A D-LADDER USER’S GUIDE

Technical Note 224

September 1980

By: Daniel Sagalowicz, Computer Scientist

Artificial Intelligence Center
Computer Science and Technalogy Division

Prepared for:

Defense Advanced Research Projects Agency
Information Processing Techniques Office
1400 Wilson Boulevard

Arlington, Virginia 22209

Attn: Lecdr. A, J. Dietzier

Contract NOO039-79-C-0118
ARPA Crder No. 3175.28
SRi Project 7910

| Internatfional

The development of the D-LADDER system has been supported by the
Advanced Research Projects Agency of the Department of Defense
under contract DAAG29-76-C-0012 with the U.S. Army Research
Office and contracts NO0Q39-78-C-0060 and NO0O039-79-C-0118 with
the Naval Electronic Systems Command.

The views and conclusions contained in this document are those of
the authors and should not be interpreted as representative of the
official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency of the United States Government.

st
77 TN
SRE 333 Ravenswood Ave. * Menlo Park, CA 94025
International 14151 326-6200 » TWX: 910-373-2046 » Telex: 334-486

Nl
EIEZET®

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
SEP 1980 2. REPORT TYPE 00-09-1980 to 00-09-1980
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A D-Ladder User’'s Guide 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

SRI International,333 Ravenswood Avenue,Menlo Park,CA,94025 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THISPAGE 42
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ABSTRACT

D-LADDER (DIAMOND-based Language Access to Distributed Data with
Error Recovery) 1is a computer system designed to provide answers to
questions posed at the terminal in a subset of mnatural language
regarding a distributed data base of mnaval command and control
information. The system accepts natural-language questions about the
data. For each question D-LADDER plans a sequence of appropriate
queries to the data base management system, determines on which machines
the queries are to be processed, establishes links to those machines
over the ARPANET, monitors the processing of the queries and recovers
from certain errors in execution, and prepares a relevant answer to the

original question.

This user’s guide is intended for the person who knows how to log
in to the host operating system, as well as how tc enter and edit a line
of text. It does not explain how D-LADDER works, but rather how to use

it on a demonstration basis.

ii

ABSTRACT

I INTRO

II INTERACTING WITH D-LADDER IN ENGLISH

III QUERY
A.
B.
C.

DUCTION .

ING THE DATA BASE .
Referring to Ships .

CONTENTS

Y

Asking Questions about Ships

. . - . . .

. . - - . -

- - . . . L]

Questions about Attributes of Ships

IV ELLIPTICAL QUESTIONS AND COMMANDS

v DEFINING NEW GRAMMAR AND LEXICON .

A.
B.

Creating Lexical Items

-

- . . . - L]

- L] . . - .

Conceptual Schema and Linkage to The Data Base

VI D~LADDER ERROR MESSAGES AND ERROR CONDITIONS . . .

A..
B.
C.

APPENDICES

Errors in Interpreting the Inputs . . . « .

Errors in Querying the Data Base . + + .+ .

D-LADDER Bugs .

-

A DEFINING NEW GRAMMAR AND LEXICON .

1.
2.
3.
4.
5.
6.
7.
8.
9.

REFERENCES

Defining Rules .

.

- - » L] - -

- L] - » . .

Functions for Defining and Editing Rules .

Defining and Editing Words

Manipulating Files

Parsing Sentences .
Fitting It All In .
Paraphrasing .
Splitting Phrases .

Miscellaneous .

iii

and

.

Categories . .

13

18
19
20
21

23
23
27
29
32
34
36
36
38
38

39

I INTRODUCTION

D-LADDER (Language Access to Distributed Data with Error Recovery)
1s a computer system designed to provide answers to questions posed at
the terminal in a subset of natural language regarding a distributed
data base of naval command and control information.* The system accepts
natural-language questions about the data. For each question D-LADDER
plans a sequence of appropriate queries to the data base management
system, determines on which machines the queries are to be processed,
establishes links to those machines over the ARPANET, monitors the
processing of the queries and recovers from certain errors in execution,

and prepares a relevant answer tc the original questicn.

This wuser’s gulde 1s intended to provide a relatively brief
characterization of the system’s current capabilities. It presumes that
a prospective user can already log in te a host computer supporting D-
LADDER, and that he can type in (and, if necessary, correct) a line of

text.

The D-LADDER system, operational since June 1980, is undergoing
continual improvement. The concepts wunderlying the development and
operation of such a system are described 1n detail in the technical
literature [1] (2] (31 [4] [5]. D-LADDER 1is written i1in INTERLISP
[6] and uses SRI°s DIAMOND package [7] (8] for building =natural-

language interfaces.

D-LADDER 1s currently installed on SRI-KL at S5RI Internaticnmal. Tt

1s also installed om a PDP-10 in the Advanced Command Control

Architectural Testbed (ACCAT) at the WNaval Ocean Systems Center. At

. e e i

* The development of the D-LADDER system has been supported by the
Defense Advanced Research Projects Agency of the Department of Defense
under contracts DAAG29-76-C-0012 with the U.S. Army Research Office and
the contracts N00039-78-C-0060 and NO0O0039-79-C-0118 with the Naval
Electronic Systems Command, respectively.

1

SRI-KL, D-LADDER runs under the TQPS-20 operating system; at ACCAT, it
runs under TENEX.

The data base used by D-LADDER is described in detail elsewhere
{9]. It is currently stored on a data base management system called
Datacomputer [10]. Use of the D-LADDER system on a4 demonstration basis

does not require familiarity with any of these references.

If you have any questions or comments, please direct them to the

authors of this manual.®

* ARPANET messages can be sent to SAGALOWICZ@SRI-KL

2

II INTERACTING WITH D-LADDER IN ENGLISH

To run D-LADDER, simply type
D-LADDER
followed by a carrlage return to the system when you are at the EXEC

level.

Once you are in the D-LADDER system, all interactions are performed
in a subset of English. This section will provide general guidelines
about the English-language interface. Subsequent sections will describe

particular classes of commands and questions.

When D-LADDER prompts you with a question number followed by a left
arrow (which appears as an underscore on some terminals), type in your

* Punctuation 1is

question, terminating 1t with a carriage return.
permitted but not required. D-LADDER accepts 1input in any combination
of upper and lowercase. Backspacing is done by typing control-A or the
delete key, depending on whether the host operating system is TENEX or
TOPS-20, respectively. You may abort the processing of a question at
any time by typing control-D. Further procedures for editing a line of

input are described in Section 14 of the INTERLISP manual [6].

An attempt has been made to accept a wide range of English-language
inputs that are relevaut to both the data base and the task of command-
control decision-making. The examples given in the following sections
are therefore to be taken as suggested, rather than mandatory, forms.
Users are encouraged to experiment with different constructions, as this
is how gaps are exposed 1in our coverage of potential questions. Note
that while all the following examples are presented 1in uppercase, you
may use uppercase, lowercase, or a combination of the two in typing to
D-LADDER.

* In general, D-LADDER will interpret any carriage return as the end of
a question. If you are typing a question longer than one line, either
do not type a carriage return until the end, or precede the carriage
return with a blank.

