Naval Research Laboratory

Washington, DC 20375-5320

NRL/MR/5546--06-8952

Basing a Modeling Environment on
a General Purpose Theorem Prover

MyLA ARCHER

Center for High Assurance Computer Systems
Information Technology Division

December 29, 2006

Approved for public release; distribution is unlimited.




REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

2. REPORT TYPE
Memorandum Report

1. REPORT DATE (DD-MM-YYYY)
29-12-2006

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

Basing a Modeling Environment on a General Purpose Theorem Prover

5a. CONTRACT NUMBER

N0001406WX20708

5b.

GRANT NUMBER

5c.

PROGRAM ELEMENT NUMBER

61153N

6. AUTHOR(S)

Myla Archer

5d.

PROJECT NUMBER

55-8956-0-7

Se.

TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Research Laboratory
4555 Overlook Avenue, SW
Washington, DC 20375-5320

8. PERFORMING ORGANIZATION REPORT

NUMBER

NRL/MR/5546--06-8952

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Office of Naval Research

One Liberty Center

875 North Randolph Street, Suite 1425
Arlington, VA 22203-1995

10. SPONSOR / MONITOR’S ACRONYM(S)

11. SPONSOR / MONITOR’S REPORT

NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

A general purpose theorem prover can be thought of as an extremely flexible modeling environment in which one can define and analyze
almost any kind of model. A disadvantage to the full flexibility of a general purpose theorem prover is the lack of any guidance on how to
construct a model and how then to apply the theorem prover to analyzing the model. In the general environment supplied by the prover, much
time can be consumed in deciding how to specify a model and in interacting with and understanding feedback from the prover. However,
specification templates, together with proof strategies whose design follows certain principles, can be used in many general purpose provers to
create specialized modeling environments that address these difficulties. A specialized modeling environment created in this way can be further
extended and/or further specialized by drawing on the underlying theorem prover for additional capabilities, and provides a means of integrating
powerful theorem proving capabilities into existing software development environments by way of appropriate translation schemes. This paper
will use TAME (Timed Automata Modeling Environment) to illustrate the creation, extension, and specialization of a modeling environment
based on PVS, and its integration into several software development environments.

15. SUBJECT TERMS

Modeling environments Tool compatibility ~ Automata models Verification Automated deduction
Software engineering tools Tool integration Specification Theorem proving
16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
OF ABSTRACT OF PAGES Myla Archer
a. REPORT b. ABSTRACT c. THIS PAGE UL 24 g.(?(?e.)TELEPHONE NUMBER (include area
Unclassified Unclassified Unclassified (202) 404-6304

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18




CONTENTS

I INErOQUCTION ..ottt st 1
2 TAME ..ottt 3
3 EXAMPIE: SCR .o 6

3.1 Specification i SCR ...c.ooiiiiiiiiiiiiee e 6

3.2 Representing SCR specifications in TAME .......c..coccooviininnininninieniinieene 8

3.3 TAME proof support in SCR........cocueiiiiiiiiiiiiiieeeeeeeee e 12
4 Example: TIOA......cooiiteee ettt st 13
5 EXample: SELINMUX ..ottt 16
6 Related WOTK .....oouiviiiiiiiiicieicicct e 18
7 Conclusions and Future WOrk .........cccccooiiiiiniiininiiiiiiicccceceeese e 18
ACKNOWIEAZEMENES ...c..iiiiiiiiieiiieiieieeicee ettt ettt ettt 19
RELEIEINCES ... .ottt e 19

il



Basing a Modeling Environment on a General
Purpose Theorem Prover *

Myla Archer

Code 5546, Naval Research Laboratory,
Washington, DC 20375

archer@itd.nrl.navy.mil

Abstract. A general purpose theorem prover can be thought of as an
extremely flexible modeling environment in which one can define and
analyze almost any kind of model. A disadvantage to the full flexibility
of a general purpose theorem prover is the lack of any guidance on how
to construct a model and how then to apply the theorem prover to an-
alyzing the model. In the general environment supplied by the prover,
much time can be consumed in deciding how to specify a model and in
interacting with and understanding feedback from the prover. However,
specification templates, together with proof strategies whose design fol-
lows certain principles, can be used in many general purpose provers to
create specialized modeling environments that address these difficulties.
A specialized modeling environment created in this way can be further
extended and/or further specialized in a straightforward way by drawing
on the underlying theorem prover for additional capabilities. Moreover,
a specialized modeling environment derived from a general purpose the-
orem prover provides a means of integrating powerful theorem proving
capabilities into existing software development environments by way of
appropriate translation schemes. This paper uses TAME (Timed Au-
tomata Modeling Environment) to illustrate the creation, extension, and
specialization of a modeling environment based on PVS, and its integra-
tion into several software development environments.

1 Introduction

For establishing properties of systems, the use of a mechanical theorem prover is
often considered impractical because of the effort required to represent a system
in the language of the theorem prover and to create proofs of properties of the
system using the proof primitives provided in the prover. Attention tends to turn
instead to model checking, because of its reputation for being “automatic” and
because significant progress has recently been made towards increasing its effi-
ciency, scope, and the degree to which it truly is automatic, through the use of
predicate abstraction [12,5] and abstraction refinement [7,19]. Even with these
advances, however, model checking still does not provide a complete answer to
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the verification problem. Abstraction refinement may still produce large mod-
els. Model checking arbitrary properties of concurrent systems or infinite state
systems is still problematic. User guidance can still be needed.

