
Final Report

Laboratory Information Management Systems,
Center for Technological Diagnostics

Training, Certification, and Calibration

submitted to
European Research Office

USARDSG-UK
Edison House

223 Old Marylebone Road
London, NW1 5TH

England

Laboratory Information Analysis within the Russian Center for
Technological Diagnostics

Broad Agency Research and Development

Reference: N62558-02-C-9041
R&D: 9329-EN-01

Principal investigator:
Dr. J.M.F. Masuch

Institution:
Applied Logic Laboratory (ALL)

Academic Foundation
Amsterdam

Herengracht 514
1017 CC Amsterdam

The Netherlands
Tel: # .31.20.422.9767
Fax: # .31.20.422.9768

15 March 2004

Approved for public release; distribution is unlimited.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
15 MAR 2004

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Laboratory Information Analysis within the Russian Center for
Technological Diagnostics

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Applied Logic Laboratory (ALL) Academic Foundation Amsterdam

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

192

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

2

Table of Contents

1.0 Introduction 3

2.0 LIMS - Report Generation 5
2.1 Format Functions and Algorithms 7
2.2 Main Execution Procedures 19
2.3 The Graphical User Interface 36

3.0 Algorithm Development and Structured DBMS 44
3.1 PL/SQL Organization and Structure 44
3.2 Cursors and Database Interaction 47
3.3 Adding Parameters to the Cursors 51
3.4 Adding Bind Variables to the Cursor 52
3.5 Applications for Dynamic SQL and DBMS_SQL 54
3.6 Creating Unique Data Records in the LIMS 62
3.7 Applying Array Structures within the LIMS 65
3.8 LIMS Error Functions and Exception Management 66
3.9 LIMS Mail Resources 70
3.10 CTD Web Applications and Network Distribution 73
3.11 CTD Instrumentation and Maintenance Documentation 94

4.0 Certification and Attestation Programs 117

5.0 Level II Field Diagnostics and Attestation Training 132

6.0 Conclusions 147

7.0 References 149

8.0 Appendix A: LIMS Time-Date Formats 155
Appendix B: Arrays and Temporary Data Storage 162
Appendix C: Date Algebra 164
Appendix D: Productivity Functions 168
Appendix E: SQL Management Functions 174
Appendix F: SQL Plus Functions 176
Appendix G: Security Package 178

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

3

1.0 Introduction

In this report, we examine the technical parameters for the design and implementation of a Laboratory
Information Management System (LIMS) within the Center for Technological Diagnostics (CTD) in St.
Petersburg Russia. The LIMS is composed of two main databases. The first database is used to store,
archive, retrieve, and manage materials information as it is placed within the StarLIMS software. The
StarLIMS interface uses the Sybase Relational Database Manager (RDBMS) as the main archive tool;
however, all information is distributed across the Ministry of Defense (MOD) network. The second
database contains the archived information (materials data) within the Oracle RDBMS. This data is
stored within the CTD main server system. The main server is a Compaq ML-530 array with eight
independent disks. Two identical Compaq ML-530 systems are used to archive the technical
information and serve all information that is required for the fixed and mobile laboratories. The disks
are partitioned for data security, and organized by technical requirements for LIMS access and
materials archive.

The LIMS is designed to assist MOD in their certification requirements, and provide chain-of-custody
tools that are necessary to maintain proper authorization and control of information as it enters (and
exits) the laboratory complex. The LIMS is also required to assist DTRA in examination requirements
for monitoring the proper use of all equipment in the functional laboratory. For certification
requirements, the LIMS produces specialized reports from each testing sequence. The reports include
documented headers that are authorized by the 12th Main Directorate, as well as, specialized data
structures and attestations that are required by the Russian State Standards (RSS) and
Gosgorteknadzor oversight bureaus.

As provided in this technical manuscript, the LIMS interface uses a common theme (kernel) that
ensures the safety and security requirements for the 12th Main Directorate. The security kernel ties all
operations to a specific user (test engineer), and his respective abilities to perform a certification or
analytical sequence. Hence, only authorized personnel may perform specific tests, and results are
organized according to the strict rules and regulations from the Russian Bureau of Mining:
Gosgorteknadzor. The security features force all users to perform tests in the proper sequence -- based
upon rules and regulations for proper data analysis. Within this sequence, time indexing is used to
insure that all examinations are organized in the proper order. This includes: intermediate
authorization for all tests with full metadata records, chain-of-custody examination, piecewise
tracking for all tests performed in a sequence, and strict-compliance with Gosgorteknadzor and
Russian State Standards (RSS) technical reporting. The metadata records include: unique
identification codes that label the specimen under investigation, as well as, the name of the analyst
and his respective attestation level. The metadata records also include detailed information for the
sequence of testing operations used to generate the technical report.

Within each testing sequence, MOD utilizes productivity tools that have been developed within this
research and development effort. The tools provide a consistent foundation for migrating information
into the LIMS from the Sybase and Oracle RDBMS. In addition, tools have been developed to parse
and organize technical data according to the International Organization for Standardization (ISO)
requirements. The ISO methods utilize the Structured Query Language (SQL) techniques for
importing and exporting information into RDBMS systems within the European Union (EU) and
Former Soviet Union (FSU). These methods follow the strict technical standards from the American
Materials Testing Institute (AMTI).1

1 The software is in compliance with the Microsoft SQL standard, and the Oracle PL/SQL language.
Hence, all algorithms may be modified by the 12th Main Directorate to ensure maximum flexibility.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

4

In this report we document the LIMS algorithms and the Graphical User Interface (GUI) standards
that have been created to assist MOD in their efforts to analyze material samples acquired from cranes,
hoists, lifts, and elevator systems. The analysis is required to ensure the safe and efficient movement
of super-containers that contain sensitive weapon systems. The LIMS is also used for the monitoring
and diagnostics of high-pressure piping and vessel systems. These systems are used in facilities
adjacent to the super-container structures, and may present significant hazards to the site location.

The LIMS GUI begins with a series of fidelity checks. The fidelity checking is required to ensure that
the acquired sample has been properly processed during field acquisition. The LIMS further checks
the user identification codes and the respective abilities or attestation levels that have been assigned to
the user for the testing sequence. Once the sample and user are authorized, the LIMS monitors the
testing procedures, and ensures proper sequential data processing and scientific investigation.
Finally, the LIMS assists the user in the decision process (e.g. assigning the proper analysis methods to
the investigative sample), and creates the authorized reports that are required by the MOD 12th Main
Directorate for RSS and Gosgorteknadzor.

With the initial section of this report, we provide a series of images and screen-shots that capture the
working dynamics of the LIMS process. These images include the security and identification
procedures that are used to monitor the users as they apply tests to specific samples. As shown in
these case studies, the systems administrator may monitor all users as they process the sample
through each test sequence. The LIMS also monitors the a priori tests that have been applied to
similar samples and creates the chain-of-custody records that are required for RSS and
Gosgorteknadzor attestation. As indicated, the GUI is dynamic. Hence the tables and interface
options vary with the testing sequence and the appropriate analysis methods. For example, the user is
provided only those interface options that are required to perform the specific non-destructive test. If
the user tries to circumvent the standards, the interface will not provide the data I/O that is required
to continue the analysis. In addition, the systems administration personnel are shown the sequential
operations (in real time) to ensure that the analyst is made aware of the resultant error or is properly
authorized to continue the sequence. The GUI is dynamic with respect to the data migration
procedures. As the analyst performs the test, the LIMS is automatically populated with the data that
has migrated from the instrument to the Sybase/Oracle RDBMS. The migration includes Quality
Assurance and Quality Control (QA/QC) analytical methods. These include Pearson, Spearman, and
Kendall Split-Half Coefficients to monitor the data reliability. In addition, the user may edit the data
as it is migrated into the analysis technique –- provided there is sufficient authorization to perform
this function. As in all LIMS processing, editorial revisions and data analysis methods are fully
documented and become part of the metadata and chain-of-custody record.

Within this documentation, we include a series of records that demonstrate the MOD 12th Main
Directorate and RSS/Gosgorteknadzor reporting standards. As shown, the reports have been
developed in conjunction with MOD Moscow and approved for submission to RSS/Gosgorteknadzor
for sample attestation. Each report includes the sample documentation, the analysis standards, and
resultant conclusions for service life determination.

As requested by MOD (LCOL. Trofimov and LCOL. Protopopov), we provide the SQL and PL/SQL
support functions that operate within the Sybase and Oracle RDBMS. The functions are required to
allow MOD to develop custom processes on an independent basis according to MOD 12th Main
Directorate standards for open systems interfaces. These procedures are organized according to basic
productivity standards for parsing information, data I/O and data migration, as well as, modern
imaging and data analysis requirements. The SQL and PL/SQL support functions will be used to
minimize future maintenance requirements and provide an independent method for MOD to fulfill
their technical requirements for custom test generation and specialized reporting.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

5

The final section of this report provides technical documentation from the certification and calibration
program. The training is required to ensure that MOD field teams operate systems that are properly
calibrated and registered for RSS/Gosgorteknadzor attestation. The program also includes
specialized training that is conducted for MOD field teams for the certification of test results. In this
documentation sequence, the training program for three additional students is provided.
Examinations are shown for all students based upon their attestation level (Level I or Level II), as well
as, their prior training within this research program.

A final addendum to this report will be forwarded to DTRA. This addendum includes digital photos
of the LIMS -- operating within the MOD scientific facility in St. Petersburg. The photos have been
prepared for the 12th Main Directorate authorization in Moscow. Under the official rules for technical
documentation, the photos will be forwarded directly to the US Embassy in Moscow. A second set of
photos with additional screen-documentation (for the StarLIMS interface) will be provided to DTRA
during the next delegation visit to St. Petersburg.

2.0 Laboratory Information Management Systems – Report Generation

Within this section we provide the source code for the SQL and PL/SQL tools that support the main
CTD LIMS. These tools are independent from the StarLIMS shell. Hence, they may be fully modified
and edited by MOD to support mission objectives and certification requirements. The code is very
detailed and includes all support functions and utilities as shown in Appendix A-G. The algorithms
support specialized requirements for secure operations defined by MOD 12th Main Directorate.
However, all routines, functions, and procedures are defined using ISO standards for database access
and information processing.

Also within this discussion, we provide the source code and graphical user interface examples for the
MOD report generation tool. Reports are created using table entries that allow MOD to custom-enter
information that originates from within the LIMS or the CTD materials database. The tools are
designed for report entry and data query. Hence, the analysts can use the same tool to locate prior
reports and enter new information within the LIMS network. The interface for this application is
shown in Figure 2.1a. In this example, the basic GUI is displayed with minimum data insertion. The
tool is displayed for a specific testing sequence and the corresponding reports that are available within
the LIMS network.

From a table driven list of available fields (Fixed or Mobile, Instrument, Item, Measurement), the user
selects the entries that will appear in the report by clicking on left and right arrows in the center of the
interface. The fields can then be rearranged by choosing the + or – buttons on the left of the
application. The header form for the report is inserted by MOD to allow all reports to conform to
Russian State Standards or Gosgorteknadzor attestations. The application can be filtered by any value
in any of the chosen fields, and sorted in either ascending or descending order. Once the report
variables have been chosen, a “Preview Report” option is available to review the query. The preview
report columns can be rearranged by dragging the column, and sorted by clicking on the top of a
column. Each column may be modified to conform to certification or attestation requirements.
Reports may be modified and exported to Microsoft Excel using the “Save Custom Report” option.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

6

Figure 2.1a: LIMS Report Generation Interface. This graphical user interface is used to select custom
reports that may be submitted to the attestation agencies: RSS and Gosgorteknadzor. The tool also
supports the custom formats required by the fixed and mobile laboratories for the 12th Main
Directorate in Moscow.

The complete algorithms for this application are provided in Section 2.1. As shown, this application
uses SQL and PL/SQL to build the database requirements and then works within Java, C, or html to
support the standard GUI that is displayed to the user. The application conforms to the strict software
requirements of the 12th Main Directorate since it is open source code for tempest-level certification
and uses International Organization for Standardization techniques for data transfer and software
design. The tool is written for efficient modification by MOD. All look and feel portions of this
application may be adapted to conform to the future service requirements of the 12th Main Directorate.
In addition, the safety and security applications (shown in Appendix G) may be modified to meet the
emerging software requirements for secure data processing within the scientific research facility in St.
Petersburg.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

7

2.1 Format Functions and Algorithms

Within this section we provide the source code for the SQL and PL/SQL tools that support the main
application. All examples have been tested using the standard Oracle 8.i RDBMS for efficient service
and support. The interface examples are provided in English for this report. However, the koi-8
Russian Cyrillic Font is used for all installed software as requested by MOD.

The report generation tool is initialized by variable type and final application. The example
declarations include:

CREATE TABLE LAB_CUSTOM_REPORTS
(
 USERNAME VARCHAR2(100 BYTE),
 PRIV_CODE NUMBER,
 CREATED DATE,
 REPORT_NAME VARCHAR2(100 BYTE),
 BASE_REPORT VARCHAR2(50 BYTE),
 REPORT_COLUMNS INT_ARRAY,
 AVAILABLE_TO VARCHAR2(100 BYTE),
 REPORT_ID NUMBER,
 REPORT_SQL VARCHAR2(4000 BYTE)
)

The table for holding all laboratory events is created within the Lab_Reports sequence. This table
contains the SQL code that generates the data for the final application. The application is dynamically
created from this SQL statement.

CREATE TABLE LAB_REPORTS
(
 REPORT_NAME VARCHAR2(100 BYTE),
 REPORT_SQL CLOB,
 DRILLDOWN CLOB,
 DRILLDOWN_DOC CLOB,
 DRILLDOWN_J CLOB
)

Now the reporting table can be populated using sample data. For the example shown in Figure 2.1b,
we populate the table with sample information that has been provided by MOD. The actual data is
automatically entered into the Lab_Reports sequence using the LIMS data input-output (I/O) tools.
However, this example shows the minimum level requirements for entering this form of information
at the code-level. This also illustrates the simple formatting that is required to insert string and
character format information.

In this figure, the case tools for placing information are required to ensure that the data is organized
by equipment type and process. For example, the field that inserts information into the fInstrument
examines the field list L.FM and assigns a label “Primary element detection and spectral analysis”
when the listed measurement function L.measurement_fcn is equal to one. This is the first user selection
or first item in the list. The logic continues for each element that is used to populate the table with
entries.

The logic shown in Figure 2.1b was provided to MOD to show how SQL tables and models may be
organized from within their custom applications. This technique has been used within the
Information Analysis System (IAS) for the custom labeling and organization of the Geographic
Information System (GIS) reports used for mobile operations. The same methods are used in the CTD
mobile operations for the support of SQL data I/O tools that are used for the field entry and initial
organization of the materials data.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

8

INSERT INTO LAB_REPORTS (REPORT_NAME, REPORT_SQL, DRILLDOWN, DRILLDOWN_DOC,
DRILLDOWN_J) VALUES (

'project2', 'SELECT L.item as "fItem",

case when L.FM=''M'' THEN ''Mobil'' else ''Fixed'' end as "fFixed or Mobil",
 L.Instrument as "fInstrument",
 case when (L.FM=''F'' and L.measurement_fcn =''1'') then
''Primary element detection and spectral analysis''
 when (L.FM=''F'' and L.measurement_fcn =''2'') then
''Tensile and compression testing''

 when (L.FM=''F'' and L.measurement_fcn =''3'') then
''Cyclic testiong for tension, compression and material ductility''

 when (L.FM=''F'' and L.measurement_fcn =''4'') then
''Primary hardness detection''

 when (L.FM=''F'' and L.measurement_fcn =''5'') then
''Optical measurement of metallographic specimen''

 when (L.FM=''F'' and L.measurement_fcn =''6'') then
''Sample preparation''
 when (L.FM=''M'' and L.measurement_fcn =''1'') then
''Primary element detection and spectral analysis''

 when (L.FM=''M'' and L.measurement_fcn =''2'') then
''NDT-UT (non-destructive testing, ultrasonic) flaw detection''

 when (L.FM=''M'' and L.measurement_fcn =''3'') then
''Network analysis using NDT-UT''

 when (L.FM=''M'' and L.measurement_fcn =''4'') then
''NDT-UT surface hardness''

 when (L.FM=''M'' and L.measurement_fcn =''5'') then
''NDT-UT material thickness''

when (L.FM=''M'' and L.measurement_fcn =''6'') then
''Magnetic particle flaw detection''

when (L.FM=''M'' and L.measurement_fcn =''7'') then
''Surface hardness (pin destructive testing)''

when (L.FM=''M'' and L.measurement_fcn =''8'') then
''Optical measurement metallographic examination''

when (L.FM=''M'' and L.measurement_fcn =''9'') then
''NDT residual stress analysis of sub-surface structure''

when (L.FM=''M'' and L.measurement_fcn =''10'') then
''Pressure detection-vacuum detection''

when (L.FM=''M'' and L.measurement_fcn =''11'') then
''Barometric pressure-hydrographic measurements''

when (L.FM=''M'' and L.measurement_fcn =''12'') then
''Sample preparation and laboratory support''

when (L.FM=''M'' and L.measurement_fcn =''13'') then
''Dynamic torque and acceleration''

when (L.FM=''M'' and L.measurement_fcn =''14'') then
''Capillary and chemical amplification of surface features''

when (L.FM=''M'' and L.measurement_fcn =''15'') then
''Physical resistance or conductance characterization''

when (L.FM=''M'' and L.measurement_fcn =''16'') then
''Magnetic field detection and sub-element characterization''

 else '' ''
 end as "fMeasurement",null as " "

 FROM lab_equipment L where 5=5'
, NULL, NULL, NULL);
commit;

Figure 2.1b: Within Code Data Population. This example shows one method for populating the report
tables based upon MOD case conditions. The logical organization is used to conform to MOD 12th

Main Directorate requirements for orienting information by instrument function and analyst
certification and attestation. The installed software uses the LIMS main shell to organize this
information. Hence, all data is automatically oriented in the proper logical sequence from within the
Sybase or the Oracle RDBMS.

Following the data population phase, the system creates a report_utility package that works with the
RDBMS. This operation creates the cascading style sheets that are used to change the appearance of
all the pages in the application from a single source. The procedure is also required to execute the
TwoLists that are shown in the final GUI. The lists are selected by the user organized field names that
will appear in the final MOD report. The form of this declaration is:

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

9

CREATE OR REPLACE PACKAGE REPORT_UTILITY IS

Procedure TwoLists;
Procedure LoadCSS;
PROCEDURE donothing;
Procedure FilterTable;
Procedure TableSums;
FUNCTION urlencode(p_str in varchar2) return varchar2;

END REPORT_UTILITY;
/

The TwoLists are then created using the procedures and functions shown in Figure 2.1c,d. This
includes the logical statements that are required to automatically sort the data list by the user-defined
criteria for instrument time, identification code, or any provided index.

CREATE OR REPLACE PACKAGE BODY REPORT_UTILITY as

Procedure TwoLists
is

Begin
 htp.p('
 <script>

sortitems = 1; // Automatically sort items within lists? (1 or 0)

function move(fbox,tbox)
{
 var ct = 0;
 for(var i=0; i<fbox.options.length; i++)
 {
 if(fbox.options[i].selected && fbox.options[i].value != "" &&
 fbox.options[i].value != "-1")
{
 var no = new Option();
 no.value = fbox.options[i].value;
 no.text = fbox.options[i].text;
 tbox.options[tbox.options.length] = no;
 fbox.options[i].value = "";
 fbox.options[i].text = "";
 ct++;
 }
 }
if (fbox.options.length == ct)
 {
 var noneSelected='''';
 fbox.options[0].value = "-1";
 fbox.options[0].text = "*******None Selected*******";
 }

 BumpUp(fbox);
 if ((sortitems) && (ct > 0))
 SortD(tbox);
}

Figure 2.1c: Procedure for Defining Two Lists. This example shows the initial code that is required to
setup and define the two lists (testing sequence and report generation) shown in the GUI. The code
example continues within Figure 2.1d for the box definitions that are required to sort the context data.

Within Figure 2.1c, the logic is provided for organizing the testing sequence and report generation.
This includes the basic definitions that are required to begin the actual sorting operation. The sorting
process is continued within Figure 2.1d. In this example, the actual information organized by box
operation or box.options is sorted using the SortD function. This c-code example uses the traditional
functions and array scripts to perform this organization. The look and feel of the final output is

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

10

function BumpUp(box)
{
 for(var i=0; i<box.options.length; i++)
 {
 if(box.options[i].value == "")
 {
 for(var j=i; j<box.options.length-1; j++)
 {
 box.options[j].value = box.options[j+1].value;

box.options[j].text = box.options[j+1].text;
 }
 var ln = i;
 break;
 }
 }
 if(ln < box.options.length)
 {
 box.options.length -= 1;
 BumpUp(box);
 }
}
function SortD(box)
{
 var temp_opts = new Array();
 var temp = new Object(); var rm = "no";
for(var i=0; i<box.options.length; i++)
 {
 if ((box.options.length > 0) && (box.options[i].value != -1))
 {
 var temp_opts_entry = new Array();
 temp_opts_entry[0] = box.options[i].text;
 temp_opts_entry[1] = box.options[i].value;
 temp_opts[j] = temp_opts_entry;
 j += 1;
 }
 else
 rm = "yes";
 }
 for(var x=0; x<temp_opts.length-1; x++)
 {
 for(var y=(x+1); y<temp_opts.length; y++)
 {
 if(temp_opts[x][0] > temp_opts[y][0])
 {

temp = temp_opts[x];
temp_opts[x] = temp_opts[y];
temp_opts[y] = temp;

 }
 }
 }

 if (rm == "yes")
 box.options.length -= 1;

 for(var i=0; i<box.options.length; i++)
 {
 box.options[i].value = temp_opts[i][1];
 box.options[i].text = temp_opts[i][0];
 }
}
</script>');
end TwoLists;

Figure 2.1d: Ending the Two List Procedure. This example shows the final code that is required for
the sorting operation. This allows the user to organize the information in the GUI by ascending or
descending order and user defined index value.

defined within the loading of the cascade sheets procedure LoadCSS. This operating includes the
formatting and indexing requirements that form the basic output. Within this procedure, the font
substitutions are made to include the Russian Cyrillic fonts. As shown, the colors and labels may be
modified to meet the form requirements of the 12th Main Directorate.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

11

Procedure LoadCSS
is

Begin
htp.p('<style type="text/css">');

htp.p('
body {font-family:"Arial"; font-size:"9 pt"; color:Black; }
H1 {font-family:"Arial"; font-size:"20 pt"; color:Navy; }
H2 {font-size:"8 pt"; }
H3 {font-family:"Arial"; font-size:"10 pt"; color:Navy; }
H4 {font-family:"Arial"; font-size:"10 pt"; color:Red; }

P {}
TR {}
TD {color:black; font-size:"8 pt"; }

TH {font-family:"Arial"; font-size:"8 pt"; color:Navy; }
.fld {font-size:"8 pt"; color:Black; background-color:"#a0a0a0"; border:"White Thin";
padding:"2pt"; }
.val {font-size:"8 pt"; color:Black; background-color:"#000022"; margin-left:"0 pt";
margin-right:"0 pt"; border:"White Thin"; padding:"1 pt"; }

.tbsum {font-size:"8 pt"; color:White; background-color:"#064406"; border:"White Thin";
margin-left:"0 pt"; margin-right:"0 pt"; border:"White Thin"; padding:"1 pt"; }

.summ {font_size:"8 pt" color:NAVY; background-color:"#AACAFF"; text-align:"Center";
border:"White Thin"; padding:"1 pt"; margin-left:"0 pt"; margin-right:"0 pt";}

.sumr {font_size:"8 pt" color:NAVY; background-color:"#AACAFF"; text-align:"Right";
border:"White Thin"; padding:"1 pt"; margin-left:"0 pt"; margin-right:"0 pt";}
.tab {font-size:"8 pt"; text-align:"Center"; color:White; background-color:"#0000cc";
padding:"2 pt"; }
.reporttab {font-size:"7 pt"; text-align:"Center"; color:White; background-
color:"#000022"; padding:"2 pt"; }

a {color:navy; font-size:"8 pt";}
.fld {font-size:"8 pt"; color:NAVY; background-color:"#c8c8c8"; border:"White Thin";
padding:"2pt"; }
.fld2 {font-size:"10 pt"; color:WHITE; background-color:"#a0a0a0"; border:"White Thin";
padding:"2pt"; }

.val {font-size:"8 pt"; color:NAVY; background-color:"#c8c8c8"; margin-left:"0 pt";

margin-right:"0 pt"; border:"White Thin"; padding:"1 pt"; }
.hfld {font-size:"8 pt"; color:Navy; background-color:"#DFDFDF"; }

.hfldbold {font-size:"8 pt"; color:Navy; background-color:"#DFDFDF";font-weight:bold; }

.hfld2 {font-size:"10 pt"; color:Navy; background-color:"#DFDFDF"; }

.summ {font_size:"8 pt" color:NAVY; background-color:"#BFE6D0"; text-align:"Center";
border:"White Thin"; padding:"1 pt"; margin-left:"0 pt"; margin-right:"0 pt";}

.sumr {font_size:"8 pt" color:NAVY; background-color:"#BFE6D0"; text-align:"Right";
border:"White Thin"; padding:"1 pt"; margin-left:"0 pt"; margin-right:"0 pt";}
.hval {font-size:"8 pt"; color:Black; background-color:"#E6E6E6";
}

.litegray {font-size:"8.pt"; color:Black; background-color:"#ffffff";text-indent:"4 pt";
padding:"4pt";font-weight:bold; }
.lite {font-size:"8.pt"; color:Black; background-color:"#BFE6D0";text-indent:"4 pt";
padding:"4pt" }
.dark {font-size:"8 pt"; color:Black; background-color:"#A7C6CF";text-indent:"4 pt";
padding:"4pt" }

.litei {font-size:"8.pt"; color:Black; background-color:"#BFE6D0";text-indent:"4 pt";
padding:"4pt"; font-style:"italic"; }
.darki {font-size:"8 pt"; color:Black; background-color:"#A7C6CF";text-indent:"4 pt";
padding:"4pt"; font-style:"italic"; }

.litenp {font-size:"8.pt"; color:Black; background-color:"#BFE6D0";text-indent:"4 pt";}

.darknp {font-size:"8 pt"; color:Black; background-color:"#A7C6CF";text-indent:"4 pt"; }

.tab {font-size:"8 pt"; text-align:"center"; color:White; background-color:"#064406";
padding:"2 pt"; }

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

12

.tab2 {font-size:"8 pt"; text-align:"center"; color:White; background-color:"#066606";
padding:"2 pt"; }

.reporttab {font-size:"7 pt"; text-align:"Center"; color:White; background-
color:"#064406"; padding:"2 pt"; }

.plain {font-size:"8 pt"; color:Black; }

.plainbold {font-size:"8 pt"; font-weight:bold; color:Black; }

.navybold {font-size:"8 pt"; font-weight:bold;color:Navy; }

.navy {font-size:"8 pt";color:Navy; }

.plainboldtext {font-size:"8 pt"; font-weight:bold; color:Black; background-color:White; }

.plainboldtext_big {font-size:"10 pt"; font-weight:bold; color:Navy; background-
color:White; }

.plainwhite {font-size:"8 pt"; color:White; background-color:White; }

.menu {font-size:"8 pt"; text-align:"center"; alink:"#00ff00"; background-color:"#ffffff";
padding:"2 pt";}

.report {font-size:"8 pt"; color:Black; background-color:"#0000ff"; text-align:"Left"; }

.navybg {font-size:"8 pt"; color:White; background-color:"#000066"; text-align:"Center"; }

.sansa {
 font-family: Arial, Helvetica, sans-serif
 }
.sansb, .sansa small b, .sansa b small, small.sansa b, small b.sansa {
 font-family: "Myriad Web", Verdana, Helvetica, Arial, sans-serif
 }

.serifa {
 font-family: "Minion Web", Georgia, Palatino, "Times New Roman", serif
 }
 small.sansa,.sansa small {
 font-family: Helvetica, sans-serif
 }

 big.sansb,.sansb big {
 font-family: "Myriad Web", Tahoma, Verdana, Helvetica, Arial, sans-serif
 }
.min {
 font-size: 12px
 }

 #tree {
font-family: Verdana, Geneva, Arial, Helvetica, sans-serif;
font-size: 11px;

}

#tree img {
border: 0px;
width: 19px;
height: 16px;

}
#tree lnk{

color: blue;
text-decoration: underline;

}

');

htp.p('</style>');
End LoadCSS;

Figure 2.1e: The LoadCSS Procedure. The process completes the look-and-feel declarations. Note the
font declarations and form inputs that are used to customize the application for English and Russian.

The table entries are organized in ascending or descending order. However, the user may define
custom filters that are used to match specific cases and technical reports. The organization is required
to select case studies that comply with specific attestation or certification requirements. For example,
MOD may use this technique to extract all reports that comply with Gosgorteknadzor Standard GOS-
1456-02. This may be accomplished by parsing through all technical information in the LIMS that is

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

13

associated with the respective standard and then displaying these results within a custom report
sequence. The filter operation is shown in Figures 2.1f-h. The initial operations are shown in Figure
2.1f for the preliminary sorting characteristics. The logical code is extended in Figure 2.1g,h to include
context specific methods for sorting the data by string type and index value.