III QUERYING THE DATA BASE

D-LADDER makes very strong assumptions about what you are going to
type to 1it. In particular, it assumes that data base querles are
relevant to the data base 1t 1s designed to access. Questions about
kinds of information that are not contained 1In the data base (for
example, sensor ranges) normally cannot be parsed (1.e. they cannot be
recognized by D-LADDER as an Instance of any pattern in the grammar).
Questions about ships, places, or facts that are not in the data base
will result in fallures to parse or in incomplete answers. For example,
the question,

HOW FAR IS THE KITTY HAWK FROM MALTA?
cannot be parsed, because Malta 1s not in the data base and hence not in
D-LADDER"s vocabulary. The question,

WHO COMMAND THE CARRIERS
will not give information about the Soviet carriers that might be

retrieved, because no information on their commander is available.

Since the data bases that D-LADDER accesses are concerned with
ships, ship characteristics, and ship movements, we shall first describe

the ways you can refer to ships.

A. Referring to Ships

Ships can be specified by name (e.g., Pogy), class (e.g., Kitty
Hawk), type (e.g., cargo freighter), or naval ship classification (e.g.,
58BN). D-LADDER recognizes the names of all US Navy ships, plus those

foreign and merchant ships that are in the Blue File data base.

Examples of valid ship specifications are:

THE CHARLES F. ADAMS

ETHAN ALLEN CLASS SUBMARINES
CGN

INTELLIGENCE COLLECTORS.

The specification of a ship can be mwmodified by appending its
country, kind of operation, or distinguishing feature. For example:

AMERICAN CRUISER

NUCLEAR-POWERED VESSELS

The specification can also be modified by more complex phrases and
clauses, expressing comparisons of‘characteristics, comparisons with
other ships, specifications of position, or indications of a ship”’s
route, cargo, or casualty status. For example:

AMERICAN CARGO FREIGHTERS

LIBERIAN TANKERS HEADING FOR AMERICA

Additional types of modifications can be performed by specifying
the values of particular attributes. For example:

SHIPS WITH A DOCTOR

B. Asking Questions about Ships

Many simple questions about ships seek to determine what ships
satisfy a glven set of restrictions. These questions correspond closely
to the more complex restrictions on ships described in the previous

section.

You can ask for ships of any particular class (e.g., Kitty Hawk),
type (e.g., cargo freighter), or naval classification (e.g., SSBN).

Examples of simple restriction-type questions are:

-FIND THE LOS ANGELES CLASS SUBMARINES
WHAT SHIPS ARE CRUISERS?
WHERE ARE THE SHIPS OF TYPE DDG.

C. Questions about Attributes of Ships

Most questions typically asked of a data base are concerned with
the current values of attributes that are explicitly stored. D-LADDER
provides many formats for specifying such questions. The simplest forms
ask for the stored attributes. For example:

WHAT IS THE RADIO CALL SIGN OF THE FOX?
WHAT IS THE CURRENT POSITION OF THE CARRIERS
WHAT IS FUEL STATUS OF THE DESTRGYERS

Many more formats permit asking in subtler ways about attributes of

ships. For example:

WHERE WILL THE DUTCH CARGO FREIGHTERS GO?
WHEN WILL THE CALIFORNIA ARRIVE IN NAPLES?
TO WHAT TASK GROUP DO THE DDGS BELONG?
WHAT CLASS DOES THE HOEL BELONG TO

WHO COMMANDS THE STERETT?

IV ELLIPTICAL QUESTIONS AND COMMANDS

D-LADDER accepts not only a complete sentence, but alse a sentence
fragment that can be 1interpreted in the context of the preceding
sentence. The syntactic term for this condition, in which words of a
second sentence are left out but implied, is ellipsis.

When an input cannot be interpreted as a complete sentence, D-

''and then verifies

LADDER types out the message, 'Trying Ellipsis:’
whether it 1s analogous Lo any contiguous string of words im the
preceding sentence. If it 1s, the input is substituted for that string
and the new sentence is printed ocut. D-LADDER then proceeds to carry
out the resulting request. Examples of valid elliptical inputs in the
context Ef the previous question, WHAT IS THE LENGTH OF THE SANTA INEZ
include:

THE BEAM AND DRAFT

HOME PORT OF THE AMERICAN CARRIERS

PRINT THE NATIONALITY

KITTY HAWK

If, however, no analogy can be found between the new input and any

substring of the preceding input, D-LADDER prints out "Ellipsis has

failed," and prints an error message.

WHAT ABOUT <frag>? can also be used as an alternative to <frag>
where <frag> 41s a sentence fragment. Thus D-LADDER will accept the
sequence:

WHAT IS THE LENGTH OF THE FOX?

WHAT ABOUT DRAFT?

Elliptical fragments can also be added to the end of the previous
sentence, as in the sequence:

WHAT ARE THE US CARRIERS?
IN THE MED?

V DEFINING NEW GRAMMAR AND LEXICON

This chapter contains Information about how to extend the D-LADDER
system. Because the D-LADDER grammar is a general grammar of English,
it is unlikely that any user will want to extend the grammar.* Most of
the extensions ordinary users will need to make can be accomplished by
adding new words to D-LADDER. The linguistic coverage of the grammar
provides for handling most of the constructions in which the new word
can occur. In this sense, D-LADDER is an improvement over S-LADDER.
However, this advantage 1is accompanied by an expense for several
categories of words (e.g., adjectives, verbs, and relational nouns):
augmenting the D-LADDER vocabulary requires that the user enter more
sophisticated linguistic information about the words and be familiar

with the underlying data base schema.

In general, three different kinds of entries are necessary to add
new words to D-LADDER: (1) a lexical entry, (2) a conceptual schema
entry, and (3) a data base connector. In some cases, (2) and (3) will
have already been set up by previous entries. Except in such cases and
for common nouns that refer to field values (e.g., 01l as a value 1in the
CARGO field), the need for (2) and (3) means that the user must know the

data base organization to add new words.

The next subsectlon describes how to make new lexical entries.
Because the kind of information needed in categories (2) and (3) depends
on whether the item being added refers to an "object" (e.g., oilers) or
a 'predicate" (e.g., carrying or commanding), these are described

separately in the following subsections.

* Appendix A describes the DIAMOND system and the mechanisms it includes
for adding and changing grammar rules. Only wusers with a solid
understanding of linguistics should attempt to change the grammar.

8

A Creating Lexical Items

Lexical entries consist of a word, a category, and a list of
attributes (attribute value pairs) for the word. M™Most of the attributes
to be added to words are self-explanatory (or easily derived by looking

at a few examples}. Sample lexical entries can be examined by typing

ISHOWWORD (samp le~word)
Multiword entries are essentially 1like single words except that the
whole entry is in parentheses.* Different attributes are required for
nouns, adjectives, and verbs. The entries £for common nouns are
straightforward; other entries are more complex. Each category will be

described separately along with examples.

To add words to the lexicon either use your favorite editor or look
in the appendix under section 3 (Defining and Editing Words and
Categories). Functions of particular interest are:

WORDS.DEF
EDITWORD
ADDWORDATTR
SHOWWORD

If you use the DIAMOND functions you”ll need to do a SAVECATEGORIES for
any categories (e.g., N, ADJ) that you add words to. Word definitions
do not get compiled so SAVECATEGORIES only gets called with a filename.