Moreover, the use of theorem proving can provide some advantages: 1) infi-
nite state systems can be handled as easily as finite state systems, 2) abstraction
is not generally needed to allow verification of properties, and 3) by construct-
ing a proof in a theorem prover, one can both establish the truth of a property
and, at the same time, obtain an explanation of why a property is true of a sys-
tem. While the third advantage may not come automatically (due to obscurity
in the significance of the proof steps of a mechanical prover), it is possible in
many provers to design high level proof steps that advance the proof in a way
that can be easily understood. Although model checkers are better than theo-
rem provers at finding counterexamples, when one generates proof explanations
along with proofs, the feedback from an incomplete proof in the prover can be
meaningful enough to aid in the search for counterexamples, for example in a
simulator. The TAME (Timed Automata Modeling Environment) interface to
PVS [33] is designed to provide the kind of high level proof steps that allow
proof explanation.

A general purpose theorem prover, through its specification language and
proof support, constitutes a very general purpose modeling environment by itself.
A specialized modeling environment such as TAME that is based on a general
purpose theorem prover can “organize” that prover for application to a particular
class of models. When the class of models is broad enough (e.g., state machines)
to apply in many settings, the specialized modeling environment can be used as
an intermediate layer between toolsets designed for particular settings and the
general purpose prover. This layer can supply an organization for representing
specifications, possibly in other languages, in the language of the prover. Further,
it can provide a set of meaningful, user-friendly proof steps that can be built on
and extended, if necessary, to provide user-friendly proof support appropriate in
other settings.

Using TAME as an example, this paper illustrates how a modeling environ-
ment based on a general purpose theorem prover can be used to facilitate the
integration of that prover, along with a set of helpful proof steps, into other
tools. The paper is organized as follows. Section 2 gives an overview of TAME
itself. The next three sections illustrate how TAME is being used to provide
user-friendly PVS proof support in three settings. The first setting, described
in Section 3, is SCR (Software Cost Reduction), a tabular specification method
particularly suited to specifying requirements for control systems, initially de-
veloped at the Naval Research Laboratory (NRL) [17,18]. SCR is supported
by a toolset developed and maintained by NRL. Section 4 describes the second
setting: TIOA (Timed I/O Automata), an automaton model [21] for which a
specification language and toolkit initially developed at MIT [20] is currently
under commercial development. Finally, Section 5 describes the third setting:
policy analysis for SELinux (Security-Enhanced Linux) [22,34], a version of
Linux initially developed at NSA that provides a policy definition language and



enforcement mechanism intended to allow (and encourage) Linux application
developers to incorporate certain security guarantees in their software. Section 6
briefly discusses related work, and Section 7 provides some conclusions and a
preview of future work.

2 TAME

As noted in the introduction, the modeling environment TAME [1, 3] is based
on the general purpose theorem prover PVS. TAME specifications represent
automata in the MMT timed automaton model [28], which extends the untimed
I/0 automata model [25] to include timed I/O automata (see also [26,27]). The
I/0 automata model is a very general model in which many other automaton
models can be represented.

The motivation for TAME is the desire to facilitate proving properties of au-
tomata using PVS, and, at the same time to make the resulting proofs saved by
PVS human-understandable. Towards accomplishing this goal, TAME provides
a set of proof steps that resemble high-level reasoning steps used by humans. Fig-
ure 1 shows the proof steps TAME currently supplies for proving state invariant
properties of automata interactively. As noted in [2], the steps in Figure 1, when

TAME Strategy
AUTO_INDUCT
DIRECT_PROOF
DIRECT_INDUCTION
APPLY_SPECIFIC_PRECOND
APPLY_GENERAL_PRECOND
APPLY_IND_HYP
APPLY_INV_LEMMA
APPLY_LEMMA

Purpose
Set up areachable-state induction proof
Set up a non-induction proof
Set up a mathematical induction proof
Introduce the specified precondition
Introduce the timing constraints
Apply the inductive hypothesis
Apply aninvariant lemma
Apply any general lemma

SUPPOSE Do acase split and label the cases
COMPUTE_POSTSTATE Compute the poststate of the current transition
SKOLEM_IN Skolemize an embedded quantified formula
INST_IN Instantiate an embedded quantified formula
TRY_SIMP Try to complete the proof automatically

Fig.1. TAME proof steps for invariants.

supplemented by a small number of PVS proof steps including EXPAND (which
expands definitions) and INST (which instantiates formulas), has turned out to
be sufficient for proving the invariants in the great majority of examples to which
TAME has been applied.

TAME steps are provided with names intended to indicate their significance.
The steps also save information in the form of comments used to identify the
meanings of the various proof branches. These features help to support natural



language translations of saved proofs. Figure 2 shows an example (tree struc-
tured) saved TAME proof and its automatically generated natural language
translation, reproduced from [1]. The natural language proof in Figure 2 can be
understood without reference to the PVS theorem prover—one only needs access
to the automaton specification and the statement of the theorem being proved.

To make translations such as that in Figure 2 possible, it is necessary for
every proof step in the saved PVS proof to have a meaning which depends only
on elements in the specification of an automaton and its properties, and not on
any details of proof execution. Thus a major desire for TAME is to provide a set
of proof steps that are execution-independent semantically while being sufficient
to prove all automaton properties of interest.

