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4
Introduction

In a patient with Tuberous Sclerosis Complex (TSC), the problematic cells that
initiate and constitute tumors have lost TSC1 or TSC2 function. A promising approach
to develop an effective small-molecule drug for TSC would be to target members of the
pathway with which TSC1/2 proteins interact.  Such a drug could either bypass the
requirement for TSC1/2 or specifically kill or arrest cells that have lost TSC function.
Unfortunately, very little is known about the proteins in this pathway or how they
interact, so we cannot make an educated guess about which proteins should be
targeted to kill, arrest, or revert TSC mutant cells.  We are aware of significant gaps in
our knowledge of the proteins in this pathway and how they interact4.  Even for those
proteins which are already known to be in the pathway5, predicting the effects on living
cells of targeting those proteins is unreliable. Clearly, we need to better understand this
pathway in order to more rationally design drugs to treat TSC. These patients could
likely be successfully treated with small molecule drugs if drug targets could be
identified which cause only cells deficient in TSC1 or TSC2 function to arrest, die, or
revert to normal without disrupting the patient’s normal remaining cells. In cultured
drosophila cells, we proposed to rapidly identify genes whose RNAi-mediated reduction
in expression (1) Prevents growth/proliferation of TSC1 or TSC2-deficient cells without
affecting normal cells. (2) Induces apoptosis/cell death in TSC1 or TSC2-deficient cells
without killing normal cells. (3) Reverts TSC1 or TSC2-deficient cells to a normal
phenotype, as determined by measuring a reporter of cell growth pathway activation
and cell morphology.
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Body

We have made good progress towards the goals outlined in the original research
proposal:

Task 1: Prepare for genome-wide screens:

Print the genome-wide RNAi microarrays using our existing libraries of dsRNA
We have developed the dsRNA printing technology and scaled it up to a higher-

throughput, more robust format to allow genome-wide screens. Previously, we had
printed a maximum of 384 genes on a single slide6. We have now successfully printed
~20,000 dsRNAs, covering the vast majority of Drosophila genes, onto four glass
microscope slides. This printing has been developed at a feature density which allows
5600 genes to be spotted per slide.

We overcame technical difficulties relating to the unwanted spreading of dsRNA
in the spots and the imprecision of the DNA microarraying robot. We have adapted the
technology to work with a new cell type, Drosophila S2 cells expressing an adapted S6
reporter protein. This cell type is required for the aims of this proposal. We also were
able to train new personnel to successfully carry out the experiments from printing, to
cell seeding to image acquisition and analysis. The transferability of the techniques to
new personnel indicates that this technology is robust enough to also be transferred to
other laboratories.

Optimize software for these cells and these assays and write code to improve data
extraction

Image cytometry (automated cell image analysis) simultaneously measures
many valuable features of cells: the intensity, texture and localization of each
fluorescently labeled cellular component (e.g. DNA or protein) within each subcellular
compartment, as well as the number, size, and shape of each subcellular compartment.
This type of full phenotypic analysis is necessary for our aim of identifying reversion to a
normal phenotype. Drosophila cells were notoriously difficult to identify in images7 using
existing software. In addition, our project required the accurate measurement of a large
number of cellular features, many of which were not measurable using commercial
software.

Our laboratory therefore initiated an open-source software project, CellProfiler, to
address these substantial challenges (Figure 1 and 2). CellProfiler allows accurate
quantitative measurement of many cellular properties, including cell count, cell size, cell
cycle distribution, organelle size, and the levels and localization of proteins and
phospho-proteins. The software is user-friendly, flexible, modular, open-source, and
free, making it a useful tool to share, compare, test, adapt, and further develop image
analysis methods in the scientific community.
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Figure 1: a. Main CellProfiler interface, with a simple analysis pipeline displayed. b. Image
processing example: Uneven illumination of the field of view is noticeable when nearby
images are placed adjacent to each other and can significantly affect intensity measurements
from uncorrected images (left). The left side of each image in this 3 row, 5 column tiled
image is brighter than the right side. CellProfiler’s CorrectIllumination_Calculate and
CorrectIllumination_Apply modules correct these anomalies (right). Images were
brightness- and contrast-enhanced to display this effect. c. In typical usage, CellProfiler
identifies nuclei first and cell edges are identified surrounding each nucleus using a cell
stain image. Measurements are then made.
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During this project period, CellProfiler was adapted and optimized for the

research projects proposed in several ways:
1. Algorithms for the successful identification of Drosophila nuclei and cells in

images were developed and validated8.
2. We added the ability to measure a large number of sophisticated measurements

to CellProfiler, including many measures of the size, shape, intensity, and texture
of cells.

3. CellProfiler was validated for many key phenotypes (examples, Figure 2). We
tested its ability to measure cell number, cell size, cell cycle distribution (based
on DNA content), and amount of fluorescence per cell using cells with known
variations in these features.

4. The user interface of CellProfiler was improved dramatically to eliminate some of
the tedium of high-throughput image analysis and to allow non-experts the ability
to conduct image analysis experiments, including documentation and a manual.

5. CellProfiler was adapted to make use of a cluster of computers, so that it can
analyze images at a pace faster than image acquisition.

6. CellProfiler was adapted to export measurements to Excel and also to a
database, a necessary feature for large-scale genome-wide experiments.

7. CellProfiler was beta-tested by several academic and industry research groups.
8. CellProfiler was released for free to the public, allowing further development by

the open-source community.

In addition, we initiated another software project, CellVisualizer, to allow
visualization and extraction of the measurements made by CellProfiler (Figure 3).
Because the number and richness of measurements from image-based genome-wide
assays are unprecedented, other fields must advance to accommodate this influx of
data. A full phenotypic analysis of 20,000 images, each containing about 400 cells,
includes ~8 million cells and produces roughly three billion measurements (400
measures per cell, including size, shape, and the intensity and texture of three

Figure 2: Images from slides with the indicated gene knocked down by RNA interference
were analyzed using CellProfiler software to create histograms of cell area (left) and DNA
content (right). The results are consistent with existing literature, validating the software.
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fluorescent stains). CellVisualizer allows biologists without database experience to
analyze data from genome-wide screens, including identifying unusual samples based
on their quantitative measurements and viewing the original images corresponding to
those samples.

We have discovered that these developments in image analysis and data
visualization have been critical for our ability to accurately identify genes of interest in
the large-scale assays relating to the aims of this proposal.

Task 2: Conduct genome-wide screens:

Prepare RNAi/cell microarrays in duplicate (Total = 24 microscope slides)
During this project period, we have successfully printed, seeded, fixed, stained,

imaged, and analyzed genome-wide cell microarrays. So far, we have conducted the
following genome-wide experiments:
1. wild type drosophila Kc167 cells treated with dsRNA against nearly every gene in the
Drosophila genome (quadruplicate).
2. drosophila S2 cells expressing a modified S6 reporter protein (a reporter of a branch
of the cell growth pathway), stained for phospho-S6 (duplicate + rapamycin, duplicate -
rapamycin). Note: RNA interference was not very effective on this set of slides. We
have since improved the efficacy of RNAi for this cell type and therefore plan to repeat
this experiment to obtain higher quality data.