Procedure FilterTable is
Begin
htp.p('<script>
function _TF_trimWhitespace(txt) {

var strTmp = txt;
//trimming from the front
for (counter=0; counter<strTmp.length; counter++)

if (strTmp.charAt(counter) != " ")
break;

//trimming from the back
strTmp = strTmp.substring(counter,strTmp.length);
counter = strTmp.length - 1;
for (counter; counter>=0; counter--)

if (strTmp.charAt(counter) != " ")
break;

return strTmp.substring(0, counter+1);
}

function _TF_showAll(tb) {
for (i=0;i<tb.rows.length;i++)
{

tb.rows[i].style.display = "";
}

}

function _TF_shouldShow(type, con, val) {
var toshow=true;
if (type != null) type = type.toLowerCase();
switch (type)
{

case "item":
var strarray = val.split(",");
innershow = false;
for (ss=0;ss<strarray.length;ss++){

if (con==_TF_trimWhitespace(strarray[ss])){
innershow=true;
break;

}
}
if (innershow == false) toshow = false;

break
case "full":

if (val!=con) toshow = false;

break
 case "substring":

if (val.indexOf(con)<0) toshow = false;
break

default: //is "substring1" search
if (val.indexOf(con)!=0) //pattern must start from 1st char

toshow = false;
if (con.charAt(con.length-1) == " ")
{ //last char is a space, so lets do a full search as well

if (_TF_trimWhitespace(con) != val)
toshow = false;

else
toshow = true;

}
break

}
return toshow;

}

Figure 2.1f: The FilterTable Procedure (Step 1). The preliminary sorting process with case
declarations for the string search operation.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

14

function _TF_filterTable(tb, conditions) {
//given an array of conditions, lets search the table
for (i=0;i<tb.rows.length;i++)
{

var show = true;
var rw = tb.rows[i];
for (j=0;j<rw.cells.length;j++)
{

var cl = rw.cells[j];
for (k=0;k<conditions.length;k++)
{

var colKey = cl.getAttribute("TF_colKey");
if (colKey == null) //attribute not found

continue; //so lets not search on this cell.
if (conditions[k].name.toUpperCase() == colKey.toUpperCase())
{

var tbVal = cl.abbr;
var conVals = conditions[k].value;
if (conditions[k].single) //single value
{

show = _TF_shouldShow(conditions[k].type,
conditions[k].value, cl.abbr);

} else { //multiple values
for (l=0;l<conditions[k].value.length;l++)
{
innershow = _TF_shouldShow(conditions[k].type,

 conditions[k].value[l], cl.abbr);
if (innershow == true) break;

}

if (innershow == false)
show = false;

}
}

}
if (show == false)

break;
}
if (show == true)

tb.rows[i].style.display = "";
else

tb.rows[i].style.display = "none";
}

}

function TF_filterTable(tb, frm) {
var conditions = new Array();
if (frm.style.display == "none") //filtering is off

return _TF_showAll(tb);

var inputs = frm.tags("INPUT");
for (i=0;i<inputs.length;i++)
{ //looping thru all INPUT elements

if (inputs[i].getAttribute("TF_colKey") == null) //attribute not found
continue; //we assume that this input field is not for us

switch (inputs[i].type)
{

case "text":
case "hidden":

if(inputs[i].value != "")
{

index = conditions.length;
conditions[index].name =

 inputs[i].getAttribute("TF_colKey");
conditions[index].type =

 inputs[i].getAttribute("TF_searchType");
conditions[index].value = inputs[i].value;
conditions[index].single = true;

}
break

}
}

Figure 2.1g: The FilterTable Procedure (Step 2). The secondary sorting process with array
declarations for the string search operation.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

15

var inputs = frm.tags("SELECT");
//able to do multiple selection box
for (i=0;i<inputs.length;i++)
{ //looping thru all SELECT elements

if (inputs[i].getAttribute("TF_colKey") == null) //attribute not found
continue; //we assume that this input field is not for us

var opts = inputs[i].options;
var optsSelected = new Array();
for (intLoop=0; intLoop<opts.length; intLoop++)
{ //looping thru all OPTIONS elements

if (opts[intLoop].selected
&& (opts[intLoop].getAttribute("TF_not_used") == null))
{

index = optsSelected.length;
optsSelected[index] = opts[intLoop].value;

}
}
if (optsSelected.length > 0) //has selected items
{

index = conditions.length;
conditions[index] = new Object;
conditions[index].name = inputs[i].getAttribute("TF_colKey");
conditions[index].type = inputs[i].getAttribute("TF_searchType");
conditions[index].value = optsSelected;
conditions[index].single = false;

}
}
//ok, now that we have all the conditions, lets do the filtering proper
_TF_filterTable(tb, conditions);

}

function TF_enableFilter(tb, frm, val) {

if (val.checked) //filtering is on
{

frm.style.display = "";
} else { //filtering is off

frm.style.display = "none";
}
//refresh the table
TF_filterTable(tb, frm);

}

function _TF_get_value(input) {
switch (input.type)

{
case "text":

 return input.value;
break
case "select-one":

if (input.selectedIndex > -1) //has value
return input.options(input.selectedIndex).value;

else
return "";

break;
}

}

//util function that concat two input fields and set the result in the third
function TF_concat_and_set(salText, salSelect, salHidden) {

var valLeft = _TF_get_value(salText);
var valRight = _TF_get_value(salSelect);
salHidden.value = valLeft + valRight;

}
</script>

');

end;

Figure 2.1h: The FilterTable Procedure (Step 3). The final sorting process with the assignments shown
by condition index.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

16

Procedure TableSums
Is begin
htp.p('<script>
function CommaFormatted(amount)
{
var delimiter = ","; // replace comma if desired
var a = amount; var i = parseInt(a);
if(isNaN(i)) { return ""; }
var minus = "";
if(i < 0) { minus = "-"; }
i = Math.abs(i);
var n = new String(i); var a = [];
while(n.length > 3)
{
var nn = n.substr(n.length-3);
a.unshift(nn); n = n.substr(0,n.length-3);
}
if(n.length > 0) { a.unshift(n); }
n = a.join(delimiter);
amount = n; amount = minus + amount;
return amount;
}
// end of function CommaFormatted()

 function addCurrency(strValue) {
 var objRegExp =new RegExp("/-?[0-9]");
 strValue = CommaFormatted(strValue);
 return "$" + strValue;
}

function TableSums(tb){
var nCols=tb.rows[0].cells.length;
var columnTotals=new Array(nCols);
for (z=0;z<nCols;z++) {columnTotals[z]=0;}
for (i=0;i<tb.rows.length-2;i++)
{
 var rw = tb.rows[i];
 if (tb.rows[i].style.display == "")
 {
 for (j=0;j<rw.cells.length;j++)
 {
 var cl= rw.cells[j]; //alert(cl.abbr);
 var sumKey = cl.getAttribute("tbSum");
 if (sumKey==null) continue;
 var tbVal = cl.abbr;

 if (i==0){
 columnTotal[j]=new Number(0);

 }
 else{

 if (sumKey=="C")
 {

 columnTotals[j]=0;

 }
 else

 {
 columnTotals[j]=parseInt(columnTotals[j])+parseInt(tbVal);

 //alert(columnTotals[j]);
 }

 }
 }
 }
 }
 var rw = tb.rows[tb.rows.length-2];

 for (j=0;j<rw.cells.length;j++)
 { //alert(rw.cells[j].innerHTML);
 if (columnTotals[j]!=0)
 { var currValue = addCurrency(columnTotals[j]);

rw.cells[j].innerHTML = currValue;}
 }

}
</script>');
end tableSums;

Figure 2.1i: The TableSums Procedure. The algorithms are used to support the arithmetic for certain
table elements. The arithmetic sum is created and applied to specific linked operations.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

17

Following the filter operations, the procedure TableSums is used to total numeric columns in the final
MOD report. If a report field is numeric, and labeled as a column to be summed, the report generator
automatically places a formatted column total at the bottom of the report. The algorithm is provided
in Figure 2.1i. The function urlencode takes the string parameter p_str and returns an argument where
all non-alphanumerical characters, such as spaces, tabs, and special characters, have been replaced
with their hexadecimal equivalents in the form %xx. This is necessary when special characters are
required in a URL. This is also required for the parsing of labels in the Russian Cyrillic Font. The
urlencod algorithm is shown in Figure 2.1j.

function urlencode(p_str in varchar2) return varchar2 is
 l_tmp varchar2(6000); l_hex varchar2(16) default '0123456789ABCDEF'; l_num
number; l_bad

 varchar2(100) default ' >%}\~];?@&<#{|^[`/:=$+''"'; l_char char(1);
 begin
 l_bad:=l_bad||chr(16);
 if p_str is null then return null; end if;
 for i in 1 .. length(p_str) loop l_char := substr(p_str, i, 1); if

instr(l_bad, l_char) > 0 then
 l_num := ascii(l_char); l_tmp := l_tmp || '%' || substr(l_hex, mod(trunc

(l_num / 16), 16) + 1, 1)
 || substr(l_hex, mod(l_num, 16) + 1, 1); else l_tmp := l_tmp || l_char; end

if; end loop;
 return l_tmp;

end urlencode;

END;
/

Figure 2.1j: The Urlencode Function. The algorithms are used to support hexadecimal equivalents
and specialized character functions in English and Russian Cyrillic Languages.

This xls procedure enables the application to load the custom report directly into Microsoft Excel. The
application accepts an SQL statement querybuild3 as a parameter. This statement is parsed, executed
and read into an Excel spreadsheet by modifying the mime_header property. This procedure is also
used in the LIMS data I/O functions. In particular this algorithm is applied to all tab delimited data
that is stored in an ASCII format prior to data analysis. A modified form of this procedure is used to
support the Leica data transfer for the Inverted Microscope System DM-IR (MEF4M) and the Vickers
(Sony) MHT-10 Image Processing System. This allows the user to place data in specific Excel fields
and place images (from the microscope system) directly below the data spreadsheet. The initial
declarations for the xls procedure are shown in Figure 2.1k. The main algorithm is provided in Figure
2.1l.

procedure xls(querybuild3 in clob Default null,
 keepfirst in varchar2 default null)

is
 p_separator varchar2(10) default ',';
 l_theCursor integer default dbms_sql.open_cursor;
 l_columnValue varchar2(6000);
 l_status integer;
 l_colCnt number default 0;
 l_separator varchar2(10) default '';
 l_cnt number default 0;
 querybuild clob;
 g_desc_t dbms_sql.desc_tab;

begin

Figure 2.1k: The xls Procedure for Moving Data into Excel. The main declarations are shown in this
example. The execution statements are provided in Figure 2.1l.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

18

 querybuild:=utl_url.unescape(querybuild3);
 dbms_sql.parse(l_theCursor, ''||querybuild||'' , dbms_sql.native);

 owa_util.mime_header('application/vnd.ms-excel', false);

 htp.p('Content-Disposition: attachment; filename="ReportOutput.xls"');

owa_util.http_header_close;
 for i in 1 .. 255 loop
 begin
 dbms_sql.define_column(l_theCursor, i,
 l_columnValue, 6000);
 l_colCnt := i;
 exception
 when others then
 if (sqlcode = -1007) then exit;
 else
 raise;
 end if;
 end;
 end loop;

htp.p('<table border=1>');

 dbms_sql.define_column(l_theCursor, 1, l_columnValue,
 6000);

dbms_sql.describe_columns(l_theCursor, l_colcnt, g_desc_t);
 htp.p('<thead>');

htp.p('<tr>');
 for i in 1 .. g_desc_t.count loop

 if upper(KeepFirst)='Y' then
 htp.prn('<td>'||g_desc_t(i).col_name||'</td>');

 else
 htp.prn('<td>'||substr(g_desc_t(i).col_name,2,

 length(g_desc_t(i).col_name)-1)||'</td>');
 end if;

 if i=g_desc_t.count then
 htp.p('</tr></thead>');
 end if;
end loop;
htp.p('<tbody>');

 l_status := dbms_sql.execute(l_theCursor);
 loop
 exit when (dbms_sql.fetch_rows(l_theCursor) <= 0);
 l_separator := '';

htp.p('<tr>');
 for i in 1 .. l_colCnt loop
 dbms_sql.column_value(l_theCursor, i,
 l_columnValue);
 htp.prn('<td>'||l_columnValue||'</td>');
 l_separator := p_separator;
 end loop;
 htp.p('</tr>');
 l_cnt := l_cnt+1;
 end loop;
 dbms_sql.close_cursor(l_theCursor);
 htp.p('</tbody></table>');

htp.p('</ss:Worksheet>');

end xls;

END;
/

Figure 2.1l: The xls Procedure for Moving Data into Excel. The main algorithm and database
execution statements.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

19

2.2 Main Execution Procedures

The report builder begins with the main event loop and primary execution statements. The main
procedures are shown as:

CREATE OR REPLACE PACKAGE Reports AS

Procedure ReportBuilderBody(report_type in varchar2 default 'project2');
 Procedure ReportBuilder_Save(Name_Array in owa_util.ident_arr , Value_array in
owa_util.vc_arr);
 Procedure ReportBuilder_Filter(filterName in number default null, report_type in
varchar2 default 'project2');
 Procedure Preview_Report(Name_Array in owa_util.ident_arr , Value_Array in
owa_util.ident_arr);
 Procedure Show_Custom_Report(report_id in number);

END Reports;
/

The initial algorithm ReportBuilderBody is the starting point for the event sequence. It accepts a
parameter report_type with a default project2. This parameter specifies the report_sql code that the
application is using. Modifying this parameter would enable the application to construct reports
based on different requirements or multiple database tables. The parameter the report_sql code is
passed into this procedure by the CTD LIMS and the CTD materials database. As a result, custom
reports are generated by the LIMS using this algorithm to match the technical requirements for the
certification.

The procedure simply sets up the body of the user interface to enable the user to choose options
regarding the layout and storage of the report. The declarations are shown as:

Procedure ReportBuilderBody (report_type in varchar2 default 'project2')
is

 stmt clob;
 stmt3 varchar2(4000);
 l_theCursor integer default dbms_sql.open_cursor;
 l_columnValue varchar2(4000) default null;
 l_colCnt number default 0;
 l_descTbl dbms_sql.desc_tab;
 type gCursorType is ref cursor;
 gCursor gCursorType;
 text_role varchar2(100);
 the_uname varchar2(100);
 user_role number;
 stmt2 varchar2(1000);
 rept_name varchar2(100);
 rept_id number;
 type iCursorType is Ref Cursor;
 iCursor iCursorType;

begin

Following the initialization of the variables stmt to iCursor, the stmt3 statement is issued to create the
drop down box of available reports. The query populates the drop down and gives the user the ability
to retrieve any report that has previously been saved. The assignment is shown in Figure 2.2a with
various formatting requirements. The dbms fields are used to select the SQL code stored in lab_reports
and report_type. From this information the list of available table columns is populated.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

20

stmt3:='SELECT REPORT_NAME,REPORT_ID FROM LAB_CUSTOM_REPORTS';
htp.p('

<table width=440 border=0>

<td></td>

<td align=left>12th Main
Directorate</td>

</tr><tr>
<td align=center colspan=2><font size="4" face="verdana,arial,times"
color="#000066">Laboratory Information Management System</td>
</tr><tr>
</tr></table>
');

select report_sql into stmt from lab_reports where report_name=report_type;

 l_theCursor:= dbms_sql.open_cursor;

dbms_sql.parse(l_theCursor,stmt,dbms_sql.native);
dbms_sql.describe_columns(l_theCursor, l_colCnt, l_descTbl);

 for i in 1 .. l_colCnt loop

 begin
 dbms_sql.define_column(l_theCursor, i,
 l_columnValue, 2000);
 exception
 when others then
 if (sqlcode = -1007) then exit;
 else
 raise;
 end if;
 end;
 end loop;

 dbms_sql.define_column(l_theCursor, 1,
 l_columnValue, 4000);

 REPORT_utility.TwoLists;
 REPORT_utility.loadcss;

Figure 2.2a: Creating the Pop-Down Menus for the GUI and Initializing the Fields. The algorithm
includes the special exceptions that are required to trap error codes and unusual events.

When the page is loaded, the procedures contained in Figure 2.2b-d are called. These procedures
construct and operate the lists at the top of the GUI main dialog and support basic window
management functions. In addition, they provide the functionality to move items between the lists
and modify the order in the selected column. The procedure shown in Figure 2.2b manages the main
movement of lists between pop-up (or pop-down) menus, whereas, the algorithms shown in Figure
2.2c-d are required to initialize and support the creation of a new window (as required) to display and
support the information that is used during the analysis process. In Figure 2.2b, the
Show_Custom_Report is called with a report_id selected by the analyst or the certification agency. The
procedures shown in Figure 2.2c-d are shown in two sections to simplify the case example.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

21

htp.p('<body onLoad="SortD(document.aform.list1);">');
htp.p('<script>
function fnMoveUpDown(oSelect, blnUp) {
if (blnUp) {
if (oSelect.selectedIndex > 0)
oSelect.children(oSelect.selectedIndex).swapNode
(oSelect.children(oSelect.selectedIndex - 1));
}}
else {
if (oSelect.selectedIndex < (oSelect.options.length - 1)) {
oSelect.children(oSelect.selectedIndex).swapNode
(oSelect.children(oSelect.selectedIndex + 1));
}}}
 function doPreview(oSelect) {
 //alert(oSelect.options.length);

 for (i=0;i<oSelect.options.length;i++)
 {
 oSelect.options[i].selected=true;
 //alert(oSelect.options[i].selected);

 }

 for (i=0;i<oSelect.options.length;i++)
 {

 if (oSelect.options[i].selected==true)
 {
 //alert(oSelect.options[i].value);
 }

 }

 document.aform.reportname.disabled=false;
 //document.aform.savereport.disabled=false;
 document.aform.rt.disabled=false;
 for (var b = 0; b < document.aform.rt.length; b++)

 document.aform.rt[b].disabled = false;
 document.all.thetext.style.color="white";
 document.aform.action="!reports.preview_report";
 document.aform.report_sql.value="";
 document.aform.submit();

 }
 function setPreview(oSelect) {

 if ((oSelect.options.length=="1")&&(oSelect.options[0].value=="-1"))
 {

 document.aform.previewreport.disabled=true;
 document.aform.reportname.disabled=true;
 document.aform.savereport.disabled=true;
 document.aform.rt.disabled=true;
 for (var b = 0; b < document.aform.rt.length; b++)

 document.aform.rt[b].disabled = true;
 document.all.thetext.style.color="gray";
}
else

 {
 document.aform.previewreport.disabled=false;

 document.aform.reportname.disabled=true;
 document.aform.savereport.disabled=true;
 document.aform.rt.disabled=true;
 document.all.thetext.style.color="gray";
 for (var b = 0; b < document.aform.rt.length; b++)

 document.aform.rt[b].disabled = true;
 }}
 function checkSave() {
 if ((document.aform.reportname.value.length==0)||(document.aform.rt.checked==false)){
 document.aform.savereport.disabled=true;
 }
 else {

document.aform.savereport.disabled=false;
}

}

Figure 2.2b: Graphical Procedures for Moving Data. These algorithms support the drag-and-drop
movements for data fields that operate within the GUI. The setPreview function is used to display the
preview result to the operator during the edit process.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

22

function getReport(reportid){

myWindow=window.open("reports.Show_Custom_Report?report_id="+reportid,"myWindow",
"toolbar=no,location=no,scrollbars=no,status=yes,resizable=yes,location=no,toolbar=no,widt
h=500,height=550,top=10,left=10,screeny=25,screenx=50\"");
}

</script>

<style type="text/css">
 .graytext {color:gray;}
 .normaltext {color:white;}
 </style>
 ');

 htp.p('<form
 name="aform" method="post" action="reports.reportbuilder_save" target="preview">');

 htp.p('<table class=tab border=1>');

 htp.p('<tr><td class="tab">Testing Sequence</td><td>
</td>');
 htp.p('<td class=tab>Report Generation</td><td>
</td></tr>');
 htp.p('<td class="tab"><SELECT style="font-family: Tahoma; font-size:

 7pt;width:185px;" size="10" name="list1" multiple> ');

 for i in 1 .. l_colCnt
 loop
 htp.p('<option

 value="'||i||'">'||substr(l_descTbl(i).col_name,2,
length(l_descTbl(i).col_name)-1)||'</option>');

 end loop;
htp.p('</select></td>');

htp.p('<td><p>');
 htp.p('<input type="button" value=">" size="10"
 onClick="move(this.form.list1,this.form.list2);setPreview(this.form.list2);
 " name="B2">');
 htp.p('</p><p>');

 htp.p('<INPUT TYPE="button" VALUE="<" SIZE="10"
 onClick="move(this.form.list2,this.form.list1);setPreview(this.form.list2);"
 NAME="B1">');
 htp.p('</p></td>');

 htp.p('<td class="tab" style="text-align:left;">');
 htp.p('<SELECT style="font-family: Tahoma; font-size: 7pt;width:185px;"

 size="10" name="list2" multiple > ');
 htp.p('<option value="-1">******None Selected*****</option>');

 htp.p('</select></td><td style="text-align:left; font-family: Tahoma;
 font-size: 7pt;" >');

 htp.p('<p><input type="button" value="+" size="7"
 onClick="fnMoveUpDown(this.form.list2,true);setPreview(this.form.list2);"
 name="B2"></p>');
 htp.p('<p><input type="button" value="-" size="7"
 onClick="fnMoveUpDown(this.form.list2,false);setPreview(this.form.list2);"
 name="B2"></p>');

 htp.p('<input type=hidden name="report_type" value="'||report_type||'">');
 htp.p('</td></tr>');
 htp.p('<tr><td class="tab">Filter: <SELECT style="font-family: Tahoma; font-size:

 7pt;" size="1" name="filter" width="80%"
onChange="document.all(''filterValue'').src=
''reports.reportbuilder_filter?filtername='
'+this.options[this.selectedIndex].value"> ');

Figure 2.2c: Graphical Procedures for Creating the Preview Window (Part 1). These algorithms
support the initial declarations and the look-and-feel operations for the preview window.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

23

 htp.p('<option value="-1">None</option>');
 for i in 1 .. l_colCnt
 loop
 if substr(l_descTbl(i).col_name,1,1)='f'then
 htp.p('<option

 value="'||i||'">'||substr(l_descTbl(i).col_name,2,length
 (l_descTbl(i).col_name)-1)||'</option>');

 end if;
 end loop;

htp.p('</select></td>');
htp.p('<td class="tab">=</td>');
htp.p('<td class="tab" style="text-align:left;" nowrap><iframe marginheight=0

 marginwidth=0 width=180 height=25 name="filterValue" frameborder=0
 scrolling=no
 src="reports.reportbuilder_filter"></iframe></td><td>
</td></tr>');

htp.p('<tr><td class="tab">Sort: <SELECT style="font-family: Tahoma; font-size:
 7pt;" size="1" name="sort" width="80%" > ');

 htp.p('<option value="-1">None</option>');

 for i in 1 .. l_colCnt
 loop
 htp.p('<option

value="'||i||'">'||substr(l_descTbl(i).col_name,2,length
(l_descTbl(i).col_name)-1)||'</option>');

 end loop;

 htp.p('</select></td>');
 htp.p('<td class="tab">
</td>');

htp.p('<td class="tab" style="text-align:left;">Order: <SELECT style="font-
family: Tahoma; font-size: 7pt;" size="1" name="sortorder" width="80%" > ');

 htp.p('<option value="asc">Ascending</option>');
htp.p('<option value="desc">Descending</option>');
htp.p('</td><td>
</td></tr>');

htp.p('</td></tr><tr><td class="tab"><input disabled name="previewreport"
type=button value="Preview Report" onClick="doPreview(this.form.list2);">');

 open iCursor for stmt3;
 htp.p('

Available Saved Reports:
<SELECT

style="font-family: Tahoma; font-
size: 7pt;" size="1" name="cus_rept" width="80%"
onChange="getReport(this.options[this.selectedIndex].value);" >');
htp.p('<option value="">Select Report</option>');
 loop
 fetch iCursor into rept_name,rept_id;
 exit when iCursor%notFound;
 htp.p('<option value="'||rept_id||'">'||rept_name||'</option>');
 end loop;
 close iCursor;
htp.p('</select></td><td>
</td>');

htp.p('<td class=tab style="text-align:left; font-family:
Tahoma; font-size: 7pt;">
Save Report As:
<input width=50 disabled type=text onKeyUp="checkSave();"
name="reportname" value="">
');
htp.p('<input name="rt" disabled id="rt" type="radio" value="user" checked
htp.p('<td>
</td></tr></table>');

htp.p('<iframe class="panel" frameborder=0 style="top:505; height:180;
visibility:visible;" id="preview" name="preview"
src="report_utility.donothing"></iframe>');
htp.p('<input type=hidden name="filterresult" value=""><input type=hidden
name="report_sql" value=""</form>');

 htp.p('<style>
 . panel{
 position: absolute; align: left; top: 100; left: 0; width: 100%;
 z-index:-1; height: 325; visibility: hidden; font: 12pt Verdana,sans-serif;
 color: navy; border-style: none; margin: 0; padding: 0; overflow: none;
 frameborder: 0; marginheight: 0; marginwidth: 0; border:0; hspace:0;
 vspace:0; scrolling: no;
 }
 </style>');
end reportbuilderbody;

Figure 2.2d: Graphical Procedures for Creating the Preview Window (Part 2). These algorithms
support the final declarations for the preview window. The Panel operation is required to determine
the size and position of the window based upon the preferences of MOD.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

24

The ReportBuilder_Filter procedure constructs the filter values that appear in the drop-down box
labeled Value. The report is passed the parameter filterName by the drop-down box labeled Filter. The
filterName parameter represents a number that corresponds to the filter identification code (generated
within the LIMS or the CTD materials database). When the Filter value changes, the procedure

Procedure ReportBuilder_Filter(filterName in number default null, report_type in varchar2
default 'project2')

is
stmt varchar2(4000);
stmt3 varchar2(4000);
fromstmt varchar2(4000);
stmt_use varchar2(4000);
type selectColType is varray(4000) of varchar2(4000);
displayCol selectColType:=SelectColType();
type gcursor_type is ref cursor;
gcursor gcursor_type;
the_value varchar2(4000);
l_theCursor integer default dbms_sql.open_cursor;
l_columnValue varchar2(4000) default null;
l_colCnt number default 0;
l_descTbl dbms_sql.desc_tab;
x number;

begin
 REPORT_utility.loadcss;

 select report_sql into stmt from lab_reports where report_name=report_type;
 stmt3:=stmt;

x:=1;
displayCol.extend;
displayCol(x):=substr(stmt,instr(lower(stmt),'select ')+7,(instr(lower(stmt),'",')-

instr(lower(stmt),'select '))-6);
while (instr(lower(stmt),'",',1,x)>0)

 loop
 stmt3:=replace(stmt3,substr(stmt3,instr(lower(stmt3),' as '),(instr(stmt3,'"',1,2)-

 instr(lower(stmt3),' as ')+1)));
 x:=x+1;
 displayCol.extend;
 displayCol(x):=substr(stmt,instr(lower(stmt),'",',1,x-1)+3,(instr(lower(stmt),'",'

 ,1,x)-instr(lower(stmt),'",',1,x-1))-2);
end loop;
if instr(stmt3,'order by ')>0 then
 htp.p(x||' - '||instr(lower(stmt3),' order by ')||'
');

 htp.p(x||' - '||(length(stmt3)-instr(lower(stmt3),' order by '))||'
');
end if;

 fromStmt:= substr(stmt3,instr(lower(stmt3),'from '),((length(stmt3)+1)-
instr(lower(stmt3),'from ')));

if ((filterName is not NULL) and (filterName<>-1)) then
 stmt_use:='select distinct ';

 stmt_use:=stmt_use||displayCol(filterName);
 stmt_use:=stmt_use || ' '|| fromstmt;
end if;
htp.p('<body class="tab" style="font-family: Tahoma; font-size: 7pt; text-align:left;"
topmargin=0 leftmargin=0 marginwidth=0 marginheight=0>');
htp.p('Value: <SELECT style="font-family: Tahoma; font-size: 7pt;" size="1"
name="filter" width="80%"
onChange="parent.document.aform.filterresult.value=this.options[this.selectedIndex].val
ue"> ');

 htp.p('<option value="">None</option>');
 if ((filterName is not NULL) and (filterName<>-1)) then
 open gCursor for stmt_use;
 loop
 fetch gCursor into the_value;

 exit when gCursor%NotFound;
 htp.p('<option value="'||the_value||'">'||substr(the_Value,1,20)||'</option>');
 end loop;
 end if;
 htp.p('</select>');
end;

Figure 2.2e: The ReportBuilder_Filter Procedure. These algorithms are used to develop the filters that
are displayed as options in the graphical user interface.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

25

returns a list of values that are associated with the selected filter field and then populates the drop
down box with values that correspond to the filter request. The algorithm is shown in Figure 2.2e.
Within this example, the report_sql procedure is used to select the SQL statement associated with the
application report_type . From this selected information, the values associated with the filter names are
generated and displayed on the interface. This gives the user the ability to filter the data to remove
unwanted information. The final report is placed within the ReportBuilder_Save procedure for archive
and storage of the metadata records. This algorithm is shown in Figure 2.2f.

Procedure ReportBuilder_Save(Name_Array in owa_util.ident_arr , Value_array in
owa_util.vc_arr)
is
 report_type varchar2(100);
 theColumns varchar2(2000);
 theValues varchar2(2000);
 useCols int_array:=int_array();
 x integer;
 savefor varchar2(100);
 report_name varchar2(100);
 the_uname varchar2(100);
 user_role number;
 stmt varchar2(1000);
 full_username varchar2(100);
 report_sql clob;
 type iCursorType is Ref Cursor;
 iCursor iCursorType;
begin

x:=1;
for i in name_array.first..name_array.last
loop

 if name_array(i)='list2' then
 useCols.extend;
 useCols(x):=value_array(i);
 x:=x+1;
end if;

if name_array(i)='report_type' then
 report_type:=value_array(i);
end if;
if name_array(i)='rt' then
 savefor:=value_array(i);
end if;
if name_array(i)='reportname' then
 report_name:=value_array(i);
end if;
if name_array(i)='report_sql' then
 report_sql:=utl_url.unescape(utl_url.unescape(value_array(i)));
end if;

 end loop;

stmt:='INSERT INTO lab_custom_reports
 (username, priv_code, created, available_to, report_name, base_report,

report_id, report_sql)
execute immediate stmt using the_uname, user_role, sysdate, savefor, report_name,

 report_type, report_sql;
commit;

stmt:='select full_name from users_tbl where username=:the_uname';
open iCursor for stmt using the_uname;
fetch iCursor into full_username;
close iCursor;
htp.p('
Report '||report_name||' created on '||to_char(sysdate,

 'DD-MON-YYYY HH24:MI')||'');
end;

Figure 2.2f: The ReportBuilder_Save procedure. These algorithms are used to archive the SQL
statements that issued the report. The statements include the metadata records for MOD chain-of-
custody operations.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

26

The ReportBuilder_Save procedure is used to archive the SQL statement that generated the final user
report. Since the final statement operates with the RDBMS, this may be used to create the original
report provided the database has not changed since the initial execution. For archived information,
the ReportBuilder_Save procedure will normally display the exact same information with a notation
(metadata record) that indicates when the original analysis report was generated. If the report differs
from the original published material, the diff function may be used to identify the source of the
deviation. The ReportBuilder_Save procedure accepts flexible input parameters such as html forms with
a variable number of parameters per query. Procedures called using flexible parameters are prefixed
with an exclamation mark (!) in the URL. This indicates that the parameters that follow will be two
arrays, a name_array and a value_array.