1. ©Nouns
The following attributes are required for all nouns:

CLASS —- must refer to a node in the conceptual schema
ELEMENT -- must refer to some value in the data base

TYPE -- for nouns, value is one of COMMON, MASS, PROPERN

Example:

(ATLANTIC (ELEMENT . ATLANTIC))
(CLASS . OCEAN-NAMES)
(TYPE . PROPERN})

o ——— i e P

* There should be far fewer of these in a D-LADDER system than in a
LIFER-based system

Several additional attributes are required for relational
nouns (nouns that express a relation between two kinds of entities,
e.g., draft. They are used 1in constructions like "draft of the ship"
"draft of 100 feet"). Because each field in the data base gives rise to
at least one relational noun, such entries arise often and will be

described in more detail.

Each field in the data base corresponds to an underlying
predicate. This predicate relates an entity-=—which is a subject of the
relation--to a property of that entity typically stored in that relation
as a field value. The field name functions grammatically like a noun,
but the semantics for the predicate include arguments (unlike the

semantics for common nouns, which only require a CLASS specification).
The following attributes are required for relational nouns:

PREDICATE.INDICATOR =-- value 1s a predicate node in the
conceptual schema.

PATTERNS -- gives the mapping from surface form to thematic
cases. The wvalue for relational nouns is PAT.RELN.OF
(this attribute is also used for adjectives and verbs).

TD.MAP == gives the mapping from thematic form to conceptual
gchema cases. The two most common cases that must be
given are OF and OF.EQ.

RELATIONAL -- value is either T or SCALE. SCALE 1is most
COommon. It is wused for words like "length" which can
occur in constructions with either of their two arguments
(e.g., "length of a ship" "length of five feet"). The
value T is used for words like "command" ("command of an
admiral" but not "command of the Lafayette').

Examples:

((CALL SIGN) (PREDICATE.INDICATOR . CALL-SIGNINGS)
(TD.MAP (OF.EQ . CALLSIGN)

(OF . SHIP))

(CLASS . CALLSIGNS))

(PATTERNS PAT.RELN.OF)

(RELATIONAL . SCALE)

(TYPE . COMMON))

(COMMAND (PATTERNS PAT.RELN.OF)
(RELATIONAL . T)

(TYPE . COMMON))
(PREDICATE.INDICATOR . COMMANDINGS)
(CLASS . UNITS)

(TD.MAP (OF.EQ . UNIT)

(OF . OFFICER))

10

(REQUIRED.CASES OF))

(DISTANCE (PATTERNS PAT.RELN.OF)
(RELATIONAL . T)

(TYPE . COMMON))
(PREDICATE.INDICATOR . DISTANCE)
(TD.MAP (TO . POS1)

(FROM . P0S2)

(OF.EQ . DISTANCE))

(CLASS . LENGTHS)

(PATTERNS PAT.RELN.TO)

(PROPIT . T)

(REQUIRED.CASES TO FROM))

((PORT OF CALL) (TYPE . COMMON)
(RELATIONAL . SCALE)

(PATTERNS PAT.RELN.OF))

(CLASS . PORTS)

(PATTERNS PAT.RELN.OF)

(TD.MAP (OF . POS-OBJ)

(OF.EQ . POS)

(TIME . DATE))
(PREDICATE.INDICATOR . SHIP-PORT-ARRIVINGS)
(AUXILIARY.MAP (FOR . OF)))

Field names can alse act like proper nouns, as 1in "the DFT
field." This requires that twe entries (for twec word senses) be made in

the lexicon.

Example:

(DFT (TYPE . COMMON)
(RELATIONAL . SCALE)
(PATTERNS PAT.RELN.OF))
(TD.MAP (OF.EQ . DRAFT)
(OF . SHIP))
(PREDICATE.INDICATOR . DRAFTINGS)
(CLASS . LENGTHS))
(DFT 2 (TYPE . PROPERN)
(CLASS . FIELDS))
(ELEMENT . DFT))

2. Adjectives

Most adjectives* require the same attributes as relational
nouns, but the value of the PATTERNS attribute is different. It may be
any one of the following:

* Here we mean the grammatical category and not the modifiers in
general. BSo, for example, nouns that can act as modifiers ("ballistic
missile” in "ballistic missile sub") are added as nouns not adjectives

11

PAT.ADJ.QF -- used for adjectives that correspond to one-
argument predicates; the adjective itself does not fill a
case role. For example:

(NORMAL (NO.SELF . T)
(PREDICATE.INDICATOR . NORMALP)
(PATTERNS PAT.ADJ.OQF)
(TD.MAP (OF . NORMATR)))
PAT.ADJ.OFEQ.OF -- the most frequently used pattern. The
adjective fills the OF.EQ case. For example, the lexical
entry for 'American" which refers to the two-place
predicate COUNTRY-QWNINGS 1n the the conceptual schema
follows:
(AMERICAN (CLASS . COUNTRIES)

(ELEMENT . US)

(PREDICATE.INDICATOR . COUNTRY-OWNINGS)

(PATTERNS PAT.ADJ.OFEQ.OF)

(TD.MAP (OF.EQ . OWNER)

(OF . OWNED)))

This 1indicates that the value of the OWNER case of
COUNTRY-OWNINGS 1s indicated by the adjective (its value
in thils particular instance 1s given by the (ELEMENT .
US) entry: US is the actual data base value) and the
OWNED case 1is filled by the constituent that the
adjective modifies.

PAT.ADJ.OFEQ.OF.TO —— for adjectives that correspond to three-
place predicates. For example, '"mear" corresponds to a
distance predicate that relates a distance (the OF.EQ
case filled by "near" itself) and two positions. The OF
case 1s filled by the thing (could be a physical object
or a location) whose distance to the TO case is measured.
The lexical entry for '"near" follows:

(NEAR (CLASS . LENGTHS)

(SCALE . MINUS)
(PREDICATE.INDICATOR . DISTANCE)
(PATTERNS PAT.ADJ.QOFEQ.OF.TO)
(AUXILIARY.MAP (FROM . TO))
(TD.MAP (OF.EQ . DISTANCE)

(OF . POS1)

(TO . P0S2))
(PROPIT . T)
(REQUIRED.CASES OF TO))

The following are sometimes useful to aveld extraneous parses

(but unlike above, not essential to getting a correct Interpretation):

REQUIRED.CASES (list of obligatory cases), PROPIT (for words
that allow an empty "it" as subject; e.g., "How far i1s it from Naples to
Gibraltar.") AUXILIARY.MAP (pairs of surface prepositions and the

thematic cases they take).

12

3. Verbs

Verbs, 1like relational nouns and adjectives, must have
PREDICATE.INDICATOR, TD.MAP, and PATTERNS attributes. Several
additional attributes are needed to handle the different kinds of
syntactic patterns in which verbs occur and the corresponding mapping to
conceptual cases. As a result, the entry of new verbs requires a great
deal of linguistic knowledge.

DIROBS —~ T 1if <can take a direct object. Similarly for
INDIROBJ and indirect objects.

DIRECTION —— what surface case a directional pronoun can fill

PARTICLE -- for verbs that require a particle (e.g., "belong
to," "head for").

INSEPARABLES -- 1like particle; used for verbs that do mnot

allow particle to be separated from the verb (e.g.,"go
into drydock").