Figure 3: We developed CellVisualizer, shown here, to allow visualization of data from
genome-wide screens. Genes are shown in a scatterplot based on measurements of cells
from images with that gene knocked down (top left). Clicking a gene in the scatterplot
allows viewing the raw, original image (top middle), the numerical measurements from that
image (right) and links to  the external gene database FlyBase (bottom).
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To complete the work described in the research proposal, we must repeat these

experiments under two more conditions: in the presence of dTSC1 and dTSC2 RNA
interference reagent. Given the substantial progress made in the past year on
technology development, these experiments should be feasible in the upcoming
months. We have been granted an extension through July 7th, 2007 to accomplish this
work.

ADDITIONAL UPDATE, revised report:
As of August 2006, we have taken a step back to smaller-scale experiments in

an attempt to work out these techniques more robustly. We have now completed some
of the original project goals:

1. We have completed screens covering all the  kinases and phosphatases (288 genes)
in Kc167 cells that are:

o Wild type
o TSC1 knockdown
o TSC2 knockdown

This data has been mined and hits are being tested in follow-up experiments to confirm
the original phenotypes, other signaling pathway outcomes, and interactions with TSC1
and 2.

2. The first genome-wide experiments like (1) have been imaged for wild type and will
soon be replicated (with TSC1 and TSC2 conditions), mined and followed up.

3. The first kinase and phosphatase screens in S6 wild-type cells have been prepared
and imaged. When robust, these will be performed at the genome-wide scale (with
TSC1 and TSC2 conditions), imaged, mined, and followed up. Some preliminary hits
from the wild-type condition alone are currently being followed up.

Persons paid from this grant:

David M. Sabatini
Michael Lamprecht
Ola Friman
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Key Research Accomplishments

• The dsRNA printing technology was developed, improved, and scaled up to high-
throughput such that we were able to print ~20,000 dsRNAs, covering the vast majority
of Drosophila genes, onto four glass microscope slides. This was the proof of principle
needed to demonstrate that genome-wide screens are feasible using this method.

o In particular, technical difficulties related to the unwanted spreading of dsRNA in
the spots and the imprecision of the DNA microarraying robot were resolved.

• We determined that software we wrote, CellProfiler, produces accurate quantitative cell
measurements and is another key enabling technology now in place to analyze genome-
wide screens.

o Algorithms for the successful identification of Drosophila nuclei and cells in
images were developed and validated.

o We added the ability to measure a large number of sophisticated measurements to
CellProfiler, including many measures of the size, shape, intensity, and texture of
cells.

o CellProfiler was validated for many key phenotypes. We tested its ability to
measure cell number, cell size, cell cycle distribution (based on DNA content),
and amount of fluorescence per cell using cells with known variations in these
features.

o The user interface of CellProfiler was improved dramatically to eliminate some of
the tedium of high-throughput image analysis and to allow non-experts the ability
to conduct image analysis experiments, including documentation and a manual.

o CellProfiler was adapted to make use of a cluster of computers, so that it can
analyze images at a pace faster than image acquisition.

o  CellProfiler was adapted to export measurements to Excel and also to a database,
a necessary feature for large-scale genome-wide experiments.

o  CellProfiler was beta-tested by several academic and industry research groups.
o  CellProfiler was released for free to the public, allowing further development by

the open-source community.
• We determined that software we wrote, CellVisualizer, allows visualization and extraction

of the measurements made by CellProfiler so that genome-wide screens can be rapidly
analyzed and conclusions drawn. This is another necessary component now in place to
analyze genome-wide screens.

• We were able to complete genome-wide screens in wild type cells and determined that,
barring technological/reproducibility challenges, we will be able to complete the genome-
wide screens in the proposal.
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Reportable Outcomes

Completed Manuscripts/Abstracts/Publications:
• Lamprecht MR, Sabatini DM, Carpenter AE (in press) CellProfiler: free, versatile

software for automated biological image analysis. BioTechniques. Attached as an
appendix.

• Jones TR, Carpenter AE, Golland P, Sabatini DM (in press) Methods for high-
content, high-throughput image-based cell screening. MIAAB 2006 Workshop
Proceedings. Preprint available at www.cellprofiler.org/papers.htm and attached
as an appendix.

Manuscripts/Abstracts/Publications in progress:
• Anne E. Carpenter*, Thouis Ray Jones, Douglas B. Wheeler, Michael Lamprecht,

Colin Clarke, Ola Friman, David A. Guertin, In Han Kang, Robert Lindquist, Joo
Han Chang, Jason Moffat, Polina Golland, and David M. Sabatini, CellProfiler:
Image Analysis Software for Identifying and Quantifying Cell Phenotypes,
submitted.

Open-source software released to the public, funded in part by this grant:
o CellProfiler cell image analysis software (www.cellprofiler.org)

Presentations discussing this work:
David M. Sabatini (principal investigator):
o (talk) Center for Cancer Research, Mass General Hospital, Feb. 2005, Boston, MA
o (talk) Neuroscience Monday Seminars, March 2005, Children’s Hospital, Boston, MA
o (talk) TargetTalk Meeting, March 2005, San Diego, CA
o (talk) Department of Pharmacology, University of Virginia, April 2005, Charlottesville,

VA
o (talk) Pfizer Research Technology Center, June 2005, Cambridge, MA
o (talk) American Diabetes Association, June 2005, San Diego, CA
o (talk) GlaxoSmithKline, July 2005, Philadelphia, PA
o (talk) Cancer Models & Mechanisms Gordon Research Conf., July 2005, Smithfield,

RI
o (talk) Protein Kinases and Protein P’n FASEB Meeting, July 2005, Snowmass, CO
o (talk) Glucose Transporter Biology FASEB Meeting, August 2005, Snowmass, CO
o (talk) Ariad Pharmaceuticals, August 2005, Cambridge, MA

Anne E. Carpenter (postdoctoral fellow):
o (talk) Harvard Department of Systems Biology, November 2005, Boston, MA
o (talk) Cytometry Development Workshop, Asilomar, October 2005, Pacific Grove,

CA
o (talk) Merck Automated Biotechnology group, October 2005, North Wales, PA
o (talk) MipTec Enabling Technologies for Drug Discovery, May 2005, Basel,

Switzerland
o (talk) Roche, May 2005, Nutley, NJ
o (poster) Life Sciences Research Foundation Annual Meeting, Oct. 2005, Wash., DC
o (poster) Discovery on Target, October 2005, Boston, MA
o (poster) Whitehead Institute Annual Retreat, September 2005, Waterville Valley, NH
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o (poster) Society Biomolecular Screening Annual Mtg, Sept. 2005, Geneva,

Switzerland

Colin Clarke (undergraduate student):
o (talk) American Society for Cell Biologists Annual Mtg, Dec., 2005, San Francisco,

CA

Funding applied for based on this work:
o Culpeper Biomedical Pilot Initiative grant
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Conclusions

