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Abstract

This effort focused on developing EEG-derived indicators of verbal versus spatial working memory load. A
wireless EEG headset acquired data during execution of both simple and complex tasks associated with a Tactical
Tomahawk Weapons Control System (TTWCS). The results established the feasibility of characterizing EEG
correlates specific to verbal and spatial working memory. The next goal is to leverage these real-time working
memory indices as a feedback loop to direct closed-loop human-system interaction. Specifically, if the preliminary
EEG indices derived in this study, in combination with other physiological or behavioral inputs, are shown to relate
to the degree of working memory overload in the TTWCS or similar tasks, they could provide a valuable
contribution to real-time adaptive aiding of human-system interaction.

1 Introduction

Working memory overload is one of the key contributors to operator errors during complex tasks. The capacity of
human working memory has been defined as the number of items that can be held in conscious attention for use in a
specific task or for later long-term storage (Baddeley & Logie, 1999). The constraints of working memory are
particularly relevant during skill acquisition where working memory capacity is frequently exceeded. Traditional
models (c.f. Baddeley & Hitch, 1974) characterize working memory as having two separate and relatively
autonomous subsystems: verbal (i.e., phonological loop) and spatial (i.e., visuo-spatial sketchpad), but
contemporary models suggest further disassociation (potentially based on sensory modality) (c.f. Miyake & Shah,
1999). Recent investigations suggest that working memory capacity can be enhanced by utilizing verbal, spatial, or
alternative sensory modalities in a complementary manner (Wickens, 2002).

The development of an effective method for monitoring working memory load and delineating the verbal and spatial
components could greatly enhance the speed and efficiency of human-system interaction. A real-time monitor could
identify periods of spatial and/or verbal working memory overload and provide adaptive aiding, such as switching
from verbal or spatial presentation formats, to meet operator requirements (Schmorrow, Stanney, Wilson, & Young,
2005). However, frequent switching between one modality or task and another may incur a “cost” due to stimulus
competition, ambiguity, or distractions (Baddeley, 2003; Matlin, 1998). Thus, it is essential to develop an
understanding of how best to leverage the multimodal capacity of working memory without incurring such costs.

As a first step towards developing a real-time neurophysiological working memory index that could trigger such
adaptive aiding, a wireless electroencephalographic (EEG) system was used to acquire data during working memory
tasks of varying complexity. In the first phase of the study, participants performed three simple working memory
tasks: one spatial and two verbal, designed in accordance with methods previously reported (Proffitt, 2003). The
simple verbal and spatial tasks used elements of a Tactical Tomahawk Weapons Control System (TTWCS) so that
they could be integrated into a more operationally relevant simulated TTWCS environment that would serve as the
testbed for the second portion of the study. The rationale for this design was that if a set of EEG parameters were
identified that distinguished between the simple verbal and spatial tasks, these parameters could then be evaluated in
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the more complex TTWCS testbed. The initial goal of the first phase was to select a set of EEG variables optimized
for discrimination of verbal from spatial processing in the simple tasks (Proffitt, 2003).

The second phase of the study was designed to evaluate the utility of the EEG variables in a complex TTWCS
simulation task and to determine whether additional EEG parameters were required to provide accurate delineation
of the spatial and verbal processing within the more complex task environment. The selected EEG variables would
then serve as inputs to a neural net that used a combination of physiological parameters to identify relevant cognitive
state changes while operators performed the TTWCS simulation tasks. The outputs of the neural net controlled the
timing and introduction of multimodal augmentation strategies designed to optimize the distribution of perception
and cortical processing within the TTWCS environment to take advantage of the totality of human capacity for
multimodal communication. These studies represent the initial steps in building the foundation for designing a
robust Command and Control (C?) system that can adapt interaction techniques to meet specific user conditions.

2 Methods

The current study was performed in two phases. During the first phase, EEG data was acquired while participants
performed simple working memory tasks. In the second phase, participants performed a complex working memory
task, playing the role of a Tactical Strike Coordinator interacting with a simulated TTWCS environment.