NO.PASSIVE -~ T for verbs that camnot be passivized).
AUXTLIARY.MAP and REQUIRED.CASES -- same as described above.

B. Conceptual Schema and Linkage to The Data Base

The conceptual schema 1s wused both to guide the semantic
interpretation of utterances ("translation”) and to provide an
attachment to the data base so that data base queries can be constructed
("integration"). The information required for both functions is stored
on the property list of the nodename for a schema node. For
translation, properties are used to encode two basic kinds of 1links
between nodes in the schema (actual names are given in uppercase in

parentheses):

(1) subset/superset links (SUBSET, SUPERSET), and (2) predicate-
argument links (ARG). 1In addition, there is a set of links used wainly
for type-coercion (ID, OM, ATR).

Attachment to the data base is made through four properties of

nodes in the schema: VR, KEY, VREST, VRMAP.

13

VR (virtual relation) specifies the data base relation to be
accessed.

KEY is used only for nodes representing sets of objects ('domains"

in data base terminclogy); it specifies a field (or fields) that
uniquely identify members of the set. For example, UIC VCN for ships,
LINEAL for officers.

VREST, a piece of SODA code that specifies a restriction on the
virtual relation, 1is used to pick out a subset of entities in the
relation. For nodes representing sets of objects, VREST provides the
restriction that distinguishes entities in the relation that are members
of the set from those that aren’t (e.g., SUBMARINES are gotten from the
SHIP relation with a restriction on the type field that specifies '"SsS"
as the first two characters). For nodes representing predicates, VREST
is used to identify those entities 1in the relation for which the
predicate is relevant (e.g., a restriction on the type field is used to
specify that only ships that aren’t submarines can have a surface

speed). VREST can of course be NIL.

VBMAP is used only for nodes representing predicates. It provides
a mapping between predicate (case) arguments and data base fields. For
each argument, VRMAP specifies the field (or fields) that contain the

value of the argument for a particular entity.

For Example:

SUBMARINES: KEY (UIC VCN)
SUPERSET (NAVAL-SHIPS)
VR SHIP
VREST (AND ((SHIP TYPEL) EQ “S°) ((SHIP TYPE2) EQ ‘S%))

DRAFTINGS: ARG ((SHIP . SHIPS) ;SHIP and DRAFT are the argument
(DRAFT . LENGTHS)) ;jnames. SHIPS and LENGTHS are
SUPERSET (PRED-HAVINGS) ;ynodes in the schema.
VR SHIP
VRMAP ((SHIP UIC VCN) ;UIC VCN and DFT are DB fields

(DRAFT . DFT))

DOCTOR-CARRYINGS ARG ((CARRY-0BJ . NAVAL-SHIPS)
(CARGO . DOCTORS))
SUPERSET (CARRYINGS)
VR SHIP
VREST ((SHIP MED) NE “*°)

14

VRMAP ((CARRY-OBJ UIC VCN)
(CARGO . DOCTR))

Note that when a predicate is only applicable to a subset of
entities in a relation, there are two ways of specifying the data base
connection: (1) with a VREST on the predicate as in SURFACEP above, or
(2) by constructing a schema node for the set satisfying the restriction
(e.g+., SUBMARINES, NAVAL-SHIPS) with the restriction on that node and

specifying this new set as the argument to the predicate.

Several functions facilitate the creation of these properties. To
save the results of this work do SAVE.DATA(), which will save the
conceptual schema on a £ile named DATA.LSP needed for creating a new
system. The function DN(node) deletes a mnode and all its links; the

function EDITP can be used to edit the property list of the node.

The following discussion 1is dome separately for objects and
Qredicatés.

1. Objects

a. Creating Entries in the Conceptual Schema

The function CREATE-OBJECT creates object entries.

This function will prompt the user with a number of

questions:

Name: name for the node in the conceptual schema
Subsets: names of nodes that represent subsets of this node

Supersets: names of nodes that represent supersets of this
node

Is node a subset of THINGS? Answer should be yes for anything
for which a "What" question can be asked (contrast with
PERSONS for for which "who" questions get asked).

Is node a subset of QBJECTS? Answer should be yes for any
class which is a subset of physical objects (e.g., yes
for SHIPS, no for COLORS).

15

b. Creating the Connection to the Data Base

The user should call the function CREATE-DBDOM and answer

the following:

Domain: name of the data base node (same as response to Name
for CREATE-OBJECT)

Virtual relation: name of the data base relation
Key roles: key fields in the relation that specify the object

Virtual relation restriction: a SODA fragment that specifies
the restrictions on the relation for this object. The
virtual relation name is used as a wvariable in the SODA
expression.

Two different kinds of objects can be created; each
requires a different set of responses for the corresponding call on
CREATE-DBDOM.

* (Case l: the object specifies some subclass of a data base
relation; the user must provide all the information above.

* Case 2: the object is only considered as an argument to
some predicate, and in fact would typically be an argument
to many predicates. TFor example, ASW (Antisubmarine
warfare capability) could restrict a ship, an airplane, a
weapon system. Then, one way to represent this information
in the conceptual schema would be to create an object (ASW)
which would be linked to the corresponding three
predicates. In this case, the user only needs to specify
some data base restriction. He then answers NIL to the
virtual relation question, gives a dummy answer to the key
role question, and uses that dummy answer in the SODA
restriction.

Example of Case 1:

CREATE-0OBJECT]

Name? OQILERS

Subsets?

Supersets? NAVAL-SHIFPS

CREATE-DBDOM}

Domain? OILERS

Virtual relation? SHIP

Key roles? (UIC VCN]

Virtual relation restriction? (AND ((SHIP TYPEL) EQ
Z°A”)Y((SHIP TYPE2) EQ %2°07]

Example of case 2:

CREATE-QBJECT]
Name? ASW
Subsets?

16

Supersets? MISSILE-SYSTEMS

CREATE-DBDOM]

Domain? ASW

Virtual relation?

Key roles? MIS

Virtual relation restriction? (OR (MIS EQ "ASROC”){(MIS EQ
"SUBROC”)

(MIS EQ “MBU’)(MIS EQ “MK327))

2. Predicates

To 1initially establish nodes for predicates, the user should

use one of the following two functions:

CREATE-REL -- 1if there i no existing relation that this
provides further restrictions on,

CREATE-SUBREL -- new relation is a specialization of some sort
of an already existing predicate.

The function CREATE-DBMAP 1is also needed to establish the

mapping between cases and field names.

For example:

_CREATE-REL]

Relation name? FUEL-TYPE-RELS

FUEL-TYPE-RELS is not a DB node; do you wish te create it?
Yes

Superset?

Subsets?

Argument (case/domain)? FUEL FUEL-TYPES

FUEL=-TYPES is not a DB node; do you wish to create it? Yes

Argument (case/domain)? SHIP SHIPS

Argument (case/domain}?

Case translation (o0ld case/new case)?

Is FUEL-TYPE-RELS a sub-relation of HAVINGS? 1?7 No

CREATE-DBMAP]

Predicate? FUEL-TYPE-RELS

Virtual relation (relation name, IGNORE, SUBFORM, or FN)?
SHIP

Relation restriction?