The need to instantiate formulas is a challenge to the desire for an execution-
independent semantics. The PVS step (INST?), which instantiates an unspeci-
fied formula (chosen by PVS) with an unspecified value (also chosen by PVS)
is an example of a semantically non-execution-independent proof step: its effect
can be changed by an appropriate PVS (HIDE <jformula-number>) step that
hides a quantified formula that might otherwise have been instantiated. The
PVS step (INST —2 0), whose meaning (to instantiate formula numbered —2
in the current proof goal with the value 0) in a given proof goal is more spe-
cific, still has the same problem. In TAME, execution-independent semantics for
proof steps using (e.g.) INST is more closely approximated by maintaining la-
bels on formulas that indicate their significance, as well as labels (comments) on
subgoals that track the current proof branch. Thus, in the induction branch of
an invariant proof corresponding to an action <action>, the meaning of (INST
"specific-precondition part_1" <walue>) is “instantiate the first conjunct
of the specific precondition of <action> with <walue>” on its first use in any
proof branch, and the meanings of its later uses in that proof branch, if any,
will also be clear from the form of <action>’s specific precondition. When pos-
sible, TAME proof steps (e.g., APPLY_ INV_LEMMA, APPLY IND_HYP)
remove any ambiguities related to instantiation by permitting instantiations to
be provided as arguments.

Recent additions to the set of TAME proof steps include PROVE_RE-
FINEMENT and PROVE_FWD_SIM, which perform the initial steps in the
proofs of refinement and forward simulation, two abstraction properties that can
relate pairs of automata (see [29,30]). The strategy PROVE_REFINEMENT,
in combination with the proof steps listed in Figure 1, is sufficient for the re-
finement proofs attempted so far. Research is continuing into additional TAME
steps for completing proofs of forward simulation and more complex refinement
properties.

In addition to (PVS) proof strategies for implementing proof steps, TAME’s
implementation uses a set of templates and a set of supporting theories. TAME
has templates for specifying systems (e.g., the automaton specification), for spec-
ifying properties (e.g., the abstraction property specification template), and for
stating lemmas and theorems (e.g., invariant property lemmas and abstraction
property lemmas). The supporting theories in TAME serve to provide defini-



Inv_5(s:states): bool = (FORALL (e:Edges): length(mg(e,s)) <= 1);

&
(AUTO_INDUCT)
(("1" ;;Caseadd_child(addE_action)
(APPLY_SPECIFIC_PRECOND)
(SUPPOSE "e_theorem = addE_action")
(("1.1" ;;Suppose e_theorem = addE_action
(TRY_SIMP))
("1.2" ;;Suppose not [e_theorem = addE_action]
(TRY_SIMP))))
("2" ;;Case children_known(childV_action)
(SUPPOSE "source(e_theorem) = childV_action")
(("2.1" ;;Suppose source(e_theorem) = childV_action
(APPLY_SPECIFIC_PRECOND)
(APPLY_INV_LEMMA "2" "e_theorem")
(TRY_SIMP))
("2.2" ;;Suppose not [source(e_theorem) = childV_action]
(TRY_SIMP))))
(" 3" ;;Case ack(ackE_action)
(SUPPOSE "e_theorem = ackE_action")
(("3.1" ;;Suppose e_theorem = ackE_action
(APPLY_SPECIFIC_PRECOND)
(TRY_SIMP))
("3.2" ;;Suppose not [e_theorem = ackE_action]
(TRY_SIMP)))))

Proof. The proof is by induction. The base case is trivial. There are 3 nontrivial action
cases.

e Consider the action add_child(addE_action). The proof in this case is as fol-
lows. Apply the precondition of the action add_child(addE_action). Suppose first that
e_theorem = addE_action. The rest of the proof in this case is obvious. Suppose, on
the other hand, that it is not true that e_theorem = addE_action. The rest of the proof
in this case is obvious. This completes the proof for the action add_child(addE_action).

o Consider the action children known(childV_action). The proof in this case is as
follows. Suppose first that source(e_theorem) = childV_action. Apply the precon-
dition of the action children known(childV_action). Apply Invariant 2 to e_theorem.
The rest of the proof in this case is obvious. Suppose, on the other hand, that it is not
true that source(e_theorem) = childV_action. The rest of the proof in this case is
obvious. This completes the proof for the action children known(childV_ action).

e Consider the action ack(ackE_action). The proof in this case is as follows. Suppose
first that e_theorem = ackE.action. Apply the precondition of the action
ack(ackE_action). The rest of the proof in this case is obvious. Suppose, on the other
hand, that it is not true that e_theorem = ackE_action. The rest of the proof in this
case is obvious. This completes the proof for the action ack(ackE_action). O

Fig. 2. A saved TAME proof and its translation.



tions, capture common reasoning steps (such as reachable-state induction), serve
as theory parameter “types” (e.g., the theory automaton used as a parameter
type in the specification theory for the refinement property), and to support
reasoning about data of types commonly used in a domain (e.g., communication
protocols).

Central to the integration of TAME into other development environments
is its automaton template to which specifications must be matched. The major
ingredients of this template can be summarized as follows:

— MMTstates: A product type whose elements are vectors of values for the
non-time-related variables in a system, i.e., elements of the “basic state”;

— actions: A PVS DATATYPE whose elements are a set of (parameterized)
actions that trigger the system’s state transitions;

— trans(a:actions,s:states) :states : The transition function that com-
putes the effect of action a on state s;

— enabled(a:actions,s:states) :bool : The full precondition for action a
on state s, decomposed into four parts:

enabled(a,s) = enabled general(a,s) & enabled specific(a,s) &
OKstate?(trans(a,s)) & OKtrans?(s,trans(a,s))

where these four parts are:

e enabled specific(a:actions,s:states):bool : The specific precon-
dition for action a on state s;

e enabled general (a:actions,s:states) :bool: The general timing pre-
condition for action a on state s, whose definition is system-independent;

e DKstate?(s:states):bool : A predicate limiting the allowable post-
states in the system (i.e., very close to a state invariant by fiat);

e OKtrans?(s,snew:states):bool : A predicate limiting the allowable
state transitions in the system (i.e., a transition invariant by fiat);

— start: A predicate defining the possible start states of the system.