The Preview_Report procedure is used to construct an SQL statement from the flexible parameter
arrays passed to it when the Preview Report button is selected. From this statement the procedure
constructs a table for the user to review before saving the report to the file system. The specific
operations are shown in Figure 2.2g-i. The declarations for the preview reporting operation is shown
as:

Procedure Preview_Report(Name_Array in owa_util.ident_arr ,
 Value_array in owa_util.ident_arr)

 is

 stmt clob default null;
 stmt2 clob default null;
 stmt3 clob default null;
 stmt4 varchar2(14000) default null;
 fromStmt clob default null;

 l_theCursor integer default dbms_sql.open_cursor;
 l_columnValue varchar2(4000) default null;
 l_colCnt number default 0;
 l_descTbl dbms_sql.desc_tab;
 ret number;
 x number;
 test varchar2(10) default '10';
 coltype varchar2(4000);
 tempchar varchar2(4000);
 typeselectColType is varray(4000) of varchar2(4000);
 selectCol selectColtype:=selectColType();
 displayCol selectColType:=selectColType();
 selectVal varchar2(4000);
 type iCursorType is ref cursor;
 iCursor iCursorType;
 theColType varchar2(4000);
 do_drilldown varchar2(4000);
 startVal number;
 uniq_id number;
 keyfield varchar2(4000);
 i number;
 name varchar2(4000);
 theColumns varchar2(4000);
 theValues varchar2(4000);
 type useColType is varray(4000) of integer;
 useCols useColtype:=useColType();
 stmt_use varchar2(4000);
 filter number;
 filterValue varchar2(4000);
 sort number;
 sortOrder varchar2(4000);
 sortPresent boolean;

 Begin

The Preview_Report requires a considerable number of arrays to hold the SQL statements and archived
information. The actual processing begins with the management of the value_arrays that store filters
and instrument references:

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

27

for i in name_array.first..name_array.last loop

if name_array(i)='list2' then
 useCols.extend;
 useCols(x):=value_array(i);
 x:=x+1;
end if;

if name_array(i)='report_type' then
 name:=value_array(i);
end if;

if name_array(i)='filterresult' then
 filterValue:=value_array(i);
end if;

if name_array(i)='filter' then
 filter:=value_array(i);
end if;

if name_array(i)='sortorder' then
 sortorder:=value_array(i);
end if;

if name_array(i)='sort' then
 sort:=value_array(i);
end if;

select report_sql into stmt from lab_reports where report_name=NAME;

stmt3:= stmt;
x:=1;
selectCol.extend;
selectCol(x):= substr(stmt,instr(lower(stmt),'select ')+7,

(instr(lower(stmt),' as ')-instr(lower(stmt),'select '))-7);

displayCol.extend;
displayCol(x):=substr(stmt,instr(lower(stmt),'select ')+7,

(instr(lower(stmt),'",')-instr(lower(stmt),'select '))-6);
--htp.p(displayCol(x)||'
');
while (instr(lower(stmt),'",',1,x)>0)

 loop
 --htp.p(selectCol(x)||'
');
 stmt3:=replace(stmt3,substr(stmt3,instr(lower(stmt3),'

as '),(instr(stmt3,'"',1,2)-instr(lower(stmt3),' as ')+1)));
x:=x+1;

selectCol.extend;
 selectCol(x):=substr(stmt,instr(lower(stmt),'",',1,x-1)+3,(instr(lower(stmt),'

 as ',1,x)-instr(lower(stmt),'",',1,x-1))-3);

 displayCol.extend;
 displayCol(x):=substr(stmt,instr(lower(stmt),'",',1,x-1)+3,

(instr(lower(stmt),'",' ,1,x)-instr(lower(stmt),'",',1,x-1))-2);

 --htp.p(displayCol(x)||'
');
-- htp.p(x||' - '||stmt3||'
');
--
-- htp.p(x||' - '||instr(lower(stmt3),' as ')||'
');
-- htp.p(x||' - '||(instr(stmt3,'"',1,2)-instr(lower(stmt3),' as '))||'
');
 if x=50 then exit;
 end if;

end loop;
if instr(stmt3,'order by ')>0 then
 stmt3:=replace(stmt3,substr(stmt3,instr(lower(stmt3),'order by '),(length(stmt3)-

instr(lower(stmt3),'order by '))));
-- htp.p(x||' - '||instr(lower(stmt3),' order by ')||'
');
-- htp.p(x||' - '||(length(stmt3)-instr(lower(stmt3),' order by '))||'
');
-- htp.p(stmt3||'
');

end if;
 fromStmt:= substr(stmt3,instr(lower(stmt3),'from '),((length(stmt3)+1)-
instr(lower(stmt3),'from ')));

Figure 2.2g: The Preview_Report Procedure (Step 1). These algorithms are used to organize the digital
information, by array format, prior to the actual display sequence.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

28

if filter>-1 then
 fromStmt:=fromStmt || ' and '||selectCol(filter)||' = '''||filtervalue||'''';
end if;

sortPresent:=false;

if sort>-1 then
 for i in useCols.first..useCols.last
 loop
 if useCols(i)=sort then

 sortPresent:=True;
 end if;
 end loop;
 if Not SortPresent then
 useCols.extend;
 useCols(useCols.last):=sort;
 end if;
end if;

stmt_use:='select distinct ';
 for i in useCols.first..useCols.last
 loop

 stmt_use:=stmt_use||displayCol(useCols(i))||', ';
end loop;
stmt_use:=substr(stmt_use,1,length(stmt_use)-2);
stmt_use:=stmt_use || ' '|| fromstmt;

if sort>-1 then
 stmt_use:=stmt_use || ' order by '||selectCol(sort)||' '||sortorder;
end if;

Report_utility.loadcss;
Report_utility.FilterTable;
Report_utility.TableSums;

htp.p('<form name="filter" onsubmit="TF_filterTable(reportTable,filter);return
false" onReset="_TF_ShowAll(reportTable)">');

l_theCursor:= dbms_sql.open_cursor;

dbms_sql.parse(l_theCursor,stmt_use,dbms_sql.native);
dbms_sql.describe_columns(l_theCursor, l_colCnt, l_descTbl);

 for i in 1 .. l_colCnt loop
 begin
 dbms_sql.define_column(l_theCursor, i,
 l_columnValue, 2000);
 exception
 when others then
 if (sqlcode = -1007) then exit;
 else
 raise;
 end if;
 end;
 end loop;

 dbms_sql.define_column(l_theCursor, 1,
 l_columnValue, 4000);

 htp.p('<BODY
onLoad="parent.document.aform.report_sql.value='''||utl_url.escape
((report_utility.urlencode(stmt_use)))||''';TableSums(reportTable);">');

 htp.p('<TABLE id="reportTable" style="behavior:url(tableAct.htc);BORDER:
black 1px solid; WIDTH: 70%; font-size : 7pt; background-color:#bbd6bb;"

 borderColor=#999999 cellSpacing="0" cellPadding="0" border=1
dragcolor=''gray'' slcolor=#88ff88 hlcolor=#eeeecc >');

Figure 2.2h: The Preview_Report Procedure (Step 2). These algorithms are used to perform the main
database parsing operations with preliminary cursors.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

29

 ret:= dbms_sql.Execute(l_theCursor);
 do_drilldown:='F';

 loop
 if x=0 then
 htp.p('<THEAD>');

 htp.p('<TR class=reporttab>');
 for i in 1..l_colCnt

 loop
 htp.p('<td width=80 align="center" class=tab

style="font-family: Tahoma; font-size: 7pt;">');
coltype:=upper(substr(l_descTbl(i).col_name,1,1));
if coltype='F' then
 htp.p('<select style="font-family: Tahoma; font-size:
 7pt;" TF_searchType="full"
 TF_colKey="'||substr(l_descTbl(i).col_name,2,
 length(l_descTbl(i).col_name)-1)||'"
 onChange="TF_filterTable(reportTable,filter);
 TableSums(reportTable);">');

 htp.p('<option SELECTED TF_not_used
 value="">'||substr(l_descTbl(i).col_name,2,
 length(l_descTbl(i).col_name)-1)||'</option>');

 htp.p('<option value="0">Blanks</option>');
 stmt4:='select distinct '||selectCol(useCols(i))||',
 substr(dump('||selectCol(useCols(i))||'),5,2)'||fromstmt;
 open iCursor for stmt4;

 loop
 fetch iCursor into selectVal, theColType;

 exit when iCursor%NotFound;
 case theColType

 when '12' then htp.p('<option
 else htp.p('<option value='||selectVal||'>'

 ||substr(selectVal,1,20)||'</option>');
 end case;

 end loop;

 close iCursor;
 htp.p('</select>');
else
htp.p(substr(l_descTbl(i).col_name,2,

 length(l_descTbl(i).col_name)-1));
end if;
htp.p('</td>');

 end loop;
 htp.p(' </TR></THEAD> '); htp.p('<TBODY>');
 end if;
 if (dbms_sql.FETCH_ROWS(l_theCursor))>0 then
 x:=x+1;

 htp.p('<tr >');

 for i in 1..l_colCnt
loop

 dbms_sql.COLUMN_VALUE(l_theCursor,i,l_columnValue);
 coltype:=upper(substr(l_descTbl(i).col_name,1,1));
 --htp.p('ColType = '||coltype||'
');
 case coltype
 when 'C' then

 if l_columnValue is NULL then
 htp.p('<td tbSum="S"
 else

htp.p('<td tbSum="S"
TF_colKey="'||substr(l_descTbl(i).col_name,
2,length(l_descTbl(i).col_name)-1)||'"
abbr='||l_columnValue||'
align=right>'||to_char(to_number(l_columnValue),
'fml999,999,999,999,999.00')||'</td>');

 end if;

when 'D' then
 if l_columnValue is NULL then htp.p('<td

 TF_colKey="'||substr(l_descTbl(i).col_name,2,
 length(l_descTbl(i).col_name)-1)||'" abbr=0 align=right>');

htp.p(' - </td>');

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

30

else
htp.p('<td TF_colKey="'||substr(l_descTbl(i).col_name,2,length(l_descTbl(i).col_name)-
1)||'" abbr='||to_char(to_date(l_columnValue),'J')||'
align=right>'||to_char(to_date(l_columnValue),'DD-MON-YYYY')||'</td>');
end if;

when 'S' then
if (l_columnValue is NULL or l_columnValue=' ' or l_columnValue like ' %') then
htp.p('<td TF_colKey="'||substr(l_descTbl(i).col_name,2,length(l_descTbl(i).col_name)-
1)||'" abbr=''0'' align=left>');
htp.p(' - </td>');

else
htp.p('<td TF_colKey="'||substr(l_descTbl(i).col_name,2,length(l_descTbl(i).col_name)-
1)||'" abbr='||l_columnValue||' align=left>'||l_columnValue||'</td>');
end if;

when 'F' then
if (l_columnValue is NULL or l_columnValue=' ' or l_columnValue like ' %') then
htp.p('<td TF_colKey="'||substr(l_descTbl(i).col_name,2,length(l_descTbl(i).col_name)-
1)||'" abbr=''0'' align=left>'); htp.p(' - </td>');

else
htp.p('<td TF_colKey="'||substr(l_descTbl(i).col_name,2,length(l_descTbl(i).col_name)-
1)||'" abbr='||l_columnValue||' align=left>'||l_columnValue||'</td>');
end if;

when 'N' then
if l_columnValue is NULL then
p('<td TF_colKey="'||substr(l_descTbl(i).col_name,2,length(l_descTbl(i).col_name)-1)||'"
abbr=0 align=right>'); htp.p(' - </td>');

when 'B' then
if l_columnValue is NULL then
htp.p('<td TF_colKey="'||substr(l_descTbl(i).col_name,2,length(l_descTbl(i).col_name)-
1)||'" abbr=0 align=right>'); htp.p(' - </td>');

else
htp.p('<td TF_colKey="'||substr(l_descTbl(i).col_name,2,length(l_descTbl(i).col_name)-
1)||'" abbr='||l_columnValue||' align="left" valign="top">');
src="'||package_init.Schema||'.utility.deliver_media?graphics_name=BAR_RIGHT.GIF"
alt="">');

htp.p(l_columnValue||'%</td>');
end if;

else
htp.p('<td '||(l_descTbl(i).col_name)||'" align=right>'); htp.p(' </td>');
end case;

end loop; htp.p('</tr>');

else exit;
end if;
end loop;

htp.p('</tbody><tfoot><tr>');

for i in 1 .. l_colCnt loop
 htp.p('<td align=right> </td>');
end loop; htp.p('</tr><tr>');

htp.p('<td COLSPAN='||l_colCnt||'>Report Generated on '||to_char(sysdate,'DD-MON-YYYY
HH24:MI:SS')||'</td></tr>'); htp.p('</tfoot></table>');

end preview_report;

Figure 2.2i: The Preview_Report Procedure (Step 3). These algorithms are used to manage the final
graphics and GUI look-and-feel operations that define the appearance of the preview report.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

31

The Show_Custom_Report is used to generate the saved report that was previously archived by the
LIMS operation. This utility reproduces the local report that was saved by the user during the testing
sequence, and may be used to generate archived reports from the CTD materials database.

The procedure uses the report_id that defines the report format and the unique identification code for
the testing sequence. The declarations for the reporting operation as shown as:

Procedure Show_Custom_Report(report_id in number)

 is

 stmt clob;
 stmt2 clob;
 stmt3 clob;
 stmt4 varchar2(14000);
 fromStmt varchar2(14000);

 l_theCursor integer default dbms_sql.open_cursor;
 l_columnValue varchar2(4000) default null;
 l_colCnt number default 0;
 l_descTbl dbms_sql.desc_tab;

 ret number;
 x number;
 test varchar2(10) default '10';
 coltype varchar2(4000);
 tempchar varchar2(4000);

 type selectColType is varray(4000) of varchar2(4000);
 selectCol selectColtype:=selectColType();
 displayCol selectColType:=SelectColType();
 selectVal varchar2(4000);
 type iCursorType is ref cursor;
 iCursor iCursorType;

 theColType varchar2(4000);
 do_drilldown varchar2(4000);
 startVal number;
 uniq_id number;
 keyfield varchar2(4000);
 i number;

 thename varchar2(4000);
 theColumns varchar2(4000);
 theValues varchar2(4000);
 useCols int_array;

 report_name varchar2(4000);
 stmt_xl varchar2(4000);
 stmt_use varchar2(4000);
 Begin

The Show_Custom_Report operations are provided in Figure 2.2j-m. These include the main algorithms
for the organization of table data, linked lists, and context specific information. The reports are
organized according to the technical requirements of the 12th Main Directorate, including: fields and
arrays that are established for each instrument within the fixed and mobile laboratory system. The
arrays are used to index information from the vendors as well as data that is required for service,
maintenance, and support of the facility. The records include the technical data from RSS and
Gosgorteknadzor, as well as, the metadata records required to support the chain-of-custody
processing.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

32

stmt4:='SELECT r.base_report, r.report_sql, r.report_name
 FROM lab_custom_reports r

 WHERE r.report_id = :report_id';

open iCursor for stmt4 using report_id;
fetch iCursor into thename, stmt, report_name;
close iCursor;

 htp.p('<script>

 function openExcel(){

document.filter.onSubmit="";
document.filter.method="post";
document.filter.action="report_utility.xls";
document.filter.target="_blank";
document.filter.submit();

 }
 </script>');

stmt3:= stmt;
x:=1;
selectCol.extend;

selectCol(x):= substr(stmt,instr(lower(stmt),'select
distinct ')+16,(instr(lower(stmt),' as ')
-instr(lower(stmt),'
select distinct '))-15);

displayCol.extend;

displayCol(x):=substr(stmt,instr(lower(stmt),'select ')+7,
(instr(lower(stmt),'",')-instr(lower(stmt),'select '))-6);

while (instr(lower(stmt),'",',1,x)>0)
 loop

 x:=x+1;
 selectCol.extend;
 selectCol(x):=substr(stmt,instr(lower(stmt),'",',1,x-1)+3,
 (instr(lower(stmt),' as ',1,x)
 -instr(lower(stmt),'",',1,x-1))-3);

 displayCol.extend;
 displayCol(x):=substr(stmt,instr(lower(stmt),'",',1,x-1)+3,
 (instr(lower(stmt),'",' ,1,x)
 -instr(lower(stmt),'",',1,x-1))-2);

 if x=50 then exit;
 end if;

 end loop;

if instr(stmt3,'order by ')>0 then
 stmt3:=replace(stmt3,substr(stmt3,instr(lower(stmt3),'order by '),
((length(stmt3)+1)-instr(lower(stmt3),'order by '))));

end if;
 fromStmt:= substr(stmt3,instr(lower(stmt3),'from '),

((length(stmt3)+1)-instr(lower(stmt3),'from ')));

REPORT_utility.loadcss;
utility.FilterTable;
utility.TableSums;

Figure 2.2j: The Show_Custom_Report Procedure (Step 1). These algorithms are used to manage the
initial declarations for creating the report based using the report_id data reference.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

33

htp.p('<html><head><title>Report Builder</title> ');
htp.p('
<table width=480 border=0>

<td><img vspace=0 hspace=0 width=80 height=80 align=left
</tr><tr>

<td align=center colspan=2><font size="4" face="verdana,arial,times"
color="#000066">Laboratory Information Management System</td>
</tr><tr>
</tr></table>
');

htp.p('<form name="filter" onsubmit="TF_filterTable(reportTable,filter);return
false" onReset="_TF_ShowAll(reportTable)">');
htp.p('<input type="hidden" name="keepfirst" value="false">');

htp.p('<input type="hidden" name="querybuild3" value='''|| utility.urlencode(stmt)||'''><input
type=button value="Download Report To MS Excel" onClick="openExcel();">');

 l_theCursor:= dbms_sql.open_cursor;

dbms_sql.parse(l_theCursor,stmt,dbms_sql.native);
dbms_sql.describe_columns(l_theCursor, l_colCnt, l_descTbl);

 for i in 1 .. l_colCnt loop
 begin
 dbms_sql.define_column(l_theCursor, i,
 l_columnValue, 2000);
 exception
 when others then
 if (sqlcode = -1007) then exit;
 else
 raise;
 end if;
 end;
 end loop;

 dbms_sql.define_column(l_theCursor, 1,
 l_columnValue, 4000);

htp.p('<BODY onLoad="TableSums(reportTable);">');
htp.p('<TABLE id="reportTable"
style="behavior:url(utility.deliver_utilityfile?filename=tableAct.htc);BORDER: black 1px
solid; WIDTH: 50%; font-size : 7pt; background-color:#bbd6bb;"
 borderColor=#999999 cellSpacing="0" cellPadding="0" border=1 dragcolor=''gray''
slcolor=#eeeecc hlcolor=#eeeecc >');

 x:=0;
 ret:= dbms_sql.Execute(l_theCursor);

 do_drilldown:='F';

 loop
 if x=0 then
 htp.p('<THEAD>');

 htp.p('<TR class=reporttab>');
if do_drilldown='T' then

 startVal:=2;
 htp.p('<td class=tab width=20 align="right">Detail</td>');

 else
 startVal:=1;
 end if;

for i in 1 .. l_colCnt
 loop

Figure 2.2k: The Show_Custom_Report Procedure (Step 2). These algorithms are used to manage the
database query techniques using the function dbms_sql.define.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

34

htp.p('<td width=80 align="center" class=tab style="font-family: Tahoma; font-size:
7pt;">');
coltype:=upper(substr(l_descTbl(i).col_name,1,1));

if coltype='F' then
htp.p('<select style="font-family: Tahoma; font-size: 7pt;" TF_searchType="full"
TF_colKey="'||substr(l_descTbl(i).col_name,2,length(l_descTbl(i).col_name)-1)||'"
onChange="TF_filterTable(reportTable,filter);TableSums(reportTable);">');

htp.p('<option SELECTED TF_not_used
value="">'||substr(l_descTbl(i).col_name,2,length(l_descTbl(i).col_name)-1)||'</option>');
htp.p('<option value="0">Blanks</option>');

stmt4:='select distinct '||selectCol(i)||', substr(dump('||selectCol(i)||'),5,2)
'||fromstmt;

open iCursor for stmt4;
loop
fetch iCursor into selectVal, theColType;
exit when iCursor%NotFound;

case theColType
when '12' then htp.p('<option value='||to_char(to_date(selectVal,'DD-MON-
YY'),'J')||'>'||selectVal||'</option>');
else htp.p('<option value='||selectVal||'>'||substr(selectVal,1,20)||'</option>');
end case;

 end loop;
close iCursor;
htp.p('</select>');

else
htp.p(substr(l_descTbl(i).col_name,2,length(l_descTbl(i).col_name)-1));

end if;
htp.p('</td>');
end loop;

htp.p(' </TR></THEAD> ');
htp.p('<TBODY>');
end if;

if (dbms_sql.FETCH_ROWS(l_theCursor))>0 then x:=x+1;

htp.p('<tr >');
for i in 1..l_colCnt
loop

dbms_sql.COLUMN_VALUE(l_theCursor,i,l_columnValue);
coltype:=upper(substr(l_descTbl(i).col_name,1,1));

case coltype
when 'C' then
if l_columnValue is NULL then
htp.p('<td tbSum="S"
TF_colKey="'||substr(l_descTbl(i).col_name,2,length(l_descTbl(i).col_name)-1)||'" abbr="0"
align=right>');

htp.p(' - </td>');
else
htp.p('<td tbSum="S"
TF_colKey="'||substr(l_descTbl(i).col_name,2,length(l_descTbl(i).col_name)-1)||'"
abbr="'||l_columnValue||'"
end if;

when 'D' then
if l_columnValue is NULL then
htp.p('<td TF_colKey="'||substr(l_descTbl(i).col_name,2,length(l_descTbl(i).col_name)-
1)||'" abbr="0" align=right>');

Figure 2.2l: The Show_Custom_Report Procedure (Step 3). These algorithms are used to manage the
table descriptions and the graphical layout functions (sequence modeling).

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

35

htp.p(' - </td>');
else
htp.p('<td TF_colKey="'||substr(l_descTbl(i).col_name,2,length(l_descTbl(i).col_name)-
1)||'" abbr="'||to_char(to_date(l_columnValue),'J')||'"
align=right>'||to_char(to_date(l_columnValue),'DD-MON-YYYY')||'</td>');
end if;
when 'S' then
if (l_columnValue is NULL or l_columnValue=' ') then
htp.p('<td TF_colKey="'||substr(l_descTbl(i).col_name,2,length(l_descTbl(i).col_name)-
1)||'" abbr="0" align=left>');
htp.p(' - </td>');
else
htp.p('<td TF_colKey="'||substr(l_descTbl(i).col_name,2,length(l_descTbl(i).col_name)-
1)||'" abbr="'||l_columnValue||'" align=left>'||l_columnValue||'</td>');
end if;
when 'F' then
if (l_columnValue is NULL or l_columnValue=' ') then
htp.p('<td TF_colKey="'||substr(l_descTbl(i).col_name,2,length(l_descTbl(i).col_name)-
1)||'" abbr="0" align=left>'); htp.p(' - </td>');
else
htp.p('<td TF_colKey="'||substr(l_descTbl(i).col_name,2,length(l_descTbl(i).col_name)-
1)||'" abbr="'||l_columnValue||'" align=left>'||l_columnValue||'</td>');
end if;
when 'N' then
if l_columnValue is NULL then
htp.p('<td TF_colKey="'||substr(l_descTbl(i).col_name,2,length(l_descTbl(i).col_name)-
1)||'" abbr="0" align=right>'); htp.p(' - </td>');
else
htp.p('<td TF_colKey="'||substr(l_descTbl(i).col_name,2,length(l_descTbl(i).col_name)-
1)||'" abbr="'||l_columnValue||'" align=right>'||l_columnValue||'</td>');
end if;
when 'B' then
if l_columnValue is NULL then
htp.p('<td TF_colKey="'||substr(l_descTbl(i).col_name,2,length(l_descTbl(i).col_name)-
1)||'" abbr="0" align=right>'); htp.p(' - </td>');
else
htp.p('<td TF_colKey="'||substr(l_descTbl(i).col_name,2,length(l_descTbl(i).col_name)-
1)||'" abbr="'||l_columnValue||'" align="left" valign="top">');
htp.p('<img vspace=0 hspace=0
height=16
src="'||package_init.Schema||'.utility.deliver_media?graphics_name=REDBAR_RIGHT.GIF"
alt="">');
htp.p(l_columnValue||'%</td>');
end if;
end case;
end loop; htp.p('</tr>');
else
exit;
end if;
end loop;

htp.p('</tbody><tfoot><tr>');
for i in 1 .. l_colCnt
 loop
 htp.p('<td class=tab2 align=right> </td>');

 end loop;
htp.p('</tr><tr>');

htp.p('<td COLSPAN='||l_colCnt||'>Report Generated on '||to_char(sysdate,'DD-MON-YYYY
HH24:MI:SS')||'</td></tr>');
htp.p('</tfoot></table>');
end show_custom_report;
END Reports;
/

Figure 2.2m: The Show_Custom_Report Procedure (Step 4). These algorithms are used to manage the
graphical layout for the table and listing services.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

36

2.3 The Graphical User Interface

The report generation tool provides a foundation for MOD to organize their case specific information
in a format that is required to support the certification and attestation requirements from RSS and
Gosgorteknadzor. The interface also supports the storage archive and retrieval of digital information
from the MOD library services and archive facilities. As shown in Figure 2.3a, the user may select
cases based upon their location within the MOD facility (fixed or mobile operations) and organize the
case specific information by ascending (or descending order).

Figure 2.3a: Accessing the Main Graphical Interface. In this illustration, the MOD analyst is beginning
a new query that requires data for instrumentation in either the fixed or mobile laboratory complex.
The interface provides the options for sorting the information according to orientation and for
selecting data by: item, instrument, measurement (function) or location.

The interface allows MOD to organize the materials data using custom filters and sorting procedures.
The interface supports the use of pop-up menus that contain specific filters or sorting techniques that
are appropriate to the certification or attestation requirement. Example operations are shown in

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

37

Figure 2.3b: Applying Instrument Filters. In this illustration, the MOD analyst is using an instrument
filter to assess vendor specific data.

Figure 2.3c: Applying Case Sorting Methods. In this illustration, the MOD analyst is instructing the
database to organize all information in an ascending order with no additional filter procedure.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

38

Figure 2.3b for the preview of selected filters by instrument class, and within Figure 2.3c for sorting
query operations by item, fixed or mobile laboratory location, instrument type or measurement
criteria.

Figure 2.3c: Accessing the Preview Report. In this illustration, the MOD analyst is searching the LIMS
and the CTD Materials Database to examine the instruments in the fixed and mobile laboratory
system. The query returns the information in a preview report that shows a small sub-section of the
total database -- organized by item, instrument, measurement, and fixed or mobile location. The table
has controls (pull-down menus) above each column for sorting each column according to a priori
stated criteria. Since this application is written in open SQL and PL/SQL, the MOD can build custom
filters to organize all data according to new and emerging criteria from RSS and Gosgorteknadzor.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

39

The preview report operation may be used to create a temporary view of the associated information.
This operation creates a second pop-up window that allows the user to view a small sub-section of the
data to determine the validity of the query process. In this manner, the user can quickly adjust the
query procedure to define a second level operation or a refined search that conforms to the stated
requirements. An example preview report is shown in Figure 2.3c. In this illustration, the user has
selected all fields (item, instrument, measurement, and fixed or mobile location) to create a simple
preview report. The report has the data organized in a tabular format that may be further sorted
using the pull-down menus that are placed above each category.

Figure 2.3d: Editing the Preview Report. In this illustration, the MOD analyst has removed the
location column from the preview report. The query only shows three columns of information (item,
instrument, measurement) without the fixed or mobile location. The data is presented in an ascending
order with no additional filtering added into the database query. The pop-up window that displays
the results, includes seven records (item 1.1 to item 15.1) with additional data that may be visualized
by resizing the window. A series of scroll-bars are added to the pop-up report when the user wishes
to visualize records that are outside the screen view for the dialog.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

40

The addition and subtraction of data is illustrated in Figure 2.3d. In this example the location column
has been removed from the database query. In addition, the analyst has resized the pop-up window
to display additional data that includes a portion of the report for instrument 15.1: Wika Pressure
Transmitter. As shown in the testing sequence view, all information from the fixed and mobile
laboratory is being examined for this query search. At the present time, the query returns the
information in an ascending order with no filters attached to restrict the search.

Figure 2.3e: Selecting the CTD Instruments. In this illustration, the MOD analyst is beginning a new
query based upon the HardTip 2000 instrument found within the fixed or mobile laboratory complex.
The data shown in the preview report is now organized in an alphanumeric ascending order based
upon an earlier query. For this reason, the preview shows the instruments beginning with A (A-Line
32D) and ending with C (Concrete Flaw Detector). The other instruments (ending with Z) are shown
below this screen view.

The query is further refined using pop-up menus to identify the instrument type. This process is
shown in Figure 2.3e. In this example, the user has selected the instrument pop-up menu to display all

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

41

working systems found within the fixed and mobile laboratory complex. The analyst has started a
new query by selecting the HardTip 2000 instrument. Prior to this search, the database has oriented
all instrumentation data in an ascending order. For this reason, the preview report displays a new set
of equipment that is organized by vendor name in an alphanumeric ascending order (A-Line 12D to
Concrete Flaw Detector with additional information displayed by resizing the preview window).

The query results for HardTip 2000 instrumentation are shown in Figure 2.3f. Since the CTD LIMS
contains only one instrument from this vendor, a single record is provided in the preview report.
Note that the user has also applied a request for metadata. Hence the preview report now shows a
time/date stamp for the query that indicated when the report was requested. This information is then
passed back to the main StarLIMS system for the final chain-of-custody report.

Figure 2.3f: Database Query by Instrument Type. The illustration shows the result of the Hardtip 2000
query that was initiated on Figure 2.3e. Since the MOD facility uses only one instrument of this
classification, a single record is displayed. The user can then query the database to retrieve all
measurements and case studies (certifications, attestations, calibrations, etc.) that have been completed
using this instrument.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

42

The custom report is shown in Figure 2.3g. In this example, the user has selected information from the
fixed laboratory facility and has removed all instrumentation that may be used for mobile operations.
The query shows the instrument types organized by item F1.1 to F4.1 (additional records shown below
this case example). As provided, the report indicates the main function for each instrument type and

Figure 2.3g: Custom Report Generation. In this illustration, the user has selected only case examples
from the fixed laboratory system. The cases are organized by item identification code F1.1 to F4.1,
with additional cases shown below this screen view. The report displays the measurement function
for each instrument and includes the chain-of-custody metadata for when the report was requested by
the MOD analyst. The migration tools for moving all data into Microsoft Excel are shown.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

43

the time/date indicator for when this query report was generated. The report includes the fast
migration tools for moving information into Microsoft Excel. This tool was requested by MOD to
allow the Level I analysts to work with all information using standard spreadsheet functions. This
migration tool is also used by the 12th Main Directorate to import/export data to the management
teams located in Moscow. These analysts require summary reports and do not require specific tools
that are localized to the scientific research facility in St. Petersburg.

Figure 2.3h: Custom Reports in Microsoft Excel. In this illustration, the user is working with a LIMS
custom report using the Excel migration tools. This provides a foundation for importing and
exporting LIMS data into all Microsoft products that are readily used by the MOD field teams. The
LIMS development includes tools for migrating data into Microsoft Word and Adobe PDF formats as
well as most major graphical exchange formats (TIFF, GIF, JPEG).

The appearance of the custom report in Microsoft Excel is provided in Figure 2.3h. In this example the
user has imported 12 records from the CTD LIMS query. The column titles and the orientation of the
digital information are maintained throughout the process. As a component of this research project,
we have provided a series of translation tools that allow MOD to move data across their specific
applications. This includes graphical translators and report generation utilities. The tools for moving
data are shown in the upper left corner of Figure 2.3h. In this illustration the Adobe PDF icon and the
Adobe Interchange Icons are shown with a small pop-down arrow. This allows the MOD analysts to
move data across vendors in an independent manner for mobile operations on portable notebook
systems.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

44

3.0 Algorithm Development and Structured Database Management

Within this discussion, we examine the algorithms and database structures that work with the 12th
Main Directorate LIMS. The enclosed procedures have been requested by MOD to assist their
engineering staff in the development of stand-alone processes for the management of materials data.
This includes technical information that is formally stored within the LIMS system, and ancillary data
that is stored within the Oracle RDBMS (for materials management). The algorithms are developed
within the procedural language SQL and the Oracle proprietary Procedural Language PL/SQL. In
each case, the algorithms operate independently from the formal LIMS structure – however, all
algorithms may be added to the LIMS process since the StarLIMS operates using SQL and PL/SQL
standards from both Sybase and Oracle.

The variations in SQL and PL/SQL may be summarized as follows:

a. Procedural Language SQL (PL/SQL) is the Oracle proprietary procedural language extension
to the industry-standard Structured Query Language (SQL). PL/SQL emphasizes data
abstraction, information hiding, and other key elements of modern design strategies.

b. The language PL/SQL incorporates: a full range of data types, explicit block structures,
conditional and sequential control statements, loops of various modes and structures,
exception handlers for use in event-based error modeling, constructs that help in the
development of modular code-functions, procedures, and packages (collections of related
programs and variables).

PL/SQL is also a block-oriented language. Hence, all code is organized into one or more blocks
demarked by BEGIN and END statements. These blocks provide a high degree of structure, making it
easier to develop and maintain code. This feature is particularly important to the MOD 12th Main
Directorate, since data and processes may be organized according to technical requirements, and a
common procedure library may be used by all technical teams (mobile and fixed laboratories). The
algorithms may be installed at the desktop and mobile field laboratory level in a common-laptop
environment.

3.1 PL/SQL Organization and Structure

PL/SQL functions and procedures, including packaged procedures and anonymous blocks,
encapsulate a sequence of statements and the following basic layout:

Structure:

Header: Relevant for named blocks only. The header determines the way the named block or
program is called. An example is shown in Figure 3.1a with the main sections that are generally
included in a PL/SQL algorithm, function, or procedure.

When called by client applications (or the StarLIMS main shell), the PL/SQL procedure can accept
arguments, reference other procedures or functions (or otherwise return values to a secondary
process). Compiled in an executable form, procedure calls are quick and efficient. Executable code is
automatically cached and shared among users as a method to lower memory requirements, and
invocation overhead. By grouping SQL statements, a stored procedure allows an organized structure
(of process steps, functions, sub-tasks, and ancillary procedures) to be executed within a single

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

45

reference call.2 An example of this process is shown in Figure 3.1b for a priori stored procedures, and
Figure 3.1c for package-stored formats. In each example, a simple test string is used to illustrate the
organization and structure of the reference process.

[PROCEDURE name IS] or [FUNCTION name RETURN datatype IS]

DECLARE
 /* declarations */
The part of the block that declares variables, cursors,
and sub-blicks that are referenced in the execution and exception sections.

BEGIN
 /* executable code */
The part of the PL/SQL block containing the executable statements,
the code that is executed by the PL/SQL runtime engine

 [RETURN value] <-- for functions

EXCEPTION
 /* error handling */
The section that handles exceptions to normal processing
(warnings and error conditions)

 END;

Or a flat file SQL script can contain simply:
 BEGIN
 /* executable code */

 EXCEPTION
 /* error handling */

 END;

Figure 3.1a: PL/SQL Standard Structure with Declarations, Body, and Exception Handling.

SQL is a set-at-a-time database language. Hence, the user cannot selectively examine, or modify a
single row from a SELECT statement’s result set. By extension, PL/SQL gives the user the ability to
handle data one row at a time. As the user executes the SQL statement from within PL/SQL, a private
work area is assigned for that statement. This is analogous to the methods that are used within
StarLIMS, where the set-aside user environment is used to manage the basic data input-output, as well
as, the organizational structure of the data. The partition also controls the security and process
management (including chain-of-custody considerations). The private work area is managed at the
systems administration level. This provides the strict control that is required from the 12th Main
Directorate (security and alarm provisions) with the flexibility that is required to add and subtract
basic processes.

That partition area contains the information about the SQL statement and the set of data returned by
the statement. Within SQL, the cursor is a mechanism by which you can name that work area and

2 This minimizes the use of slow networks, reduces network traffic, and improves round-trip response
time. Additionally, stored procedures enable the user to take advantage of computing resources on
the ML-530 server. For example, you can move computation-bound procedures from client to server,
where they will execute in a highly efficient manner. Likewise, stored functions called from SQL
statements enhance performance by executing application logic within the server or partitioned disk
array.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

46

manipulate the information within it. Explicit Cursor is a SELECT statement that is explicitly defined
in the declaration section and assigned a name. This gives the analyst complete control over how to
access information subject to their respective abilities (certification levels) to access the database
structure or assigned function (Figure 3.1d).