Case to role mapping:

Role name for SHIP? UIC VCN

Role name for FUEL? FTP2

The following functions must also be uged:

CREATE-ATR: it 1links entities to their attributes. For
example, given a MISSILE-TYPINGS predicate that links

17

MISSILE-TYPES and MISSILE-SYSTEMS, CREATE-ATR must be
used to specify that MISSILE-TYPES is an attribute of
MISSILE-SYSTEMS.

CREATE-ID -- for predicates that are subsets of NAMINGS, such
as CONVOY-NAMINGS.

CREATE-OM -- for predicates that establish owner-member
relationships such as CONVOY-MEMBER.

18

VI D-LADDER ERRCR MESSAGES AND ERROR CONDITIONS

A Errors in Interpreting the Inputs

Four stages are involved in the dinterpretation of dinputs by D-
LADDER: (1) parsing, (2) translation, (3) integration, and (4) data base
query construction. The system prints a message to the user as it
passes through each stage so that the point at which an error is

incurred may be identified.

Parsing will succeed as long as each word in the input is in the D-
LADDER lexicon and a correct syntactic structure can be built using the
information in the lexical entries for the words. D-LADDER prints an ™
under each word as it parses. It will indicate unknown words at this
point with the message:

The input can’t be interpreted.

[Word] is an unknown word.

The longest phrase constructed was: [portion of sentence]
Please try again.

The message "translating..." 1s printed when D-LADDER starts to build a
semantic interpretation for the utterance. It can fail to do so if
there is incorrect or missing information in the conceptual schema for
the concepts referred to by the words in the input. If this happens D-
LADDER will print out

translating...failed.

The input can’t be interpreted.

The longest phrase constructed was: [input sentence]
Please try again.

The twe places to look for correcting such problems are in the lexical
entries for the words, egpecially at the semantic attributes
PREDICATE.INDICATOR and TD.MAP, and at the conceptual schema nodes these

attributes access.

19

The integration stage mainly invelves handling noun-phrase
references, and it is unlikely the system will fail. If it does, the
following messages will be printed:

translating...integrating...failed.

The input can”t be interpreted.

The longest phrase constructed was: [input sentence]
Please try again.

The best at this point is for the user to try a rephrasing and report

the error to the D-LADDER implementers.

When the integration stage is completed, the message,
"integrating...succeeded!"

followed by information about the parsing time will be printed.

If a successful data base query can be constructed, the system will
print out a paraphrase of the dinput and then connect to the
Datacomputer. Otherwlse, it will respond with, "I can’t interpret this
query.'" Problems at this level are a result of some part of the data
base attachment (i.e., the VR, VREST, VRMAP properties) mnot being

correct.

B. Errors in Querying the Data Base

Many things beyond the control of D-LADDER or the user can go wrong
in accessing data from a remote computer over the ARPANET. D-LADDER
attempts to recover from many of these error conditions automatically,

and will inform the user as it does so.

When D-LADDER establishes a network connectien to an instantiation
of the Datacomputer data base management system, it prints out
"CONNECTING TO DATACOMPUTER AT <site>," where <site> is the remote
computer. If the remote site is operational but the Datacomputer there
is not, an error condition will be noted rather quickly. If, however,
the remote site is not operational at all, D-LADDER will not be aware of
a preoblem until the attempt to establish a network conpection times out.
(The time required for this to occur is a set parameter of the local

operating system under which D-LADDER is running.)

20

In any case, when a site is found to be inaccessible, D-LADDER will
attempt to access a backup site, with appropriate notification to the
user. When 1its set of backup sites has been exhausted, an appropriate

message is printed.

In a similar manner, if an error condition ensues when an attempt
is made to open a file, D-LADDER will attempt to access a backup file
{which may dinvolve establishing a new network connection to another
site). Again the user is kept informed of what is happening. If no
backup is available for a given file, a message to that effect is

written and the query is aborted.

c. D-LADDER Bugs

Should D-LADDER simply break because of a program bug, the system
will most likely print out some obscure message, as well as the next
event number followed by a semicolon instead of a left arrow. In this

case, type control-D to restore the left arrow and then type RESET.

It is possible but unlikely that D-LADDER will simply "hang" in the
middle of ©processing some request. This 1is often due to an
extraordinary lcad on either the machine running D-LADDER or the machine
running the Datacomputer software. Should you lose patience, typing
control-D and then RESET, as indicated above, will restore D-LADDER to a
state in which it can process new inputs. Care should be taken not to
do this too often, because it tends to make D-LADDER run ocut of memory

space.

21

Appendix A

DEFINING NEW GRAMMAR AND LEXICON

Appendix A

DEFINING NEW GRAMMAR AND LEXICON

DIAMOND is a system for defining how natural-language inputs are to
be interpreted. Rules for interpreting inputs are written as phrase-
structure rules augmented with procedures to be executed at successive
stages during processing. The result of an interpretation i1s one or
more ‘parse trees,” which reflect the phrase structure of the input and
which have associated with them attributes of the phrases (as specified

by the procedure).

1. Defining Rules

a. Form of the Rules

DIAMOND rules consist of a phrase=structure rule and
properties that can be procedures to be evaluated during processing.
There are currently three processing phases and the procedures for those
phases are CONSTRUCTORs, TRANSLATORs, and INTEGRATORs. CONSTRUCTOR
procedures are evaluated during bottom-up assembly of phrases.
TRANSLATOR procedures are evaluated after a complete parse tree has been

built, and INTEGRATOR procedures are evaluated after the TRANSLATORs.

TRANSLATORs are evaluated starting with the TRANSLATOR for the
root phrase. In normal processing, the TRANSLATORs of each constituent
are evaluated before that of the root phrase. This can be overridden by
setting the global wvariable DO.NOT.TRANSLATEALL to T, and then
explicitly evaluating TRANSLATORs for individual constituents with the
functions TRANSLATE(phrase) or TRANSLATEALL(). If a rule does not have
a TRANSLATOR assoclated with 1it, normally none of its constituents will
be translated Setting TRANSLATE.ANYWAY to T overrides this and in that
case all TRANSLATORs are evaluated. Normally, the results of the
evaluation of a TRANSLATOR for a phrase are kept with that phrase and

23

are avallable to all “parent” phrases (1f it appears 1in more than one
interpretation). This sharing of translations among multiple
interpretations can be overridden for all phrases by setting the global
flag RETRANSLATEALL to T, or it can be overridden for individual phrases
by setting the property RETRANSLATE on individual rules to T.

INTEGRATORs are evaluated starting with the INTEGRATOR for the
root phrase. Normally, the INTEGRATORs for each constituent are
evaluated before that of the root phrase. This can be overridden by
setting the global wvarlable DO.NOT.INTEGRATEALL to T, and then
evaluating INTEGRATORs for individual constituents with the functions
INTEGRATE(phrase) or INTEGRATEALL(). If a rule does not have an
INTEGRATOR assoclated with it, the default 1s not to Integrate any of
its constituents. Setting INTEGRATE.ANYWAY to T overrides thils and
causes all INTEGRATORs to be evaluated. Generally, the results of
evaluating the INTEGRATOR for a phrase are kept with that phrase and are
availlable to all its ‘parent’ phrases. This sharing of “integration’
results among multiple interpretations can be overridden for all phrases
by setting the global flag REINTEGRATEALL to T, or it can be overridden
for individual phrases by setting the property REINTEGRATE on individual

rules to T.