2.1 Participants

For the Simple Working Memory Task experiment, 12 Lockheed Martin employees were studied. The participants
were provided verbal instructions but no hands-on training prior to the start of each task. The tasks were presented
in the following order: Missile ID, Mental Addition and Missile Location. Data from two participants were
excluded from analyses. One participant was dropped due excessive EMG (muscle) artifact in the mono-polar
channels due to the mastoid reference electrode. The second participant was dropped due to an inability to
determine the start and end of each task due to missing time synchronization data.

Of the ten Lockheed Martin employees who participated in the Complex Working Memory Task study, data from
seven participants were included for analyses. Two participants were dropped due to excessive EMG artifact in the
monopolar channels due to the mastoid reference electrode. The third participant was dropped due to an inability to
determine the start and end of each task due to missing synchronization data. Participants were provided a fixed
timeframe for training on the TTWCS tasks in advance of their testing session.

2.2 Simple Working Memory Tasks

The three simple working memory tasks were designed to replicate experiments performed by Proffitt (2003). The
tasks were designed to tap into both verbal and spatial working memory, such that they would provide differentiable
EEG signatures.

2.2.1 Verbal Task — “Missile ID”

In this auditory recognition task, participants were presented with synthesized speech listing a set of two Missile
Identifiers (ID) (e.g. 56U, 15P). After the set of Missile ID’s were presented, the computer cued the user by saying
the word “listen” and then “spoke” a series of Missile IDs. Participants responded via a keyboard as to whether or
not a spoken Missile ID matched one of the sets previously presented.

2.2.2 Verbal Task — “Mental Addition™
In this computation task, participants were presented with a display containing a single number at the center of the

display and instructed to respond to the number. A new number was presented each time the participant responded.
Participants were instructed to add a series of numbers until prompted to report the total.

2.2.3 Spatial Task — “Missile Location”



In this “grid-task”, participants were presented with a 5 x 5 grid that contained from three to five missiles. The
display was shown for a brief interval and then removed. After approximately 40 seconds, the grid reappeared with
a subset of the missiles shown. Participants were instructed to indicate the locations of missing missiles.
Participants had approximately 4 seconds to indicate locations of missing missiles before the grid disappeared.

2.3 Complex Working Memory Tasks

In the Complex tasks the operator performed the role of a Tactical Strike Coordinator interacting with a simulated
TTWCS environment. It is the job of the Tactical Strike Coordinator to assign missile strikes to specific targets, and
to monitor and reassign missiles to “emergent targets” as these events occur. The scenarios used to select EEG
correlates included performing assessment of missile coverage zones, referred to as the “Location Task”, and
retargeting missiles based on emerging targets of higher priority, referred to as the “Retarget Task”.

2.3.1 Spatial Task — ““Location”

The location task (Figure 1) was separated into three parts: encoding, rehearsal, and recall. During the “encoding”
period, participants were given 15-seconds to study the location and 10-minute coverage zone (i.e., circular region
around each missile shown in Figure 1 below) of each missile and the associated targets. During the 45-second
“rehearsal” period, the coverage zone circles were removed, however participants were provided the opportunity to
continue memorizing the initial information that was previously displayed. During the “recall” period, participants
were provided 30-seconds to identify targets that were/were not covered by any missile’s coverage zones. Since
most participants completed their “recall” responses well within the allotted time, only the first 12 seconds of the
recall period were analyzed.
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Figure 1: Screen presentation during location task