Create or Replace PROCEDURE PROCEDURE_DEMO
IS
demoString Varchar2(15):= ‘THIS IS A TEST’;
BEGIN
dbms_output.put_line(demoString);
END PROCEDURE_DEMO;

SQL> set serveroutput on;
SQL> begin
 2 procedure_demo;
 3 end;
 4 /

or

exec procedure_demo;

THIS IS A TEST
PL/SQL procedure successfully completed.

Figure 3.1b: PL/SQL Sample Stored Procedure Format. This simple procedure creates the test string
demoString that is used to demonstrate the structure of a stored PL/SQL procedure. The Varchar2 data
type stores the string and the dbms_output function displays the variable when the procedure is
executed.

Create or Replace PACKAGE PACKAGE_DEMO AS
 PROCEDURE PACKAGE_DEMO_PROCEDURE;
END PACKAGE_DEMO;

CREATE OR REPLACE PACKAGE BODY PACKAGE_DEMO AS
 PROCEDURE PACKAGE_DEMO_PROCEDURE
 IS
 demoString Varchar2(15):= ‘THIS IS A TEST’;
BEGIN
dbms_output.put_line(demoString);
END PACKAGE_DEMO_PROCEDURE;
END PACKAGE_DEMO;

SQL> BEGIN
 2 PACKAGE_DEMO.PACKAGE_DEMO_PROCEDURE;
 3 END;
 4 /
THIS IS A TEST

Or exec Package_demo.package_demo_procedure;

PL/SQL procedure successfully completed.

Figure 3.1c: PL/SQL Sample Stored Package Format. This simple procedure creates a test string that is
used to demonstrate the structure of a stored PL/SQL procedure created as a package. The package
format enables the procedures to be grouped together as related elements. The Varchar2 data type
stores the string and the dbms_output function displays the variable.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

47

Create or Replace FUNCTION FUNCTION_DEMO Return Varchar2
IS
demoString Varchar2(15):= ‘THIS IS A TEST’;
BEGIN
 RETURN demoString;
END FUNCTION_DEMO;

SQL> SELECT FUNCTION_DEMO() FROM DUAL;
FUNCTION_DEMO()

THIS IS A TEST

Figure 3.1d: PL/SQL Sample Stored Function Format. This simple function creates a test string that is
used to demonstrate the structure of a stored PL/SQL procedure created as a package. The Varchar2
data type stores the string and the dbms_output function displays the variable.

3.2 Cursors and Database Interaction

Cursors are divided into two groups, implicit and explicit. An explicit cursor is a select statement that
is explicitly defined in the declaration of a PL/SQL block. Once created it is then processed with
OPEN, FETCH and CLOSE statements. Using implicit cursors, the RDBMS opens, fetches and closes
the cursor automatically. Although implicit cursors are (in many instances) faster than explicit
cursors, they are vulnerable to data errors, and allow less programmatic control within the networked
environment. The re-application of an implicit cursor is only possible by recalling the procedure that
initialized it. Conversely, the explicit cursor can be reused (recycled). This process increases the
chance that it will be pre-parsed in shared memory when needed - significantly increasing the
performance of the query. In all cases, the explicit cursor utilizes the dot notation to reference fields
within the cursor. A simple example for this configuration is shown in Figure 3.2a. By stepping
through the record set the user can examine every record returned by the cursor query.

DECLARE
MACHNAME VARCHAR2(100);
BEGIN
SELECT MACHINE_NAME
INTO MACHNAME
FROM TEST2_TBL
WHERE MACHINE_ID=1;
 dbms_output.put_line(‘Result is: ‘||MACHNAME);
 END;
 /

 Result is: Machine 1

Figure 3.2a: Implicit Cursor. Within this example, an implicit cursor is used to select data from a SQL
statement into the variable MACHNAME. An error will result if the query returns no data or more
than a single value. This forces the user to use error handling and trap for conditions that will result
in errors.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

48

In Figure 3.2b-g, the use and application for the explicit cursor is identified using numerous case
examples. In Figure 3.2b-c, the dynamics for the basic loop procedure are identified using the
standard loop configuration and the while-loop structure. The illustration is extended in Figure 3.2d-g
using explicit cursors to demonstrate certain % functions such as %NOTFOUND, %ISOPEN , and
%ROWCOUNT. Each function and procedure is used by MOD to parse materials data according to

DECLARE
 CURSOR exp_cursor IS
 SELECT testvalue1,testvalue2,testvalue3
 FROM test_tbl;
 the_result exp_cursor%ROWTYPE;
BEGIN
 OPEN exp_cursor;
// Format Headings
 dbms_output.put_line('Report Heading');
 dbms_output.put_line('------------------------');
 dbms_output.put_line(rpad('Column One',20,' ')||' '||
 rpad('Column Two',30,' '));
 dbms_output.put_line(rpad('-',20,'-')||' '||rpad('-',30,'-'));
//loop through cursor
 LOOP
 FETCH exp_cursor INTO the_result;
 EXIT WHEN exp_cursor%NOTFOUND;
 dbms_output.put_line(rpad(the_result.testvalue1,20,' ')||' '||
 rpad(the_result.testvalue2,30,' '));
 END LOOP;
 CLOSE exp_cursor;
END;
/

Figure 3.2b: Explicit General Cursor. In this example, the cursor function is used to demonstrate a
simple cursor. A small loop is created to place the results of the cursor query into the variable
the_result. That variable is of the datatype %ROWTYPE which provides a record type that represents a
row in a table. The record can store an entire row of data selected from the table or fetched from a
cursor or cursor variable. The loop will terminate when the exp_cursor contains no data
(%NOTFOUND).

DECLARE
 CURSOR exp_cursor IS
 SELECT testvalue1,testvalue2,testvalue3
 FROM test_tbl;
 the_result exp_cursor%ROWTYPE;
BEGIN
 OPEN exp_cursor;
//Format Headings
 dbms_output.put_line('Report Heading');
 dbms_output.put_line('------------------------');
 dbms_output.put_line(rpad('Column One',20,' ')||' '||
 rpad('Column Two',30,' '));
 dbms_output.put_line(rpad('-',20,'-')||' '||rpad('-',30,'-'));
 FETCH exp_cursor INTO the_result;
//Loop Through Cursor
 WHILE (exp_cursor%FOUND) LOOP
 dbms_output.put_line(rpad(the_result.testvalue1,20,' ')||' '||
 rpad(the_result.testvalue2,30,' '));
 FETCH exp_cursor INTO the_result;
 END LOOP;
 CLOSE exp_cursor;
END;
/

Figure 3.2c: Explicit Cursor Using a While Loop. This is the same as Figure 3.2b except that the cursor
is accessed using a while loop. Instead of the %NOTFOUND cursor attribute used previously, as an
alternative %FOUND attribute continues the LOOP as long as data is present.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

49

storage identifiers. Tabular data is extracted using either column or row delineation methods.
Whereas, the logical not-found and is-open process steps are used to examine the availability of the
data structure or materials data volume.

DECLARE
 CURSOR exp_cursor IS
 SELECT testvalue1,testvalue2,testvalue3
 FROM test_tbl;
 the_result exp_cursor%ROWTYPE;
BEGIN
 IF (NOT exp_cursor%ISOPEN) THEN
 OPEN exp_cursor;
 END IF;
 /*Format headings */
 dbms_output.put_line('Report Heading');
 dbms_output.put_line('------------------------');
 dbms_output.put_line(rpad('Column One',20,' ')||' '||
 rpad('Column Two',30,' '));
 dbms_output.put_line(rpad('-',20,'-')||' '||rpad('-',30,'-'));
 FETCH exp_cursor INTO the_result;
 WHILE (exp_cursor%FOUND) LOOP
 dbms_output.put_line(rpad(the_result.testvalue1,20,' ')||' '||
 rpad(the_result.testvalue2,30,' '));

 FETCH exp_cursor INTO the_result;
 END LOOP;
 IF(exp_cursor%ISOPEN)THEN
 CLOSE exp_cursor;
 END IF;
END;
/

Figure 3.2d: Explicit Cursor Using %ISOPEN. In this example, the cursor is tested to make sure it is
not already open before attempting to open it and that it is not closed before attempting to close it.
Attempting to close a cursor that is not open will produce an ORA-01001: Invalid cursor error.
Attempting to open a cursor that is already open will produce an ORA-06511 “Cursor Already Open”
error.

DECLARE
 CURSOR exp_cursor IS
 SELECT testvalue1,testvalue2,testvalue3
 FROM test_tbl;
 num_total_rows NUMBER;
BEGIN
 /*Format headings */
 dbms_output.put_line('Report Heading');
 dbms_output.put_line('------------------------');
 dbms_output.put_line(rpad('Column One',20,' ')||' '||
 rpad('Column Two',30,' '));
 dbms_output.put_line(rpad('-',20,'-')||' '||rpad('-',30,'-'));
 FOR the_result IN exp_cursor LOOP
 dbms_output.put_line(rpad(the_result.testvalue1,20,' ')||' '||
 rpad(the_result.testvalue2,30,' '));
 num_total_rows :=exp_cursor%ROWCOUNT;
 END LOOP;
 IF num_total_rows >0 THEN
 dbms_output.new_line;
 dbms_output.put_line('Report Completed...Total Rows:'||num_total_rows);
 END IF;
END;

/

Figure 3.2e: Explicit Cursor Using %ROWCOUNT. . This example demonstrates the %ROWCOUNT
attribute of the cursor. The variable num_total_rows accumulates the number of records returned by
the cursor. After the LOOP terminates, the total number of records retrieved is displayed.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

50

DECLARE
 CURSOR exp_cursor IS
 SELECT testvalue1,testvalue2,testvalue3
 FROM test_tbl;
 num_total_rows NUMBER;
BEGIN
 FOR the_result IN exp_cursor LOOP
 IF exp_cursor%ROWCOUNT =1 THEN
 /*Format headings */
 dbms_output.put_line('Report Heading');
 dbms_output.put_line('------------------------');
 dbms_output.put_line(rpad('Column One',20,' ')||' '||
 rpad('Column Two',30,' '));

 dbms_output.put_line(rpad('-',20,'-')||' '||rpad('-',30,'-'));
 END IF;
 dbms_output.put_line(rpad(the_result.testvalue1,20,' ')||' '||
 rpad(the_result.testvalue2,30,' '));

 num_total_rows :=exp_cursor%ROWCOUNT;
 dbms_output.put_line(num_total_rows);
 END LOOP;

END;
/

Figure 3.2f: Explicit Cursor Using %ROWCOUNT as an Incremental Rowcount. This example
illustrates incrementing the %ROWCOUNT attribute as the LOOP is executed. For each pass through
the LOOP, the variable num_total_rows is incremented and displayed.

DECLARE
 CURSOR exp_cursor IS
 SELECT testvalue1,testvalue2,testvalue3
 FROM test_tbl;
BEGIN
 /*Format headings */
 dbms_output.put_line('Report Heading');
 dbms_output.put_line('------------------------');
 dbms_output.put_line(rpad('Column One',20,' ')||' '||
 rpad('Column Two',30,' '));
 dbms_output.put_line(rpad('-',20,'-')||' '||rpad('-',30,'-'));

 For the_result in exp_cursor LOOP
 dbms_output.put_line(rpad(the_result.testvalue1,20,' ')||' '||
 rpad(the_result.testvalue2,30,' '));
 END LOOP;
//Note…It is not necessary to close the cursor
END;
/

Figure 3.2g: Explicit Cursor Using a Cursor For Loop. This type of cursor reduces the volume of code
needed to fetch data. It also greatly lessens the chance of introducing loop errors in the programming.
The loop terminates unconditionally when all of the records in the associated cursor have been
fetched. It eliminates the declaration of the record, the OPEN, FETCH and CLOSE statements and the
%FOUND or %NOTFOUND attributes. Although there are many advantages to this cursor, it is not
appropriate when you need to apply conditions to each fetched record to determine if you should halt
the loop. Although it is possible to terminate the LOOP with an EXIT statement, it is not
recommended.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

51

3.3 Adding Parameters to the Cursors

Parameters can be added to the cursors to give them the ability to pass information to the SQL
statement. In this manner the cursor may be reused for various tasks within the main materials
database. The addition of parameters also avoids scoping problems, since the cursor is not tied to a
specific variable in a program or block or a specific logic statement. If the procedure has nested
blocks, the cursor can be defined at a higher-level and then used in any of the sub-blocks with
variables defined within that block.

An example process is shown in Figure 3.3a using WHERE clause to select particular information. In
this case study, the parameter machine_id is passed to the cursor when exp_cursor is opened. The
FETCH statement is then used to place the exp_cursor into the resultant query.

DECLARE
//id is parameter that will be passed to SELECT statement
 CURSOR exp_cursor(id number) IS
 SELECT machine_id,machine_name,machine_cost
 FROM test2_tbl
 WHERE machine_id=id;
 the_result exp_cursor%ROWTYPE;
BEGIN
 //open the cursor and pass the value of 1 to the SELECT statement
 OPEN exp_cursor(1);
 /*Format headings */
 dbms_output.put_line('Machine Data');
 dbms_output.put_line('------------------------');
 dbms_output.put_line(rpad('Machine ID',20,' ')||' '||
 rpad('Machine Name',30,' ')||' '||
 rpad('Machine Cost',30,' '));
 dbms_output.put_line('--');
 LOOP
 FETCH exp_cursor INTO the_result;
 EXIT WHEN exp_cursor%NOTFOUND;
 dbms_output.put_line(rpad(the_result.machine_id,20,' ')||' '||
 rpad(the_result.machine_name,30,' ')||' '||

 rpad(the_result.machine_cost,30,' '));
 END LOOP;
 CLOSE exp_cursor;
END;
/

Figure 3.3a: Explicit Cursor Using a Parameter. The parameter machine_id is passed to the cursor
when exp_cursor is opened. The value is then inserted into the WHERE clause of the cursor when the
statement is executed.

The algorithm shown in Figure 3.3a, creates an output of the following format:

Machine Data

Machine ID Machine Name Machine Cost
--
1 Machine 1 150000

In this example, the machine cost (service cost) for the first instrument (Machine ID = 1) is provided.
As shown, the formatting for the result uses standard ASCII characters and may be explicitly edited
by the end user based upon reporting requirements and table standards. A second example is shown
in Figure 3.3b for the explicit cursor using a parameter. However, this case study uses the FOR LOOP

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

52

structure to create the tabular output. This example also illustrates the use of the dbms_output_line
procedure for creating standardized (line-oriented) outputs at a target location. The rpad function is
nested within the dbms_output_line to create the required (line-oriented) spacing that is required for the
table indentations.

DECLARE
//id is parameter that will be passed to SELECT statement
 CURSOR exp_cursor(id number) IS
 SELECT machine_id,machine_name,machine_cost
 FROM test2_tbl
 WHERE machine_id=id;
BEGIN
 /*Format headings */
 dbms_output.put_line('Machine Data');
 dbms_output.put_line('------------------------');
 dbms_output.put_line(rpad('Machine ID',20,' ')||' '||
 rpad('Machine Name',30,' ')||' '||
 rpad('Machine Cost',30,' '));
 dbms_output.put_line('--');
 //open the cursor and pass the value of 1 to the SELECT statement
 for the_result in exp_cursor(1) LOOP
 dbms_output.put_line(rpad(the_result.machine_id,20,' ')||' '||
 rpad(the_result.machine_name,30,' ')||' '||

 rpad(the_result.machine_cost,30,' '));
 END LOOP;
END;
/

Figure 3.3b: For Loop Cursor Using a Parameter. The format is the same as the previous example
except the parameter is passed in the LOOP.

3.4 Adding Bind Variables To The Cursor

The CTD Materials Database has multiple execution engines including one each for PL/SQL and SQL.
When running PL/SQL blocks and subprograms, the PL/SQL engine runs all procedural statements
and sends the SQL statements to the SQL engine. Within the SQL engine, the statements are parsed
and executed using ASCII standards. The results from the SQL engine are then passed back to the
PL/SQL engine for interpretation. During execution, every SQL statement causes a context switch
between the two engines, which results in a performance penalty. This is the basic handshaking that
is required to support Oracle standards for PL/SQL and blind (external) standards for ASCII SQL.

As demonstrated in the StarLIMS, the performance can be substantially improved by minimizing the
number of context switches required to run a particular block or subprogram. For example, the
standard functions for graphical user interfacing, data I/O, chain-of-custody, and report generation
can be performed without the need to submit information into PL/SQL provided the materials data is
local within the laboratory network. Conversely, the MOD analyst that utilizes archived information
from the Oracle ML-530 Server uses PL/SQL to access this information and supplement the local data
that is required for the testing sequence.

When a cursor is executed frequently, the same exact SQL statement will be submitted repeatedly
causing the database to parse and compile each submission. This is referred to as a hard parse. Bind
variables, signified by preceding a placeholder with “:”, become beneficial when it is discovered that

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

53

the network is using multiple copies of the same query that only differ by values.3 Under this
condition, the judicious use of bind variables will increase performance, and lessen the burden on the
database server. A simple example for the bind variable is shown in Figure (3.4a). In this example,
the placeholder identification is directly inserted into the select statement. When the procedure is
executed, the identification (:ID) is inserted into the SELECT statement.

DECLARE
stmt varchar2(1000);
type mbrCursorType is ref cursor;
iCursor mbrCursorType;
machine_id number;
machine_name varchar2(100);
machine_cost number;
BEGIN
Stmt:=’SELECT MACHINE_ID,MACHINE_NAME,MACHINE_COST FROM TEST2_TBL
 WHERE MACHINE_ID=:ID’;
OPEN iCursor FOR stmt using 1;
Fetch iCursor into machine_id,machine_name,machine_cost;
 /*Format headings */
 dbms_output.put_line('Machine Data');
 dbms_output.put_line('------------------------');
 dbms_output.put_line(rpad('Machine ID',20,' ')||' '||
 rpad('Machine Name',30,' ')||' '||
 rpad('Machine Cost',30,' '));
 dbms_output.put_line('--‘);
LOOP
 FETCH iCursor into machine_id,machine_name,machine_cost;
Exit when iCursor %NOTFOUND;
 dbms_output.put_line(rpad(machine_id,20,' ')||' '||
 rpad(machine_name,30,' ')||' '||

 rpad(machine_cost,30,' '));

END LOOP;
END;
/

Figure 3.4a: Explicit Cursor With Bind Variables. A placeholder :ID is inserted into the SELECT
statement when the procedure is compiled. At runtime, :ID will be replaced with the value specified
in the USING clause of the OPEN statement.

In the design of the CTD Materials database, bulk binding is used to improve performance by reducing
the number of context switches required to run SQL statements. Bulk binding is binding an entire
collection at once rather than iteratively. With bulk binding, entire collections, not just individual
elements are passed back and forth between PL/SQL and SQL. Hence, the SQL engine will load all
the values of the columns into nested tables before returning them to PL/SQL engine, so there will be
only one context switch no matter how many rows are returned. Bulk binds are most efficient for:

a. SQL statements within PL/SQL loops,
b. Cases that require a collection of elements efficiently organized within a binding,
c. Cases that require four or more rows together in iteration. The more rows affected by

a SQL statement, the greater the procedural efficiency.

3 The variables are called bind variables since the values that are passed to the SQL statement are
bound to the query at runtime. This is also known as a positional bind since the placeholders are
referred to by their position in the statement rather than their names.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

54

An example bulk collection is shown in Figure 3.4b. In this procedure, the data selection is inserted
into the variables shown in the FETCH statement. Note that data location varies by array position and
the entire procedure is dynamic with respect to the location of the original data SQL or PL/SQL and
the position of the information within the respective RDBMS (Oracle, Sybase, or local LIMS structure).

DECLARE
stmt varchar2(1000);
type mbrCursorType is ref cursor;
iCursor mbrCursorType;
type test_type is table of varchar2(4000);
machine_id test_type;
machine_name test_type;
machine_cost test_type;
BEGIN

Stmt:=’SELECT MACHINE_ID,MACHINE_NAME,MACHINE_COST FROM TEST2_TBL
 WHERE MACHINE_ID=:ID’;
OPEN iCursor FOR stmt using 1;

FETCH iCursor bulk collect into machine_id,machine_name,machine_cost;

 /*Format headings */
 dbms_output.put_line('Machine Data');
 dbms_output.put_line('------------------------');
 dbms_output.put_line(rpad('Machine ID',20,' ')||' '||
 rpad('Machine Name',30,' ')||' '||
 rpad('Machine Cost',30,' '));
 dbms_output.put_line('--‘);

for I in MACHINE_ID.FIRST..MACHINE_ID.LAST LOOP
 dbms_output.put_line(rpad(machine_id(i),20,' ')||' '||
 rpad(machine_name(i),30,' ')||' '||

 rpad(machine_cost(i),30,' '));

END LOOP;
END;
/

Figure 3.4b: Explicit Cursor Bulk Collect With Bind Variable. The entire SELECT statement is inserted
into the variables specified in the FETCH statement in an array-like format. The data is extracted from
the variables by specifying the location within the array.

3.5 Applications for Dynamic SQL and DBMS_SQL

Dynamic SQL and DBMS_SQL allow the user to execute process statements that are not parsed or
bound during the compile sequence. Hence, the statement is constructed at runtime, and then is
passed to the SQL engine for processing. The dynamic methods are required when exact information
concerning the database structure (or tabular data) is not known prior to the compiling sequence.
Within the CTD network, this occurs when two or more users are accessing and modifying data from
the same source without notification from the systems administrator. This condition also occurs when
mobile teams are adding and subtracting information that is placed within the central RDBMS server.
Hence the analyst may be accessing information that has significantly changed from the prior
processing cycle.

Dynamic SQL programs can handle changes in data definitions, without the need to recompile the
entire code resource. This makes dynamic SQL much more flexible than static SQL. In addition,
dynamic SQL lets the analyst write reusable code since the statements are quickly adapted for varying

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

55

environments. An example algorithm for dynamic SQL is shown in Figure (3.5a). In this case
example, the parameter sqlstmt is shown at the top of the process and uses a dynamic variable to pass
information into the create (or replace) procedure. As indicated, the algorithm generates a formatted
table with Rockwell harness values acquired from MOD sample sections. The table shows only two of
the observed sample values, however, the full sequence would include all values and observations
from the RDBMS.

CREATE OR REPLACE procedure dbms1_demo
(sqlstmt in varchar)
IS
MACHINE_ID VARCHAR2 (50);
MACHINE_NAME VARCHAR2 (50);
MACHINE_COST VARCHAR2 (50);
type mbrCursorType is ref cursor;
mbrCursor mbrCursorType;
BEGIN
 // Format Report Headings
 dbms_output.put_line('Machine Data');
 dbms_output.put_line('------------------------');
 dbms_output.put_line(rpad('Machine ID',20,' ')||' '||
 rpad('Machine Name',30,' ')||' '||
 rpad('Rockwell Hardness',30,' '));
 dbms_output.put_line('--');

 OPEN mbrCursor for sqlstmt;

 LOOP
 FETCH mbrCursor INTO machine_id,machine_name,sample_result;
 EXIT WHEN mbrCursor%NOTFOUND;
 dbms_output.put_line(rpad(machine_id,20,' ')||' '||
 rpad(machine_name,30,' ')||' '||

 rpad(sample_result,30,' '));
END LOOP;
end;
/

Figure 3.5a: Simple Dynamic SQL Structure. In this example, the SQL statement is passed to the
procedure through the parameter sqlstmt. This method offers improved flexibility, since the data that
will be selected does not have to be known before runtime. The algorithm produces an output of the
following format:

SQL> exec dbms1_demo('select * from test2_tbl')
Machine Data

Machine ID Machine Name Rockwell Hardness
--
1 Machine 1 150000
2 Machine 2 160000

In this output sequence, the user has executed the SQL procedure dbms1_demo using the select
parameters from the test2_tbl database. To simplify this case example, only two observations are
shown. Each observation indicates the machine ID, name and respective measurement (Rockwell
Hardness value).

A second dynamic SQL sequence is shown in Figure (3.5b). In this example, the algorithm is used to
determine the number of rows in a database table. This procedure uses the dynamic variable p_tname
to pass information into the main process body, and returns the dynamic size of the database with
respect to the number of observations in the row or column format. The algorithm is particularly
useful for case conditions that utilize rows as observations and columns as variable definitions. This is

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

56

generally the condition for all RDBMS constructions and is always the case for the analysis of
materials data within a standard statistical package such as SAS, SPSS, or their equivalent.

create or replace
 function get_rows(p_tname in varchar2)
 return number
 is
 l_theCursor integer default dbms_sql.open_cursor;
 l_columnValue number default NULL;
 l_status integer;

 begin
 dbms_sql.parse(l_theCursor,
 'select count(*) from ' || p_tname,
 dbms_sql.native);

 dbms_sql.define_column(l_theCursor, 1, l_columnValue);
 l_status := dbms_sql.execute(l_theCursor);

 if (dbms_sql.fetch_rows(l_theCursor) > 0)
 then
 dbms_sql.column_value(l_theCursor, 1, l_columnValue);
 end if;
 dbms_sql.close_cursor(l_theCursor);
 return l_columnValue;
 end ;
 /

Figure 3.5b: Dynamic SQL Example – Row Count Identification. This function is used to generate the
number of rows in any table passed as a parameter into the main body. The function is also required
for determining LOOP sizes for unknown conditions and may be used as an output tool for formatting
reports and header tables. The algorithm produces an output of the following format:

SQL> select get_rows('test2_tbl') from dual;

GET_ROWS('TEST2_TBL')

 5

In this output sequence, the user has executed the SQL procedure get_rows using the select parameters
from the test2_tbl database. The simple example shows an output of five rows (observations) from the
RDBMS. The row example may be further modified to extract the number of columns from within
the table construction. This modification is shown within Figure 3.5c, where the numbers of columns
from the RDBMS are extracted (as a parameter), that may be used as an input declaration within a
second SQL process.4

For the development of the CTD LIMS, the dynamic SQL methods are used during data acquisition to
extract information from the respective instruments in the fixed and mobile laboratories. The
information is acquired using the LOOP or WHILE procedures to test the observations for range and
error detection (the initial QA/QC process) as well as to parse the information according to line
orientation. This includes the parsing of information using simple column, space, comma, and tab
delimiters that are used to separate valid observations. The LIMS also checks end-of-record delimiters
and end-of-file delimiters as a means to identify the availability of the technical information. The use
of dynamic procedures to check for the size of the database construction (rows by columns) is useful

4 This function is also required for statistical identification of the number of variables and covariates
that are found within a case study.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

57

for comparing standardized testing sequences such as repeated measures. For example, the use of this
technique for acquiring information from the Shimadzu system is important for repeated linear test
and servo-pulser examinations. For the servo-pulser, repeated measures are used to simulate a
sequence of tensile and compressive tests that occur under field conditions such as repeated jarring or
bending of the sample under difficult load-bearing environments.

CREATE OR REPLACE procedure getcolumns
(tablename in varchar)
IS
COLUMNNAME VARCHAR2(50);
SQLSTMT VARCHAR2(100);
type mbrCursorType is ref cursor;
mbrCursor mbrCursorType;
BEGIN
 SQLSTMT:='select COLUMN_NAME from user_tab_columns where table_name= '''||TABLENAME||'''';

 DBMS_OUTPUT.PUT_LINE(sqlstmt);
 OPEN mbrCursor for sqlstmt;

 LOOP
 FETCH mbrCursor INTO COLUMNNAME;
 EXIT WHEN mbrCursor%NOTFOUND;
 dbms_output.put_line(COLUMNNAME);
END LOOP;
end;
/

Figure 3.5c: Dynamic SQL Example – Column Identification. This procedure will return the column
names for any table specified as an input parameter. The algorithm may be used in conjunction with
the example shown in Figure 3.5b to produce a report with column headings and data definitions. The
algorithm produces an output of the following format:

SQL> exec getcolumns(‘TEST2_TBL);

MACHINE_ID
MACHINE_NAME
MACHINE_MEASURE

In this output sequence, the user has executed the SQL procedure getcolumns using the select selected
tablename query. To simplify this case example, only three column headers are shown (Machine_ID,
Machine_Name, and Machine_Measure).

In Figure 3.5d, a partially dynamic process is shown. In this case example, the variable sizes (array
sizes) are declared a priori however the ORDERBY clause is used as a method to dynamically alter the
results according to stated criteria. The algorithm creates a tabular output similar to Figure (3.5a),
however, the results also show how a new instrument (new machine) may be identified and added
into the database.5

5 The ORDERBY process is particularly useful for sorting cases and observations within the database.
The ordering methods have been included within the StarLIMS software to allow MOD to sort cases,
observations, and testing sequences as required to meet 12th Main Directorate requirements. The use
of ORDERBY methods was required for the generation of reports from within the main CTD materials
database. This process is used independently from the LIMS, and is commonly required by MOD to
generate sub-reports for internal distribution across the CTD laboratory system.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

58

declare
MACHINE_ID VARCHAR2 (50);
MACHINE_NAME VARCHAR2 (50);
MACHINE_COST VARCHAR2 (50);
type mbrCursorType is ref cursor;
mbrCursor mbrCursorType;
sqlstmt varchar(100):='select * from test2_tbl';
orderby varchar2(25):='Machine_name';

BEGIN
 if orderby is not null then
 sqlstmt:=sqlstmt||' order by '||orderby;
 end if;

 dbms_output.put_line('Machine Data');
 dbms_output.put_line('------------------------');
 dbms_output.put_line(rpad('Machine ID',20,' ')||' '||
 rpad('Machine Name',30,' ')||' '||
 rpad('Machine Cost',30,' '));
 dbms_output.put_line('--');

 OPEN mbrCursor for sqlstmt;

 LOOP
 FETCH mbrCursor INTO machine_id,machine_name,machine_cost;
 EXIT WHEN mbrCursor%NOTFOUND;
 dbms_output.put_line(rpad(machine_id,20,' ')||' '||
 rpad(machine_name,30,' ')||' '||

 rpad(machine_meas,30,' '));
END LOOP;
end;
/

Figure 3.5d: Appending Information into an SQL Statement. In this example, one component of the
SQL statement is known, and is not expected to change after it is compiled. The variable portion of
the statement (the ORDERBY clause) is passed to the algorithm in a dynamic manner as the procedure
executes. The algorithm produces an output of the following format:

Machine Data

Machine ID Machine Name Rockwell Hardness
--
1 Machine 1 150000
2 Machine 2 160000
3 Machine 3 170000
0 New Machine 250000

PL/SQL procedure successfully completed.

In this output sequence, four cases are shown for Rockwell hardness testing from within the RDBMS.
A new machine has been added into the database and the cases are sorted in ascending order with the
new machine added at the end of the record.

In Figure 3.5e, the prior examples are extended to include methods for dynamic reporting of
parameters, cases, and labels. This procedure is used by MOD as a base-line example for the creation
of customized reports. In this example, the SQL statements are contained within the RDBMS, and the
final output includes the query data with labels and context information.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

59

CREATE TABLE .SQL_TBL
(
 SQL_NAME VARCHAR2(50),
 SQL_STMT VARCHAR2(500)
)

INSERT INTO SQL_TBL VALUES('SQLSTMT1','SELECT MACHINE_ID,MACHINE_NAME,MACHINE_MEAS FROM
TEST2_TBL WHERE MACHINE_ID=1');

INSERT INTO SQL_TBL VALUES('SQLSTMT2','SELECT MACHINE_ID,MACHINE_NAME,MACHINE_MEAS FROM
TEST2_TBL WHERE MACHINE_ID=2');

COMMIT;

CREATE OR REPLACE procedure dbms1_demo
(STMTNAME in varchar)
IS
SQLSTMT VARCHAR2(1000);

type mbrCursorType is ref cursor;
mbrCursor mbrCursorType;
type gCursorType is ref cursor;
gCursor gCursorType;
machine_id number;
machine_name varchar2(100);
machine_cost number;

BEGIN
 sqlSTMT:='SELECT SQL_STMT FROM SQL_TBL WHERE SQL_NAME=:THENAME';
 open gCursor for sqlstmt using STMTNAME;

fetch gCursor into SQLSTMT;
close gCursor;

 dbms_output.put_line('Rockwell Hardness');
 dbms_output.put_line('------------------------');
 dbms_output.put_line(rpad('Machine ID',20,' ')||' '||
 rpad('Machine Name',30,' ')||' '||
 rpad('Machine Cost',30,' '));
 dbms_output.put_line('--');

 DBMS_OUTPUT.PUT_LINE(sqlstmt);
 OPEN mbrCursor for sqlstmt;

 LOOP
 FETCH mbrCursor INTO machine_id,machine_name,machine_meas;
 EXIT WHEN mbrCursor%NOTFOUND;
 dbms_output.put_line(rpad(machine_id,20,' ')||' '||
 rpad(machine_name,30,' ')||' '||

 rpad(machine_cost,30,' '));
END LOOP;

CLOSE mbrCursor;
end;
/

Figure 3.5e: Retrieve SQL Statement From Database Table. In this example a SQL statement is stored
in a database table. By selecting the record that contains the SQL statement, a dynamic report is
generated and displayed to the user. This procedure identifies the methods that are required to build
report labels and report queries from StarLIMS and from the external CTD materials database. The
methods use independent SQL and PL/SQL techniques to access this information and may be
independently used by the field (mobile) teams working outside the StarLIMS environment. The
algorithm produces an output of the following format:

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

60

SQL> exec dbms1_demo('SQLSTMT1')
Machine Data

Machine ID Machine Name Rockwell Hardness
--
SELECT MACHINE_ID,MACHINE_NAME,MACHINE_COST FROM TEST2_TBL WHERE MACHINE_ID=1
1 Machine 1 150000

PL/SQL procedure successfully completed.