CONSTRUCTORs, TRANSLATORs, and INTEGRATORs are stored as
properties of the rule. If they are a list they are EVAL’d, otherwise

they are treated as a function to be called.

A rule can also have a COMMENT property, which 1s not used in
processing, but is provided for documentation purposes. Other
properties can be given to a rule for descriptive purposes, and they can

be saved 1if the property name 1s added to the 1ist RULEPROPS.

be Attributes and Factors

1. Attributes

24

(1). Referencing Attributes

Phrase attributes are accessed by a special function
"@" which takes any number of arguments. The arguments of @ are the
attribute(s) desired. Phrase constituents are stored as attributes of
the phrase, so phrase consitutents are also referenced with €. For

example:

(@ NUM) returns the value of the NUM attribute
(@ NUM NP) returns the NUM of the constituent named NP
(@ NP) returns the constituent named NP

(@ NUM ! X) returns the NUM of the phrase stored in variable
X. Thus after (SETQ X (@ NP)), this is equivalent to (@
NUM NP)

(@ : X NP) returns the value of the attribute whose name is
stored in variable X. Thus after (SETQ X (QUOTE NUM)) it
iis the same as (@ NUM NP).

The general form of an “@° statement is (@ name . tail); name specifies
the attribute name, tail specifies the phrase. The currently active
phrase is stored in the variable named SELF. Thus (@ NUM) is equivalent
to (@ NUM ! SELF), and in general if any list doesn’t end with ! X, then
! SELF is automatically added. All arguments before ! are taken

literally unless they follow a ":.

(2). Setting Attributes

Attributes are set with the function @SET. For

example:

(@ET COUNT (ADD1 (@ COUNT))) increments the COUNT attribute

(@SET NUM (QUOTE PL) NP) sets NUM to PL in constituent NP
The general format is (@SET name value . tail). Where ‘name’ is taken
literally unless preceded by "$," value is always evaluated, and tail is

treated like tail of the @ argument list--in which ! can be used.

Attributes can be copied up from constituents with
the function @FROM. Thus, (@FROM C ATTR1l ... ATTRn) is equivalent to
(PROGN (@SET ATTRL (@ ATTRI1 C))

(@SET ATTRn (@ ATTRn C)))

25

ii. Factors

Factors are set with the function @FACTOR. The general
form is (@FACTOR name value). Name and value are treated like they are
in @SET, except name does mnot become a separate attribute of the phrase
but is added as a factor. Specifically, NAME and VALUE (for non NIL
values) are added to the front of the phrase attribute lists FACTORNAMES
and FACTORVALUES, respectively. 1Inside a CONSTRUCTOR, the factors are
set on SELF. Inside a TRANSLATOR or INTEGRATOR, they are set on a
variable called ROOT, which 1s equivalent to SELF except that it has

translation-time factors on it.

The function F.REJECT(factor) 1s used to reject a phrase.
F.REJECT can be broken during debugging using BREAKO{(F.REJECT (EQ FACTOR

factorname)) to look for a certain factor.

iii. System-Defined Attributes

Several attributes of phrages are defined by the system.
They include:
CATEGORY--The category record. For example, (@ DIAMOND.NAME

CATEGORY ! X) returns the category name of the phrase
named by the value of the variable X.

DIAMOND .RULE=~The rule record. For example, (@ DIAMOND.NAME
RULE ! X) returns the rule name for X.

DIAMOND.LEFT--The leftmost position of a phrase {any integer).
DIAMOND .RIGHT--The rightmost position of a phrase.
DTAMOND.SONS-~The list of constituent phrases.

DIAMOND .FATHER~--The immediately dominating phrase. It is NIL
for a root phrase or when 1t 1s not used 1inside a
TRANSLATOR or INTEGRATOR

DIAMOND.SPELLING--The spelling of the word if it is a terminmal
phrase.

SCORE--the score of the phrase if any factors are specified.

26

Ce BNF of Rule

RHS = RHSALTS
RHSALTS = RHSSERIES ("/" RHSALTS)
RHSSERIES = RHSITEM (RHSSERIES)

RHSITEM = "(™ RHSSERIES)" / option
"{" RHSALTS "'} / alternatives
STRING ("#" name) / literal
ID ({"#" name) /

l|=ﬂ { 1l{'|| category "/ll category N "}H /
category})
Examples:
NP#1 for noun phrase
PRED = {VP / ADJP} PRED is name for each alternative

or

S = C = {NP#1 / PP} MODAL SUBJECT = NP#2 (HAVE)(BE "ING") VP ;

2. Functions for Defining and Editing Rules

as Functions

RULES.DEF is 1like the INTERLISP function DEFINE. It takes a
list of rule definitionms each of which is of the form

{rulename rulecategory . tail)

The dinitial segment of TAIL up to a semicolon 1is used as RHS of the
rule. An = at the front of the tall 1is presently discarded. Items on
TAIL after the semicolon are used to set properties of the rule-—each
pair 1is used as NAME & VALUE. If the rule is already defined, this
redefines it.

RULES.DEFQ is like the INTERLISP function DEFINEQ.

RULEPROC.DEF(rulename property value) defines or redefines a
property on a particular rule (especially CONSTRUCTOR, TRANSLATOR, and
INTEGRATOR) .

27

RULEPROC.DEF(Q is NLAMBDA version.

EDITRHS(rulename) allows editing of the right-hand side of the

rule {(i.e. the phrase structure part).

EDITRULEPROP(rulename property) is for editing a particular

property of a rule.
DELETE.RULE (rulename) deletes a given rule.
SHOWRULE(rulename) prints out a particular rule.

SHOWCATEGORYRULES (categoryname) prints all rules in the
specified category.

RULESUSING(category) prints the names of all rules in which

the category is used.

CHANGERULENAME (from to) changes the name of the rule
indicated.

SHOWPHRASES(file comments) will print out all phrase structure
rules. If comments = T, then the COMMENT property on the rule will also
be printed. 1If the file is not specified, the rules will be printed on

the terminal.

b. Examples

_RULES.DEFQ({(NF1 NP ADJ N ; CONSTRUCTOR (attribute and factor stms)
TRANSLATOR (TRANSLATOR code)))

(NIL)

_ SHOWRULE(NP1)

(NP1 NP = ADJ N ;
CONSTRUCTOR {(ATTRIBUTE AND FACTOR STMS)
TRANSLATOR (TRANSLATOR CODE))
NP1
_RULEPROC.DEF(NP1 COMMENT (THIS IS A COMMENT]
(THIS IS A COMMENT)
_SHOWRULE(NP1)

(NP1 NP = ADJ N ;
CONSTRUCTOR (ATTRIBUTE AND FACTOR STMS)
TRANSLATOR (TRANSLATOR CODE)
COMMENT (THIS IS A COMMENT))

NP1

28

_EDITRHS (NP1)

edit
P

(ADJ
*

N)

(-1 DET)

*Pp
(DET

ADJ N)

* (N PREPP)

*P
(DET
*0K

NP1

ADJ N PREPP)

_EDITRULEPROP(NP1 CONSTRUCTOR)

edit
*p

(ATTRIBUTE AND FACTOR STMS)
* (4 STATEMENTS)

0K
CONSTRUCTOR

_RULES.DEFQ((NP2 NP "THE" N ;]
(NIL)

_SHOWCATEGORYRULES (NP)

(Rules for NP

(NP1

(NP2

)
NIL

NP = DET ADJ N PREPP ;

CONSTRUCTOR (ATTRIBUTE AND FACTOR STATEMENTS)
TRANSLATOR (TRANSLATOR CODE)

COMMENT (THIS IS A COMMENT))

NP = "THE" N ;)

_RULESUSING (DET)

(NP1}

3.