2.3.2 Verbal Task — “Retarget”

The “Retarget” task (Figure 2) required participants to retarget missiles based on higher priority emergent targets.
Participants were provided 10 minutes to reallocate missile coverage to as many emergent targets as possible, while
maintaining coverage on as many high and medium default targets as possible. There were four rules for retargeting
missiles: a) missile warhead types must match target warhead types, b) the number of missiles servicing a target
must match the number of missiles required by that target, c) highest priority emergent targets should be retargeted
first, d) only Loiter or Retarget (L/R) missiles may be retargeted. The information available for retargeting was
presented in the text below each missile and target. Emergent targets were colored red and their appearance and
locations were randomly assigned throughout the task. The Task Readout, to the right of the missile-target map,



provided information to the participant helpful in determining a retargeting strategy. This information included the
amount of time from missile-target intercept and closest missile to emergent target.
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Figure 2: Screen presentation during retarget task
2.4 Data Acquisition

2.4.1 Tactical Tomahawk Weapons Simulation (TTWCS) Test bed

The TTWCS simulation test bed ran on an Intel Pentium 4- 3.0 GHz (800MHz FSB - 1MB Cache) computer with 1
GB (2 64-bit wide DDR data channel) memory, a 60G 7200rpm high performance drive, and an ATI Radeon
Mobility Integrated 256MB DDR Video, with Accelerated OpenGL and 8x ultraAGP. The operating system was
Red Hat/Fedora Linux with customized 2.6.9 kernel (Fedora Core 2 with latest updates). The visual interface was
presented on a 177 WSXGA+ (1680x1050) screen. All user responses were with standard keyboard and 2-button
mouse. The audio was presented via 6 channel desktop speakers based on AC’97 2.2 virtual 6-channel output
onboard sound.

2.4.2 EEG Acquisition

A modified wireless EEG headset acquired data from 9 monopolar sites referenced to linked mastoids (F3, F4, Fz,
C3, C4, Cz, P3, P4, POz) and 2 bipolar sites (Cz-POz, Fz-POz) (see Berka 2004 for basic EEG headset details).
The EEG transceiver unit was interfaced to a laptop computer (Pentium 2.4 MHz with 512 RAM and a Windows XP
operating system) that operated the EEG acquisition software used to generate an EEG record and provide time
synchronization data to the TTWCS test bed via a TCP-IP network protocol.

2.5 Data Reduction

For the Simple Working Memory Tasks, approximately 30 one-second epochs of EEG data per task were extracted
from the three task conditions (i.e., Missile ID, Mental Addition, and Missile Location). For the Complex Working
Memory Tasks, seventy one-second epochs were extracted for the training data set from each of two segments: the
encoding segment of the “location” task and the retargeting segment of the “retarget” task. The balance of data from
the tasks was used for testing discriminant function models (see section 2.5).

Processing of the EEG included identification and decontamination or rejection of artifacts, including eye blinks,
spikes, saturation, excursions, and EMG, using previously published procedures (Berka 2004). The EEG power



spectra for each 1 Hz bin between 3 — 40 Hz were computed for each channel, generating a total of 418 EEG
variables from 11 channels for each one-second epoch.

One of the long-term goals of the project is to optimize the selection of sensor locations, number of channels and
number of EEG variables to provide accurate classifications while minimizing the amount of data acquired. In
order to assess a variety of headset configurations, a total of eight EEG data sets were created. The “Mid-line
Bipolar” data set included only the 1 Hz bins from FzPOz and CzPOz for the Simple and Complex Working
Memory Tasks, respectively. The “Mid-line All” data sets included the bi-polar sites plus the mono-polar sites Fz,
Cz and POz. The “Lateral” data sets included the 1 Hz bins from the mono-polar sites F3, F4, C3, C4, P3 and P4.
The “Mid - Lat” data sets included all bi-polar and mono-polar data from all 11 channels.

2.6 Variable Selection and Model Development

Three- and two-class discriminant function models were used to classify data from the Simple and Complex
Working Memory Tasks, respectively. Step-wise analysis was used to select predictive variables for each of the
eight data sets. The discriminant function models generated with variables and coefficients derived from the Simple
(Complex) Working Memory Task for each data set were applied to the Complex (Simple) Task data to evaluate the
influence of variable selection. Individualized discriminant function models were derived to assess the benefit of
fitting coefficients to the unique EEG patterns of each participant.