SQL> EXEC dbms1_demo('SQLSTMT2')
Machine Data

Machine ID Machine Name Rockwell Hardness
--
SELECT MACHINE_ID,MACHINE_NAME,MACHINE_MEAS FROM TEST2_TBL WHERE MACHINE_ID=2
2 Machine 2 160000

PL/SQL procedure successfully completed.

In this output sequence, two queries are shown for Rockwell hardness testing from within the
RDBMS. Each query acts on the procedure dbms1_demo, however the results depend upon the inserted
SQL statement SQLSTMT1 or SQLSTMT2.

Within Figure 3.5f, a dynamic SQL procedure is shown for the condition when a new table is
generated that may be appended or dynamically edited based upon the available information. This
condition is often referred to as the null database for appending new information.

CREATE PROCEDURE drop_table (table_name IN VARCHAR2) AS
 cid INTEGER;
 rv INTEGER;
BEGIN
 /* Open new cursor and return cursor ID. */
 cid := DBMS_SQL.OPEN_CURSOR;
 /* Parse and immediately execute dynamic SQL statement built by
 concatenating table name to DROP TABLE command. */
 DBMS_SQL.PARSE(cid, 'DROP TABLE ' || table_name, dbms_sql.v7);
 /* Close cursor. */
 DBMS_SQL.CLOSE_CURSOR(cid);
EXCEPTION
 /* If an exception is raised, close cursor before exiting. */
 WHEN OTHERS THEN
 DBMS_SQL.CLOSE_CURSOR(cid);
 RAISE;
END drop_table;

Figure 3.5f: Creating a Dynamic Drop Table. The drop table is used to create a new (blank table) for
inserting materials data. The algorithm produces an output of the following format:

SQL> exec drop_table('test_tbl')
PL/SQL procedure successfully completed.

SQL> SELECT COUNT(*) from test_tbl
ORA-00942:table or view does not exist

For this example, the output simply indicates that the procedure has been executed and the table is
dropped from the current database. As an alternative methodology, the table may be modified or
edited when the number of database columns is not known a priori. Techniques for operating on the
database under this scenerio are shown in Figure 3.5g. For this case example an internal call to
g_number_of_colums is used to dynamically extract the number of columns (database variables) for the
query.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

61

create or replace package my_dbms_sql
 as
 procedure define_all(p_cursor in integer);
 type varchar2_table is table of varchar2(4000) index by
 binary_integer;
 function fetch_row(p_cursor in integer)
 return varchar2_table;
 end;
 /

create or replace package body my_dbms_sql
 as
 g_number_of_columns dbms_sql.number_table;
 procedure define_all(p_cursor in integer)
 as
 l_columnValue varchar2(4000);
 l_descTbl dbms_sql.desc_tab;
 l_colCnt number;
 begin
 dbms_sql.describe_columns(p_cursor,
 l_colCnt, l_descTbl);
 for i in 1 .. l_colCnt loop
 dbms_sql.define_column(p_cursor, i, l_columnValue, 2000);
 end loop;
 g_number_of_columns(p_cursor) := l_colCnt;
 end;
 function fetch_row(p_cursor in integer)
 return varchar2_table
 is
 l_return varchar2_table;
 begin
 for i in 1 .. g_number_of_columns(p_cursor) loop
 l_return(i) := NULL; dbms_sql.column_value(p_cursor, i, l_return(i));
 end loop;
 return l_return;
 end;
 end;

declare
 l_theCursor integer default dbms_sql.open_cursor;
 l_status integer;
 l_data my_dbms_sql.varchar2_table;

 procedure execute_immediate(p_sql in varchar2)
 is
 BEGIN
 dbms_sql.parse(l_theCursor,p_sql,dbms_sql.native);
 l_status := dbms_sql.execute(l_theCursor);
 END;
 begin
 execute_immediate('alter session set nls_date_format=
 ''dd-mon-yyyy hh24:mi:ss'' ');
 dbms_sql.parse(l_theCursor,
 replace('select * from test2_tbl',
 '"', ''''),
 dbms_sql.native);
 my_dbms_sql.define_all(l_theCursor);
 l_status := dbms_sql.execute(l_theCursor);
 while (dbms_sql.fetch_rows(l_theCursor) > 0) loop
 l_data := my_dbms_sql.fetch_row(l_theCursor);
 for i in 1 .. l_data.count loop
 dbms_output.put_line(l_data(i));
 end loop;
 end loop;

 end;
/

Figure 3.5g: Creating a Dynamic Table when the Number of Columns is Not Known. For this
condition, the database is queried on a case-by-case basis to determine the number of variables that is
reflected in the RDBMS.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

62

3.6 Creating Unique Data Records in the LIMS

One technique to ensure uniqueness of a table’s primary key is by using sequence numbers. The
Oracle/LIMS sequence number provides a method for generating a series of distinct numbers that are
tagged to a LIMS measurement of laboratory testing sequence. The sequence is assigned a unique
identifier with a starting value, minimum index, maximum index and an incremental value. The
assignment technique guarantees unique identification values. As shown in the laboratory
demonstrations, the identifiers are used to conform to ISO standards for material identification. In
addition, these methods are used to create the chain-of-custody tools that have been developed for
LIMS QA/QC. Figure 3.6a demonstrates one method for creating a unique sequence number using a
primary key.

CREATE SEQUENCE NEW_SEQUENCE
START WITH 1
INCREMENT BY 1
MINVALUE 0

Declare
Machine_id number;
Machine_name varchar2(100):=’New Machine’;

Stmt varchar2(1000);
BEGIN
stmt:='INSERT INTO test2_tbl
 (machine_id,machine_name,measure_id
)
 VALUES (new_sequence.nextval, :name,
 :cost
)';

execute immediate stmt using machine_name,machine_id;
commit;
end;
/

Figure 3.6a: Creating a Unique Instrument Identification Value (Machine ID). In this example, a new
sequence is created that begins with an initial value equal to one, and is incremented for each
subsequent measure. The procedure New_Sequence is used to insert a record into a database table.
The sequence created is accessed by the command <sequence name>.nextval. Each time this command
is executed, a unique value will be generated and inserted into the database. As previously illustrated,
the bind variables are used to populate the SQL statement. The algorithm produces an output of the
following format:

SQL> select * from test2_tbl where machine_id=1;

MACHINE_ID MACHINE_NAME MEASURE_ID

 1 New Machine 25045682

SQL> select * from test2_tbl where machine_id=2;

MACHINE_ID MACHINE_NAME MEASURE_ID

 2 New Machine 25046784

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

63

For this example, two measurement identification values are created from two independent queiries.
The first measurement id = 25045682 corresponds to the first instrument (machine id=1), whereas, the
second query generates a measurement id = 25046784 for the next instrument in the sequence. In
Figure 3.6b, methods for immediate execution are provided. These techniques combine the earlier
definitions for parse, bind, execute and close within a single operation. As a result, they should be
used only in discrete operations that do not require extreme duplication. For example, the EXECUTE
IMMEDIATE statement should not be used within long looping operations since the parsing, binding,
and closing operations would create significant delays in the database operation and subsequent
query. Within this illustration sections are crossed-out to show the compact nature of the EXECUTE
IMMEDIATE statement. As indicated, the parsing and binding operations are not required since the
single statement replaces a sequence of individual operations.

Figure 3.6b: Using the EXECUTE IMMEDIATE Statement to Simplify Database Operations.
Statements are shown as crossed-out conditions that are no longer required by the SQL process, since
the single EXECUTE IMMEDIATE statement compactly processes the information within a single
declaration.

Two sample applications for the EXECUTE IMMEDIATE statement are provided in Figure 3.6c-d. In
these examples, SQL statements are generated at runtime (in real-time during the query process), and
implemented to INSERT or UPDATE a table of machine data. In the first example (Figure 3.6c), the
values of three variables, MACHINENUM, MACHINENAME AND ROCKWELL_HARDNESS are
inserted into test2_tbl. The SQL statement, as shown by the variable STMT, is created at run time and
executed using the EXECUTE IMMEDIATE statement. The benefit of this method is that the user
gains all of the advantages of Dynamic SQL within an abbreviated format.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

64

DECLARE
MACHINENUM NUMBER:=999;
MACHINENAME VARCHAR2(100):='NEW MACHINE';
ROCKWELL_HARDNESS NUMBER:=5;
STMT VARCHAR2(1000):='INSERT INTO APP_TBL VALUES (:1,:2,:3)';
BEGIN
EXECUTE IMMEDIATE STMT USING MACHINENUM,MACHINENAME,ROCKWELL_HARDNESS;
COMMIT;
END;

Figure 3.6c: Execution of INSERT statement using EXECUTE IMMEDIATE and bind variables. As
with DBMS_SQL, the INSERT statement is built at run time in the STMT string variable using values
passed in as arguments. THE SQL statement held in STMT is then executed via the EXECUTE
IMMEDIATE statement. The bind variables :1, :2, :3 are bound to the arguments which, in this case,
are the parameters: MACHINENUM, MACHINENAME and ROCKWELL_HARDNESS.

To verify that the procedure has inserted the information into the table correctly, issue a SELECT
statement and verify the results as correct. The algorithm produces an output of the following format:

SQL> select * from app_tbl where machine_id=999;
999 NEW MACHINE 525000

Within Figure 3.6d, a case example is provided for using the EXECUTE IMMEDIATE process within
an update statement. In this algorithm, MACHINE_NUMBER 999 is updated to reflect a revised
ROCKWELL_HARDNESS index of 6. As in the insert statement shown in Figure 3.6c, the SQL
statement is created at run time and the database is updated with the EXECUTE IMMEDIATE
statement using bind variables.

DECLARE
MACHINENUM NUMBER:=999;
MACHINENAME VARCHAR2(100):='NEW MACHINE';
ROCKWELL_HARDNESS:=6;
STMT VARCHAR2(1000):='UPDATE APP_TBL SET MACHINE_ID=:1, MACHINE_NAME =:2, MACHINE_COST=:3
WHERE MACHINE_ID=999';
BEGIN
EXECUTE IMMEDIATE STMT USING MACHINENUM,MACHINENAME,MACHINECOST;
COMMIT;
end;
/

Figure 3.6d: Execution of an UPDATE statement using the EXECUTE IMMEDIATE and the Bind
Variables. As previously described for DBMS_SQL, the INSERT statement is built at run time in the
STMT string using values passed into the procedure (as arguments). THE SQL statement held in
STMT is then executed via the EXECUTE IMMEDIATE statement. The bind variables :1, :2, :3 are
attached to the arguments (algorithm parameters) shown as: MACHINENUM, MACHINENAME
and the ROCKWELL_HARDNESS.

To verify that the procedure functioned as expected, issue a SELECT statement to verify the
information in the record for MACHINE_ID 999 is correct:

SQL> select * from app_tbl where machine_id=999;
999 NEW MACHINE 6

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

65

3.7 Applying Array Structures within the LIMS

Within this discussion, we examine the use and application of array methods for storing localized
variable information. Arrays are used to index processes and maintain ordered or sequenced
operations including labels, parameters, and pointers to index algorithms (procedures and functions).
The most commonly used structure is the VARRAY and the Nested Table.

The VARRAY is an ordered set of data elements, with each element having an index, and all elements
being of the same data type or data structure. The size of a VARRAY refers to the maximum number
of elements that may be placed within the structure. Within the Oracle RDBMS for materials
information, the VARRAY structures are of variable width, but the maximum size of any particular
VARRAY type must be specified a priori (i.e. when the VARRAY type is formally declared).

A Nested Table is an unordered set of elements. The ingredients and structure of the nested table can
be queried in SQL and is not defined a priori. A nested table is not created with any particular
number of rows. Hence, the size is determined in a dynamic manner during execution.

Both VARRAYs and Nested Tables are one-dimensional, although the elements can be complex object
types. VARRAY types are used for one-dimensional arrays, while nested table types are used for
single-column tables within an outer table. A variable of any VARRAY type can be referred to as a
VARRAY, while a variable of any nested table type can be referred to as a nested table. Process steps
for using the VARRAY and Nested Table operations are shown in Figures 3.7a-b. Within the first
example, the parameter num_varray is declared as a VARRAY whose maximum size cannot exceed five
elements. The array is then populated with data consisting of the number sequence 10, 20, 30, and 40.
The array is then displayed by referencing the array index numbers 1 to 4. Next, the value stored at
index 4 is changed from 40 to 60 and the array is re-displayed showing the modification.

DECLARE
 Type num_varray is VARRAY(5)OF NUMBER;
 v_numvarray num_varray;
BEGIN
 v_numvarray :=num_varray(10,20,30,40);
 --Referencing individual elements
 dbms_output.put_line('The elements in the v_numvarray are: ');
 dbms_output.put_line(to_char(v_numvarray(1))||', '||to_char(v_numvarray(2))||
 ', '||to_char(v_numvarray(3))||', '||
 to_char(v_numvarray(4)));

 --assignment
 v_numvarray(4):=60;
 dbms_output.put_line('The elements in the v_numvarray are: ');
 dbms_output.put_line(to_char(v_numvarray(1))||', '||to_char(v_numvarray(2))||
 ', '||to_char(v_numvarray(3))||', '||
 to_char(v_numvarray(4)));
END;
/

Figure 3.7a: The VARRAY Single Dimensional Structure. The array element is created and
information is stored and retrieved by the array index value -- similar to other array structures used in
modern programming languages. The algorithm produces an output of the following format:

The elements in the v_numvarray are:
10, 20, 30, 40
The elements in the v_numvarray are:
10, 20, 30, 60

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

66

The procedure shown in Figure 3.7a may be modified to utilize the nested table data structure. This
modification is illustrated in Figure 3.7b. In this example, the formal data is organized within a
column orientation inside the table -- without order. When the data is retrieved, the information is
presented in an array.

declare
 Type num_table is TABLE OF NUMBER;
 v_numarray num_table;
begin
 v_numarray :=num_table(10,20,30,40);
 --Referencing individual elements
 dbms_output.put_line('The elements in the v_numarray are: ');
 dbms_output.put_line(to_char(v_numarray(1))||', '||to_char(v_numarray(2))||
 ', '||to_char(v_numarray(3))||', '||
 to_char(v_numarray(4)));

 --assignment
 v_numarray(4):=60;
 dbms_output.put_line('The elements in the v_numarray are: ');
 dbms_output.put_line(to_char(v_numarray(1))||', '||to_char(v_numarray(2))||
 ', '||to_char(v_numarray(3))||', '||
 to_char(v_numarray(4)));
end;
/

Figure 3.7b: The Nested Table Data Structure. The array element is created and ordered according to
the execution statements. The algorithm produces an output of the following format:

The elements in the v_numarray are:
10, 20, 30, 40
The elements in the v_numarray are:
10, 20, 30, 60

3.8 LIMS Error Functions and Exception Management

Under unusual operating conditions, the LIMS and RDBMS will create data codes that indicate
potential problems in the management of information. This may occur when the instrument is not
properly operated by the end-user. Alternatively, error codes may be generated by simple processing
of data, that is not properly registered, or identified within the LIMS system. Within the RDBMS,
exception codes may be generated as new information or code elements are added. This frequently
occurs when new algorithms are tested or modified for final operation.

Within PL/SQL, all errors are trapped and identified as EXCEPTIONS. When the analyst tries to
incorporate the erroneous information into the LIMS, the normal processing is stopped, and the
control is transferred to the exception handling section of the program. The exception handler
mechanism allows a clean separation of the error processing code from the executable statements.
This process also forces the systems administrator to examine the potential source of the problem and
register the solution.

The LIMS user can create an exception condition by trying to access null or void data sets. This occurs
when the path to the database is incorrect or the actual database system contains null or void
information (i.e. no valid data or data references). Specific exceptions may be managed using the
implicit cursor. An example for this technique is provided in Figure 3.8a-b. Within Figure 3.8a, the
analyst is attempting to access a database with no information (i.e. the cursor attempts to execute a
SELECT statement that returns no data).

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

67

Section 1:
DECLARE
RESULT VARCHAR2(50);
begin
SELECT MACHINE_NAME
INTO RESULT
FROM APP_TBL
WHERE MACHINE_ID=9999;
dbms_output.put_line(result);
end;
/

When this procedure is executed, no data is found by the SELECT statement and an error is
produced as follows:

ERROR at line 1:
ORA-01403: no data found
ORA-06512: at line 4

Section 2:
By inserting an EXCEPTION section in the procedure, the program becomes aware of the
potential problem and handles it appropriately.

DECLARE
RESULT VARCHAR2(50);
begin
SELECT MACHINE_NAME
INTO RESULT
FROM APP_TBL
WHERE MACHINE_ID=9999;
dbms_output.put_line(result);
EXCEPTION
 WHEN NO_DATA_FOUND
 THEN
 dbms_output.put_line('No Data Found');
end;
/

Now the procedure terminates normally and displays a message to the user indicating that
no data was found.

No Data Found

Figure 3.8a: Exception Handling – Implicit Cursor With NO_DATA_FOUND. Within Section 1, the
implicit cursor finds no data. This error prematurely terminates the program, and generates an ORA-
01403 “no data found error”. Within Section 2, the algorithm is modified to trap for
NO_DATA_FOUND. As a result the error is caught, and a simple message is displayed to notify the
end user. Within Section 2, no system error is generated – only a notification to the analyst.

Since an implicit cursor can only handle a single data element, an error will result when the query
returns more than a single value. This condition occurs when the analyst is trying to access numerous
fields or data arrays without actual knowledge of the underlying data structure. This condition will
also occur if the user is trying to manage too many variables or cases within the database. An example
of this condition is provided in Figure 3.8b. For this illustration, the user is attempting to access too
many rows of information from an unknown table within the CTD materials database. Without error
handling the following situation will occur when using an implicit cursor:

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

68

Section 1:
DECLARE
RESULT VARCHAR2(50);
begin
SELECT MACHINE_NAME
INTO RESULT
FROM APP_TBL;
dbms_output.put_line(result);
end;
/

When this procedure is executed, an error is produced:

ERROR at line 1:
ORA-01422: exact fetch returns more than requested number of rows
ORA-06512: at line 4

Section 2:
By implementing error handling, and trapping for the TOO_MANY_ROWS error, the program
terminates normally.

DECLARE
RESULT VARCHAR2(50);
begin
SELECT MACHINE_NAME
INTO RESULT
FROM APP_TBL;
dbms_output.put_line(result);
EXCEPTION
 WHEN TOO_MANY_ROWS
 THEN
 dbms_output.put_line('Query Returned More Than One Row');
end;
/

Now the procedure terminates normally and displays a message to the user indicating:

Query Returned More Than One Row

Figure 3.8b: Exception Handling – Implicit Cursor With TOO_MANY_ROWS. Within Section 1, the
implicit cursor finds more than one row of data. This error prematurely terminates the program, and
generates an ORA-01422 “exact fetch returns more than request number of rows” error. Within
Section 2, the algorithm is modified to trap for TOO_MANY_ROWS. As a result the error is caught,
and a simple message is displayed to notify the end user. Within Section 2, no system error is
generated – only a notification to the analyst.

When an exception is raised in a PL/SQL block, normal execution is halted and control is transferred
to the exception section or the systems administrator. For the case of a serious error or violation, the
process is immediately terminated to preserve the information that is being accessed. In some cases,
the ability to continue past exceptions is desired. Figure 3.8c demonstrates a method to handle the
exception and then continue with the remainder of the procedure. In the first section, the error is
trapped. However, the control never returns from the EXCEPTION section, and the statement that
displays the message “This occurs after the error” is never reached. Within the second section, the
control is allowed to exit the EXCEPTION section for additional processing and data analysis.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

69

Section 1:
DECLARE
RESULT VARCHAR2(50);
COLNAM VARCHAR2(10):='NAME1';
COLVAL VARCHAR2(10):= 'VALUE5';
STMT VARCHAR2(100):='INSERT INTO TEST3_TBL VALUES(:1,:2)';
BEGIN
 EXECUTE IMMEDIATE STMT USING COLNAM,COLVAL;
 dbms_output.put_line('This occurs after the error');
EXCEPTION
 WHEN DUP_VAL_ON_INDEX
 THEN
 dbms_output.put_line('Column Name Already Used...Please Select Another');
END;
/

Column Name Already Used...Please Select Another

Section 2:
To enable the program to continue after the error is handled, a separate block with a
BEGIN section is inserted to hold the exception section.

DECLARE
RESULT VARCHAR2(50);
COLNAM VARCHAR2(10):='NAME1';
COLVAL VARCHAR2(10):= 'VALUE5';
STMT VARCHAR2(100):='INSERT INTO TEST3_TBL VALUES(:1,:2)';
BEGIN
 BEGIN
 EXECUTE IMMEDIATE STMT USING COLNAM,COLVAL;
 EXCEPTION
 WHEN DUP_VAL_ON_INDEX
 THEN
 dbms_output.put_line('Column Name Already Used...Please Select Another');
 END;
BEGIN
dbms_output.put_line('This occurs after the error');

END;
END;
/

Using this method enables the procedure to handle the error and then continue and display
the message “This occurs after the error” as shown below.

Column Name Already Used...Please Select Another
This occurs after the error

Figure 3.8c: Continuing Program Execution After An Exception. Within Section 1, the program is
terminated as soon as the error occurs. In this case an attempt is made to insert a duplicate value in a
field that is restricted with a unique value constraint. The statement “This occurs after the error” is not
reached since the program has already terminated. Within Section 2, the program is not terminated,
and statement “This occurs after the error” is displayed to the end user. The second example places
the exception section in it’s own block, and therefore, enables the program to continue after the error
has been handled.

Under certain conditions, the analyst will encounter an exception condition that is specific to an
application or resource. These errors are localized to the code that is the source of the error and may
not be trapped by SQL or PL/SQL. These error conditions can be managed using programmer-
defined exceptions as illustrated in Figure 3.8d.

In this example the variable big_number_exception is declared and given an EXCEPTION data type.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

70

Now the program logic can determine when the declared exception should be raised. The logical
criteria to throw the big_number_exception is when cnumber > 1,000,000. When this criterion is reached,
the exception is raised and control is transferred to the EXCEPTION block where the exception is
managed. No system level error is generated from this condition.

DECLARE
big_number_exception EXCEPTION;
anumber number:=20000;
bnumber number:=60000;
cnumber number;
BEGIN
 BEGIN
 cnumber:=anumber*bnumber;
 IF cnumber>1000000 then
 RAISE big_number_exception;
 end if;
 EXCEPTION
 WHEN big_number_exception THEN
 dbms_output.put_line('A Big Number Exception Has Occurred');
 END;
 BEGIN
 dbms_output.put_line('The answer is '||anumber||'*'||bnumber||' = '||cnumber);

 END;
END;
/

Figure 3.8d: Error Events within a Custom Application. Within this algorithm, the exception
big_number_exception has been declared and defined. When the criteria defined for the exception has
been met, the exception is executed and the end user is notified of the event without loss of system
resources. The algorithm produces an output of the following format:

A Big Number Exception Has Occurred
The answer is 20000*60000 = 1200000000

PL/SQL procedure successfully completed.

SQL>

3.9 LIMS Mail Resources

Within this section, two algorithms are provided that illustrate common techniques for e-mail
management within a secure internal network. The methods may be adapted for external networks,
and will operate on common systems that utilize internal messaging procedures (e.g. the CTD LIMS
system), as well as, external code resources (standard internet service). In Figure 3.9a, the process will
send email from the PL/SQL code. This approach is used to notify system users of specific events or
error conditions. In addition, this method may be used to create a bulletin-board environment for the
distribution of common data or help resources. Initially, a table of users and their email addresses
will be created. This table will provide a list of individuals who will be notified when a specified
event occurs. This includes user identification data, names, and e-mail addresses:

CREATE TABLE NOTIFY_USERS
(
 USERID NUMBER,
 USERNAME VARCHAR2(25 BYTE),
 USER_EMAIL VARCHAR2(50 BYTE)
)

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

71

Next the table will be populated with data of users to be notified. This table can be further broken
down into classes of users, which messages to send to a specific group of users and other
combinations.

INSERT INTO NOTIFY_USERS VALUES(1,’USER1’,’user1@LIMStest.net’);
INSERT INTO NOTIFY_USERS VALUES(1,’USER2’,’user2@LIMStest.net’);
Commit;

Now the email procedure will be created. This procedure creates a cursor of individuals to notify
from the NOTIFY_USERS table. Variables are declared with default values for the sender, recipient,
subject, mail host and the message to be sent via email. As the cursor loops through user data, it
creates an STMP connection to the specified mail server and sends a predefined message to recipients
that have been previously identified.

CREATE OR REPLACE PROCEDURE email_notification
IS
 sender VARCHAR2(100) default 'sender@test.net';
 recipient VARCHAR2(100) default 'recipient@test.net';
 subject VARCHAR2(100) default 'An event has occurred';
 message VARCHAR2(100) default 'A record has been inserted into the test3_tbl';
 emailaddress varchar2(100) default 'address@test.net';
 crlf VARCHAR2(2):= UTL_TCP.CRLF;
 connection utl_smtp.connection;
 mailhost VARCHAR2(255) := 'mail.test.net';
 header VARCHAR2(1000);

CURSOR users IS
 SELECT username, user_email FROM notify_users;

BEGIN

for the_result in users LOOP

 connection := utl_smtp.open_connection(mailhost,25);
 header:= 'Date: '||TO_CHAR(SYSDATE,'dd Mon yy')||crlf||
 'From: '||sender||''||crlf||
 'Subject: '||subject||crlf||
 'To: '||the_result.user_email;

 -- Handshake with the SMTP server
 utl_smtp.helo(connection, mailhost);
 utl_smtp.mail(connection, sender);
 utl_smtp.rcpt(connection, the_result.user_email);
 utl_smtp.open_data(connection);
 -- Write the header
 utl_smtp.write_data(connection, header);
 utl_smtp.write_data(connection, crlf||crlf||message);
 utl_smtp.close_data(connection);
 utl_smtp.quit(connection);
end LOOP;
EXCEPTION
 WHEN UTL_SMTP.INVALID_OPERATION THEN
 htp.p(' Invalid Operation in SMTP transaction.');
 WHEN UTL_SMTP.TRANSIENT_ERROR THEN
 htp.p(' Temporary problems with sending email - try again
later.');
 WHEN UTL_SMTP.PERMANENT_ERROR THEN
 htp.p(' Errors in code for SMTP transaction.');

END email_notification;
/

Next create a table that will call the email notification procedure.
CREATE TABLE test3_tbl
(
 testid NUMBER,
 testdescription VARCHAR2(100)
)

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

72

Now create a trigger on the table. This trigger will fire and call the email_notification procedure every
time a user INSERTS, DELETES or UPDATES information in the test3_tbl.

CREATE OR REPLACE TRIGGER EVENT_TRIGGER
BEFORE DELETE OR INSERT OR UPDATE
ON TEST3_TBL
FOR EACH ROW
DECLARE

BEGIN
 email_notification;
END ;

/

Figure 3.9a: E-Mail Notification within the LIMS/CTD Network. Creating the table of users and their
respective e-mail addresses that are local to the laboratory system. The list of users will be sent an
email notifying them that an event has occurred.

The procedures in Figure 3.9a are used with the field validation methods shown in Figure 3.9b to
ensure that only valid e-mail addresses are utilized. Within Figure 3.9b, logical statements are used to
test for the standard construction of an email address. This construction is of the form: (@ symbol, 1
“.”, no spaces). If the format conditions are met, the function returns ‘TRUE’ - indicating that it is a
valid email address. If one or more of the criteria is not met, a ‘FALSE’ or invalid address message is
returned.

 Create or Replace FUNCTION is_EmailValid(pEmail_Text VARCHAR2 DEFAULT NULL)
 RETURN Varchar2 is
 returnval Varchar2(10) := 'TRUE';

atLocation NUMBER;
 BEGIN
 -- Check to see if this e-mail address contains the @ symbol
 IF INSTR(pEmail_text,'@',1) = 0 THEN
 returnval := 'FALSE';
 END IF;

 -- Check to see if this e-mail address contains at least 1 . symbol
 IF INSTR(pEmail_text,'.',1) = 0 THEN
 returnval := 'FALSE';
 END IF;

-- Check to insure that there are no spaces in the email address
IF INSTR(ltrim(rtrim(pEmail_text)),' ',1) > 0 THEN
 returnval := 'FALSE';
END IF;

 IF INSTR(LOWER(pEmail_Text),'mil',1) = 0 AND INSTR(LOWER(pEmail_Text),'com',1)=0
 AND INSTR(LOWER(pEmail_Text),'net',1) = 0 AND
 INSTR(LOWER(pEmail_Text),'org',1) = 0 AND INSTR(LOWER(pEmail_Text),'edu',1)=0
 THEN
 returnval := 'FALSE';
 END IF;

 IF pEmail_Text IS NULL THEN
 returnval := 'FALSE';
 END IF;

 RETURN returnval;

 END is_EmailValid;

Figure 3.9b: Validate Email Address. This procedure accepts an email address string pEmail as an
input parameter. If the string matches the logical criteria for valid e-mail addressing, the function
returns a ‘TRUE’ value. Alternatively, a ‘FALSE’ or invalid result is returned from the logical test.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

73

Executing the procedure produces the following results:

SQL> select is_EmailValid('abc@aol.com') from dual;

IS_EMAILVALID('ABC@AOL.COM')
--
TRUE

Note that this utility function only checks for valid structure, but does not search or ping the user
account to be certain that it is valid for use. Using Figure 3.9a-b, the systems administrator is able to
notify all users within the CTD and LIMS network and attempt to notify any and all users that have a
valid e-mail address.

3.10 CTD Web Applications and Network Distribution

Within this discussion, we examine the main case examples for creating html (Hyper Text Markup
Language) based web applications using either SQL or PL/SQL. The applications are required for the
distribution of information using the common html approach and may be employed within an intra-
net configuration for the secure distribution of digital information.

The ability to dynamically generate Web pages from database records gives the user an advantage not
found in conventional static pages: the capability of viewing real-time data. The example provided in
Figure 3.10a, illustrates one method for machine data using html. In this case study, the cursor
machine_info is declared to retrieve the machine_id, machine_name and Rockwell_hardness index from
test2_tbl.

HTML is created and embedded into the stored procedure using the htp (Hyper Text Procedure)
command. This technique sends the html that is generated back to the Web browser to be displayed.
After beginning the html with htp.p the procedure is written in simple html code.

To retrieve data from the cursor, a FOR LOOP is constructed. As seen in the example, every record
retrieved is then displayed in html. The ‘|| concatenation symbol is used to separate html from the
PL/SQL variables.

After the FOR LOOP is closed and the dynamic data generated and displayed, the page is completed
following simple html coding practices.