Defining and Editing Words and Categories

a. Functions for Categories

DELETE.CATEGORY (category) deletes all declarations £for an
entire category.

EDITCATEGORYPROP (category prop) allows editing of a property
for a given category.

WORDPROCS.DEF (category attribute expression) sets properties
and expressions to be evaluated like RULEPROC.DEF but for
word categories.

29

WORDPROCS.DEFQ nlambda version of WORDPROCS.DEF
CHANGECATNAME(from to) allows changing the name of an entire

b.

category.

Word Definitions

Words are defined as part of the definition of their category.

Procedures can be declared that are to be applied to all words in that

category.

i. Functions

WORDS.DEF({(category . tail)) adds new words to the category.

Each 1tem d1n TAIL 48 a 1list of the form {(lexitem .
lextail). LEXITEM 1s either an atom or a list of atoms
{(for multiword lexical entries). For nultiword lexical
entries, all the words 1n the list are treated as a
single lexical item with blanks between words. LEXTAIL
can start with an integer({sense number) to disambiguate
different senses of the LEXITEM. Other items on LEXTAIL
are (name . value) pairs for attributes.

DELETE.WORD.DEF(word category sensenumber) deletes a word

definition. If CATEGORY is NIL, then all definitions for
word in all categories is deleted.

EDITWORD(word category sensenumber) edits a word definition
ADDWORDATTR(category word attribute value) adds the attribute

with the indicated value to the word entry in indicated
category.

ADDMULTATTRS (category wordlist attr value) does ADDWORDATTR

for each word in wordlist. WNote that the same value is
given for each occurrence of the attribute.

SHOWCATEGORYWORDS (category) displays all the words in a

category.

SHOWWORD {word) will show the entry for an individual word.
SHOWWORDS ((wordl word2 ..)) will show the entries for all

Cs

words in the list.

Morphology

30

i. Declaring Suffixes

SUFFIXLIST has the suffixes in it and how they appear in
the grammar, as well as the categories they can appear with. It has the

form ((suffix grammarform cat cat)) e.g.,
((ES S N V)(ED ED V)(TEEN TEEN DIGIT))

INVERTSUFFIX is 1ist of suffixes to dinvert e.g.,
(S ED EN)

DROPSUFFIX is l1list of suffixes to drop

idi. Irregular Forms

Defining irregular forms:

(IRREGULARS.DEFQ category (irregular (root suffix))(irreg
{root suffix)))

or

IRREGULARS .DEF({ (cat (irregular (root suffix))))

2.8.,

(IRREGULARS.DEFQ V (WENT (GO ED))
(GONE (GO EN))
(RAN (RUN ED)))

d. Example

For example:

_WORDS.DEF((N (BOLT (SEMANTICS . SBOLT))

((ALLEN WRENCH) (SEMANTICS . A.WRENCH]
N
_IRREGULARS .DEF((N (CHILDREN (CHILD S))))

__SHOWCATEGORYWORDS (N)

(Words for N
((ALLEN WRENCH) (SEMANTICS . A.WRENCH))
(BELT)
(BOLT (SEMANTICS . SBOLT))
(BOX)
(PLATFORM)
(PULLEY)
(PUMP)

31

(SCREW)
(WRENCH))

(Irregular forms in N
(CHILDREN (CHILD S)))

NIL

4o Manipulating Files

Once a "language definition’ has been specified, the information

can be saved in one or more files (which can be later reloaded).

a. Saving On a Single File

To save everything on one file use SAVEGRAMMAR (filename). If
no £ile is specified, then the file is written as GRAMMAR.LSP.

b. Separate Files

A language definition can be separated into several files that
are referenced through an index. An index consists of a 1list of
filenames. Associated with each filename is a wvariable filenameCATS
{(e.g., NP.RULESCATS) which specifies the contents of that file. The
variable consists of a list of the categories to put in the file. 1If
only the category name appears, then all the category information--rule,

word, and category declarations--are written on the file.

Alternatively, to separate words from rules, a category can be
specified along with the information (rules or words) to be saved for
that category. For example, if (Np.RULESCATS) is set to

((RULES NP)NOMHD NOM (RULES N))
then all of NOMHD and NOM will be saved on NP.RULES along with the rules
for NP and N. 1If NP.WORDSCATS is set to
{ (WORDS NP)(WORDS N))
then the word declarations for NP and N will be saved on the file
NP.WORDS.

32

The function SAVEINDEXED(file compileflag) will save an entire
set of files specified by an Iindex as well as create an index file, and

will optionally compile the file i1f compileflag 1s set to T (see below).

SAVECATEGORIES(file compileflag) will save a list of
categories specified by £ileCATS on the file “file” and optionally
compile it.

C. Incremental Changes

SAVECHANGES(flag) will produce new files for all files
containing categories that have been altered. If flag is T, then the

file will also be compiled.

d. Loading Files

LOAD(file) 1loads a grammar saved with any of the above
functions. LOAD of an index file will automatically 1load all files in
the index.

€ Compiling Rules

COMPILE.RULES((RULELIST) FILENAME) compiles the CONSTRUCTORs,
TRANSLATORs and INTEGRATORs for all the rules on the list and puts the
compiled function call in place of the expression under the appropriate
property. The expression 1s saved under the property CONSTRUCTOR.EXFR
(or TRANSLATOR.EXPFR or INTEGRATOR.EXFR). If a file name 1s given the
functions are put on the file, but the file IS NOT CLOSED.

COMPILE.RULEFILE(filename) compiles the CONSTRUCTORs and
TRANSLATORs for all the rules on the file given. If that file has been
loaded, the CONSTRUCTORs are taken from core, otherwise the rules are
loaded. The complled definition is put in place of the “expr” on the
rules. The complled file 1s filename.COM—extension. For example,

NP.RULES will have a compiled file NP.COM-RULES.

COMPILE.GRAMMAR (index) compiles all the rule files in either
the list INDEX or in the global GRAMMARINDEX (which comes from a grammar
index file).

33

SAVEINDEXED, SAVECATEGORIES, SAVECHANGES all take an extra
argument, which if T, will compile the CONSTRUCTORs for the rules being
written, and mark the new files with the name of the compiled file, so
the compiled functions will be automatically loaded. This information
appears as (Comfile filename) after the date in the file. If there is
an expression stored under the property CONSTRUCTOR.EXPR, that property
will be saved as CONSTRUCTOR.

When a file is loaded, 1if it contains a pointer to a compiled
file, the compiled file will be loaded and the CONSTRUCTOR, TRANSLATOR,
and INTEGRATOR replaced with the compiled version.

If the glebal wariable DESTROY.EXPRS is NIL, then the exprs
will be saved wunder the xx.EXPR property, otherwise they will bhe
deleted. The setting is usually NIL for debugging, but setting it to T

frees space for ‘production’ systems.