In the past year, Drosophila genome-wide RNA interference living cell
microarrays have gone from a proof-of-principle concept to a robust technology. We
have also developed and adapted a number of software tools to allow the analysis of
these genome-wide image-based screens, a previously formidable challenge. We have
completed genome-wide experiments on the scale required to complete the goals of this
proposal. Future work remaining to complete these goals are to repeat these genome-
wide experiments under several more experimental conditions in order to identify genes
involved in the TSC pathway.
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INTRODUCTION

One of the most powerful methods 
in biology is the visual analysis of 
a sample. While nothing can fully 
replace the expertise of a trained 
biologist, observing many samples 
by eye is time-consuming, subjective, 
and nonquantitative. Certain repetitive 
tasks in visual analysis are suitable for 
automation by collecting digital images 
and processing them with image 

analysis software. This liberates biolo-
gists for more interesting work and has 
several advantages over visual observa-
tions including speed, quantitative and 
reproducible results, and simultaneous 
measurement of many features in 
the image. Efforts to automate visual 
analysis in biology began several 
decades ago, but many aspects still 
need improvement (1).

While numerous commercial and 
free software packages exist for image 

analysis, many of these packages are 
designed for a very specific purpose, 
such as cell counting (2). Other 
packages are sold with accompa-
nying hardware for image acquisition 
(e.g., yeast colony counters), but 
these are expensive and do not allow 
measurement of features beyond 
those that are already built-in. Most 
commercial software is proprietary, 
meaning that the underlying methods 
of analysis are hidden from the 
researcher. At the other end of the 
continuum, some software packages 
are very flexible, especially for inter-
active analysis of individual images 
[e.g., Image-Pro Plus, MetaMorph®, 
and the open-source ImageJ/National 
Institutes of Health (NIH) Image (3)]. 
While users can program custom 
algorithms or record macros, these 
customized routines are challenging to 
adapt without knowing a programming 
language or interacting directly with 
the macro code.

The CellProfiler™ project was 
developed to address these software 
challenges by providing the scientific 
community with an easy-to-use open-
source platform for automated image 
analysis. The compiled software is 
freely available for Macintosh®, PC, 
and Unix platforms at www.cellprofiler.
org. It can accommodate adaptation to 
many biological objects and assays 
without requiring programming, due 
to its modular design and graphical 
user interface. There are many existing 
software packages available for specific 
applications in biology, but CellProfiler 
accomplishes many of the same goals 

CellProfiler™: free, versatile software for 
automated biological image analysis

Michael R. Lamprecht1, David M. Sabatini1,2, and Anne E. Carpenter1

1Whitehead Institute for Biomedical Research, Cambridge, and 2Massachusetts 
Institute of Technology, Cambridge, MA, USA

BioTechniques 41:XXX-XXX (October 2006) 
doi 10.2144/000112257

Careful visual examination of biological samples is quite powerful, but many visual analy-
sis tasks done in the laboratory are repetitive, tedious, and subjective. Here we describe 
the use of the open-source software, CellProfiler™, to automatically identify and measure 
a variety of biological objects in images. The applications demonstrated here include yeast 
colony counting and classifying, cell microarray annotation, yeast patch assays, mouse tu-
mor quantification, wound healing assays, and tissue topology measurement. The software 
automatically identifies objects in digital images, counts them, and records a full spectrum 
of measurements for each object, including location within the image, size, shape, color in-
tensity, degree of correlation between colors, texture (smoothness), and number of neigh-
bors. Small numbers of images can be processed automatically on a personal computer, and 
hundreds of thousands can be analyzed using a computing cluster. This free, easy-to-use 
software enables biologists to comprehensively and quantitatively address many questions 
that previously would have required custom programming, thereby facilitating discovery in a 
variety of biological fields of study.

Figure 1. Yeast colonies growing on plates can be identified, measured, and classified. Scale bars, 2 cm (top) and 1 cm (bottom). (A) The pipeline of mod-
ules used for this analysis. (B) Original image of yeast colonies growing on an agar plate. (C) Image after automatic cropping of the plate and colony identifica-
tion by CellProfiler, with individual colonies outlined in black. (D) Image with the identified colonies classified by size (see legend for color-coding). (E) Same 
as panel D, but classified by red intensity rather than size. (F) The red intensity (vertical axis) and size (horizontal axis) of each colony on the plate is plotted, 
revealing the relationship between these measurements.
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in one open-source program. We 
recently described CellProfiler’s use for 
cell identification, cell size, intensity 
and texture of fluorescent stains, cell 
cycle distributions, and other features 
of individual cells in images (4). Here 
we describe its use for a variety of 
other applications such as yeast colony 
counting, grid analysis, wound healing, 
and other visually quantifiable assays.

MATERIALS AND METHODS

All of the image analysis in this paper 
used the freely available CellProfiler cell 
image analysis software. The pipelines 
and images for these examples, as well 
as others, are available for download 
(www.cellprofiler.org/examples.htm). 
The image of yeast colonies (Figure 1) 
is a plate of Hi90-strain cells plated on 
synthetic defined medium with 128 �g/
mL fluconazole as previously described 
(5). Images of Drosophila Kc167 cells 
on cell microarrays (Figure 2, A–C) 
were prepared as described previously 
(4,6). Briefly, spots of double-stranded 
RNA (dsRNA) were printed onto 
plain slides, and cells were grown on 
these slides for 3 days before being 
fixed, stained with Hoechst 33342, and 
imaged. Images of yeast patches (Figure 
2, D–G) were prepared by manually 
spotting cells (with a 96-well pinning 
device) onto agar plates containing 
galactose to induce the expression of 
α-synuclein and a gene of interest. 
The cells were grown for 2 days at 

30°C prior to imaging (Aaron Gitler, 
personal communication). Images of 
green fluorescent protein (GFP)-labeled 
mouse tumors (Figure 3, A–C) are faces 
of a mouse lung lobe, dissected out at 
8 weeks post-tail vein injection of an 
established metastatic human cancer cell 
line overexpressing a gene of interest as 
described (7). Images of wound healing 
(Figure 3, E–G) were prepared using 
MDA-MB-435 cells and imaged at the 
time points indicated (Lynne Waldman, 
personal communication). A Drosophila 
wing imaginal disc from a third larval 
instar (Figure 3, H–J) was stained with 
rhodamine-phalloidin to label F-actin, 
which is concentrated at points of cell-
cell contact at the level of the adherens 
junction lattice (Matt Gibson, personal 
communication).

RESULTS AND DISCUSSION

CellProfiler’s main window allows 
the user to point and click to do most 
tasks, including the design of a new 
assay. The software uses the concept of 
a pipeline, which is a series of modules. 
Each module performs a specific task 
on the image or on identified objects 
(Figure 1A). A typical pipeline consists 
of loading the images, correcting for 
uneven illumination, identifying the 
objects, and then taking measurements 
on those objects. These modules can 
easily be added, removed, or rearranged 
within a pipeline. The resulting 
measurements can be viewed by (i) 

using CellProfiler’s built-in viewing 
and plotting data tools; (ii) exporting 
in a tab-delimited spreadsheet format 
that can be opened in programs like 
Microsoft® Excel® and OpenOffice.
org Calc; (iii) exporting in a format 
that can be imported into a database 
like Oracle® or MySQL® (MySQL, 
Cupertino, CA, USA); or (iv) opening 
in MATLAB® (Mathworks, Natick, 
MA, USA). An analysis can be done on 
one specific image, a group of images, 
or thousands of images by using a 
computing cluster.