The stored procedure is accessed following the configuration that was implemented when the web
server was installed. It generally follows the form:

http://<server name>/pls/<data access descriptor (DAD)>/package.procedurename

Within the CTD/LIMS, the server is the Compaq ML-530 disk-array that access the pls data
description. Once this path is identified, the package, procedure or function is executed from within
the web-based environment. Note that this same approach is used internally within the design of the
StarLIMS enterprise server. This method, allows MOD to distribute all LIMS data across the secure
intra-net provided access privileges are granted at the root privilege level. An identical method may
be employed for external networks, such as those employed by MOD for mobile operations. These
tools will allow MOD to forward user specified information from field locations using common
Internet methods that utilize secure web pages.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

74

CREATE OR REPLACE PROCEDURE display_tbl2 IS
//declare and create the cursor
 CURSOR machine_info IS
 SELECT machine_id,machine_name,rockwell_hardness
 FROM test2_tbl
 ORDER BY machine_id;
BEGIN
//start the HTML
 htp.p('<html>
 <head>
 <title>Test Procedure To Display Table Data</title>
 </head>
 <body bgcolor=#C4D8E2>
 <center>
 <table border=1>
<td align=center> Machine ID</td><td align=center>Machine Name</td>
<td align=center>Rockwell Hardness Index</td></tr> ');
//begin the FOR LOOP and display the records retrieved from the SQL query
FOR results in machine_info LOOP
 htp.p('<tr><td align=center>'||results.machine_id||'</td><td>'||results.machine_name||'</td>
 <td align=center>'||results.rockwell_hardness||'</td></tr> ');
end loop;
//end the HTML page
 htp.p(' </table></center>
 </body></html>
 ');
END display_tbl2;
/

Figure 3.10a: Creating Dynamic html Web Pages from within PL/SQL. In this example, the html code
is generated from information that is a priori stored within the CTD Materials Database. The
technique sends the html that is generated back to the Web browser to be displayed. The algorithm
generates an output of the following format:

As indicated, the result is a simple table of material values indexed by machine identifier. The table
presentation is common html format for the distribution across the CTD/LIMS environment. The
procedure may be modified to create an across-the-web notification utility. For example, a new record
may be added into the LIMS or CTD materials database, and all users can be instantaneously notified
of the event. The notification sequence is critical to certain testing operations when erroneous
measures are corrected or new information is added into the test sequence that will significantly
influence the analytical process. This event occurs when outlier information is added into the data
record that significantly affects the statistical QA/QC procedures employed for the sample. Within
Figure 3.10b-c, a process sequence is illustrated for inserting new records into a web environment and
notifying all CTD/LIMS users of the event. To simplify the case example, the package test_package
contains two procedures: (1) display_tbl2, which is used to display the results of the database query,
and (2) update_database, which is used to perform the database operations on the data in tbl2.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

75

CREATE OR REPLACE PACKAGE test_package AS
PROCEDURE display_tbl2;
PROCEDURE update_database(
 the_type in varchar2 default 'INSERT',

machineid in integer default null,
machinename in varchar2 default null,
rockwell in integer default null);

END test_package;

/

CREATE OR REPLACE PACKAGE BODY test_package AS
PROCEDURE display_tbl2 IS
 nextnum number;
 CURSOR machine_info IS
 SELECT machine_id,machine_name,rockwell_hardness
 FROM test2_tbl;

BEGIN
 SELECT MAX(MACHINE_ID)+1 INTO

NEXTNUM
FROM TEST2_TBL;

 htp.p('<html>
 <head>
 <title>Test Procedure To Display Table Data</title>
 </head>
 <body bgcolor=#C4D8E2>
 <form action=test_package.update_database>
 <center>
 <table border=1>
<td align=center> Machine ID</td><td align=center>Machine Name</td>
<td align=center>Rockwell Hardness Index</td></tr> ');
for results in machine_info LOOP
htp.p('<tr><td align=center>'||results.machine_id||'</td><td>'||results.machine_name||'</td>
<td align=center>'||results.rockwell_hardness||'</td></tr> ');
end loop;

 htp.p('

 <td align=center>'||nextnum||'<input type=hidden name=machineid value='||nextnum||'></td>
 <td align=center><input type=text name=machinename></td><td align=center>
 <input type=text name=rockwell></td></tr>
 <td colspan=3 align=center><input type=submit value="Update Database"></td></table></center>
 </form></body></html>
 ');

END display_tbl2;

Figure 3.10b: Inserting Records into the CTD/LIMS Database. The database is updated with
information entered into the html text boxes. While the procedure is executing, the user is shown a
message screen with system status. After the operation is completed, the original page is displayed
showing the updated information.

The procedure created in the first example is modified first to ensure every record has a unique
identifier (i.e. the next sequentially numbered machine_id). This is accomplished by selecting the
maximum machine identification code currently in the database, and incrementing it by 1. That result
is stored in the variable nextnum.

After the current information is displayed, blank input boxes are generated to hold information that
will be inserted by the user within the database. When the html form is submitted, the values
contained in the input boxes are sent to the location specified in the form action. In this example, they
are sent to the update_database procedure for processing.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

76

When update database receives the values it inserts them into the database. This procedure also
utilizes a Java script to perform a redirect, and send the page from the update_database procedure to the
display_tbl2 procedure displaying the newly entered data.

PROCEDURE update_database(
 the_type in varchar2 default 'INSERT',

machineid in integer default null,
machinename in varchar2 default null,
rockwell in integer default null)

is
stmt varchar2(100);
BEGIN

htp.p('<html><head><title></title><script>
 function doRedirect()

 {
 document.write(''Database Updated...Please Wait'');

 setTimeout("window.location =
''test_package.display_tbl2''", 2000);

 }
</script></head>');

--
htp.p('<body onload="doRedirect();">');
IF the_type='INSERT' THEN
 stmt:='INSERT INTO TEST2_TBL values(:1,:2,:3)';

 EXECUTE IMMEDIATE STMT USING MACHINEID,MACHINENAME,ROCKWELL;

 COMMIT;
END IF;
htp.p('</body></html>');
end update_database;

END test_package;

/

Figure 3.10b (Continued): Inserting Records into the CTD/LIMS Database. This procedure operates
with the code shown in Figure 3.10a data input and data display using the common html interface.
This section provides the update utilities that are required to broadcast the information across the
CTD/LIMS network. After the operation is completed, the original page is displayed showing the
updated information.

Example operations are shown in Figure 3.10c-e as they appear to the web client. In the first example,
the original screen is shown with the inclusion of a blank insertion box for machine identification code
four.

Figure 3.10c: Simple Data Insertion for the CTD/LIMS web client.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

77

Figure 3.10c: User Defined Parameters. Manually updating the database.

Figure 3.10d: Including the New Insertion Point. The user is notified that the database has been
updated to include the fourth measure (from Machine 4) shown in Figure 3.10c. Next, the web GUI is
automatically updated to show all valid measurements and a new insertion point for entering
additional data from Machine ID 5.

The procedures shown in Figure 3.10a-b may be extended to support data reduction and editorial
review of the inserted information. This provides the foundation methods for compacting the
database to reduce the storage volume and shows how the systems administrator can support
interactive data editing features. This method is also used when the MOD analyst attempts to add
information that is invalid. The line insertion is initially shown to the user and the case is then
removed for further analysis within the QA/QC procedures.

The main structure for automatically editing the database table is shown in Figure 3.10e-f. On the
main html form, a hyperlink and icon are added to the structure adjacent to each record. When the
user clicks on the link, the control passes to the update_database procedure with the parameters
the_type=DELETE and the machineid of the specific record that was selected.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

78

When the update_database procedure receives this information it determines that it is a delete request
and proceeds to delete the record algorithm. After the operation is completed control is passed back
to display_tbl2 and the updated records displayed.

CREATE OR REPLACE PACKAGE test_package AS
PROCEDURE display_tbl2;
PROCEDURE update_database(
 the_type in varchar2 default 'INSERT',

machineid in integer default null,
machinename in varchar2 default null,
rockwell in integer default null);

END test_package;
/

CREATE OR REPLACE PACKAGE BODY test_package AS
PROCEDURE display_tbl2 IS
 nextnum number;
 CURSOR machine_info IS
 SELECT machine_id,machine_name,rockwell_hardness
 FROM test2_tbl;

BEGIN

 SELECT MAX(MACHINE_ID)+1 INTO
NEXTNUM
FROM TEST2_TBL;

 htp.p('<html>
 <head>
 <title>Test Procedure To Display Table Data</title>
 </head>

 <body bgcolor=#C4D8E2>
 <form action=test_package.update_database>
 <center>
 <table border=1>

<td align=center> Machine ID</td><td align=center>Machine Name</td>
<td align=center>Rockwell Hardness Index</td><td
align=cener>Delete</td></tr> ');

for results in machine_info LOOP
htp.p('<tr><td
align=center>'||results.machine_id||'</td><td>'||results.machine_name||'</td>
<td align=center>'||results.rockwell_hardness||'</td><td>

<im
g border=0 src="http://webtools.symbolx.com/temporary/trash2.png" ></td></tr> ');
end loop;

 htp.p('

 <td align=center>'||nextnum||'<input type=hidden name=machineid value='||nextnum||'></td>
 <td align=center><input type=text name=machinename></td><td align=center>
 <input type=text name=rockwell></td></tr>

 <td colspan=4 align=center><input type=submit value="Update
Database"></td></table></center>
 </form></body></html>
 ');

END display_tbl2;

Figure 3.10e: Editing and Deleting Records within the CTD/LIMS Database. When the user clicks on
the trash icon next to a record the update_database procedure deletes the specified record, gives the user
a status report that the database is being updated, then redirects the GUI to the original page shown
with updated information. After the operation is completed, the original page is displayed showing
the updated database records.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

79

PROCEDURE update_database(
 the_type in varchar2 default 'INSERT',

machineid in integer default null,
machinename in varchar2 default null,
rockwell in integer default null)

is
stmt varchar2(100);
BEGIN

htp.p('<html><head><title></title><script>
 function doRedirect()

 { document.write(''Database Updated...Please Wait'');
 setTimeout("window.location =

''test_package.display_tbl2''", 2000);
 }
</script></head>');

htp.p('<body onload="doRedirect();">');
IF the_type='INSERT' THEN
 stmt:='INSERT INTO TEST2_TBL values(:1,:2,:3)';
 EXECUTE IMMEDIATE STMT USING MACHINEID,MACHINENAME,ROCKWELL;
 COMMIT;
ELSIF the_type='DELETE' THEN
 stmt:='DELETE FROM TEST2_TBL WHERE MACHINE_ID=:1';

 EXECUTE IMMEDIATE STMT USING MACHINEID;
END IF;
htp.p('</body></html>');
end update_database;

END test_package;
/

Figure 3.10f: Editing and Deleting Records within the CTD/LIMS Database (Continued). This
procedure operates with the code shown in Figure 3.10e data input and data display using the
common html interface. This section provides the update utilities that are required to broadcast the
editorial revision across the CTD/LIMS network. After the operation is completed, the original page is
displayed showing the updated information.

The delete operation is shown in Figure 3.10g. In this example, Machine ID = 0 has been deleted from
the main CTD materials database and a blank insertion box for machine identification appears in the
html interface.

Figure 3.10g: Manually Editing Database Records Using Web-Client Interface

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

80

The functions and procedures shown in Figure 3.10a-g can be organized to build a single utility that
provides the technical support for: data editing, error detection, and user feedback (to the analyst or
the systems administrator). This process is organized as a comprehensive utility for email notification
with a hyperlink to specific users, clients, and analytical instruments. The algorithm processes
information in a sequential manner:

The first step is to create a table of the individuals that will be notified when a report is submitted.
The table entitled: BUG_DISTRIBUTION_TBL contains columns for the username and email address.
Additional columns may be added with user classifications and data parameters for certification and
attestation. At the minimum level, the table includes information concerning the user ID, the user
name, and the e-mail address. Additional restriction of privileges may be added to the data record
during this step:

CREATE TABLE BUG_DISTRIBUTION_TBL
(
 NOTIFIED_ID INTEGER NOT NULL,
 USERNAME VARCHAR2(100 BYTE),
 EMAIL_ADDRESS VARCHAR2(500 BYTE)
)

Next the table is populated with sample data from the CTD instruments. Alternatively, archived data
may be used from the materials database or the Sybase LIMS RDBMS:

INSERT INTO BUG_DISTRIBUTION_TBL VALUES(1,’TESTPERSON’,’TESTPERSON@TEST.COM’);

A table is created to hold information about the feedback or bug event. The columns include:

BUG_ID a number to identify the event
BUG_DATE date the issue was created
BUG_NAME user supplied name for the issue
EMAIL user supplied email address so the user can be contacted
SHORTDESCRIPTION a user supplied short description of the issue
FULLDESCRIPTION a detailed description of the problem
DUPLICATION user provided example of how the problem can be duplicated
WORKAROUND user provided example of how to work around the problem
IDEALLY user provided statement explaining ideally how the problem should

be resolved

BROWSER user provided information explaining what Web browser they are using
OPERATINGSYSTEM user reported information concerning the operating system used
SEVERITY user assigned ranking of how important the issue is
PRIORITY user assigned ranking of the priority of the issue
RESOLVED has the issue been resolved
RESOLVEDBY who resolved the issue
RESOLVEDATE date the issue was resolved

Next, a series of declarations and arrays are required to manage the information. The arrays are
required to parse and locally store the information as it is being processed. The tables are also
required to hold information about the feedback event. The columns include:

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

81

CREATE TABLE BUG_REPORT_TBL
(
 BUG_ID INTEGER,
 BUG_DATE DATE,
 BUG_NAME VARCHAR2(100 BYTE),
 EMAIL VARCHAR2(100 BYTE),
 SHORTDESCRIPTION VARCHAR2(100 BYTE),
 FULLDESCRIPTION VARCHAR2(4000 BYTE),
 DUPLICATION VARCHAR2(4000 BYTE),
 WORKAROUND VARCHAR2(4000 BYTE),
 IDEALLY VARCHAR2(4000 BYTE),
 BROWSER VARCHAR2(100 BYTE),
 OPERATING_SYSTEM VARCHAR2(100 BYTE),
 SEVERITY VARCHAR2(100 BYTE),
 PRIORITY VARCHAR2(100 BYTE),
 RESOLVED VARCHAR2(10 BYTE),
 RESOLVEDBY VARCHAR2(50 BYTE),
 RESOLVEDDATE DATE
)

Next a sequence is created to assign a unique ID to each bug report.
CREATE SEQUENCE BUG_SEQUENCE
START WITH 0
INCREMENT BY 1
MINVALUE 0
NOCACHE
NOCYCLE
NOORDER

All prior work is committed to the database.
COMMIT;

Then a package is created to contain the procedures that will be used in the example. For simplicity,
all the procedures are included within a single package. Within the CTD-LIMS environment, this
example would be broken into multiple packages that could easily be shared by numerous
applications that are internal (or external) to the CTD laboratory complex.

Next, the package header is declared. This lists all of the procedures and functions that will be used
within the newly created package:

CREATE OR REPLACE PACKAGE suggestions AS

Once the package is created, the LoadCSS utility is used to define the Cascading Style Sheets (CSS) that
are utilized by other CTD procedures. Using this method enables the user to change the appearance
of the html tags from a single location. Many different styles are presented in this procedure although
they are not all used in the example:

PROCEDURE LoadCSS;

After loading the CSS, an STMP connection is established. This procedure initiates the STMP with a
user defined mail server, and generates an email message to users that are listed within the
BUG_DISTRIBUTION_TBL table. A hyperlink is then sent to each user giving them a path to display
the referenced issue. The procedure accepts parameters that include: the sender of the message, the
recipient, the subject and the email message body:

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

82

 PROCEDURE MAIL
 (
 sender IN VARCHAR2,
 recipient IN VARCHAR2,
 subject IN VARCHAR2,
 message IN VARCHAR2
);

Following the STMP connection, a procedure is developed to update the table: BUG_REPORT_TBL to
show that the issue is resolved. This includes time and date stamping for when the issue was
corrected and indicating the analyst that performed the service. This process mirrors the formal
chain-of-custody procedures used within the main LIMS shell:

 PROCEDURE RESOLVED(bug_id in integer default null,
 username in varchar2 default 'DEVELOPER1');

Following the issue resolved procedure, a display utility is used to notify the user of the problem and
provide the ancillary information including the system identification code for the error:

 PROCEDURE display(id in integer default null);

The main procedure is the starting point of the application. It displays the option of viewing the list of
issues, or entering a new issue.

 Procedure main;

This procedure updates or modifies the database for information entered or modified on the input
form. The algorithm also provides the user with the capability to edit information as it is entered into
the system. The parameters are the columns of BUG_REPORT_TBL:

 PROCEDURE modifybug(
 bug_name in varchar2 default null,
 email in varchar2 default null,
 shortdescription varchar2 default null,
 fulldescription varchar2 default null,
 duplication varchar2 default null,
 workaround varchar2 default null,
 ideally varchar2 default null,
 browser varchar2 default null,
 operating_system varchar2 default null,
 severity varchar2 default null,
 priority varchar2 default null,
 bugid in number);

Following the parameter declarations, the errors may be viewed and recorded using the viewbug
procedure:

PROCEDURE viewbug(id in integer);

This procedure displays the information recorded for all issues in the form of a report. For example:

PROCEDURE ShowIssues;
END suggestions;
/

After the package specification, the procedures and functions are created.

CREATE OR REPLACE PACKAGE BODY suggestions AS CTD Main Global Variables
**

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

83

The global variables should be modified to reflect information specific to the web environment and
should be the only modifications necessary to run the full application. The variables include the
mailhost as the address of the mail server (used for notification of all technical data). In this example,
emailfrom is the person or organization sending the notifications:

mailhost varchar2(50):='mail.test.net';
server varchar2(50):='http://www.test.com/pls/<Database Access Descriptor>;
emailfrom varchar2(50):='testperson@abc.net';

As previously noted, the LoadCSS procedure then creates the Cascading Style Sheets used within the
html tags of the procedures. The process is shown in Figure 3.11a :

PROCEDURE LoadCSS
IS
BEGIN
htp.p('<style type="text/css">');
htp.p('
body {font-family:"Arial"; font-size:"9 pt"; color:Black; }
H1 {font-family:"Arial"; font-size:"20 pt"; color:Navy; }
H2 {font-size:"8 pt"; }
H3 {font-family:"Arial"; font-size:"10 pt"; color:Navy; }
H4 {font-family:"Arial"; font-size:"10 pt"; color:Red; }

P {}
TR {}
TD {color:black; font-size:"8 pt"; }

TH {font-family:"Arial"; font-size:"8 pt"; color:Navy; }
.fld {font-size:"8 pt"; color:Black; background-color:"#a0a0a0"; border:"White Thin";
padding:"2pt"; }
.val {font-size:"8 pt"; color:Black; background-color:"#AACAFF"; margin-left:"0 pt"; margin-
right:"0 pt"; border:"White Thin"; padding:"1 pt"; }
.tbsum {font-size:"8 pt"; color:White; background-color:"#064406"; border:"White Thin";
margin-left:"0 pt"; margin-right:"0 pt"; border:"White Thin"; padding:"1 pt"; }
border:"White Thin"; padding:"1 pt"; margin-left:"0 pt"; margin-right:"0 pt";}
.tab {font-size:"8 pt"; text-align:"Center"; color:White; background-color:"#0000cc";
padding:"2 pt"; }
.reporttab {font-size:"7 pt"; text-align:"Center"; color:White; background-color:"#064406";
.plainboldtext {font-size:"8 pt"; font-weight:bold; color:Black; background-color:White; }
.plainboldtext_big {font-size:"10 pt"; font-weight:bold; color:Navy; background-color:White; }
.plainwhite {font-size:"8 pt"; color:White; background-color:White; }
.menu {font-size:"8 pt"; text-align:"center"; alink:"#00ff00"; background-color:"#ffffff";
padding:"2 pt";}
.report {font-size:"8 pt"; color:Black; background-color:"#0000ff"; text-align:"Left"; }
.navybg {font-size:"8 pt"; color:White; background-color:"#000066"; text-align:"Center"; }
.sansa {
 font-family: Arial, Helvetica, sans-serif
 }

#tree lnk{
color: blue;
text-decoration: underline;

}

');

htp.p('</style>');
End LoadCSS;

Figure 3.11a: Creating the Cascading Style Sheets. This procedure illustrates many of the html text
related processes including the setup graphics. The example has been condensed for illustration
purposes -- since the actual sheet may require many pages of scripting.

The dynamics for the mail forwarding procedure are shown in Figure 3.11b. In this example, the main
SMTP processes are shown in a condensed format. The procedure is required to contact the main
CTD database server to forward information concerning new data structures, potential errors, and

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

84

ancillary or metadata records. The mail procedure is select contained and requires no input
arguments. The algorithm format is shown below:

PROCEDURE mail
 (
 sender IN VARCHAR2,
 recipient IN VARCHAR2,
 subject IN VARCHAR2,
 message IN VARCHAR2

) IS
 emailaddress varchar2(100);
 stmt varchar2(100);
 type theRefCursor is Ref Cursor;
 gCursor theRefCursor;

 crlf VARCHAR2(2):= UTL_TCP.CRLF;
 connection utl_smtp.connection;
 mailhost varchar2(50):=suggestions.mailhost;
 header VARCHAR2(1000);

BEGIN
stmt:= 'select email_address from bug_distribution_tbl';
 -- Start the connection.
open gCursor for stmt;

Loop
 Fetch gCursor into emailaddress;
 exit when gCursor%NOTFOUND;
 connection := utl_smtp.open_connection(mailhost,25);
 header:= 'Date: '||TO_CHAR(SYSDATE,'dd Mon yy hh24:mi:ss')||crlf||
 'From: '||sender||''||crlf||
 'Subject: '||subject||crlf||
 'To: '||emailaddress;
 -- Handshake with the SMTP server
 utl_smtp.helo(connection, mailhost);
 utl_smtp.mail(connection, sender);
 utl_smtp.rcpt(connection, emailaddress);
 utl_smtp.open_data(connection);
 -- Write the header
 utl_smtp.write_data(connection, header);
 utl_smtp.write_data(connection, crlf||crlf||message);
 utl_smtp.close_data(connection);
 utl_smtp.quit(connection);
end loop;
close gCursor;

EXCEPTION
 WHEN UTL_SMTP.INVALID_OPERATION THEN
 htp.p(' Invalid Operation in SMTP transaction.');
 WHEN UTL_SMTP.TRANSIENT_ERROR THEN
 htp.p(' Temporary problems with sending email - try again
later.');
 WHEN UTL_SMTP.PERMANENT_ERROR THEN
 htp.p(' Errors in code for SMTP transaction.');
END;

procedure RESOLVED(bug_id in integer default null,
 username in varchar2 default 'DEVELOPER1')
IS
ID INTEGER DEFAULT NULL;
BEGIN
ID:=BUG_ID;
update bug_report_tbl
set resolved='Yes',
 RESOLVEDBY=USERNAME,

RESOLVEDDATE=SYSDATE
WHERE BUG_ID=ID;

COMMIT;

Figure 3.11b: Accessing the SMTP Server. This procedure illustrates the access points for the main
notification of the edit report within the CTD network.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

85

The creation of style sheets and the mail notification is controlled from within the LIMS graphical user
interface. The form interface and the look and feel of the LIMS are controlled by the form update
sequence. A sample form update is shown in Figure 3.11c-e. Within Figure 3.11c, the main body of
the update sequence is provided for the SMTP server access and the network message utilities. This
includes the distribution of data and metadata records for the support of digital instruments in the
fixed and mobile laboratories:

procedure updateform(
 bug_name in varchar2 default null,
 email in varchar2 default null,
 shortdescription varchar2 default null,
 fulldescription varchar2 default null,
 duplication varchar2 default null,
 workaround varchar2 default null,
 ideally varchar2 default null,
 browser varchar2 default null,
 operating_system varchar2 default null,
 severity varchar2 default null,
 priority varchar2 default null,
 bugid number default null
)
 is
 stmt varchar2(4000);
 type gcursor_type is ref cursor;
 theseq integer;
gcursor gcursor_type;
 begin
 STMT:=' insert into bug_report_tbl
(bug_id,bug_date,bug_name,email,shortdescription,fulldescription,duplication,workaround,ideall
y,browser,operating_system,
 severity,priority)
values(bug_sequence.nextval,:1,:2,:3,:4,:5,:6,:7,:8,:9,:10,:11,:12) returning bug_id into
:13';
execute immediate stmt using
sysdate,bug_name,email,shortdescription,fulldescription,duplication,workaround,ideally,
 browser,operating_system,severity,priority returning into theseq;
commit;

suggestions.mail(''||emailfrom||'',
''||emailfrom||'','Bug
Report/Suggestion',''||suggestions.server||'/suggestions.viewbug?id='||theseq||'');

htp.p('<script language=JavaScript>
setTimeout("window.location = ''suggestions.main''", 2000);
document.write(''Your report has been submitted'');
</script>');
 end;

 PROCEDURE MAIN
 IS
 BEGIN
 htp.p('<html><head><title>Bug/Suggestion Reporting</title></head>

 <body><center><h1>Bug/Suggestion Reporting</h1>
 <table border=1>
 <td align=center><input type=button value= "Create A Bug/Suggestion Report"
 onClick=window.location="'||suggestions.server||'/SUGGESTIONS.display"></td></tr>
 <td align=center><input type=button value= "View Bug/Suggestion Reports"
 onClick=window.location="'||suggestions.server||'/SUGGESTIONS.ShowIssues"></td></tr>
 </table></center>
 </body>
 </html>');

 END MAIN;

Figure 3.11c: The Form Update Sequence. This procedure illustrates the main process steps for
updating a mobile or fixed laboratory client using forms for data input and data archive. The
procedure also manages the error notification sequence within the LIMS network.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

86

 procedure modifybug(
 bug_name in varchar2 default null,
 email in varchar2 default null,
 shortdescription varchar2 default null,
 fulldescription varchar2 default null,
 duplication varchar2 default null,
 workaround varchar2 default null,

 ideally varchar2 default null,
 browser varchar2 default null,
 operating_system varchar2 default null,
 severity varchar2 default null,
 priority varchar2 default null,
 bugid in number

)
 IS
 stmt varchar2(4000);
 type gcursor_type is ref cursor;
 theseq integer;
 gcursor gcursor_type;

 begin
 STMT:=' update bug_report_tbl set bug_date=:1, bug_name=:2, email=:3, shortdescription=:4,
 fulldescription=:5, duplication=:6,

 workaround=:7, ideally=:8, browser=:9, operating_system=:10, severity=:11 ,priority=:12
 where bug_id=:13';

execute immediate stmt using
sysdate,bug_name,email,shortdescription,fulldescription,duplication,workaround,ideally,
 browser,operating_system,severity,priority,bugid ;
commit;

suggestions.mail(suggestions.emailfrom,
suggestions.emailfrom,'Bug
Reporting/Suggestion',''||suggestions.server||'/suggestions.viewbug?id='||bugid||'');

htp.p('<script>

setTimeout("window.location = ''suggestions.main''", 2000);
document.write(''Your report has been updated'');
</script>');
 end;

Figure 3.11d: The Form Update Sequence – Error Notification. The modifybug procedure is used to
organize the error notification message into a format that is easily understood by the client users
within the LIMS network. The procedure also performs the system updates that are required to notify
the LIMS administrators. The information is sent to a pool of specified users and may contain specific
metadata records to document the solution procedures. This procedure is a continuation of the form
update sequence shown in Figure 3.11c.

The notification procedures continue using a compact notation to display unique error codes or
metadata identification values. The codes are unique integer values that are used to identify and
document the source of the error process as it occurs within the CTD materials database or the main
LIMS network. The display process and the management methods for the unique identification codes
are shown in Figure 3.11e-f. Within Figure 3.11e, the primary declarations are shown including the
indexing methods for determining the severity of the error process. The procedure also shows the
related html that is required to format and display all operations:

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

87

 PROCEDURE display(id in integer default null)
 IS
 BUG_DATE# DATE default sysdate;
 BUG_NAME# VARCHAR2(100) default null;
 EMAIL# VARCHAR2(100) default null;
 SHORTDESCRIPTION# VARCHAR2(100) default null;
 FULLDESCRIPTION# VARCHAR2(4000) default 'When I ...';
 DUPLICATION# VARCHAR2(4000) default 'To replicate the problem ...';
 WORKAROUND# VARCHAR2(4000) default 'To get rid of the problem ...';
 IDEALLY# VARCHAR2(4000) default 'Ideally this should ...';
 BROWSER# VARCHAR2(100) default null;
 OPERATING_SYSTEM# VARCHAR2(100) default null;
 SEVERITY# VARCHAR2(100) default null;
 PRIORITY# VARCHAR2(100) default null;
 BEGIN
 suggestions.loadcss;
 if id is not null then
 SELECT
BUG_DATE,BUG_NAME,EMAIL,SHORTDESCRIPTION,FULLDESCRIPTION,DUPLICATION,WORKAROUND,IDEALLY,
 BROWSER,OPERATING_SYSTEM,SEVERITY,PRIORITY
 INTO
 BUG_DATE#,
 BUG_NAME#,
 EMAIL#,
 SHORTDESCRIPTION#,
 FULLDESCRIPTION#,
 DUPLICATION#,
 WORKAROUND#,
 IDEALLY#,
 BROWSER#,
 OPERATING_SYSTEM#,
 SEVERITY#,
 PRIORITY#
 FROM BUG_REPORT_TBL
 WHERE BUG_ID=ID;
 end if;
 suggestions.loadcss;
 htp.p('<HEAD><TITLE>Suggestion Reporting Tool</TITLE></HEAD>');
 htp.p('<BODY BGCOLOR="#FFFFFF" TEXT="#000000" LINK="#FF0000" ALINK="#FF0000"
VLINK="#FF0000" topmargin="0" leftmargin="10" marginheight="0" rightmargin="0"
marginwidth="0">');

if id is null then
 htp.p('<FORM METHOD="POST" ACTION="suggestions.updateform">');
 else
 htp.p('<FORM METHOD="POST" ACTION="suggestions.modifybug">');
end if;

htp.p('<table width=60% border=0 cols=2 align=center>
<td align="center" style="font-size: 12pt;">Bug Reporting/Suggestion Form</td><td
align=center>
<input type=button value="Return To Main Page"
onClick=window.location="'||suggestions.server||'/suggestions.main"></td>
</tr><tr>
<td class=hfld colspan=2 style="font-size: 11pt;">Personal Details</td></tr>
<tr>
<td class=val width=100>Name</td><td class=val> <INPUT TYPE="text" NAME="bug_name"
value="'||bug_name#||'" size=50 maxlength=80></td></tr>
<tr><td class=val> E-mail address</td><td class=val><INPUT TYPE="text" NAME="email"
value="'||email#||'" size=50 MAXLENGTH=80></td></tr>
<tr><td class=val> Date</td><td class=val>'||to_char(bug_date#,'MONTH-DD-
YYYY')||'</td></tr>
<tr><td class=hfld colspan=2 style="font-size: 11pt;">Problem</td></tr>
<tr><td class=val>Short description</td><td class=val><INPUT TYPE="text"
NAME="shortdescription" value="'||SHORTDESCRIPTION#||'" size=80 MAXLENGTH=80> </td></tr>
<tr><td class=val><P>Full description

<TEXTAREA NAME="fulldescription" ROWS=5 COLS=50>'||FULLDESCRIPTION#||'</TEXTAREA></td>
<td class=val><P>Describe how to replicate the problem

<TEXTAREA NAME="duplication" ROWS=5 COLS=50>'||DUPLICATION#||'</TEXTAREA></td></tr>

Figure 3.11e: The Form Display Process – Section 1. This algorithm shows the primary declarations
and the organization of the required html code to display the metadata records and resultant error
codes from CTD materials database and the main LIMS server. This procedure continues with the
code resources shown in Figure 3.11f.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

88

<tr><td class=val><P>Describe any workarounds you have found

<TEXTAREA NAME="workaround" ROWS=5 COLS=50>'||WORKAROUND#||'</TEXTAREA></td>

<td class=val><P>Describe how you would like the application to function

<TEXTAREA NAME="ideally" ROWS=5 COLS=50>'||IDEALLY#||'</TEXTAREA></td></tr>

<tr><td class=hfld style="font-size: 11pt;">Severity</td>
<td class=hfld style="font-size: 11pt;">Priority</td></tr>');

if SEVERITY# = 'Usability' then
htp.p('<tr><td><INPUT TYPE="radio" NAME="severity" VALUE="Usability" checked>');
else
htp.p('<tr><td><INPUT TYPE="radio" NAME="severity" VALUE="Usability"> ');
end if;
htp.p('Usability problem
</td>');

if PRIORITY#='ASAP' then
htp.p('<td><INPUT TYPE="radio" NAME="priority" VALUE="ASAP" checked>');
else
htp.p('<td><INPUT TYPE="radio" NAME="priority" VALUE="ASAP">');
end if;
htp.p('Must be fixed as soon as possible</td></tr>');

if severity#= 'Annoyance' then
htp.p('<tr><td><INPUT TYPE="radio" NAME="severity" VALUE="Annoyance" checked>');
else
htp.p('<tr><td><INPUT TYPE="radio" NAME="severity" VALUE="Annoyance">');
end if;
htp.p('Annoyance</td>');

if PRIORITY#='Must Fix' THEN
htp.p('<td><INPUT TYPE="radio" NAME="priority" VALUE="Must Fix" CHECKED>');
ELSE
htp.p('<td><INPUT TYPE="radio" NAME="priority" VALUE="Must Fix" >');
END IF;
htp.p('Must fix</td></tr>');

if severity#= 'Cosmetic' then
htp.p('<tr><td><INPUT TYPE="radio" NAME="severity" VALUE="Cosmetic" checked>');
else
htp.p('<tr><td><INPUT TYPE="radio" NAME="severity" VALUE="Cosmetic">');
end if;
htp.p('Cosmetic problem</td>');