In any specification that follows this template, start(s) OR OKstate?(s) will
be a state invariant. Not requiring that start (s) = OKstate?(s) allows one to
model systems whose initial state may be unpredictable.

3 Example: SCR

3.1 Specifications in SCR

SCR (Software Cost Reduction) is a tabular requirements specification method
first developed at NRL (Naval Research Laboratory). NRL’s SCR toolset pro-
vides tools for creating and analyzing requirements specifications based on the
SCR method. The toolset has been extensively documented (see, e.g., [16,15,
14]), and has a growing number of users in industry, government, and academia.

Every SCR specification defines a state machine in which a state is deter-
mined by an assignment of values to state variables. We will refer to the state



machine defined by an SCR specification as an SCR machine. The state vari-
ables fall into four classes: monitored variables, representing inputs, controlled
variables, representing outputs, mode classes, natural for representing the cur-
rent mode (or modes) of operation of the machine, and terms, which can be used
to capture certain interesting state information concisely, and which can also,
along with mode classes, be used to capture history information. The controlled
variables, mode classes, and terms comprise the dependent variables. Transitions
in an SCR machine are triggered by an input event, a change to a monitored
variable. The one input assumption ensures that only one monitored variable at
a time can change. When an input event occurs, the dependent variables are
updated in some order consistent with the “new state dependencies” order that
can be deduced from their definitions. The SCR toolset’s consistency checker [16]
checks that there are no circularities in this dependence.

An SCR specification consists of a set of tables. Special tables called dictio-
naries list variables, types, environmental assumptions, assertions to be verified,
and so on. The values assigned to the dependent variables on a state transition
are computed from tables (or in simple cases, expressions), one for each variable.
The SCR toolset supports three types of variable definition tables (see Figure 3):
mode transition tables, which are used to define mode classes, and condition ta-
bles and event tables, which are used to define the other dependent variables
(terms and controlled variables).

Mode Transition Table
node, | event, | node,

node, | event; | node,
node, | event; | node,
Condition Table Event Table
mode, fcond, ;| - - - |cond, || node, |event, ;| - - - |event, g
mode, |cond, ;| - - - |cond, .|| node; |event, .| - - - |event, .
= . . . /= . . .
var = val ; val var’ = | val, val

Fig. 3. SCR’s three variable definition table types.

As illustrated below in Figure 5 on page 10, the use in Figure 3 of modes
mode; to index the rows of condition and event tables is flexible: e.g., one can
list several modes in one row, if desired; one can also omit them in the table
altogether. The cond; ; entries in the condition table are boolean expressions
involving the variables of one state; the event; and event; ; entries in the event
table are boolean expressions representing events. Events in SCR can be defined
using one of the constructs @T, @F, or @C. Following the usual convention of using



unprimed names to represent values in the old state of a transition, and primed
names for new state values, these constructs can be defined by:

QT(c) <= —-c A c
QF(c) <= c A —c
eC(c) <= c' # c.

Using WHEN, events defined by @T, @F, and @C can also be conditioned:
@T(c) WHEN d <= -c A ¢’ Ad (¥

Figures 4 and 5 show example dictionaries and tables from the SCR spec-
ification of a cruise control system (CCS) that is used as a running example
in [14]. Figure 6 shows the variable dependency graph for CCS. In the SCR
tool set, the dependency provides perhaps the best unified overview of an SCR
specification—for example, the definition table of any dependent variable can be
brought up with an appropriate mouse click. The variable dependencies are com-
puted during consistency checking in the SCR tool set. Any given variable can
depend directly on the old state value or the new state value of another variable
(or both); thus, dependencies can be identified as either old state dependencies
or new state dependencies. The SCR consistency checker checks that there is no
circularity in the new state dependencies.

An additional type of dependency is an update dependency, where it is possi-
ble for a change in the value of a variable to be triggered as the result of a change
in the variable on which it depends; the update dependencies form a subset of
the new state dependencies. An example of a new state dependency that is not
an update dependency can be seen in the event table for tDesiredSpeed (Fig-
ure 5): tDesiredSpeed has a new state dependency on mSpeed (since its new
value is copied from the new value of mSpeed); however, a change in mSpeed will
not cause a change in tDesiredSpeed. In fact, as the tDesiredSpeed event table
shows, the only variable on which tDesiredSpeed has a direct update depen-
dency is the monitored variable mLever. As the dependency graph in Figure 6
shows, mLever has no further dependencies, and is therefore the unique variable
on which mSpeed has an update dependency.

Note that because of the one input assumption, a change in mLever will never
cause a change in mSpeed, so that when a change in tDesiredSpeed is triggered
by a change in mLever, the value of mSpeed’' is the same as that of mSpeed.
Thus, replacing mSpeed’ by mSpeed in the table for tDesiredSpeed would yield
an equivalent specification. However, non-trivial update dependencies can arise
when the condition d in some conditioned event of the form (%) above uses a
new state value not used in the condition c.