CellProfiler bridges the gap between 
powerful computational methods 
and their practical application in 
the biological laboratory. Computer 
scientists can prototype new compu-
tational methods and contribute them 
to the project, and then biologists can 
easily use these new additions in their 
work. Further, the functionality of 
existing modules can be enhanced by 
researchers with some programming 
experience, because the code is open-
source, well-documented, and in a 
language that is relatively easy to 
understand. While most users will 
download the completely free, compiled 
version of CellProfiler, the CellProfiler 
Developer’s version requires the 
software package MATLAB and its 
image processing toolbox.

As described in the manual, 
available at www.cellprofiler.org/
linked_files/CellProfilerManual.pdf, 
CellProfiler already contains advanced 
object identification algorithms from 

Figure 2. Grids of samples can be annotated and analyzed. (A) The pipeline of modules used for the analysis shown in panels B and C. (B) A living cell 
RNA interference microarray with 40 rows and 28 columns of spots, stained for DNA. Each spot contains a double-stranded RNA (dsRNA) that knocks down 
a particular gene. The grid placed on the image by CellProfiler is shown as red lines. Scale bar, 4.5 mm. (C) Enlarged portion of panel B, with the annotations 
placed by CellProfiler shown in yellow. noRNA is the control. Scale bar, 450 �m. (D) The pipeline of modules used for the analysis shown in panels E–G. (E) 
Original image of yeast patches growing in a grid with 8 rows and 12 columns. Box indicates the region shown enlarged below. (F) Image showing the patches’ 
natural outlines determined by CellProfiler, including wiggly protrusions (arrow). The measured area of each patch is shown numerically on top of each patch, 
in pixels. (G) Image showing outlines of patches that were forced into a standard circular shape to measure the amount of growth in each patch, using intensity 
units. Scale bars for panel E–G: top, 20 mm; bottom, 5 mm.
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the literature (4,8–15) and is open to 
adding new algorithms as described 
above. In object identification modules, 
users can rapidly select the best solution 
for their application using a Test Mode 
to see the results of various methods. In 
the following examples, we show the 
identification of objects by CellProfiler 
and select measurements for each. Note 
that the full spectrum of measurements, 
including many not often measured by 
biologists (16–18), can be recorded 
for each identified object, including 
location within the image, size, shape, 
color intensity, texture (smoothness), 
correlation between colors, and 
number of neighbors. Moreover, each 
broad category contains many different 
specific measurements. For example, 
size includes area, perimeter, and 
major/minor axis length, and shape 
includes eccentricity (elongation), 
solidity, form factor, and 32 other 
shape-related measures.

Yeast Colonies

Counting colonies on agar plates 
and classifying them by size, color, or 

shape is tedious, time-consuming, and 
subjective. While complete systems 
for automated colony counting exist, 
they are more expensive and less 
flexible than using a digital camera or 
off-the-shelf flatbed scanner to acquire 
images for analysis by CellProfiler. The 
cost of this solution can be less than 
$100. Furthermore, the algorithms in 
CellProfiler are accurate and adaptable, 
and unusual features of colonies, 
which commercial software and even 
the human eye cannot detect, can be 
measured (e.g., certain measures of 
texture and shape). After the initial 
analysis strategy has been established, 
plates can be analyzed automatically in 
large batches.

Here we show an example of yeast 
colonies (Saccharomyces cerevisiae) 
that were analyzed by CellProfiler 
(Figure 1B). In this analysis, the plates 
are automatically cropped to remove 
the edges, and individual colonies 
are identified, even when clumped 
(Figure 1C). Measurement modules 
then calculate measurements of interest 
for each individual colony. Any of 
the available measurements can then 

be used to classify the colonies, for 
example, by size (Figure 1D), by color 
(Figure 1E), or by a combination of 
measurements, such as size and color. 
In this example, the apparent correlation 
between size-classified (Figure 1D) 
and color-classified (Figure 1E) yeast 
colonies is verified by a scatter plot of 
these two measurements (Figure 1F). 
Each class of colonies can be analyzed 
separately to allow the researcher 
to focus on classes of interest. This 
allows for addressing questions like 
“Are the red colonies larger than white 
colonies?” or “Do the larger colonies 
have more irregularly-shaped borders?” 
In this example, the colonies all display 
a smooth round phenotype, but the 
colony shape and texture of yeast 
strains with unusual morphology could 
be quantified using these methods.

Grid Analysis

Many experiments are designed 
in a grid format, such as cell micro-
arrays, agar plates of yeast patches, and 
multiwell plates. In experiments with 
large or numerous grids, it is difficult 

Figure 3. Identification and measurement of green fluorescent protein (GFP)-labeled tumors in mouse lungs, the wound healing assay, and Drosophila 
tissue topology. (A) The pipeline of modules used for the analysis shown in panels B–D. (B) Original image. (C) Image with tumors outlined by CellProfiler. 
(D) Tumors in a set of 20 images were counted by CellProfiler and by two researchers. The manual tumor count for each image (vertical axis) is plotted versus 
the CellProfiler count (horizontal axis), revealing strong concordance (R2 value is shown). (E) The pipeline of modules used for the analysis shown in panels 
F and G. (F) At time point zero, the wound visible in the original image (top) is large and the cells present at the edges of the image cover a small percentage 
of the area of the image, as quantified by CellProfiler (bottom). (G) After 24 h, the wound has recovered due to cells migrating from the edges (top) and now is 
much smaller in measured size (bottom). (H) The pipeline of modules used for the analysis shown in panels I and J. (I) Original image of Drosophila epithelial 
cells growing in a sheet. Box indicates the region shown enlarged below. (J) Image showing cells identified and color-coded by CellProfiler based on how many 
neighbors they have. Box indicates the region shown enlarged below.
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to identify which reagent corresponds 
to a spot on this grid. CellProfiler can 
manually or automatically place a grid 
on an image and associate each grid 
location with an annotation such as 
a sample number or gene name. Each 
grid location can also be identified as 
an object, and all available measure-
ments can be made on those objects.

For example, on a cell microarray, 
more than 5000 individual clusters 
of cells are grown on a single micro-
scope slide (4,6,19–21). Each cluster 
has been treated with a perturbant, 
which could be a small molecule, an 
overexpression plasmid, or an RNA 
interference reagent. The goal is to 
determine which perturbants alter cells. 
When attempting to quantify even a 
simple phenotype such as the extent 
of cell death in a spot, it is difficult 
to determine which spot correlates 
to which reagent. In this example, 
CellProfiler places a grid on top of 
an image (Figure 2B) in a position 
defined by the user, who specifies the 
location of known control spots on the 
array and the number and size of rows 
and columns. The LoadText module 
allows the user to load a text file with 
corresponding sample information 
for each of the spots on the grid, and 
the DisplayGridInfo module allows 
this imported data to be assigned to 
each of the grid locations (Figure 
2C). This quickly allows the user to 
associate a location in the grid with its 
reagent. For example, knockdown of 
the cytokinesis-related gene CG10522 
(sticky) shows an unusual large, bright-
nuclei phenotype that is visible at low 
resolution (Figure 2C).