3 Results

3.1 Classification Models During the Simple Working Memory Task

The results from four discrimant function models applied to the Simple Working Memory Tasks are presented in
Table 1. The Mid-line Bipolar model provided surprisingly good classification for the Missile ID and Missile
Location tasks (using just two channels of data and eleven variables), but, due to poor classification during the
Mental Addition task, reported an overall classification accuracy of only 50%.

The Lateral Model provided better classification in the Missile ID task compared to the Mid-line All with a similar
number of channels and variables, however the overall classification accuracies were similar. The Lateral Model
required an additional three sensor sites to achieve the better performance in the Missile ID task. The Mid-Lat
Model was clearly superior, although nine sensors, 11 channels and 43 variables were required to achieve these
results. Table 2 presents the number of variables selected from each of the sensor sites for the Mid - Lat Model.
The rank order of the top seven variables (partial R? values > 0.03) was C4 37Hz, P4 11Hz, P3 13Hz, CzPOz 31Hz,
Cz 32Hz, CzPOz 18Hz, and C4 26Hz.

Table 1: Classification Accuracy of Three-Condition Simple Task Model

Percent of epochs correctly classified
Model # # # Verbal - \l\ilzrr?tzll- ngﬁlez Class
Sensors Channels | Variables | Missile ID Addition L ocation Accuracy

Mid-line 1 5 2 11 60.4 40.6 615 50.8
Bipolar

e 5 22 65.7 60.7 67.4 64.5
Lateral 6 6 26 75.2 60.3 65.1 66.9
Mid—Lat | g 11 43 77.8 76.4 76.6 77.0

Table 2: Mid — Lat Simple Model: Number of Variables Selected by Sensor Site

Site

Monopolar

Left | Right

| Midline

Bipolar




Frontal 1 5 0 FzPOz 5
Central 6 5 3 CzPOz 6
Parietal 2 6 3* B-Alert Class 1
Totals 9 16 6 12

* The midline sensor is parietal occipital (POz)

3.2 Classification Models During the Complex Working Memory Task

The classification distribution trends across the four models for the Complex Tasks were similar to the Simple Task
with the Mid-Lat sites providing optimal classification accuracy. For this reason, only results from the Mid-Lat
Model are reported. Interestingly, the number of variables selected to discriminate the Complex Tasks was
significantly reduced compared to the Simple task from 43 to 11 (Table 3 and 5). The rank order of variables with a
partial R? values > 0.03 were P4 27Hz, P4 36Hz, and Fz 12Hz. Consistent with the Simple Task, the largest number
of variables was selected from the lateral right region (Table 3). Table 4 presents the classification accuracy of the
Two-Class Mid-Lat model with variables selected from the Complex Task (second row of data) applied to the three
segments of the Location task and two segments of the Retarget task.

Table 3: Mid — Lat Complex Model: Number of Variables Selected by Sensor Site

. Monopolar .
Site Left Right Midline Bipolar
Frontal 1 1 0 FzPOz 0
Central 1 2 2 CzPOz 1
Parietal 0 2 1* B-Alert Class 0
Totals 2 5 3 1

* The midline sensor is parietal occipital (POz)

3.3 Influence of Variable Selection on Classification Models

Due to the substantial difference in the number of variables selected for the Simple vs. Complex Tasks, a Three-
Class Simple Task Model using the Complex Task variables and a Two-Class Complex Task Model using the
Simple Task variables was developed. The result in Table 4 show that the classification accuracies of the two
models applied to the Complex Task data were relatively similar. However, the results in Table 5 show that the
Complex task variables are unable to discriminate the Simple Tasks better than chance.