IF PRIORITY#='When Possible' then
htp.p('<td><INPUT TYPE="radio" NAME="priority" VALUE="When Possible" checked>');
else
htp.p('<td><INPUT TYPE="radio" NAME="priority" VALUE="When Possible" >');
end if;
htp.p('Fix if time allows</td></tr>

<tr><td class=hfld colspan=2 style="font-size: 11pt;">Software and Hardware</td></tr>
<tr><td class=val>What kind of browser are you using?
<select NAME="browser">
<option>Internet Explorer 6.0</option>
<option>Netscape 7.0</option>
<option>Other</option>
</select></td>
<td class=val>What kind of operating system are you using?
<select NAME="operating_system">
<option>Windows</option>
<option>Linux</option>
<option>Other</option>
</select>
</td></tr>

Figure 3.11f: The Form Display Process – Section 2. This algorithm shows the organization of the html
code to display the metadata records and resultant error codes from CTD materials database and the
main LIMS server. The code uses the standard Explorer browser to show the results to the MOD
analyst. This process continues with the code resources shown in Figure 3.11g.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

89

<tr><td><P>');
htp.p('<input type=hidden name="bugid" value="'||id||'">');

if id is null then
 htp.p('<INPUT TYPE="submit" VALUE="Submit">');
 else
 htp.p('<INPUT TYPE="submit" VALUE="Update Report">');
end if;

 htp.p('<P></td></tr></FORM><HR></table></BODY> ');
END;

procedure viewbug(id in integer)
 is
 BUG_DATE# DATE;
 BUG_NAME# VARCHAR2(100);
 EMAIL# VARCHAR2(100);
 SHORTDESCRIPTION# VARCHAR2(100);
 FULLDESCRIPTION# VARCHAR2(4000);
 DUPLICATION# VARCHAR2(4000);
 WORKAROUND# VARCHAR2(4000);
 IDEALLY# VARCHAR2(4000);
 BROWSER# VARCHAR2(100);
 OPERATING_SYSTEM# VARCHAR2(100);
 SEVERITY# VARCHAR2(100);
 PRIORITY# VARCHAR2(100);

BEGIN
 htp.print('<html><script>
 function goHome(){

 window.open("'||suggestions.server||'.suggestions.main", TARGET="_self");
}
function problemRes(){

window.open("'||suggestions.server||'/suggestions.resolved?bug_id='||id||'&username=DEVELOPER1
);", TARGET="_self");

}
 </script>

<BODY BGCOLOR="#FFFFFF" TEXT="#000000" LINK="#FF0000" ALINK="#FF0000" VLINK="#FF0000"
topmargin="0" leftmargin="0" marginheight="0" rightmargin="0"
marginwidth="0"
>
');
htp.p('<table width=100% cellpadding=0 cellspacing=0 border=0><tr><td align="center"
cellpadding=0>
</td></tr>
<tr><td> ');
 suggestions.loadcss;
SELECT
BUG_DATE,BUG_NAME,EMAIL,SHORTDESCRIPTION,FULLDESCRIPTION,DUPLICATION,WORKAROUND,IDEALLY,
 BROWSER,OPERATING_SYSTEM,SEVERITY,PRIORITY
 INTO
 BUG_DATE#,
 BUG_NAME#,
 EMAIL#,
 SHORTDESCRIPTION#,
 FULLDESCRIPTION#,
 DUPLICATION#,
 WORKAROUND#,
 IDEALLY#,
 BROWSER#,
 OPERATING_SYSTEM#,
 SEVERITY#,
 PRIORITY#
 FROM BUG_REPORT_TBL
 WHERE BUG_ID=ID;

Figure 3.11g: The Form Display Process – Section 3. This algorithm continues the main process steps
shown in Figure 3.11e-f, using html code to display the metadata records, and resultant error codes
from CTD materials database and the main LIMS server.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

90

 htp.p('<html><body>
 <table width=50% align=center><tr><td class=val>Date</td><td
class=val>'||to_char(bug_date#,'MONTH-DD-YYYY')||'</td></tr>

 <tr><td class=val>Name</td><td class=val>'||bug_name#||'</td></tr>
 <tr><td class=val>Email</td><td class=val>'||email#||'</td></tr>

 <tr><td class=val>Short Description</td><td class=val>'||shortdescription#||'</td></tr>
 <tr><td class=val>Full Description</td><td class=val>'||fulldescription#||'</td></tr>
 <tr><td class=val>Duplication</td><td class=val>'||duplication#||'</td></tr>
 <tr><td class=val>Work Around</td><td class=val>'||workaround#||'</td></tr>
 <tr><td class=val>Ideally</td><td class=val>'||ideally#||'</td></tr>
 <tr><td class=val>Browser</td><td class=val>'||browser#||'</td></tr>

 <tr><td class=val>Operating System</td><td class=val>'||operating_system#||'</td></tr>
 <tr><td class=val>Severity</td><td class=val>'||severity#||'</td></tr>
 <tr><td class=val>Priority</td><td class=val>'||priority#||'</td></tr>
 <tr><td class=val align=center>');

 htp.p('<input type=button value="Problem Resolved" onClick="problemRes();">');

htp.p('</td><td class=val align=center><input type=button value="Go Back"
onClick="javascript:history.back(1);");"></td>

 </tr>

 </body></html>');
 end;

 Procedure ShowIssues
 IS
 bugid number;
 bugname varchar2(100);
 bugdate date;

 bugdesc varchar2(100);
 bugseverity varchar2(100);
 bugpriority varchar2(100);
 bugresolved varchar2(50);
 bugresolvedby VARCHAR2(100) default 'Developer1';
 bugdateresolveD DATE;

 stmt varchar2(2000);
 type iCursorTypeis ref cursor;
 iCursor iCursortype;
 myclass varchar2(10);

 BEGIN

 stmt:='SELECT b.bug_id, b.bug_name, b.bug_date, b.shortdescription, b.severity, b.priority,
 b.resolved, b.resolvedby, b.resolveddate
 FROM bug_report_tbl b';

 open iCursor for stmt;

 suggestions.loadcss;
 htp.p('<html><head></head><title>Suggestion Reporting Tool</title>
');
 htp.p('<table border=1 borderColor=#999999><tr><td width=500 class=hfld align=center><a

style="font-family: Tahoma; font-size: 9pt; color: navy;"
href="'||package_init.schema||'.suggestions.display">Click to Create a New Suggestion / Bug

Report</td></tr></table>');

Figure 3.11h: The Form Display Process – Section 4. This algorithm continues the main process steps
shown in Figure 3.11e-g, using html code to display the metadata records, and resultant error codes
from CTD materials database and the main LIMS server. The main display features are terminated
and the procedures for showing the technical reports and related metadata records are initiated. The
ShowIssues procedure manages the suggestion process for editing and appending new information.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

91

htp.p('<TABLE id="reportTable" BORDER: black 1px solid; WIDTH: 99%; font-size : 7pt;
background-color:#bbd6bb;"
borderColor=#999999 cellSpacing=0 cellPadding=2 border=1 dragcolor=''gray'' slcolor=#88ff88
hlcolor=#eeeecc > ');
htp.p('<thead><TR align=center >
 <TD width=140 class=hfld style="font-family: Tahoma; font-size: 7pt;" nowrap
align=center>Name</TD>

 <TD width=80 class=hfld style="font-family: Tahoma; font-size: 7pt;" nowrap
align=center>Date</TD>
 <TD width=250 class=hfld style="font-family: Tahoma; font-size: 7pt;" align=center>Short
Description</TD>
<TD width=80 class=hfld style="font-family: Tahoma; font-size: 7pt;" nowrap
align=center>Priority</td>

 <td width=80 class=hfld style="font-family: Tahoma; font-size: 7pt;" nowrap
align=center>Resolved</td>

 <td width=20 class=hfld style="font-family: Tahoma; font-size: 7pt;" nowrap
align=center>Modify</td></tr>

 ');
Loop
Fetch iCursor into bugid, bugname, bugdate, bugdesc, bugseverity, bugpriority, bugresolved,
bugresolvedby, bugdateresolved;

 if iCursor%ROWCOUNT<=0 THEN
 htp.print ('<tr><td class="litenp"><p align="justify"><FONT FACE="Times New

Roman" SIZE="4" COLOR="#3300CC">No Data Available</p></td>
 <td class=litenp></td>

 <td class=litenp></td>
 <td class=litenp></td>
 <td class=litenp></td>
 <td class=litenp></td>
 <td class=litenp></td>
 <td class=litenp></td>
 <td class=litenp></td>
 </tr>');

END IF;
exit when iCursor%NOTFOUND;
if mod(iCursor%ROWCOUNT,2)=0 then myclass:='lite';

else
myclass:='dark';
end if;

htp.p('<tr>');
htp.p('<td align=right abbr='||bugname||' class='||myclass||'><a target=_parent
href="'||package_init.schema||'.suggestions.viewbug?id='||bugid||'"
onMouseOver="status=''Click To View Bug Report : '';
return true"

onMouseOut="status='' '';return true"
title="Click To View Bug Report: ">'||bugname||'</td>');
htp.p('<td align=right abbr='||to_char(bugdate,'J')||' class='||myclass||'><a target=_parent
href="'||package_init.schema||'.suggestions.viewbug?id='||bugid||'"

onMouseOver="status=''Click To View Bug Report : '';return true"
onMouseOut="status='' '';return true"
title="Click To View Bug Report: ">'||to_char(bugdate,'DD-MON-YYYY')||'</td>');
if bugdesc is null then
htp.p('<td align=right abbr=z class='||myclass||'>--</td> ');
else
htp.p('<td align=right abbr='||bugdesc||' class='||myclass||'><a target=_parent
href="'||package_init.schema||'.suggestions.viewbug?id='||bugid||'"

onMouseOver="status=''Click To View Bug Report : '';return true"
onMouseOut="status='' '';return true"
title="Click To View Bug Report: ">'||bugdesc||'</td>');
end if;

Figure 3.11i: The Form Display Process – Section 5. This algorithm continues the main process steps
shown in Figure 3.11e-h, using html code to display the metadata records, and resultant error codes
from CTD materials database and the main LIMS server. This section adds onMouseOver events to
update the window status when the user hovers over the reference position href. Tool tips are also
included in the title documentation.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

92

if bugseverity is null then
htp.p('<td align=right abbr=z class='||myclass||'>--</td> ');

else
htp.p('<td align=right abbr='||bugseverity||' class='||myclass||'><a target=_parent
href="'||package_init.schema||'.suggestions.viewbug?id='||bugid||'"

onMouseOver="status=''Click To View Bug Report : '';
return true"

onMouseOut="status='' '';return true"
title="Click To View Bug Report: ">'||bugseverity||'</td>');
end if;

if bugpriority is null then
htp.p('<td align=right abbr=z class='||myclass||'>--</td> ');

else
htp.p('<td align=right abbr='||bugpriority||' class='||myclass||'><a target=_parent
href="'||package_init.schema||'.suggestions.viewbug?id='||bugid||'"

onMouseOver="status=''Click To View Bug Report : '';
return true"

onMouseOut="status='' '';return true"
title="Click To View Bug Report: ">'||bugpriority||'</td>');
end if;

if bugresolved is null then
htp.p('<td align=right abbr="no" class='||myclass||'><a target=_parent
href="'||package_init.schema||'.suggestions.viewbug?id='||bugid||'"

onMouseOver="status=''Click To View Bug Report : '';
return true"

onMouseOut="status='' '';
return true"

title="Click To View Bug Report: ">No</td>');
else
htp.p('<td align=right abbr='||bugresolved||' class='||myclass||'><a target=_parent
href="'||package_init.schema||'.suggestions.viewbug?id='||bugid||'"

onMouseOver="status=''Click To View Bug Report : '';
return true"
onMouseOut="status='' '';
return true"

title="Click To View Bug Report: ">'||bugresolved||'</td>');
end if;

if bugresolvedby is null then
htp.p('<td align=right abbr=z class='||myclass||'>--</td> ');
else
htp.p('<td align=right abbr='||bugresolvedby||' class='||myclass||'><a target=_parent
href="'||package_init.schema||'.suggestions.viewbug?id='||bugid||'"

onMouseOver="status=''Click To View Bug Report : '';return true"
onMouseOut="status='' '';return true"
title="Click To View Bug Report: ">'||bugresolvedby||'</td>');

MON-YYYY')||'</td>');
end if;
htp.p('<td align=right abbr="z" class='||myclass||'><a target=_parent
src="'||package_init.Schema||'.utility.deliver_media?graphics_name=flashlight_trans.gif"
border="0" vspace="5"></td>');
end loop;

 htp.p(' </tbody></table></html>');
 end;
END suggestions;
/

Figure 3.11j: The Form Display Process – Section 6. This algorithm continues the main process steps
shown in Figure 3.11e-i, using html code to display the metadata records, and resultant error codes
from CTD materials database and the main LIMS server. This section completes the web-based
application and graphical user interface.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

93

The procedures and algorithms shown in Figure 3.11a-j create a dynamic environment for the
management of digital information within the CTD fixed and mobile laboratory system. The
applications are used to generate custom reports and manage specific events or error conditions. For
the management of error codes and bug-conditions, the LIMS uses a dialog of the form shown in
Figure 3.12a. This form is also used to enter information and notify LIMS users of error conditions
based upon 12th Main Directorate priority standards.

Figure 3.12a: Managing Error Codes and Bug-Conditions within the CTD Fixed and Mobile
Laboratory Environment. The dialog is shown as it appears on the web server and may be used by the
mobile teams on common laptops under Microsoft Explorer.

Figure 3.12b: Managing Error Reports and Metadata Records. The simple interface is used to access
technical records and error events as they are published within the CTD network. Records cannot be
modified at the user level without permission from the senior LIMS administrator.

The metadata records are displayed to the analyst on a case-by-case basis using simple hyperlinks to
show how the issue has been resolved and to assist MOD in the identification of the ancillary

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

94

information. This includes the standard chain-of-custody information as shown in Figure 3.12b. The
sample hyperlinks for this process are shown in Figure 3.12c. In this example, an error sequence is
identified and the user is notified via e-mail hyperlinks. Within the MOD laboratory, intranet links are
used to maintain security standards, however, the procedures are generalized to include standard e-
mail addressing with support for common messaging services (such as AOL).

Figure 3.12c: Error Records and Hyperlinks to Ancillary Data. The sheet description (hyperlink shown
in Figure 3.12b) is used to access additional metadata records shown in this illustration. All
information is nested by hyperlink access and tied to specific LIMS users with local e-mail addresses.
This process is required to conform to MOD standards for chain-of-custody within the intranet
environment.

As the issues are resolved, the metadata records are updated and the chain-of-custody records are
modified to indicate how the solution has been implemented within the CTD network. As shown in
Figure 3.12d, the resolved record is displayed for developer-1 with the ancillary time-date indicators
for the resolution event.

Figure 3.12d: Resolved Error Records. As issues are resolved and approved by MOD, the solution is
displayed within the CTD network and indexed by the analyst (that resolved the issue) and the
technical description of the problem (registered by time and date).

3.11 CTD Instrumentation and Maintenance Documentation

The CTD laboratory system is composed of fixed and mobile laboratory instruments that are
networked within the LIMS using SQL and PL/SQL methods for the distribution of technical data,
primary measurements, and metadata records. The instruments are organized in a tabular format
shown in Figure 3.13a-b by reference item, instrument manufacturer, and measurement function.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

95

Within the LIMS system, this table is used to organize all tests that have been performed within a
known date using hyperlinks to the manufacturer and the respective function. Using this technique,
detailed service and maintenance records can be documented for all instruments in the CTD complex.

Item Instrument Measurement Function

F1.1 Philips PW2404 XRF Spectrometer 1
F2.1 Shimadzu AG-250kNG 2
F2.2 Shimadzu Servo Pulser EHF-EG 3
F2.3 Charpy 300J Impact Tester 4
F3.1 Leica DM-IR (MEF4M) Inverted Microscope 5
F3.2 Vickors (Sony) MHT-10 Imaging System 5
F3.3 Leica Q550MW Digital IP System 5
F3.4 Leica MZ6 stereomicroscopes 5
F3.5 Struers LaboPress/RotoPol21/RotoForce3 6
F3.6 Struers Consumables 6
F4.1 Ernst AT130 DR-T Hardness Tester 4
F5.1 Philips XL30 W-TMP Electron Microscope 1,5

Figure 3.13a: LIMS Fixed Laboratory Equipment. 1=primary element detection and spectral analysis,
2=tensile and compression testing, 3=cyclic testing for tension, compression, and material ductility,
4=primary hardness detection, 5=optical measurement of metallographic specimen, 6=sample
preparation.

As shown in Figure 3.13a, the CTD Fixed laboratory system is composed of complex instruments for
spectrographic examination of samples using scanning electron methods as well as x-ray fluorescence
techniques. The instrumentation also utilizes standard optics for surface evaluation and enhanced
optical evaluation methods for image processing and materials classification. The laboratory is
composed of non-destructive testing methods (measurement functions 1, 5) as well as destructive
methods for investigating tension, compression, and surface-sub-surface ductility (measurement
functions 2,3).

The instrumentation used in the CTD Mobile laboratory system is documented in Figure 3.13b. In this
table, the methods for examining field in situ samples are provided by vendor specific instrument and
destructive (non-destructive) application. As shown, the main systems utilize a non-destructive
technology (ultrasonic amplification, optical magnification, chemical or capillary amplification, and
magnetic particle amplification) to determine and evaluate the test specimen. In addition, a flash-arc
methodology is shown in item 1.1 for primary element identification. This technique is surface
destructive, but does not damage the main sub-surface structure. The mobile laboratory also contains
instruments for hardness determination using both destructive and non-destructive methods for
sample evaluation at the surface level. The laboratory includes two systems for network evaluation of
complex piping and longitudinal lifting systems (item 2.1.1 and item 5.1). Each system employs a
series of networked transducers to determine the modal characteristics of the field system. For the
Intraspect system, this includes specialized software for scanning linear sections such as long pipes
used in high-pressure boilers. For the A-Line 32D system, specialized software is provided for
triangularization. This method assists the user in determining the source of the flaw within a complex
network such as long pipes that are joined in multiple sections. The remaining systems are shown by

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

96

their respective measurement functions for laboratory support. The Intros system is shown as item
A.1 since this unit was added into the laboratory to address specific requirements for cable
deformation and elongation (loss of cross-section) that is required to examine crane-lifting cables. This
process was required for Gosgorteknadzor certification. The final two systems (Intek VES4-10-300 and
Stresstel FlawMikes) are formally installed on the Pomoshnik search-and-rescue vehicles. These
systems are commonly used by MOD mobile field teams for on-site diagnostics. They perform similar
functions to the SiteScan 230 Flaw detectors (item 2.1) and the Intek Endoscope Systems (item 7.1).

Item Instrument Measurement Function

1.1 ARC-MET930SP (Spectrum 18 OE Spectrometer) 1
2.1 SiteScan 230 Flaw Detector 2
2.1.1 Intraspect NT Imaging Systems 3
3.1 StressTel T-Mike EL 4,5
3.7 Sonatest Alphagage A-Scan 4,5
4.1 ESX/B 310PD Mag Inspector (Parker B310BDC-A) 6
4.2 ESX/PM 50 (Parker PM50-A) 6
5.1 A-Line 32D 12 Channel Acoustic Emission System 3
6.1 HardTip 2000 (Proceq Equotip Model D) 7
7.1 Intek Endoscope Systems 8
8.1 Visual Inspection Systems (Vert, Russia) 8
9.1 Residual Stress Tester 9
10.1 EFI 300 Leak Detector 10
11.1 Testo 625 Hygrometer 11
12.1 NP-600 Hydraulic Press 12
13.1 Start 1M Compressor 12
14.1 HBM Dynamometer 13
15.1 Wika Pressure Transmitter 10
16.1 Mega-Check Thickness Gages 5
17.1 Capillary Flaw Equipment and Materials 14
18.1 Concrete Flaw Detector 2
19.1 Engineering Level w/ Tripod 12
20.1 Insulation Resistance Meter 15
21.1 Ground Resistance Meter 15
A.1 Intros Magnetic Cable Tester 16
P.1 Pomoshnik: Intek VES4-10-300 Video Endoscopes 8
P.2 Pomoshnik: StressTel FlawMikes & Transducers 4,5

Figure 3.13b: LIMS Mobile Laboratory Equipment. 1=primary element detection and spectral analysis,
2=NDT-UT (non-destructive testing, ultrasonic) flaw detection, 3=network analysis using NDT-UT,
4=NDT-UT surface hardness, 5=NDT-UT material thickness, 6=magnetic particle flaw detection,
7=surface hardness (pin destructive testing), 8=optical measurement metallographic examination,
9=NDT residual stress analysis of sub-surface structure, 10=pressure detection–vacuum detection,
11=barometric pressure–hydrographic measurements, 12=sample preparation and laboratory support,
13= dynamic torque and acceleration, 14=capillary and chemical amplification of surface features,
15=physical resistance or conductance characterization, 16=magnetic field detection and sub-element
characterization.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

97

Within the CTD LIMS environment, archive methods have been developed for organizing the service
and maintenance records for all fixed and mobile laboratory instruments. The interface for this search
utility is shown in Figure 3.14a. In this example, the analyst begins a query for all tests that have been
performed using the Sitescan instrumentation. Note that the user may query the database using
partial strings, and does not need to search on Sitescan 230 Flaw Detector or the exact naming
convention.

Figure 3.14a: LIMS Maintenance Records – Search Utility. This illustration shows the basic layout for
the search utility that operates within the CTD LIMS and the CTD Materials Database. The search tool
was written using SQL and PL/SQL. Hence this archive and maintenance utility will operate on any
SQL compliant database found within the MOD laboratory system. As shown, the user enters the
search string “sitescan” and presses “Begin Search” button to examine the MOD database for records
that match the search criteria.

The application searches the database lab_equipment and returns, as hyperlinks, information that
matches the search criteria. When the user selects one of the returned hyperlinks, they are taken to a
separate page that lists, in greater detail, information pertaining to the item selected.

The application utilizes dynamic html, JavaScript, and PL/SQL to retrieve database information and
display it as a Web page. The algorithms that support the search utility are shown in Figure 3.14b-f.
Each algorithm is provided in a small section with documentation that is required to describe the
process. In the final working utility, all algorithms are combined to create the working model. In
Figure 3.14b, the data declarations are provided for the table that displays the laboratory equipment
(maintenance records or test results). This table is organized by time, instrument, measurement
technique, or other function:

CREATE TABLE LAB_EQUIPMENT
(
 ITEM VARCHAR2(50 BYTE),
 INSTRUMENT VARCHAR2(500 BYTE),
 MEASUREMENT_FCN VARCHAR2(10 BYTE),
 FM VARCHAR2(10 BYTE)
)

Figure 3.14b: LIMS Maintenance Records – Table Creation. This illustration shows the size
information for the table layout. The table is created as a repository for the information from the
LIMS or CTD Materials Database.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

98

The sample data is placed in the table from within the LIMS process during the testing sequence. The
data is also added by MOD on a periodic basis to document the maintenance and service records
within the CTD. Within Figure 3.14c, a manual insertion is shown for populating the data records.
This is provided to illustrate one method for data insertion. Within the CTD materials database, this
operation is automated by equipment type -- based upon the data logging capability of the instrument.

INSERT INTO SYMBOLX.LAB_EQUIPMENT (ITEM, INSTRUMENT, MEASUREMENT_FCN,
FM) VALUES (
'F1.1', 'Philips PW2404 XRF Spectrometer', '1', 'F');
INSERT INTO SYMBOLX.LAB_EQUIPMENT (ITEM, INSTRUMENT, MEASUREMENT_FCN,
FM) VALUES (
'F2.1', 'Shimadzu AG-250kNG', '2', 'F');
INSERT INTO SYMBOLX.LAB_EQUIPMENT (ITEM, INSTRUMENT, MEASUREMENT_FCN,
FM) VALUES (
'F2.2', 'Shimadzu Servo Pulser EHF-EG', '3', 'F');
INSERT INTO SYMBOLX.LAB_EQUIPMENT (ITEM, INSTRUMENT, MEASUREMENT_FCN,
FM) VALUES (
'F2.3', 'Charpy 300J Impact Tester', '4', 'F');
INSERT INTO SYMBOLX.LAB_EQUIPMENT (ITEM, INSTRUMENT, MEASUREMENT_FCN,
FM) VALUES (
'F3.1', 'Leica DM-IR (MEF4M) Inverted Microscope', '5', 'F');
INSERT INTO SYMBOLX.LAB_EQUIPMENT (ITEM, INSTRUMENT, MEASUREMENT_FCN,
FM) VALUES (
'F3.2', 'Vickors (Sony) MHT-10 Imaging System', '5', 'F');
INSERT INTO SYMBOLX.LAB_EQUIPMENT (ITEM, INSTRUMENT, MEASUREMENT_FCN,
FM) VALUES (

:::::

'13.1', 'Start 1M Compressor', '12', 'M');
INSERT INTO SYMBOLX.LAB_EQUIPMENT (ITEM, INSTRUMENT, MEASUREMENT_FCN,
FM) VALUES (
'14.1', 'HBM Dynamometer', '13', 'M');
INSERT INTO SYMBOLX.LAB_EQUIPMENT (ITEM, INSTRUMENT, MEASUREMENT_FCN,
FM) VALUES (
'15.1', 'Wika Pressure Transmitter', '10', 'M');
INSERT INTO SYMBOLX.LAB_EQUIPMENT (ITEM, INSTRUMENT, MEASUREMENT_FCN,
FM) VALUES (
'16.1', 'Mega-Check Thickness Gages', '5', 'M');
INSERT INTO SYMBOLX.LAB_EQUIPMENT (ITEM, INSTRUMENT, MEASUREMENT_FCN,
FM) VALUES (
'17.1', 'Capillary Flaw Equipment and Materials', '14', 'M');
INSERT INTO SYMBOLX.LAB_EQUIPMENT (ITEM, INSTRUMENT, MEASUREMENT_FCN,
FM) VALUES (
'18.1', 'Concrete Flaw Detector', '2', 'M');
INSERT INTO SYMBOLX.LAB_EQUIPMENT (ITEM, INSTRUMENT, MEASUREMENT_FCN,
FM) VALUES (
'19.1', 'Engineering Level w/ Tripod', '12', 'M');
INSERT INTO SYMBOLX.LAB_EQUIPMENT (ITEM, INSTRUMENT, MEASUREMENT_FCN,
FM) VALUES (
'20.1', 'Insulation Resistance Meter', '15', 'M');
INSERT INTO SYMBOLX.LAB_EQUIPMENT (ITEM, INSTRUMENT, MEASUREMENT_FCN,
FM) VALUES (
'21.1', 'Ground Resistance Meter', '15', 'M');
INSERT INTO SYMBOLX.LAB_EQUIPMENT (ITEM, INSTRUMENT, MEASUREMENT_FCN,
FM) VALUES (
'A.1', 'Intros Magnetic Cable Tester', '16', 'M');
INSERT INTO SYMBOLX.LAB_EQUIPMENT (ITEM, INSTRUMENT, MEASUREMENT_FCN,
FM) VALUES (
'P.1', 'Pomoshnik: Intek VES4-10-300 Video Endoscopes', '8', 'M');
INSERT INTO SYMBOLX.LAB_EQUIPMENT (ITEM, INSTRUMENT, MEASUREMENT_FCN,
FM) VALUES (
'P.2', 'Pomoshnik: StressTel FlawMikes & Transducers', '4,5', 'M');
commit;

Figure 3.14c: LIMS Maintenance Records – Manual Data Insertion. This illustration shows one method
for populating the database with equipment records of the form shown in Figure 3.13a,b. In the actual
LIMS process, the data is automatically inserted following the formal QA/QC process.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

99

The query process begins with the search_start utility shown in Figure 3.14d. In this example, the
search page and the result page are simultaneously loaded into memory. When the user begins a
query, the results are instantaneous (moving back and forth between the panels). The two panels
(p a n e l 2 and p a n e l 3) are initially populated with procedures SEARCH.DISPLAY and
QUERYBLANK.DISPLAY. JavaScript procedures are utilized to show or hide the panels, to highlight
the “Search” and “Results” buttons when the user rolls over the image and to update the window
status when the user moves the mouse over either button.

CREATE OR REPLACE PACKAGE search_start AS

PROCEDURE display;
 PROCEDURE donothing;
END search_start;
/

CREATE OR REPLACE PACKAGE BODY search_start AS

PROCEDURE display
 IS
 crlf VARCHAR2(2):= CHR(13) || CHR(10);
 BEGIN
htp.p('<head>
<script language="JavaScript">
 var currentPanel;

function showPanel(panelNum) {
 //hide visible panel, show selected panel,
 //set tab
 if (currentPanel != null) {
 hidePanel();
 }
 document.getElementById
 (''panel''+panelNum).style.visibility = ''visible'';
 document.getElementById
 (''stab''+panelNum).style.visibility = ''visible'';
 document.getElementById
 (''htab''+panelNum).style.visibility = ''hidden'';
 currentPanel = panelNum;
 //setState(panelNum);
 window.name="SEARCHWINDOW";
 }

function mouseOn(imagex){
 document.getElementById(imagex).src=imagex+''_OVER.GIF''; }

function mouseOff(imagex){
document.getElementById(imagex).src=''imagex+''.GIF'';
}

function hidePanel() {
 //hide visible panel, unhilite tab
 document.getElementById
 (''panel''+currentPanel).style.visibility =
 ''hidden'';
 document.getElementById
 (''stab''+currentPanel).style.visibility = ''hidden'';
 document.getElementById
 (''htab''+currentPanel).style.visibility = ''visible'';
 }

Figure 3.14d: LIMS Maintenance Records – Searching the Database. This illustration shows the initial
section of the query-search utility that provides maintenance support functions for the MOD. The
algorithm uses the function showPanel to set the visibility of the display. This is accomplished by the
command document.getElementById(elementname).style.visibility=’visible’ or ‘hidden’. The mouseOn
function is used to exchange the image with a new distinct view, when the user passes a mouse over
the table. It is accomplished by changing the source of the image that is passed to the function as a
parameter setting. The mouseOff function is the opposite of the mouseOn function which returns the
image to the original icon when the mouse is moved away. The hidePanel function hides the panel
display as required.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

100

The buttons and controls are created in the <div> tags shown in Figure 3.14e. Each div contains either
an htab or a stab whose visibility is toggled in the search functions. This procedure also creates the
iframes that hold the individual panels.

</script>
</head><title>Search Demo
</title>
 <body onLoad="showPanel(2);">

<table width=400><tr>
<td align=center nowrap>

CTD Laboratory Information Management System
</td></tr></table>

<table align=center border=0 cellpadding=0 cellspacing=0 >
<tr>
<td>

<div id="htab2" class="tab" style="position: absolute; top:105; z-index:4;" onClick =
"showPanel(2);" onMouseOver="mouseOn(''SEARCHOFF'');window.status = ''Locate'' "
onMouseOut="mouseOff(''SEARCHOFF'');window.status=''''"><img src=SEARCHOFF.GIF"
title="Search" id="SEARCHOFF"></div>

<div id="htab3" class="tab" style="position: absolute; top:135 ; z-index:4;" onClick =
"showPanel(3);" onMouseOver="mouseOn(''RESULTOFF'');window.status = ''Query Results'' "
onMouseOut="mouseOff(''RESULTOFF'');window.status=''''"><img src="RESULTOFF.GIF"
title="Query Results" id="RESULTOFF"></div>

<div id="stab2" class="tab" style="position: absolute; top:105 ; z-index:4;
visibility:hidden; " onClick = "showPanel(2);" onMouseOver="window.status = ''Locate'' "
onMouseOut="window.status=''''"></div>

<div id="stab3" class="tab" style="position: absolute; top:135 ; z-index:4;
visibility:hidden; " onClick = "showPanel(3);" onMouseOver="window.status = ''Query
Results'' " onMouseOut="window.status=''''"><img src="RESULT_ON.GIF" title="Query
Results"></div>

 </td>
</tr>
<tr>
<td>
</td>
</tr>');

htp.p('</table>
<iframe id="panel2" class="panel" name="panel2" id="panel2" align="left" frameborder="0"
scrolling=no height="450"
src="SEARCH.display" ></iframe>

<iframe id="panel3" class="panel" name="panel3" id="panel3" align="left" frameborder="0"
scrolling=no height="450"
src="QUERYBLANK.DISPLAY"></iframe>
');

Figure 3.14e: LIMS Maintenance Records – Creating the Query Interface. This illustration shows the
graphical methods used to create the query panels and buttons that control the search process.