Plates of yeast patches also make 
use of grids (Figure 2E). Although 
large screens of yeast patches have 
been analyzed by eye (22), the 
number of these screens in progress is 
rapidly increasing, and visual analysis 
cannot keep up with the rapid pace at 
which samples are being generated. 
Furthermore, quantitative analysis 
is much preferred, because subtle 
changes in growth can be identified and 
the screen can be analyzed statistically. 
Some software for this application 
has been developed, but none to our 
knowledge is fully automated, open-
source, and flexible to new assays/
unusual measurements.

Because thousands of plates are 
typically analyzed, the entire process of 
finding the grid and making measure-
ments is performed automatically by 
CellProfiler. In the pipeline for this 
analysis, the images are cropped to 
remove the plate edges, and any yeast 
patches that are present are identified. 
Unlike the cell microarray example, 
a grid is then defined automatically 
based on the yeast patches that are 
identified. This allows for nonuni-
formity in the precise placement of the 
grid on the plate, to allow for experi-
mental variation. For this function to 
work correctly, none of the outside 
rows or columns can be completely 
blank. This condition can be satisfied if 
most patches tend to grow well in the 
experiment or if control patches exist 
in two or more opposite corners. These 
yeast patches can be analyzed in their 
naturally identified shapes if the patch 
size or shape is of interest (Figure 2F). 
Alternately, a circle can be forced into 
the location of the identified objects 
to measure, for example, the intensity 
of each patch, which is a measure of 
growth (Figure 2G). Once the grid 
and objects are identified, all available 
measurements can be calculated for 
each patch, including measures of 
growth (Figure 2, F–G, bottom).

Tumor Counting

When tumorigenic cells are labeled 
with GFP and injected into mice, the 
resulting tumors in the lungs are readily 
visible by fluorescence microscopy of 
the dissected lungs. Accurate, objective 
quantification of the number and size 
of the resulting tumors is necessary to 
understand the process of tumor metas-
tasis (7). The GFP signal from each 
tumor can be identified by CellProfiler 
(Figure 3, A–C). CellProfiler counts 
of identified tumors were compa-
rable to counting by eye (Figure 3D). 
If the GFP brightness or the shape or 
texture/smoothness of the tumors is of 
interest, these measurements can also 
be recorded.

Wound Healing

The wound healing assay is a 
standard technique to determine the 
migration of different cell types in 

different conditions. In this assay, 
a confluent monolayer of cells is 
wounded by scratching it with a pipet 
tip (23). The monolayer is then imaged 
at time points to record the size of the 
wound. In this example, the area of the 
images covered by cells is calculated 
by CellProfiler (Figure 3, E–G). While 
this is not a particularly challenging 
application, the structure of CellProfiler 
makes it simple to carry out this 
quantitative analysis for hundreds of 
thousands of images, enabling high-
throughput screens. In addition, the 
shape characteristics of the wound 
border can be measured; for example, 
to distinguish between samples where 
all cells have steadily grown toward 
the middle versus samples where a few 
individual cells extend into the wound 
space.

Tissue Topology

In a developing tissue or at other 
sites of cell-cell contact (e.g., tumors 
and surrounding stromal cells), it 
is useful to determine the number 
of neighbors each cell has to better 
understand the processes underlying 
the topology (24). CellProfiler can 
identify cells in tissues (Figure 3, H–J). 
In addition to typical measurements, 
the MeasureObjectNeighbors module 
can determine the number of cells 
neighboring each cell and record this 
measurement. The cells can then be 
color-coded by how many neighbors 
it has (Figure 3J), or the data can be 
exported to further analyze the topology 
of the tissue.

CellProfiler is a flexible platform 
that can automate the analysis of images 
to address a wide variety of biological 
questions. For many assays, described 
here and previously (4), it eliminates 
the tedium of repetitive visual analysis 
and produces rapid, quantitative, and 
accurate results. The modular design of 
the software provides an infrastructure 
for image analysis that is applicable 
to diverse assays. Its open-source 
code allows programmers to design 
and contribute new algorithms to the 
project. It is our hope that CellProfiler 
will become a widely used platform, 
through which advanced algorithms 
are made conveniently available for 
automatic biological image analysis.
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Abstract— Visual inspection of cells is a fundamental tool for
discovery in biological science. Modern robotic microscopes are
able to capture thousands of images from massively parallel
experiments such as RNA interference (RNAi) or small-molecule
screens. Such screens also benefit from lab automation, making
large screens, e.g., genome-scale knockdown experiments, more
feasible and common. As such, the bottleneck in large, image-
based screens has shifted to visual inspection and scoring by
experts.

In this paper, we describe the methods we have developed
for automatic image cytometry. The paper demonstrates illu-
mination normalization, foreground/background separation, cell
segmentation, and shows the benefits of using a large number
of individual cell measurements when exploring data from high-
throughput screens.

I. INTRODUCTION

One of the most basic tools of modern biology is visual
inspection of cells using a microscope. Modern techniques,
such as immunofluorescent staining and robotic microscopes,
have only magnified its importance for the elucidation of bio-
logical mechanisms. However, visual analysis has also become
a major bottleneck in large, image-based screens, where tens
to hundreds of thousands of individual cell populations are
perturbed (genetically or chemically) and examined to find
those populations yielding an interesting phenotype. Several
genome-scale screens have relied on visual scoring by experts
[1], [2]. There are benefits to manual scoring, such as the
ability of a trained biologist to quickly intuit meaning from
appearance, the robustness of the human visual system to
irrelevant variations in illumination and contrast, as well as
humans’ ability to deal with the wide variety of phenotypes
that cells can present.

However, automatic image cytometry has several advan-
tages over manual scoring: simultaneous capture of a wide
variety of measurements for each cell in each image (versus
scoring a few features per image), quantitative rather than
qualitative scoring, ease of reproducibility, detection of more
subtle changes than is possible by eye, and the main benefits,
elimination of tedious manual labor and much faster analysis
of images.

Several groups have made use of automated cell image
analysis [3], [4], [5], [6], [7], demonstrating the efficacy of
such an approach. These groups have either made use of
expensive and inflexible commercial systems, often bundled
with a particular imaging platform, or they have developed
their own software, seldom used outside of the original lab
because of its specificity to a particular screen. In order to

reduce the duplication of effort in this area, and to make tools
for automated cell-image analysis more widely available, we
have created CellProfiler, an open-source, modular system for
cell-image analysis [8], [9].