Table 4: Results for Complex Task Models Using Variables from Simple vs. Complex Tasks

Percent of epochs classified Verbal (V) or Spatial (S)
Model Variable | Spatial Task - Location Verbal Task - Retarget
Type Encoding Rehearsal Recall Encoding Retarget
S \ S \ S \ S \ S \
Mid — Simple 65.8 | 342 | 626 374 51.6 48.4 48.0 52.0 37.6 62.4
Lat Complex | 67.1 | 32.9 | 58.9 41.1 50.0 50.0 43.0 57.0 33.9 66.1
Table 5: Results for Simple Task Models Using Variables from Simple vs. Complex Tasks
Variable # Percent of epochs correctly classified Class
Model Model Variables | Verbal - Verbal- Spatial - Accuracy
Missile ID Mental Addition | Missile Location
Mid and Lat- All | Simple 43 77.8 76.4 76.6 77.0
Mid and Lat- All | Complex | 11 53.5 55.0 39.5 49.5

To determine if the large difference in the number of simple versus complex variables required to discriminate
between the tasks was caused by the additional task in the Simple Model, an alternative Two-class model was
evaluated to compare only the verbal (“Missile ID”) and spatial (“Missile Location”) sub-tests of the Simple Tasks.
This model required 34 EEG variables to accurate classify the two states, still significantly more variables than the
11 required for the Complex Task.



3.4 Fitting Model Coefficients to Accommodate Individual Differences in EEG

Table 6 presents the classification accuracies for individual participants using the Two-Class Model with the Simple
Task variables and group discriminant function coefficients. These results demonstrate wide variability in the
classification accuracies. Table 7 presents findings from Two-Class models using the same variables, with
discriminant function coefficients fitted to the individual’s EEG patterns.

Table 6: Classification Accuracy Two-Class Model Using Group Coefficients
Percent of epochs classified Verbal (V) or Spatial (S)

Participant | Spatial Tasks Verbal Task
Number Encoding Rehearsal Recall Encoding Retarget

S-E V-R S-E V-R S-E V-R S-E V-R S-E V-R
551 48.7 513 34.7 65.3 22.5 775 65.9 34.1 54.2 45.8
552 91.2 8.8 77.0 23.0 71.8 28.2 77.8 22.2 70.8 29.2
553 38.9 61.1 55.6 44.4 29.6 70.4 13.3 86.7 16.0 84.0
554 63.7 36.3 65.3 34.7 58.3 41.7 46.2 53.8 40.8 49.2
555 73.6 26.4 73.4 26.6 575 42.5 41.7 58.3 24.5 75.5
556 70.9 29.1 57.4 42.6 64.1 35.9 30.8 69.2 11.8 88.2
557 74.6 25.4 74.1 25.9 51.4 48.6 53.1 46.9 37.1 62.9
Mean 65.9 34.1 62.5 375 50.7 49.3 47.0 53.0 36.4 63.6

Table 7: Classification Accuracy Two-Class Mid-Lat Model Using Individualized Coefficients
Percent of epochs classified Verbal (V) or Spatial (S)

Participant | Spatial Task - Location Verbal Task - Retarget
Number Encoding Rehearsal Recall Encoding Retarget

S-E V-R S-E V-R S-E V-R S-E V-R S-E V-R
551 94.1 5.9 89.3 10.7 92.5 7.5 27.3 72.7 17.7 82.3
552 775 22.5 52.3 46.7 43.6 56.4 30.6 69.4 32.9 67.1
553 93.7 6.3 88.9 111 88.9 111 63.3 36.7 21.7 78.3
554 79.0 21.0 58.9 41.1 47.2 52.8 20.5 79.5 21.9 78.1
555 89.3 10.7 79.7 20.3 70.0 30.0 47.2 52.8 124 87.6
556 95.3 4.7 77.0 23.0 76.9 23.1 46.1 53.9 11.3 88.7
557 88.7 11.3 87.0 13.0 32.4 67.6 25.0 75.0 15.1 84.9
Mean 88.2 11.8 76.2 23.7 64.5 355 37.1 62.9 19.0 81.0

4 Conclusions

This paper presents one model approach to selecting EEG parameters that can be implemented in systems designed
to monitor and interpret real-time cognitive state changes. Previous work by the investigative team (Berka, 2004,
Berka, 2005) validated this approach to development of an EEG-based closed loop system where EEG correlates of
mental workload were first established and validated in a series of simple tasks. The EEG-workload measures were
subsequently validated in a complex Aegis simulation environment and were used successfully to control the pacing
of stimulus presentation to optimize performance.