3.2 Representing SCR specifications in TAME

Representing an SCR machine as an I/O automaton mathematically is straight-
forward: there is one action for each monitored variable, all the actions are input
actions, and the transitions triggered by actions update all the dependent vari-
ables. In SCR, this updating is done by passing through the dependent variables



Dictionary Edit Tools

viever Enumerated N/ A const, release, off,
resume

vSpeed Float Miles/Hour [0.0, kMaxSpeed]

vThrottle Enumerated N/ & accel, maintain,
decel, off

Dictionary Edit Tools

mcCruise o | off, Inactive,
Cruise, Override

Dictionary Edit Tools

cThrottle yThrottle off

FALSE

mEngRunning FALSE

FALSE

release

thesiredSpesd

Cmspeed’ - mSpeed) <= kMaxaAccel

(mSpeed’ - mSpeed) >= kMaxDecel

@ClmLever) WHEN (mLever |= release) =»
nLever’ = release

time’ = time

Fig. 4. The type, mode class, variable, and assumption dictionaries for CCS.
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=] CruiseContSpec.ssl : tDesiredSpeed 2|
Table Edit View Tools Help
Name |[tDesiredSpeed Table Type  Event
Class  Term m Mode Class mcCruise
Hodes Events
Cruiss @F(DURCmLever = const) >
kStartincry
Inactive @T{mLever = const) WHEM mIgnOn
AND mEngRunning AND MOT mBrake
off, Override NEVER
thesiredspeed’ = nspeed’
o
By

Name | icThrottle Table Type Condition
class  controlled BT o closs mccruise
rodes Condi tions
Cruise thesiredSpeed - kTolerance » thesiredSpeed - kTolerance <= | tDesiredSpesd + kTolerance < FALSE
mspeed OR mSpeed AND tDesiredspeed + mspeed AND
DURCmLever=const) > kStartIncr kTolerance >= mSpeed AND DUR{mLever=const) <=
DURCmLever = const) <= kStartIncr
kstartIncr
Off, Inactive, FALSE FALSE FALSE TRUE
override
GRS accel maintain decel of
o
I
Fig. 5. The tDesiredSpeed event table and cThrottle condition table for CCS.
) ;
— CruiseContspec.ssl : Dependency Graph Browser <

Dependency Graph Edit Tools

All Dependencies:

1. MONITORED WARIABLES 2. TERMS OR HODES 3. TERMS OR MODES 4, COWTROLLED VARIABLES

mlgnln f tlesiredSpeed cThrottle

A mcCrulze K

mSpeed FL—”

Fig. 6. The variable dependency graph for CCS.
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in an order consistent with the new state dependencies. One choice of repre-
senting the transitions concretely in TAME is to mimic this pass through the
variables using a nesting of LET constructs that is as deep as the dependency
graph. This approach allows the new state s’ to be computed as a function of old
state s and the input action a. However, experience has shown that this is very
inefficient for theorem proving (at least in PVS). A more efficient choice is to
represent the transitions as a relation trans(s,a,s’) :bool. The SCR-to-TAME
translator in the SCR toolset uses this representation.

A fragment of the TAME representation of the transition relation for CCS is
shown in Figure 7. This fragment, which shows the transition triggered by the

trans(s : states, A: actions, new_s : states): bool =
new_s =
CASES A OF

mSpeed (mSpeed_value) :
s WITH [basic := basic(s) WITH
[mSpeed_part := mSpeed_value,
cThrottle_part := update_cThrottle(new_s)]],

ENDCASES

Fig. 7. Transition relation for CCS in TAME.

input event when mSpeed acquires a new value mSpeed_value, illustrates the use
of update dependency information by the SCR-to-TAME translator: although
tDesiredSpeed has a new state dependency on mSpeed, it need not be updated
as a result of a change in mSpeed. However, mSpeed is updated to its new value,
and cThrottle, which is update dependent on mSpeed, is updated in accordance
with its (condition) table, represented by the function update_cThrottle.

The representation of variable value tables in TAME takes advantage of the
disjointness checks performed by the consistency checker, and employs some sim-
ple optimizations. Figure 8 shows the definition in TAME of update_cThrottle.
Each i-th guard cThrottle_discr_0_i in the IF construct represents the expres-
sion in the i-th cell of row 0 of the table (where numbering starts from 0). The
fact that consistency checking in SCR showed these guards to be disjoint guar-
antees that the IF expression captures all possible behaviors of cThrottle in
the SCR semantics (which does allow nondeterminism). Because the expressions
in the second row of the table are all boolean constants, the SCR-to-TAME
translator does not construct any cThrottle discr_1_i functions. Instead, it
pre-simplifies the IF expressions that would have corresponded to the modes
Inactive, 0ff, and Override.

11



update_cThrottle(s : states) : yThrottle =
CASES mcCruise(s) OF
Cruise:
IF cThrottle_discr_0_0(s) THEN accel
ELSIF cThrottle_discr_0_1(s) THEN maintain
ELSIF cThrottle_discr_0_2(s) THEN decel
ELSE cThrottle(s)
ENDIF,
Inactive:
off,
0ff:
off,
Override:
off
ENDCASES

Fig. 8. TAME representation of the cThrottle condition table.