This paper describes the key algorithms in CellProfiler, and
our overall strategies for accomplishing high-throughput image
analysis. These include illumination correction to normalize
for biases in the illumination and optical path of the micro-
scope, identification of cells versus background, segmentation
of individual cells, and capture of a wide variety of per-cell
measurements (the “high-content” aspect of our work). We
discuss methods and techniques for exploration and analysis
of the resulting data and illustrate their application to real-
world biological experiments.

II. CHALLENGES IN IMAGE-BASED HIGH-CONTENT
SCREENING

We have analyzed several large screens with our system.
This paper presents some of the challenges inherent to image-
based screens, and the methods we use to address those
difficulties. We will use two screens in particular as examples.
The first is a set of cell microarrays, single glass slides
with cells growing on an array of “spots” printed with gene-
knockdown reagents [10]. The second is from an experiment
screening ∼5000 RNA-interference lentiviral vectors targeted
to silence ∼ 1000 human genes, run in a set of 384-well
plates [11]. Both experiments produced thousands of high-
resolution (512×512 pixels or larger) images, each containing
hundreds of cells. Each image contains cells with a single
gene’s expression knocked down (decreased).

These experiments suffered from a variety of biases and
sources of noise. Both showed illumination variation of around
a factor of 1.5 within the field of view, swamping many mea-
surements with noise if not corrected. The cell microarray ex-
periment was performed with Drosophila melanogaster Kc167
cells, which are notoriously difficult to segment accurately
[12]. Also in this experiment, significant post-measurement
biases were detected based on spot position on the slide, due
to variations in cell seeding density, concentrations of nutrients
or stain, or other factors.

For both screens, discovery of unknown “interesting” phe-
notypes was and is an open-ended goal. We take a wide variety
of per-cell measurements, because we do not know which
measurements will be most useful or interesting a priori, both
in the particular screen and for future explorations. Capturing
a wide variety of measurements provides the most freedom



in post-cytometry analysis, but also leads to difficulties in
finding which subset of hundreds of measurements can most
effectively discriminate a particular phenotype.

Moreover, even in the more goal-directed screens, we are
often focused on identifying cells that are different from the
“usual” cell in ways that may not be completely specified.
Algorithms and methods that work well on normal cells can
fail completely when faced with cells that vary significantly in
appearance. Robustness to wide variation in cell appearance
is therefore an overarching concern in all of our work.

In the following section, we discuss how each of the issues
discussed above arose during screens, and the methods we
used to overcome these challenges.

III. METHODS

A. Illumination Normalization

Any image- and cell-based screen involves several devices
whose physical limitations lead to biased measurements. One
of the most pervasive of these is non-uniformity in the optical
path of the microscope and the imager. It is typical for the
overall illumination to vary by almost a factor of two across
the field of view, making segmentation of individual cells more
difficult, and seriously compromising intensity-based measure-
ments. Since many such measurements vary less than two-fold
in a group of cells, they will be useless unless the illumination
is normalized. Fortuitously, such variation is consistent from
image to image within a single screen, provided as many
elements as possible do not change within the screen, i.e.,
the microscope and optical components are kept the same, the
same type of slide or plate is used consistently throughout
the experiment, and the images are taken in as short a span
as is feasible. We include uneven incoming illumination,
sensor biases, and illumination variation due to lens and slide
imperfections under the single term “illumination variation.”

We need to estimate the illumination variation in order to
correct for it within each image. We model the image-forming
process at pixel (x, y) in a particular image I as,

Ix,y = Lx,y(Cx,y + b), (1)

where I is the image, L is the illumination function, C is an
indicator function which is 1 if a cell overlaps pixel (x, y), and
0 otherwise, and b is a term to account for background staining.
Note that this model conflates the magnitude of C + b and L,
but since we lack any data that give L physical units, we only
need to estimate it up to a scale factor. Lindblad and Bengtsson
use a similar model for single image normalization (after log-
transformation of the pixels), but without the background term
[13]. In our experience, non-specific (background) staining is
not always low enough to disregard during normalization.

In the cell microarray experiments, we found that the cell
distribution was uniform in the field of view (figure 1) and,
in this case, background staining b negligible (as judged from
a histogram of pixel intensities). In this case, we estimate L
as a smoothed per-channel average of I across all the images
in the screen. The average intensities for the three channels
(i.e., stains) and the (uniform) cell distribution are shown in

figure 1. Note that we smooth the intensity images to reduce
sampling noise prior to using them for illumination correction.

In the well-based experiments, each well was imaged in four
different locations. Each location had a significantly different
cell distribution, but the background staining level b and the
illumination function L were the same across locations (as
judged by eye). We use a smoothed regression via equation
(1) to estimate L for a range of values of b, taking the pair
that best fit the position-wise averages. Cell distribution was
estimated by smoothing DNA-stained images and adaptively
thresholding to approximately locate nuclei (more accurate
identification of nuclei is described in the next section).

Illumination correction is necessary for accurate segmenta-
tion and measurement of cells. We note that the optimal so-
lution would combine the estimation of illumination variation
and the segmentation steps into a single procedure, similarly to
well-known EM-segmentation methods that simultaneously fit
a smooth bias field and discrete segmentation labels to image
data [14], [15]. In our initial implementation, we have focused
on each step separately, with the goal of understanding the
nature of the signal. In addition, the high-throughput nature of
the experiments places substantial run-time limitations on the
algorithms used for the analysis of individual images. We are
currently working on a fast implementation for simultaneous
illumination correction and segmentation of cell images.

B. Segmentation

The primary benefits of image-based assays are the capture
of per-cell data, with a large number of per-cell measurements.
This prevents the conflation of multimodal populations, as in
expression profiling with gene-chips, and provides a much
richer data source than other methods, such as flow cytometry.
To exploit the full potential of this data, however, it is
necessary to accurately segment individual cells within each
image.

Unfortunately, the appearance of cells is highly variable
from assay to assay. Experiments use different types of cells,
different staining protocols, different growth substrates, and
of course, different conditions within each assay. All of these
prevent a single approach from being optimal for all cases. We
have implemented several methods in our system in a modular
fashion so we can easily adapt to new screens.

We have developed a successful, general approach for
cell segmentation. Nuclei are more uniform in shape and
more easily separated from one another than cells, so we
first segment nuclei, then use segmented nuclei to seed the
segmentation of individual cells. We threshold the nuclear
image using a regularized version of Otsu’s method [16]
or our own implementation that fits a Gaussian mixture to
pixel intensities. After thresholding the nuclear channel, we
separate nuclei that appear to abut or overlap by locating
well-separated peaks in the intensity image, and use either a
watershed transformation [17] or Voronoi regions of the peaks
to place nuclear boundaries, as in related work [18], [19], [20].
Our thresholding and segmentation system are modular, so the
user can experiment with different approaches on a small set



Fig. 1. Top: Mean intensity for DNA (nuclear) and Actin (cytoskeletal) stained channels in the cell microarray experiment. Bottom left: Mean intensity
for phospho-Akt stained channel (a protein of interest in this screen). Bottom right: The flat distribution of nuclear centers. Nuclei that overlap the image
boundary are eliminated before measurement. All images are false color.

of images to determine the best option, or modify existing
modules for a particular experiment.

