for the game
problem. For the problem of games, it is shown that the
Gauss-Seidel procedure converges for the discounted, op-
timal stopping, and ergodic cost criteria.
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