These data establish the feasibility of characterizing EEG correlates specific to verbal and spatial working memory
in both simple and complex task environments. The variables derived from this analysis can be computed in real-
time to provide a second-by-second assessment of verbal and spatial processing. The investigators acknowledge
that the terms “verbal” and “spatial” apply only within the context of the tasks and conditions designed for the
TTWCS simulation testbed. Although the experimental design team attempted to create task conditions that
required predominantly verbal or spatial processing to provide data for selection of EEG parameters, the purity of
these conditions, particularly in the complex tasks is questionable.



The difference in the number of EEG variables selected to discriminate Simple Task in comparison to the number
required for the Complex Task (i.e., 43 vs. 11) suggests that the two complex tasks were more distinctive as
reflected in their EEG characteristics than the three simple tasks, so fewer variables were required. An alternative 2-
class model was evaluated to compare only the verbal (“Missile 1D”) and spatial (“Missile Location”) sub-tests of
the Simple Tasks. This model required 34 EEG variables to accurate classify the two states, still significantly more
variables than the 11 required for the Complex Task. It is also possible that the Simple Task may have required
more variables for accurate classification due to the limited attention required to perform the sub-tasks, resulting in
greater variability in EEG activity within and between individuals.

Data from the complex tasks reveal that the patterns of EEG associated with “location” were distinctive from those
observed during “retargeting”. It is possible that the complex tasks were more engaging than the simple tasks and
elicited overall a greater percentage of focused time-on-task. Interestingly, the EEG variables selected for the Simple
Task model provided similar classification accuracy when applied to the Complex Task, but those selected for the
Complex Task were not effective in discriminating the simple sub-tasks. This finding suggests that the applicability
of variables selected for one task may or may not be universally applied to other tasks and should be investigated as
a component of model development.

The decision on how to accommodate individual differences is relevant to all aspects of model building in the design
of closed-loop systems. Although the fitting of the discriminant function coefficients to each individual
demonstrated a marked improvement on the consistency of correct classifications across participants the
“classification accuracies” of the various models should be interpreted with some caution. Distinctive patterns of
EEG classifications may actually reflect differences in strategic approach to the task demands or differential
allocation of verbal and spatial memory. More detailed investigations of the relationship of task performance and
EEG classifications on a second-by-second basis are required to better understand these associations. In addition,
post-test interviews should be conducted to determine whether participants were employing unique strategies for
completing the tasks.

If these preliminary data are replicated and the EEG indices, in combination with other physiological or behavioral
inputs, are shown to relate to the degree of working memory overload in the TTWCS or similar tasks, they could
provide a valuable contribution to real-time adaptive aiding of human-system interaction. The goal of the present
model approach was to provide inputs to a neural-net based system that would employ augmentation strategies
designed to take advantage of the totality of human capacity for multimodal communication. More specifically, the
system involves adaptive multimodal mediation and attention alerting mechanisms, which incorporate multiple
display strategies to invoke alternate sensory modalities given a TTWCS user’s current cognitive state as measured
by real-time biophysical data. Based on output from the physiological sensors, as well as an understanding of
current system state (i.e., which verbal and spatial tasks are currently being performed and their relative loading),
alternate modality display strategies can be employed (i.e., modality-based task switching/augmenting). Any such
aiding must be implemented judiciously, as any gains realized could be tempered if the costs for modality switching
are high.
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