Given segmented nuclei, segmentation of individual cells
is a matter of locating the borders between adjacent cells.
The wide variety of cellular phenotypes discussed above
prevents us from knowing the particular appearance of cell
borders, and in fact, in many screens the borders may change
significantly in response to a particular condition, such as a
gene’s knockdown. For this reason, we use a very general
method for placing cell borders.

A priori, we assume that a pixel we have classified as being
“within some cell” is more likely to be associated with the
closest nucleus in the image. This naturally leads to using the
Voronoi regions of the nuclei to place borders between cells.
Another approach is to assume the borders of the cells are
brighter or darker, and use a watershed transformation to place
boundaries. Both of these approaches are commonly used in
image cytometry [21], [22]. However, the first approach makes
no reference to the cytoskeletal stain (i.e., information on
where the border of the cell is actually located), and the second
relies on the borders of the cells being brighter or darker and
is overly sensitive to noise in pixels at cell boundaries. In
our experience, both of these methods provide poor results in

practice. We combine and extend these approaches by defining
a distance between pixels that makes dissimilar pixels farther
apart, and use this metric to compute nearest-neighbor regions.

We define similarity in terms of pixel neighborhoods. The
distance between adjacent pixels at positions i and j is
computed as

((i− j)T∇g(I))2 + λ||i− j||2 (2)

where g(I) is a smoothed version of the image, ||i − j|| is
the Euclidean distance between pixels i and j, and λ is a
regularization term that balances between image-based and
Euclidean distances. Distances between non-adjacent pixels
are computed as the shortest path stepping between adjacent
pixels, and cells are segmented via Voronoi regions of nuclei
under this metric. More details of this approach are given in
our earlier work [23].

C. Measurements

After segmentation, it is possible to make per-cell measure-
ments for each image. Even if the screen is very targeted and
the staining protocol has been tuned to give a simple binary
answer, we capture a wide variety of measurements in order
to maximize our ability to make inferences from the data.



Fig. 2. Top: Median cell DNA content plotted on the physical layout of the slide in the cell microarray experiment. Bottom left: DNA content histogram for
all cells on the slide, prior to spatial bias correction. Bottom right: DNA content histogram after bias correction. DNA content is measured by total intensity
of the DNA stain within the nucleus, with unknown units. For this cell line, the dominant peak is made up of 4N cells, in which the DNA has duplicated,
but the cells have not yet divided. The horizontal axis labels show relative values only.

For each cell, we make measurements of its morphology
(e.g., area, perimeter, extent, convexity, and several Zernike
moments), and intensity and texture of the various stains (e.g.,
mean and standard deviation of intensity, correlation of stains,
and Gabor filter response at various scales). Measurements
are also broken down by cellular compartment (nucleus,
cytoplasm, and entire cell). A full discussion of which mea-
surements to use in a given screen is not germane to this
paper, but our guiding principle has been that, although it can
make inference more difficult, taking too many measurements
is better than taking too few. Adding new measurements to
our system is simple because of its modular design.

Many of the measurements we capture have a clear bi-
ological meaning, such as cell size, or total DNA staining
intensity in the nucleus (proportional to the amount of DNA
present). Others have a less obvious connection to the biology
of the cell, such as the eccentricity of the nucleus, or amount
of variation in the cytoskeletal stain. Although we may not
be able to assign meaning to every measurement, we can
still make use of them when performing analyses or when
classifying cells, as discussed in section III-E.

D. Spatial Bias Correction

Before measurements can be used to make biologically
useful statements, we must control for systematic biases as
much as possible. Biases in the data often come from variation

across the physical layout of the slide or multi-well plate in
which the experiments were performed (a.k.a, “plate effects”
and “edge effects” [24]).

Some measurements can be corrected by fitting a smooth
function to the data on the physical layout, and dividing the
corresponding per-cell measurements at each position by the
smooth function. For example, if we plot median per-cell DNA
intensity on the slide layout for a 5600-spot (140× 40) slide
(figure 2, top), we observe a spatially varying bias, most likely
due to inhomogeneity in the stain for DNA. We correct for this
bias by applying a 2D median filter to the 140 × 40 values
and dividing each cell’s measurement by the smoothed value.
The improvement in the per-cell DNA content histogram is
obvious (figure 2, bottom left vs. right).

In some cases, it is difficult to determine how to correct
a particular measurement or combination of measurements.
Nonlinear interactions of cells with their environment makes
it nearly impossible to remove all biases before making
inferences from the data. Therefore, we make maximum use of
nearby control spots or wells and check each measurement we
use against the physical layout (as in figure 2). Bias correction
is an active area of research [24], [25].

E. Exploration and Inference

We take several approaches to exploring data from high-
throughput, high-content screens. For example, (1) per-cell



measurements can be combined to give per-gene values by
taking means, medians, etc., or by using other data reduction
techniques. (2) Pairs of populations produced by different gene
knockdowns can be compared directly using distribution-based
metrics. Or, (3) individual cells can be classified by their
measurements, and gene knockdowns compared by how they
change the balance of different classes of cells. We discuss
each of these approaches below.

1) Per-Gene Measurements: Each per-cell measurement
can be converted to a per-gene measurement by taking the
mean, median, or otherwise reducing each measurement to a
small set of parameters. This approach works particularly well
when the screen focuses on a simple single parameter readout
(e.g., presence of a given protein), or if the goal is to find
gene knockdowns that have an easily measured effect (e.g.,
cause cells to grow larger). For example, figure 3 shows a
scatterplot of per-gene mean cell size vs. mean nuclear size.
Three replicates knocking down the gene ial are highlighted,
in which cells and nuclei have grown larger than controls.

This approach is also effective for early, open-ended ex-
ploration, where identification of outliers is the primary task,
especially since it can be applied to any measurement without
prior knowledge about that measurement’s biological implica-
tions.

Reducing the data in this way makes it weakly analogous
to the data from gene-chips, in which mean expression level is
measured for a large number of proteins. Like gene-chips, this
approach can suffer from an over-reduction of measurements.
For example, knocking down a gene may cause some cells
to double in size, and an equivalent fraction to halve in size,
but this would not affect the mean cell size [26]. In contrast,
if we work with measurements’ distributions directly, such
differences are easily detected.

2) Population comparisons: To compare two populations’
measurements directly without first reducing to a single per-
gene value, we can apply distribution comparisons such as
the Kolmogorov-Smirnov [3] or Kuiper [27] tests, or compute
sample-based information-theoretic estimates, such as the KL-
divergence between the two distributions [28]. These can be
used to compare each sample against a set of positive or
negative controls, or against the full slide-wide cell population,
yielding a more experiment-specific per-gene measurement as
discussed above.

Comparing gene knockdowns’ populations via a single or
small set of per-cell measurements, as in figure 3, top right,
is similar to exploring data from flow cytometry, in which
a few measurements are taken for a large number of cells.
Flow cytometry is generally lower-throughput than image-
cytometry. The number of measurements is also much more
limited compared to automatic image-based cytometry.