LOADCOMRULES(filename) will load a compiled file and replace
the expressions under the CONSTRUCIOR, etc. properties with calls to
the compiled functions.

If a compiled CONSTRUCTOR is edited, EDITRULEPROP will
retrieve the the expression and delete the call to the compiled
function. It will NOT automatically recompile the expression as a

function.

5. Parsing Sentences

There are three top-level functions for the system: TP, DP, and
DIALOG. The function TP will parse an individual sentence and produce
an interpretation. The function DP will interpret a sentence and then
call the function DIALOG.RESPONSEFN with the result. In the NSFSYS
sysout, this function interacts with the task model and produces a

reply. The function DIALOG is a read-loop of calls on DP.

For example:

_TP((THE ALLEN WRENCH IS IN THE BOX]
45 51
9 NP2
2 "“THE"

34

8 NOM1

7 NOMHDI1
6 N ALLEN WRENCH
11 BE1
10 BE IS
43 PREDF1
42 PP1
12 PREP IN
41 NP2
22 "THE"
40 NOM1
39 NOMHD1
38 N BOX
1 INTERPRETATIONS 50 PHRASES

415

Note the use of the miltiword "allen wrench" here.

To look at attributes of the completed phrases, use
SHOWATTRS (phrasenumber {optional list of attrs)). If no attributes are
given, then the global 1list DISPATTRS is used. This should be set to
the attributes desired to be viewed. For example:

_SHOWATTRS(7)

COMPOUND = NO
To look at factors use SHOWFACTORS{phrasenumber).
SHOWALLINTERPS() will print all the interpretations of an input.

SET(SHOWPARSETREE) stops printing of the parse tree when a parse is
completed. SET{SHOWPARSETREE T) restores printing.

a. Debugping

To trace a parse do SET(TRACEMODE n) where n=1 gives a “short’
trace, n=2 giives a longer trace. For n>l, the attributes of a phrase

on the 1list DISPATTRS will also be displayed.
To turn off tracing, do SET({TRACEMODE Q)

To break F.REJECT, either use BREAK(F.REJECT) to break it
every time or BREAKO(F.REJECT (EQ FACTOR nameoffactor)).

Once 1inside the ‘break’ PNS() will print out the current

phrase being built, and its constituents.

35

SHOWATTRS() will show all the attributes of the phrase whose
names are on the list DISPATTRS, OR

(SHOWATTRS SELF ‘“(attribute attribute)) will show the
attributes in the list.

FACTOR {(a variable) will print the name of the factor for
which the F.REJECT was called.

{@ NAME RULE) will print the name of the rule the F.REJECT 1is
in.

To continue type OK or GO

6. Fitting It All In

DESTROY . EXPRS

No spelling tree/Jonathan’s stripper

e Paraphrasing

Paraphrases are inmput using TP or the function PARAPHRASE.DEF(new
0ld) . For example, a paraphrase for "in the box" can be created by:

_IP((LET ITB MEAN IN THE BOX]
{note here that LET and MEAN are required words)

Delete prior definition of ITB? Yes or No : Yes
PARAPHRASE#1

or PARAPHRASE.DEF(ITB (IN THE BOX))
__SHOWRULE(PARAPHRASE# 1)

(PARAPHRASE# 1
PP = "ITB" ;
CONSTRUCTOR [PARAPHRASECONSTRUCTOR
(QUOTE (PP (PREP IN)
(NP (LITERAL.THE THE)
(NOM (NOMHD (N BOXI
TRANSLATOR PARAPHRASETRANSLATOR
PARAPHRASEDEF ((ITB)
(IN THE BOX)))
PARAPHRASE#1
_TP((THE PUMP IS ITB]
27 sl

36

9 NP2
2 "THE"
§ NOML
7 NOMHD1
6 N PUMP
11 BEl
10 BE IS
25 PREDPI1
17 PARAPHRASE#1
16 "ITB"
256

The rule constructed for it can be seen by looking at the rule

named PARAPHRASE#n.

Paraphrases can only be constructed for full constituents. Thus a
paraphrase can be constructed for “the box” or “in the box” but not “is

in the box” or “the bolt is”.

a. Ellipsis

Ellipsis is done within the parsing system. The elliptical

expression is substituted for the largest possible constituent in the

preceding input. For example,

_TP((THE PLATE))
41 sl
9 NP2
2 "THE"
8 NOM1
7 NOMHD1
6 N PLATE
21 BEL
20 BE IS
36 PREDP1
28 PARAPHRASE#1
27 "1TB"
441

37

8. Splitting Phrases

(SPLITPHRASE n) where n 1s an integer allows splitting into several
alternatives. If n 1is 0, 1t calls F.REJECT; if n 1s 1, 1t acts as a no-
op and returns 1, 1f n 1s greater tham 1, it causes control to split n
ways and returns an integer between 1 and n which is different in each

ilncarnation.

{SPLIT.CHOICE 1list) uses SPLITPHRASE to return one of the elements
from list or F.REJECT 1f 1list 1s NIL. For example, (@SET NBR
(SPLIT.PHRASE “(SG PL))) will continue from this point with two
alternmatives, one with NBR set to SG, and the other with NBR set to PL.

9. Miscellaneous

To initialize the world, call INITIALIZEDIAMOND().

To set the root category for the grammar, call
SETROOTCATEGORY (categoryname); or 1f there are several root categories,
call SETROOCTCATEGORIES(list of cats).

38

2.

10.

REFERENCES

D. E. Walker (ed.) Understanding Spoken Language. Elsevier North-
Holland, NY (1978).

A. E. Robinson, D. E. Appelt, B. J. Grosz, G. G. Hendrix, and
J. J. Robinson, "Interpreting Natural-Language Utterances In
Dialogs about Tasks," Technical Note 210, Artificial Intelligence
Center, SRI Internatiomal, Menlo Park, CA (March 1980).

G. G. Hendrix, E. D. Sacerdoti, D. Sagalowicz and J. Slocum,
"Developing a Natural-Language Interface to Complex Data,' ACM
Transactions on Database Systems, Vol. 3, No. 2 (June 1978).

D. Sagalawicz, "IDA: An Intelligent Data Access Program," Proc.
Third International Conference on Very Large Data Bases, Tokyo,
Japan (October 1977).

P. Morris and D. Sagalowicz, "Managing Network Access to a
Distributed Data Base," Proc. Second Berkeley Workshop on
Distributed Data Management and Computer Networks, Berkeley,
California (May 1977).

W. Teitelman, "INTERLISP Reference Manual," Xerox Palo Alto
Research Center, Palo Alto, California (December 1975).

W. H. Paxton, "A TFramework for Speech Understanding," Technical
Note 142, Artif, Menlo’Park, CA (June 1977).

J. J. Robinson, "DIAGRAM: a Grammar for Dialogues,"” Techcal Not
205, Artificial Iantelligence Center, SRI International, Menlo Park,
CA (February 1980).

Naval Electronics Laboratory Center, "The Relational Model for the
Blue File Data Base (Revised)," Project Scientist: Garrison Brown,
S Diego,lifornia (November 1976).

Computer Corporation of America, "Datacomputer Version 1 User
Manual," Cambridge, Massachussetts (August 1973).

39