The preconditions on actions come from the assumption dictionary, which
contains assumptions, in the form of predicates on the monitored and controlled
variables, about the environment in which the SCR machine will operate. These
assumptions can be categorized according to their mixes of old state and new
state values. All of the assumptions in the assumption dictionary in Figure 4
involve the new state value of only a single monitored variable. Therefore, each
of them translates naturally into a component of the definition of the specific
precondition enabled_specific(a,s) in the case when a is the action which
sets the monitored variable to new value. If all variable values in an assumption
are either old state or new state values, then that assumption translates to a
conjunct in the predicate OKstate? (s). All other assumptions are gathered into
the relation 0Ktrans?(s,s’). Because trans was recast as a relation for SCR,
the OKtrans? conjunct of the full precondition enabled for action a on state s
cannot be rendered as OKtrans?(s,trans(a,s)). Instead, enabled must also
be recast as a relation enabled(s,a,s’) :bool.

3.3 TAME proof support in SCR

Because liveness properties are irrelevant for SCR machines, which are input
driven, safety properties are the properties of most interest for SCR specifica-
tions. In practice, the most important of these are state invariants—properties
that hold for every reachable state—and transition invariants—properties that
hold for every reachable transition. Currently, TAME supplies two major strate-
gies that can be used in verifying state and transition invariants of SCR
specifications: SCR_INV_PROOF and ANALYZE. The implementation of
SCR_INV_PROOF builds on the existing TAME steps AUTO_INDUCT, DI-
RECT_PROOF, APPLY_SPECIFIC_PRECOND, and APPLY_INV_LEM-
MA. Based on the first three of these TAME steps, SCR_INV_PROOF first
attempts an automatic proof of the invariant. If the proof does not succeed,
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SCR_INV_PROOF then uses APPLY_INV_LEMMA to find, for each un-
proved subgoal, a minimal combination of the known state invariants, which
include invariants generated automatically in the SCR toolset, that will com-
plete the proof (if one exists).

To some extent, the user can provide guidance in the verification process. An
optional, natural number argument to SCR_INV_PROOF allows the user to
limit the size of invariant combinations explored on each unproved subgoal. Any
unproved subgoals that remain correspond to some set of prestate-poststate pairs
that cannot be shown automatically to preserve the state invariant inductively, or
satisfy the transition invariant (as the case may be). For any unproved subgoal,
the strategy ANALYZE can be used to make explicit all known information
about the relevant set of prestate-poststate pairs. This set can guide the search
for counterexamples, or suggest additional invariants that may be needed as
lemmas.

4 Example: TIOA

The I/O automata model [25] is a very general automata model particularly
suited for the specification of distributed systems and algorithms. The IOA
toolset developed at MIT [10, 9] supports the specification, simulation, and veri-
fication of I/O automata models of systems. The TIOA (Timed I/O Automata)
toolkit currently being developed at MIT [20] is an extension of the IOA toolset
to include the timed I/O automata model described in [21]. TAME is being
integrated into the TIOA toolkit to provide theorem proving support.

The timed automata model in [21] differs in two respects from the MMT
timed automata model that has until now been supported in TAME: 1) in
place of first and last time bounds constraining when an action can occur, the
timeliness of actions is now ensured by either stopping conditions (as in [21])
or by wurgency predicates (as in [11]) on the current state s, and 2) changes
in the state during time passage between discrete actions is now defined in
terms of trajectories, which are continuous or piecewise continuous—and pos-
sibly nondeterministic—paths through the state space describing how the state
evolves with time. Associating an urgency predicate P with an action a ensures
that when P(s) is true, time cannot advance until some action (possibly, but
not necessarily a) causes P(s) to become false. Trajectories can be defined by
providing a state model, an (optional) stopping condition, and an (optional) tra-
jectory invariant. A state model can be given in terms of algebraic and differential
equations and inclusions.

Very few adaptations are required in TAME to fit it to this new timed au-
tomata model. Although trajectories and transitions are described as separate
entities in TIOA specifications, all trajectories that have arisen so far in practice
can be handled by representing them as actions parameterized by the amount
delta_t of time passage and some possibly nondeterministic function F describ-
ing the trajectory. The higher order nature of PVS makes this kind of conflation
of trajectories with transitions possible; this is a convenience because when this
is done, no change to the TAME template is needed to handle trajectories.
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For the MMT model, TAME represents the first and last time bounds on ac-
tions by a pair of functions first and last of type [[actions,states]->time].
The precondition of the time passage action v (delta_t) checks that now+delta_t
is less than the last deadline of any action; the effect of the action is to increase
te value of now by an increment delta_t. One way the TIOA model differs from
the MMT model is that it allows for multiple time passage actions, one for each
trajectory. The effect on the current time of each of these actions on now is
still to increase its value by the increment delta_t. However, the other state
variables can also change with time, in the manner described in the trajectory’s
state model. In TAME, the state model of a trajectory is captured as the func-
tion F (of type [time->states]) that, along with the time increment delta t,
is passed as a parameter to corresponding time passage action a. The limits on
any nondeterministic behavior of F are captured in the precondition of the ac-
tion a(delta_t,F). The state resulting from the action can then be represented
simply as F(delta_t). This approach to capturing the possibly nondetermin-
istic nature of trajectories is an adaptation of the method (suggested by V.
Luchangco [24]) of specifying an action with a nondeterministic result by using
the nondeterministic parts of its result as parameters to the action.

The parts of the preconditions of time passage actions that capture urgency
predicates or stopping conditions are somewhat similar to those previously used
to enforce first and last time bounds. In particular, urgency predicates can be
represented using a function urgent of type [[actions,states]->booll, and
the precondition of any action involving passage of delta t time must check
that urgent(a,s) is false for all discrete actions a and for all states s = F(t)
on the trajectory F for all times t between now and now+delta_t. The analog for
stopping conditions is similar but slightly simpler, because it does not require
quantification over actions; in particular stopping conditions can be represented
by a function stop of type [[actions,states]->bool], and the precondition
of any action a involving passage of delta_t time must check that stop(a,s)
is false for all states s = F(t) on the trajectory F for all times t after now and
before (but not including) now+delta_t.