3) Per-Cell Classification: To take full advantage of the
large number of per-cell measurements, our primary method
of exploration is via per-cell classifiers. We build or train
classifiers that identify a phenotype of interest, and apply
them to the full screen in order to determine which conditions
or gene knockdowns cause enrichment or depletion in those

phenotypes. Our goal is to understand the function of genes,
with the underlying assumption that gene knockdowns that
cause similar changes in phenotype have similar functions in
the cell.

In particular, we advocate the per-cell classifier approach
because it detects very small changes in the percentage of
cells falling into a particular class. Some phenotypes, such as
mitotic (replicating) cells, are <1% of cells at the background
level and increase only three-fold above this level in outliers
and positive controls [8]. These changes are so small relative
to the full population that they are swamped if measurements
are blindly combined into per-gene values, or when comparing
two otherwise similar distributions.

Given a classifier for cells showing a known phenotype, the
list of gene knockdowns that enrich or deplete that phenotype
can be used to impute function for those genes. For example,
if we build a classifier for cells in metaphase, knockdowns that
cause enrichment of that phenotype probably have a regulatory
function in the metaphase to anaphase transition. Simplified
examples of per-cell classifiers are shown in figure 4, in which
classifiers were constructed to identify different phases of the
cell cycle based on a pair of measurements, total nuclear
DNA content (as measured by the DNA stain), and mean
nuclear phospho-H3 content (a marker for mitosis). If a gene
knockdown significantly changes the fraction of cells landing
in one (or more) of these classifiers, it is likely to be a regulator
for those phases of the cell cycle. Most classifiers are more
complicated than this, involving a larger number of per-cell
measurements [8].

To compute enrichments and p-values, we treat the output of
classifiers as Bernoulli random variables. If negative controls
are available in the screen, then enrichments are computed
relative to those controls. Otherwise, we use the full screen-
wide cell population as the control, the operative assumption
being that for each phenotype, knockdown of most genes will
not affect that phenotype. There are two justifications for this
assumption: many genes are not expressed under experimental
conditions, so they cannot be depleted by knockdown, and
most genes’ knockdown will have no effect on a particular
phenotype.

The phenotypes targeted by the classifier can be biologically
well-characterized, such as cells in a particular phase of
the cell cycle (as above), or simply cells that have a novel
appearance, without a well-defined biological interpretation
attached. For an uncharacterized phenotype, the group of
gene knockdowns causing enrichment or depletion in that
phenotype can be informative depending on the group of gene
knockdowns causing similar effects. For example, the genes
in the group might share a physical or biochemical property,
suggesting a mechanism for the phenotypic change. Or, if
the group contains genes with a similar, known function, the
uncharacterized genes in the group can be hypothesized to
also share that function. This also allows for the identification
of new, hypothetical cellular processes, rather than simply
identifying genes involved in known processes.

The per-cell classifier approach can also be applied to a



Fig. 3. Top left: Scatterplot of per-image mean cell area vs mean nuclear area in a cell microarray experiment. Three replicates knocking down the gene
ial are highlighted in the upper right corner. The lines show two standard deviations around the mean. Top right: Per-cell histograms of cell area for the ial
replicates compared to controls. Lower left: Cells with ial knocked down. Lower right: Control cells (Blue: DNA, Green: Actin, Red: phospho-Histone H3).

particular gene’s knockdown which might not show a human-
discernable phenotype, but for which we can still build a
classifier. If the classifier is effective at separating the cells
with the target gene knocked down from the cell population
at large, the implication is that there is a measurable phenotype
caused by the target gene’s knockdown, and other knockdowns
that cause the same phenotype have a similar function.

One of the benefits of the classifier-based approach is that it
is less susceptible to spatial biases when the classifier is trained
by a human, compared to data-reduction or full-population
comparison methods, because of the robustness of the human
visual system to these biases. Note, however, that the nonlinear
effect of environment on cells can cause biases in the fraction
of cells of a particular phenotype, so the results of applying the
classifier should be checked for spatial bias, similar to figure
2.

The classifier approach is reminiscent of example-based
image retrieval [29], [30]. However, rather than searching for
images as the primary goal, we are using similar techniques

to quickly categorize subimages of cells, with the intent of
determining the number and distribution of cells matching our
query specification.

After finding hits in a particular screen, followup work may
be necessary to validate the results. If there are a sufficient
number of replicates, or data from other screens are available,
it may be possible to make a categorical statement about a
gene knockdown’s effect without further experimental work.
However, in almost all cases, biologists will investigate the
mechanism of the effect in traditional followup experiments.

IV. DISCUSSION

This paper has presented several methods for high-content,
high-throughput image-based screens of cells. Such screens
are particularly valuable in biological and pharmaceutical
research. We have developed CellProfiler [9], a modular, open-
source system incorporating these methods.

High-throughput, high-content screening is a powerful tech-
nique for making discoveries about cellular processes, genetic



Fig. 4. Simplified examples of per-cell classifiers (from [8]). The central scatterplot shows total DNA content (horizontal axis) vs mean phospho-histone
H3 staining intensity for all cells in the screen of human genes. Phospho-histone H3 is present in cells undergoing cell division (mitosis). Selecting different
regions in the scatterplot selects different subpopulations of cells, as shown in the insets. Each inset shows 4 subimages; each subimage shows a random cell
from the corresponding subpopulation (marked) and its surrounding image neighborhood. Counter-clockwise from lower left: 2N cells (normal complement
of chromosomes), 4N cells (DNA duplicated), Metaphase (condensed DNA, preparing to separate), Anaphase/Telophase (daughter cells separating). This is
also the progression of the cell cycle. A gene knockdown causing enrichment in any of these subpopulations relative to controls is likely a regulator of that
phase of the cell cycle. Most classifiers involve many more measurements.

pathways, and drug candidates. It also poses new challenges
and requires novel techniques to realize its full potential as
a discovery tool. Algorithms for identifying, segmenting, and
measuring individual cells must deal with noise and biases,
be robust to a wide variety of cell appearances, and must be
accurate enough to allow very small (<1%) subpopulations to
be identified accurately. However, the payoff for the increased
effort is a dramatically more powerful method for detect-
ing changes in cells under different experimental conditions,
through the use of per-cell data and classifiers, compared to
more traditional techniques. These methods have been proven
in some of the first large-scale automatic screens to appear in
the biological literature [8], [11].

For reasons of scope, this paper does not include a discus-
sion of the architecture and design of our system implementing
the techniques presented here [9]. We aimed to make the sys-
tem as modular and extensible as possible, while maintaining
a user-friendly interface. We believe it has been successful in
these respects, particularly given its use in a variety of non-cell
screening tasks (e.g., counting and classifying yeast colonies
on Petri dishes, counting nuclear subcompartments/speckles,
tumor measurement, etc. [31]).

In the future, we will incorporate methods for simultaneous
illumination normalization and segmentation, and automatic
methods for spatial bias correction. We have also started to
explore general clustering based on per-cell measurements.
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