A TIOA example that includes trajectories is provided in Figure 9, which
shows the representation as a TIOA specification of a simple train braking system
from [35]. A possible TAME representation for the preconditions and effects of
brakeOn and the trajectory braking is shown in Figure 10. This representation
shows how the nondeterminism of the state model parameter F of the (trajectory)
action braking defined by the evolve clause for braking in Figure 9 can be
constrained in TAME using the precondition enabled. Note that a parameter
(c) and the enabled predicate are similarly used to handle the nondeterminism
in the action brakeOn in Figure 9. The TAME representation in Figure 10 also
illustrates how the trajectory invariant for braking and the urgency predicate
(which is trivial in this example) are incorporated as parts of the precondition.

While the effects of actions represented in the definition of trans in Figure 10
are quite simple, for other TIOA specifications, they can be more complex. In
particular, it is possible to have variable dependencies in TIOA specifications
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automaton TRAIN(c_s, cl_s, c2_s, c2_min, c2_max: Real)

signature
input brakeOn, brakeOff

states
x: Real := c_s,
x1: Real := cl_s,
x2: Real := c2_s,
b: Bool := false,
now: Real := 0
transitions

input brakeOn

eff
b := true;
x2 := choose ¢ where (c >= c2_min /\ ¢ <= c2_max)

input brakeOff

eff
b := false;
x2 := 0
trajectories

trajdef braking
invariant b

evolve
d(now) = 1;
d(x) = x1;
d(x1) = x2;

c2_min <= x2;
x2 <= c2_max

trajdef not_braking
invariant “b

evolve
d(now) = 1;
d(x) = x1;
d(x1) = x2;
x2 =0

Fig. 9. A TIOA specification for a train braking system.

of the effects of actions analogous to the variable dependencies in SCR specifi-
cations. In such cases, there is a choice to be made between the use of nested
LET constructs and symbolic computation of expressions representing values that
depend on values assigned to “earlier” variables in the same transition. The sit-
uation in TIOA is slightly different from that in SCR, in which the specification
structure lends itself to lazy evaluation of the new state. Which is the better
choice in TIOA from the standpoint of efficiency in theorem proving remains to
be determined.

The existing theorem proving support in TAME for establishing invariant
and abstraction properties of automata can be carried over to TIOA with only
minimal additions to handle any reasoning about urgency predicates or stopping
conditions. Additional TAME-style proof support to simplify reasoning about
the evolution of trajectories is likely to be needed, because this reasoning can
involve nonlinear arithmetic, reasoning about trigonometric functions, etc. It is
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enabled(a:actions, s:states):bool =
CASES a OF
brakeon(c): c >= c2_min AND c <= c2_max

braking(delta_t,F):
FORALL(t:time): zero <= t AND t <= delta_t =>

(FORALL(a:actions): t < delta_t => NOT(urgent(a,F(t)))) AND
b(F(t) AND
c2_min <= x2(F(t)) AND x2(F(t)) <= c2_max AND

(FORALL(tO:time): zero <= t0 AND t0 <= t =>
c2_min*(t-t0) <= x1(F(t))-x1(F(t0)) AND
x1(F(t))-x1(F(t0)) <= c2_max*(t-t0)) AND

(FORALL(tO:time) : zero <= t0 AND t0 <= t =>
c2_min* (t-t0) *(t-t0) /2 <= x(F(t))-x(F(t0)) AND
x(F(t))-x(F(t0)) <= c2_max*(t-t0)*(t-t0)/2) AND

now(F(t)) = now(s) + t,
ENDCASES
trans(a:actions, s:states):states =

CASES a OF
brakeon(c): s WITH [b:=true, x2:=c],

braking(delta_t, F): F(delta_t)

ENDCASES

Fig. 10. Part of a possible PVS representation of the TIOA specification in Figure 9.

anticipated that part of the proof support for reasoning about arithmetic can be
based on existing packages developed at NASA Langley: Field [31] and Manip [8].

5 Example: SELinux

A different approach to the use of TAME to support modeling and verification of
systems in PVS has been used in NRL’s tool for modeling and analyzing SELinux
security policies [4]. In this application, the specifications to be modeled are
security policies represented in the SELinux policy definition language [22, 34].
Policies in this language are defined by a set of rules such as type enforcement
(TE) allow rules of the form:

allow <type_s> <type_t>:<obj_class> <perm>
and type_transition rules of the form:
type_transition <type_s> <type_t>:<obj_class> <type_n>.

In these rules, the names <type_s>, <type_t>, and <type_n> are chosen to sug-
gest the roles of the TE types for which they are placeholders: a source type,
a target type, and (for type_transition) a new type. The form of the allow

16



rules suggests that an object of the source type is given permission <perm>
to any object of class <obj_class> of the target type, while the form of the
type_enforcement rules suggests that an object of the source type can interact
with an object of the target type to produce a new object of class <obj_class>
that is assigned the new type. However, the actual semantics of any given rule
cannot be defined independently from the code; the exact meaning of the rule is
determined by the way policy checks of the rule are used in the code.

Because the effects of policies are determined by explicit reference to rules
in the system code, obtaining an accurate representation of the effect of a pol-
icy requires modeling the system at some appropriate level of abstraction. The
system can be modeled in TAME by choosing to represent the state in terms of
the set of objects (processes, files, file descriptors, etc.) currently present in the
system, and the set of actions in terms of the available system calls needed to
allow one object in the system to affect another. Rules in the policy affect both
the preconditions and effects of actions; for example, allow rules are used to
determine whether an action is enabled, and type_transition rules affect the
type of the result of an action. However, the effects of the rules can be abstracted
in such a way that it is possible to use a standard TAME template instantiation
in modeling arbitrary policies.

This instantiation uses a standard set of names for the types, functions,
and predicates that represent the policy-specific details of an SELinux policy
specification. For example, the enumerated types TE_type, Permission, and
Objectclass represent the sets of TE types, permissions, and object classes
defined in the policy; the function GetTE type returns the TE type of a sys-
tem object such as a process or a file, and the predicate Allowed, of type
[[TE_type,TE_ type,Objectclass,Permission] -> bool], captures the poli-
cy’s set of allow rules. Because actions (i.e., system calls) in the model are
parameterized by the process making the system call, it is possible to capture
the embedding of rules in the code as a predicate PermissionGranted, of type
[[actions,states] -> bool].

In this situation, it is not necessary to fit each policy to the TAME tem-
plate; it is sufficient to generate appropriate supporting theories and strategies.
In particular, to model any given policy, one can simply compile the policy as
defined in the SELinux policy specification language into a set of PVS theories
containing the definitions for each of the standard names. In addition, a few
policy-dependent special purpose strategies are generated when a policy is com-
piled: these strategies simply expand the definitions of sets of elements (such as
permissions). These compiled strategies are used to support a fixed set of special
purpose strategies that has been developed to simplify type checking SELinux
policy specifications and to check the consistency of the neverallow assertions
in a policy with the generated predicate Allowed. The standard set of TAME
strategies described in Section 2 is available for proving deeper policy properties.

The initial policy modeled in TAME is a subset of the policy that accompa-
nied the initial release, which was very large—over 80 pages. This policy uses, for
example, 28 object classes, 115 permissions, and 253 type names of which 21 are
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parameterized—meaning a potentially unbounded number of type names. Thus,
full policy specifications, which build on top of the basic policy that accompanies
SELinux, tend to be quite lengthy, complex, and full of low-level detail. When
the macros in the initial basic policy are fully expanded, the result is several
tens of thousands of rules, mostly allow rules. Some specific examples provide
the flavor:

allow file_t file_t:file transition

allow init_t file_t:process execute

type_transition cardmgr_t tmp_t:chr_file cardmgr_dev_t
type_transition cardmgr_t device_t:1lnk_file cardmgr_lnk_t

In practice, rather than modeling the full policy, one can identify a slice of the
policy that is most relevant to a particular aspect of the system.

6 Related Work

Most closely related to the work described in this paper is work on theorem
proving support for automata models. STeP [6], which is based on first-order
logic, supports the proof of temporal logic properties of transition systems, in-
cluding timed systems. The Larch prover [13] is used to provide theorem proving
support in IOA; some examples of its use in this setting are described in [23, 36].
Miiller [32] developed a verification environment for I/O automata in Isabelle
that includes a meta-theory of automata and their properties. This work has
also been built on in order to provide theorem proving with Isabelle in IOA [36].
In both the Larch and Isabelle proof support in IOA, the required user effort is
reduced by automating many of the proof steps.

7 Conclusions and Future Work

This paper has illustrated how a modeling environment based on specification
templates, supporting theories, and a set of high level proof steps implemented
as strategies (or tactics) in a general purpose theorem prover can be used to
provide access to the prover in a variety of settings in a usefully structured way.
For this purpose, it helps when the central model of the modeling environment is
a sufficiently general one such as the automata model used in TAME. Then, it is
likely that specifications in the languages of many other tools can be represented
in the model, and hence translations of these specifications can be matched
to specification templates in the modeling environment. Since many sub-steps
performed automatically in high-level proof steps depend on name, type, and
other structural conventions in the templates, translation into the templates
allows high level proof steps from the modeling environment to be used as a
basis for high level proof steps in the new settings.

For purposes of illustration, the paper has described in detail how TAME is
being used to supply proof support in three different settings: SCR, a specifi-
cation language and toolset intended primarily for modeling embedded control
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systems; TIOA, a specification language and toolkit that is suited to modeling
distributed systems and protocols; and a set of tools for analyzing SELinux pol-
icy specifications. Each of these settings has it own unique challenges with regard
to finding the most preferable translation scheme for specifications; nevertheless,
the generality of TAME’s automaton model makes it possible to represent spec-
ifications from all three settings in TAME with at most minor modifications to
TAME. In all of these cases, the theorem proving support in TAME provides
the basis for theorem proving in the new setting, but requires some extensions.
One advantage to basing a modeling environment such as TAME on a general
purpose theorem prover is that such extensions are relatively cheap: rather than
(say) implementing the extensions in low level code and having to establish their
soundness, one needs only to develop additional strategies in the general purpose
prover.

The major challenge for the near future is to complete the integration of
TAME with TIOA. In particular, the best representations of preconditions and
effects of trajectories and transitions need to be determined. Hybrid I/O au-
tomata (HIOA) are similar to TIOA, the difference being that trajectories in
HIOA can represent continually changing inputs or outputs rather than internal
changes, as in TIOA. This becomes something to take into account when two
automata are composed by matching outputs to inputs. Once PVS extensions
under development to facilitate reasoning about compositions of I/O automata
are complete, the distinction between TIOA and HIOA may become important
in any future TAME support for HIOA.
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