The style section is used to present styles for the panels. This includes the size of the frames and
position of the navigation buttons. The utility for organizing and displaying the elements is provided
in Figure 3.14f. In this example, the analyst is provided complete control over the look and feel of the
graphical user interface – including color implementation, position, and transparency of the various
controls.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

101

HTP.P('</body>
 <style>
 .tab{
 color: clear;
 background-color: clear;
 border: clear;
 position: absolute;
 top: 12;

 left: 2;
 width: 3;
 text-align: center;
 font: 9pt Verdana,sans-serif;
 padding: 0;
 cursor: pointer;
 cursor: hand;

 scrolling: no;
 }
 .panel{
 position: absolute;
 align: left;
 top: 73;
 left: 0;
 width: 556;
 z-index: 1;
 visibility: hidden;
 font: 12pt Verdana,sans-serif;
 color: navy;
 border-style: none;
 margin: 0;
 padding: 0;
 overflow: none;
 frameborder: 1;

 border:0;
 hspace:0;
 vspace:0;
 scrolling: no;
 }

 </style>

</BODY>
</HTML>');
end display;

PROCEDURE donothing
IS
BEGIN
htp.p('');
END donothing;

END search_start;
/

Figure 3.14f: LIMS Maintenance Records – Creating the Graphic User Interface. This illustration
shows the graphical methods used to create the ancillary objects and query panels. The procedure
donothing is used to create an empty string. This is required to initialize the iframe when no initial data
is available.

Within Figures 3.14g-i, three procedures are shown that support the main search utility. Within
Figure 3.14g, the display utility creates a frame search-box, which is populated with the procedure
display_detail. The display_detail utility places a reset button at the top of the page, and creates an
additional frame search-box. The button for this search is populated with the procedure display_detail.
The display_detail utility creates the frame searchpanel that is further populated by donothing and
displays a blank page. The namesearch utility creates the input box textsearch where the user enters the

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

102

string that will be searched. When the button search is pressed, the text in the box is passed to the
package find.display algorithm.

CREATE OR REPLACE PACKAGE search AS

 procedure display;
 PROCEDURE display_detail;
 procedure namesearch;

END search;
/

CREATE OR REPLACE PACKAGE BODY search AS

 PROCEDURE DISPLAY
 IS
 BEGIN
 htp.p('<html><head></head>

<body bgcolor="white" link="#ffffff" vlink="#ffffff" alink="#ffffff"
topmargin="0" leftmargin="0" marginheight="0" rightmargin="0"
marginwidth="0">

<FORM name="aform">

<table align=left width=75 border=1 cellpadding=0 cellspacing=0 valign=top >
<tr><td bgcolor=#000066>

</td></tr>
</table>

<table bgcolor=#000066 width=860 align=left border=1>
<td align=left>

<iframe width=468 height=430 name="searchbox" id="searchbox" src="search.display_detail"
frameborder=0 scrolling=no></iframe>
</td>
</tr>

</table>
</FORM>
</body>
</html>');

END;

Figure 3.14g: LIMS Maintenance Records – The Display Utility. In this example, the display utility
creates a frame search-box that is further populated with the procedure display_detail. The suggestions
are placed in the cascade sheets using LoadCSS.

The display utility operates with the display detail function to create the source image for the iframe
search panel. This process is shown in Figure 3.14h, where the iframe is set to the parameter
search.namesearch. This procedure places a reset button at the top of the page, and creates an additional
frame search-box that is used to further develop the query. The algorithm is used to show (display) all
the graphical elements that are required to support the query process and may be expanded to include
additional controls or functions that allow the MOD user to enter various modes of operation. This
procedure is commonly used in LIMS processing where specific details are displayed to analysts with
prior levels of expertise. Hence, the Level I scientists are only shown specific controls and options that
are commensurate with their skill level. Whereas, Level II engineers are shown the complete set of
utilities that are required to support their advanced reporting standards.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

103

PROCEDURE display_detail IS

BEGIN
suggestions.LoadCSS;

htp.p('<html><body><title></title><head><script>

function showSearch(){
document.getElementById(''searchpanel'').src=''search.namesearch'';
}

function reset_em(){
document.getElementById(''searchpanel'').src=''search.namesearch'';

}
</script>

</center>
<BODY BGCOLOR="#FFFFFF" TEXT="#000000"
LINK="#FF0000" ALINK="#FF0000" VLINK="#FF0000"
topmargin="0" leftmargin="0"
marginheight="0" rightmargin="0"
marginwidth="0"
onLoad=showSearch();>

<TABLE WIDTH="440" BORDER="0"CELLPADDING="0" CELLSPACING="0" align="left">
 ');

htp.p('
<p>
 <form name=aform onSubmit="false">
 <table border=0 width=100% columns=3>

<td class=fld align=center ></td>

<td class=fld align=center colspan=3 >
<input type="button" value="Reset"
onClick="reset_em();"></td>

</tr><tr>

<td class=fld colspan=4 align=left>
<iframe frameborder=0 align=center width="440" height="340"
src="search_start.donothing"
name="searchpanel" id="searchpanel"
scrolling=yes marginheight="0" marginwidth="0">

</iframe></td>');

htp.p('</tr>');
htp.print('</tr><tr>');
htp.print('</tr><tr>');

htp.print('</FORM>');

htp.print('</table>');

htp.print('</form>');
htp.print('</body>');
htp.print('</html>');

 END;

Figure 3.14h: LIMS Maintenance Records – The Display_Detail Utility. The procedure places a reset
button at the top of the page, and creates an additional frame search-box. The button for this search is
populated with the procedure display_detail. The onClick methods are used to control the respective
mouse operations.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

104

procedure namesearch
is
begin
 suggestions.LoadCSS;
htp.p('<html><body><head>
<script>

function reset_em(){
document.getElementById(''searchpanel'').src=''search.namesearch'';
}

function searchResults(srchname) {

parent.document.getElementById(''searchpanel'').src
=''find.display?name=''+srchname;

 }

</script></head>
<center>
<form name=aform onSubmit="return false">
<table border=1 width=100% >
<td class=fld align=center colspan=2 >
<input type=button name=search
value="Begin Search"
onClick="searchResults(document.aform.textsearch.value);"></td>

onClick="reset_em();"></td>-->
</table>
<table border =1 width=100%>

<td class=hfld>Search LIMS</td>
<td class=hfld><input type=text name=textsearch >

</td>

</table></center>
</form> </body></html> ');

end;
END search;
/

Figure 3.14i: LIMS Maintenance Records – The NameSearch Utility. The procedure creates the input box
textsearch where the user enters the string that will be searched. When the “Begin Search” control is
activated, the JavaScript Function searchResults is called. This procedure sets the source of iframe
search-panel to find.display.

The algorithms shown in Figure 3.14i perform the actual search requirements for the maintenance
utility. The display procedure accepts a parameter name that is passed into the function from
namesearch. This value is then appended to the SQL statement to select information where the
srchname is the query for instrument name, measurement_fcn is the query for the measurement function,
and, fm is the query for the item number.

Within Figure 3.14j, a hyperlink is used to record the result from each query. When the user clicks on
the hyperlink, the panel querydetail.display is opened in the third hierarchical panel panel3, with the
parameter itemid being set to the item# of the selected record. The function showPanel(3) is activated to
transfer focus to panel3.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

105

CREATE OR REPLACE PACKAGE find AS

PROCEDURE display(

name in varchar2 default null);
END find;
/

CREATE OR REPLACE PACKAGE BODY find AS

PROCEDURE display(name in varchar2 default null)
IS

stmt varchar2(1000);
type theRefCursor is Ref Cursor;
iCursor therefCursor;

type search_type is table of varchar2(500);
item search_type;
instrument search_type;
measurement_fcn search_type;
fm search_type;
result varchar2(500);

BEGIN

suggestions.LoadCSS;

stmt:='select d.item,d.instrument,d.measurement_fcn,d.fm
from lab_equipment d where upper(item)
like ''%''||upper(:srchname) ||''%'' or

upper(instrument) like ''%''||upper(:srchname) ||''%''
or upper(measurement_fcn) like ''%''||upper(:srchname) ||''%''
or upper(fm) like ''%''||upper(:srchname) ||''%'' ';

open iCursor for stmt using name,name,name,name;

fetch iCursor bulk collect into
item,instrument,measurement_fcn,fm;

htp.p('<table align=center border=0 width=100%>
<td align=left><u>Item</u></td><td
align=left><u>Instrument</u></td><td align=left><u>Measurement
Function</u></td></tr><tr>

');

Figure 3.14j: LIMS Maintenance Records – The Find and Display Utility (Part 1). The procedure
controls the main search operations. Initially, a new table is created of type varchar2 form. The main
variables for instrument identification (srchname, measurement_fcn, and fm) are defined by search_type.
These variables will be used to hold the values of information returned from the search query. The
search statement queries table lab_equipment and searches for fields that match the search string. A
“Like” clause is used so items that contain part of the search string will still be returned when the
query is executed. The open iCursor function is used to execute the search string entered on the search
form. The search string will be tested to see if it is similar to any of the fields in the table. The results
of the query are then collected and stored in the data fields by instrument identification.

The query results are examined for validity. This includes the examination of null records when a
query produces no results or an error has occurred within the LIMS or CTD materials database. If no
records are returned, the search process is stopped and a JavaScript dialog box is presented to the user
to notify them of the result. However, if the search produces valid records with matching strings, the
results are displayed using the utilities shown in Figure 3.14k.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

106

if item.count>0 then
for i in item.first..item.last
 loop
 if fm(i)= 'F' then
 case(measurement_fcn(i))

 when '1' then result:='Primary element detection and spectral analysis';
 when '2' then result:='Tensile and compression testing';
 when '3' then result:='Cyclic testiong for tension, compression and material

ductility';
 when '4' then result:='Primary hardness detection';
 when '5' then result:='Optical measurement of metallographic specimen';
 when '6' then result:='Sample preparation';
 else result:=null;
end case;

 else
 case(measurement_fcn(i))

 when '1' then result:='Primaryelement detection and spectral analysis';
 when '2' then result:='NDT-UT (non-destructive testing, ultrasonic) flaw detection';
 when '3' then result:='Network analysis using NDT-UT';
 when '4' then result:='NDT-UT surface hardness';
 when '5' then result:='NDT-UT material thickness';
 when '6' then result:='Magnetic particle flaw detection';
 when '7' then result:='Surface hardness (pin destructive testing)';
 when '8' then result:='Optical measurement metallographic examination';
 when '9' then result:='NDT residual stress analysis of sub-surface structure';
 when '10' then result:='Pressure detection-vacuum detection';
 when '11' then result:='Barometric pressure-hydrographic measurements';
 when '12' then result:='Sample preparation and laboratory support';
 when '13' then result:='Dynamic torque and acceleration';
 when '14' then result:='Capillary and chemical amplification of surface features';
 when '15' then result:='Physical resistance or conductance characterization';
 when '16' then result:='Magnetic field detection and sub-element characterization';
 else result:=null;

 end case;
 end if;
 htp.p('<td class=plainwhite><a target=panelbox2
href="QUERYDETAIL.DISPLAY?itemid='||item(i)||'"

onClick="parent.parent.parent.showPanel(3);">
 '||item(i)||'</td>

<td class=plainwhite><a target=panelbox2
href="QUERYDETAIL.DISPLAY?itemid='||item(i)||'"

onClick="parent.parent.parent.showPanel(3);">
'||instrument(i)||'</td>

 <!-- <td class=plainwhite><a target=panelbox2
href="QUERYDETAIL.DISPLAY?itemid='||item(i)||'"

onClick="parent.parent.parent.showPanel(3);">
'||measurement_fcn(i)||'</td>-

->
 <td class=plainwhite><a target=panelbox2

href="QUERYDETAIL.DISPLAY?itemid='||item(i)||'"

onClick="parent.parent.parent.showPanel(3);">
'||result||'</td>

<td class=plainwhite>-</td>
</tr><tr>');

 end loop;
 else
 htp.p('<script>alert("Your search for '||name||' yielded 0 results...Try Again");
parent.showSearch(''name'');</script>');
end if;
 END;
END find;
/

Figure 3.14k: LIMS Maintenance Records – The Find and Display Utility (Part 2). The procedure
controls the second phase of the search processing. In this example, instrument data is shown
according to the simple layout provided in Figure 3.13a,b.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

107

The process continues using the querydetail.DISPLAY procedure shown in Figure 3.14l. This algorithm
queries the database for the itemid and returns all information recorded for that record. That
information is then displayed in a separate frame.

CREATE OR REPLACE PACKAGE querydetail AS

 PROCEDURE DISPLAY(
 itemid in varchar2 default null
);
 PROCEDURE DISPLAY_GM;
END querydetail;
/

CREATE OR REPLACE PACKAGE BODY queryblank AS

 PROCEDURE display IS
 BEGIN

suggestions.loadcss;
htp.p('<html><head></head>
<body bgcolor="white" link="#ffffff" vlink="#ffffff" alink="#ffffff"
topmargin="0" leftmargin="0" marginheight="0" rightmargin="0"
marginwidth="0">
<FORM name="aform">
<table align=left width=75 border=1 cellpadding=0 cellspacing=0 valign=top >
<tr><td bgcolor=#000066>

</td></tr>
</table>

<table bgcolor=#000066 width=468 align=left border=1><td align=left width=250>
<iframe width=110 height=430 name="panelbox" id="panelbox" src="queryblank.populate_title"
frameborder=0 scrolling=no></iframe>
</td>

<td align=left>
<iframe width=358 height=430 name="panelbox2" id="panelbox2" src="search_start.donothing"
frameborder=0 scrolling=yes></iframe>
</td>
</table>
</FORM>

</body>
</html>');

 END;

PROCEDURE POPULATE_TITLE
IS
BEGIN

htp.print('<table bgcolor=#FFFFFF><tr>
<td align=center>

CTD
Laboratory Information
Management System

Query Results</td></tr><tr><td>

</td></tr><tr>
<td align=center>
</td></tr></table>');
END;

END queryblank;
/

Figure 3.14l: LIMS Maintenance Records – The Find and Display Utility (Part 3). The procedure
controls the third phase of the search process. The algorithm queries the CTD database by itemid and
returns all information recorded for that record. That information is then displayed in a separate
frame. The procedure populate_title is used to display a heading that appears in the left frame of the
“Results” frame.

The procedure Querydetail displays additional information when the hyperlink returned by the initial
query is selected. This Display_gm is a procedure that is used specifically for this case example-using

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

108

item 13.1. In this illustration a series of MOD data records are used to illustrate the setup for the query
process. The case study is shown in Figure 3.14m,n. Within Figure 3.14m, the querydetail procedure is
used setup the dataset. The stmt := select statement returns all information in the database for
parameter itemid. The fetch iCursor statement is executed and bulk collected into the variables defined
when search_type2 was created. The function openReport opens the window name. This window is of
size 550x260 and contains the options specified in the window.open string.

CREATE OR REPLACE PACKAGE querydetail AS

 PROCEDURE DISPLAY(
 itemid in varchar2 default null
);
 PROCEDURE DISPLAY_GM;
END querydetail;
/

CREATE OR REPLACE PACKAGE BODY querydetail AS

PROCEDURE DISPLAY (
 itemid in varchar2 default null

) IS
 stmt varchar2(1000);
 type mbrCursorType is ref cursor;

 iCursor mbrCursorType;
 equip_type varchar2(100);
 result varchar2(500);

 type search_type2 is table of varchar2(4000);
 item1 search_type2;

instrument search_type2;
measurement_fcn search_type2;
fm search_type2;

 BEGIN
 suggestions.loadCSS;

 stmt:= 'SELECT item,instrument,measurement_fcn,fm FROM lab_equipment WHERE
item=:itemnumber ';
iCursor FOR stmt using itemid;
fetch iCursor bulk collect into item1,instrument,measurement_fcn,fm;
htp.p('<table align=left>

 ');
htp.print('
<HTML>
<HEAD>
 <TITLE></TITLE>
 <script>
function openReport(name){
 myWindow=window.open(name,"myWindow",

"toolbar=no,location=no,scrollbars=no,status=yes,resizable=no,location=no,toolbar=no,width
=550,height=260,top=10,left=10,screeny=25,screenx=50\"");

}
</script>
</HEAD> ');

htp.print('<table width=90 border=1 cellpadding=0 cellspacing=0 bgcolor=#FFFFFF
align=left>');

Figure 3.14m: LIMS Maintenance Records – The Find and Display Utility (Part 4). The procedure
returns all information from the database for parameter itemid. A new window is created within the
openReport function that contains attributes passed from the main CTD materials database.

The final elements of the database query are shown in Figure 3.14n,o. Each example uses data
organized for the CTD laboratory system by instrument identification code. The parameters are

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

109

hardwired for this example to illustrate the process steps. In the main LIMS system, each parameter is
passed back to this utility from the instrument identification codes and the metadata system records.

if item1.count>0 then
for i in item1.first..item1.last
 loop
 if fm(i)='F' then
 equip_type:='Fixed Laboratory Equipment';
 else
 equip_type:='Mobil Laboratory Equipment';
 end if;
 if fm(i)= 'F' then
 case(measurement_fcn(i))

 when '1' then result:='Primary element detection and spectral analysis';
 when '2' then result:='Tensile and compression testing';
 when '3' then result:='Cyclic testiong for tension, compression, material ductility';
 when '4' then result:='Primary hardness detection';
 when '5' then result:='Optical measurement of metallographic specimen';
 when '6' then result:='Sample preparation';
 else result:=null;
end case;

 else
 case(measurement_fcn(i))

 when '1' then result:='Primaryelement detection and spectral analysis';
 when '2' then result:='NDT-UT (non-destructive testing, ultrasonic) flaw detection';
 when '3' then result:='Network analysis using NDT-UT';
 when '4' then result:='NDT-UT surface hardness';
 when '5' then result:='NDT-UT material thickness';
 when '6' then result:='Magnetic particle flaw detection';
 when '7' then result:='Surface hardness (pin destructive testing)';
 when '8' then result:='Optical measurement metallographic examination';
 when '9' then result:='NDT residual stress analysis of sub-surface structure';
 when '10' then result:='Pressure detection-vacuum detection';
 when '11' then result:='Barometric pressure-hydrographic measurements';
 when '12' then result:='Sample preparation and laboratory support';
 when '13' then result:='Dynamic torque and acceleration';
 when '14' then result:='Capillary and chemical amplification of surface features';
 when '15' then result:='Physical resistance or conductance characterization';
 when '16' then result:='Magnetic field detection and sub-element characterization';
 else result:=null;

 end case;
 end if;
 htp.p(' <tr><td class=litegray align=left> Item:</td><td class=litegray colspan=2
 <tr><td class=litegray align=left>Equipment Classification:</td><td
class=litegray colspan=2 align=left>'||equip_type||'</td></tr>');
if item1(i) = '2.1' then
 htp.p(' <td class=litegray align=left> Crack Propogation Test:</td><td class=litegray
align=left>017358</td></tr>
 <td class=litegray align=left> Flaw Magnification Test:</td><td class=litegray
align=left>152356</td></tr>
 <td class=litegray align=left> Subsurface Flaw Detection Test:</td><td class=litegray
align=left>951753</td></tr>
 <td class=litegray align=left> Surface Structure Test:</td><td class=litegray
align=left>456369</td></tr>
 <td class=litegray nowrap align=left> Flaw Detection Subsurface Element Test:</td><td
class=litegray align=left>791385</td></tr>');
elsif item1(i) = 'F2.1' then
 htp.p(' <td class=litegray align=left> Ductile Examination Test:</td><td class=litegray
align=left>771395</td></tr>
<td class=litegray nowrap align=left> Pre-examination for cycling Test:</td><td class=litegray
align=left>113579</td></tr>');
elsif item1(i) = '13.1' then
 htp.p(' <td class=litegray align=left>Pressure Dynamic Test:</td><td class=litegray
align=left>34837443</td></tr>
 <td class=litegray align=left>Service Main Pressure Vessel:</td><td class=litegray
align=left>78452111</td></tr>
 <td class=litegray align=left>Service Filter Elements:</td><td class=litegray
align=left>65443331</td></tr>
 <td class=litegray align=left>Service Hydraulic Couplings:</td><td class=litegray
align=left>87234526</td></tr>

Figure 3.14n: LIMS Maintenance Records – The Find and Display Utility (Part 5). Instrumentation and
graphical layout parameters for the fixed and mobile laboratories.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

110

 <td class=litegray nowrap align=left><a href="#"
 onClick="openReport(''querydetail.DISPLAY_GM'');"

 onMouseOver="status=''Click To Display Additional Information About:
'||instrument(i)||''';return true"
 onMouseOut="status='' '';return true"

 title=''Click To Display Additional Information About:
'||instrument(i)||'''>
 Lubrication and General Maintenance:</td>

<td class=litegray align=left><a href="#"
 onClick="openReport(''querydetail.DISPLAY_GM'');"
 onMouseOver="status=''Click To Display Additional Information About:

'||instrument(i)||''';return true"
 onMouseOut="status='' '';return true"

 title=''Click To Display Additional Information About:
'||instrument(i)||'''>

 84784788</td></tr>');
end if;
end loop;
end if;

htp.print('</table>');
htp.print('</form>');
htp.print('</body>');
htp.print('</html>');

 END;

PROCEDURE DISPLAY_GM
IS
BEGIN
htp.p('<html><body>
<table border=1>
<td align=center><u>Item</u></td>
<td align=center><u>Service Date</u></td>
<td align=center><u>Location</u></td>
<td align=center><u>Parts</u></td>
<td align=center><u>Engineer</u></td>
</tr><tr>
<td align=left>Main Pinion Bearing</td>
<td align=left>2 FEB 2004</td>
<td align=left>CTD Fixed Lab</td>
<td align=left>34-3097-51</td>
<td align=left>M.Gobelev</td>
</tr><tr>
<td align=left>Belt Assembly</td>
<td align=left> 11 FEB 2004 </td>
<td align=left>CTD Mobile Lab</td>
<td align=left>45-4098-12 </td>
<td align=left>H. Stubovin</td>
</tr><tr>
<td align=left>Fan Housing </td>
<td align=left>1 MAR 2004 </td>
<td align=left>Ishgorskij Lab </td>
<td align=left>456-551-234 </td>
<td align=left>A. Demiskij</td>
</tr><tr>
<td align=left>Brass Couplings</td>
<td align=left>12 MAR 2004 </td>
<td align=left>Railway Lab </td>
<td align=left>339-119-02 </td>
<td align=left> A. Feleskov</td>
</table>
</html></body>');
END;

END querydetail;
/

Figure 3.14o: LIMS Maintenance Records – The Find and Display Utility (Part 6). Instrumentation and
graphical layout parameters for the fixed and mobile laboratories – final elements.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

111

The algorithms shown in Figure 3.14b-o are used to support the CTD maintenance and search utility
that operates within the fixed and mobile laboratory system. The results of this application are shown
in Figure 3.15a-d. Within Figure 3.15a, the initial search shown in Figure 3.14a has been completed
and a single instrument located that contains the SiteScan name. The search results include three
hyperlinks.

Figure 3.15a: LIMS Maintenance Records – Searching MOD Archives for Sitescan Instrumentation. In
this example, the search described in Figure 3.14a has been conducted using the algorithms shown in
Figure 3.14b-o. In this example, one instrument type (SiteScan 230 Flaw Detector) has been located by
measurement function.

Figure 3.15b: LIMS Maintenance Records – Querying the MOD Archive for Sitescan Flaw Detection
Tests. In this example, the search returned five tests with specific identification codes that resulted
from the LIMS QA/QC procedures.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

112

Each link is oriented by: Item number, Instrument Type, and Measurement Function. The analyst then
selects the hyperlink to display additional information of the form shown in Figure 3.15b. In this
example, new information is provided concerning the identification codes for each respective test that
was conducted using the SiteScan 230 Flaw Detection System. The identification codes can be indexed
back to the main LIMS system or the CTD/Oracle materials Database.

Figure 3.15c: LIMS Maintenance Records – Querying the MOD Archive for Shimadzu Destructive
Testing Systems.

Figure 3.15d: LIMS Maintenance Records – Search Results for Shimadzu Destructive Testing Systems.
The query shown in Figure 3.15c has resulted in two systems: F2.1 and F2.2 corresponding to the
Shimadzu AG-250kNG and the Shimadzu Servo Pulser EHF-EG.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

113

As shown in Figure 3.15c, the initial query may be redirected toward other instruments located in the
CTD fixed or mobile laboratory system. In this example, a query is starting for any system that
contains the phrase “Shima”. The function will context-match the remaining portions of the search
string and return all Shimadzu related tests that have been conducted by MOD. In this example, only

Figure 3.15e: LIMS Maintenance Records – Hyperlink Data from the Shimadzu AG-250kNG
Destructive Testing System. The search indicates that five specific tests have been conducted on this
instrument. Each test is assigned a unique identification code from the main LIMS system.

Figure 3.15f: LIMS Maintenance Records – Search Results by Equipment Item. In this example, the
user is conducting a query by item number as opposed to equipment name or function.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

114

two instruments match the search context: the Shimadzu AG-250kNG and the Shimadzu Servo Pulser
EHF-EG. Each system contains a series of hyperlinks to extract additional data shown in Figure
3.15e,f. The search returns five specific tests that have been conducted using the AG-250kNG. The
identification codes have been assigned to each test sequence from within the LIMS, and may be
further examined from within this search utility or from within the main StarLIMS shell. Within
Figure 3.15g, a query is shown for the item number or identification number of a specific LIMS
instrument. In this case, the item 13.1 refers to the Start1M Compressor system that is used in the
fixed laboratory (destructive system). As shown in this example, the query has revealed specific

Figure 3.15g: LIMS Maintenance Records – Search Results by Equipment Item – Start 1M Compressor.
In this example, the query “13.1” has returned a data record (hyperlink) to the Start 1M Compressor
system located in the fixed laboratory. The record indicates that sample preparation and laboratory
support functions are approved for this system.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

115

information concerning sample preparation and laboratory support functions. Detailed information
for the Start 1M Compressor is shown in Figure 3.15h. In this example, the user has selected the
hyperlink for sample preparation and laboratory support. This displays the results shown in this
illustration. The records indicate that certain tests have been performed as well as specific
maintenance. In particular, the system has been examined for Lubrication and General Maintenance
yielding a service record (unique identification code) equal to 84784788. As shown, the analyst can
select the hyperlink to display additional information about the maintenance records for the Start 1M
Compressor.

Figure 3.15h: LIMS Service and Maintenance Records for the Start 1M Compressor. This query
indicated specific tests and service and support functions that have been conducted on this system. By
moving the cursor over the hyperlink, a pop-up window is shown that directs the user to additional
information from the LIMS and CTD Materials Database.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

116

When the user selects the hyperlink for Lubrication and General Maintenance additional information
is provided concerning the specific service records for the device. The records are shown in Figure
3.15i organized by service date (and service engineer) that conducted the examination. The database
also includes records for the main parts that have been replaced or repaired.

Figure 3.15i: LIMS Service and Maintenance Records for the Start 1M Compressor (Continued). The
hyperlink for Lubrication and Maintenance has resulted in four main service events. These include
service or repair on the Main Pinion Bearing, Belt Assembly, Fan Housing, and Brass Couplings. Each
service event includes the part numbers for the repaired item and the name of the field service
engineer that conducted the examination.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

117

4.0 Certification and Attestation Programs

The Applied Logic Laboratory has completed the Level II attestation training for three members of the
MOD 12th Main Directorate: Andrew Vladimirovich Shishov, Denis Alexandrovich Chivilev, and Juriy
Sergeevich Afanasyev. This included the recertification of the students for all mobile operations at the
Level I standard and re-attestation of the students for Level II with comprehensive examinations from
Gosgorteknadzor.

At the present time, six additional students are undergoing training for the safety and service-life
characterization of: cranes, hoists, and mobile lifting systems (including portable pneumatic and
hydraulic assemblies). These students include: Oleg Stanislavovich Ratushny, Alexey Yurievich
Boiko, Vitaliy Victorovich Manulenko, Paul Pavlovich Igolaynen, Victor Vladimirovich Kakurin, and
Ivan Alexeevich Smirnov (Figure 4.1). The new attestation training will be completed in 2004 based
upon the examination schedule and the abilities of each student to receive the Level II certification.
Since certain students do not have the necessary technical prerequisites for this level of certification,
ALL is also completing the technical training that is required for their promotion to the Level II
technical standard according to Gosgorteknadzor.

Figure 4.1: Student Instruction and Technical Examination. MOD 12th Main Directorate working on
practical laboratory examinations. The practical exams are used to prepare the students for the
formal examination sequence from Gosgorteknadzor.

Within this discussion, we provide the Gosgorteknadzor examination and attestation documents for
the new students that have successfully completed their examinations. The documentation includes
the Level II examinations with the individual test scores for each of the respective students by
curriculum. Photographs are provided that show each student receiving their diplomas from the
Gosgorteknadzor representative in Moscow. The documentation also includes the Level I and Level II
attestation certificates that allow each student to: perform field diagnostics and report technical
findings to the main laboratory. The student examination process is documented in Figure 4.2a to
Figure 4.8c.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

118

Figure 4.2a: Level II Examinations and Technical Diploma for Juriy Sergeevich Afanasyev.

Figure 4.2b: Gosgorteknadzor Attestation for Juriy Sergeevich Afanasyev.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

119

Figure 4.2c: Level II Examinations for Juriy Sergeevich Afanasyev. Practical examinations are shown
with the resultant certification levels for each testing sequence. An “x” indicates that the student did
not pass the examination based upon a technical deficiency. A “1” indicates the Level I Attestation. A
“2” indicates that the student has passed the examination at the Level II Gogorteknazdor Attestation.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

120

Figure 4.3a: Level II Examinations and Technical Diploma for Andrew Vladimirovich Shishov.

Figure 4.3b: Gosgorteknadzor Attestation for Andrew Vladimirovich Shishov.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

121

Figure 4.3c: Level II Examinations for Andrew Vladimirovich Shishov. Practical examinations are
shown with the resultant certification levels for each testing sequence. An “x” indicates that the
student did not pass the examination based upon a technical deficiency. A “1” indicates the Level I
Attestation. A “2” indicates that the student has passed the examination at the Level II
Gogorteknazdor Attestation.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

122

Figure 4.4a: Level II Examinations and Technical Diploma for Denis Alexandrovich Chivilev.

Figure 4.4b: Gosgorteknadzor Attestation for Denis Alexandrovich Chivilev.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

123

Figure 4.4c: Level II Examinations for Denis Alexandrovich Chivilev. Practical examinations are
shown with the resultant certification levels for each testing sequence. An “x” indicates that the
student did not pass the examination based upon a technical deficiency. A “1” indicates the Level I
Attestation. A “2” indicates that the student has passed the examination at the Level II
Gogorteknazdor Attestation.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

124

Figure 4.5a: Level II Curriculum Attestation from Gosgorteknadzor (Side 1).

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

125

Figure 4.5b: Level II Curriculum Attestation from Gosgorteknadzor (Side 2).

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

126

Figure 4.6a: Russian State Certification for Juriy Sergeevich Afanasyev. Technical diploma warded on
4 February 2004 for field investigation in technical lifting systems, hoists, control systems and high
pressure piping and boiler investigation.

Figure 4.6b: Russian State Certification for Juriy Sergeevich Afanasyev. The certificate of certification
from Gosgorteknadzor to perform field diagnostics and technical evaluation in lifting and piping
systems.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

127

Figure 4.6c: Technical examination Juriy Sergeevich Afanasyev. The student has completed the
prescribed training with the scores shown in this figure (95%). The attestation level for this
examination is grade II field diagnostics.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

128

Figure 4.7a: Russian State Certification for Andrew Vladimirovich Shishov. Technical diploma
warded on 4 February 2004 for field investigation in technical lifting systems, hoists, control systems
and high pressure piping and boiler investigation.

Figure 4.7b: Russian State Certification for Andrew Vladimirovich Shishov. The certificate of
certification from Gosgorteknadzor to perform field diagnostics and technical evaluation in lifting and
piping systems.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

129

Figure 4.7c: Technical examination Andrew Vladimirovich Shishov. The student has completed the
prescribed training with the scores shown in this figure (90% - 92.5%). The attestation level for this
examination is grade II field diagnostics.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

130

Figure 4.8a: Russian State Certification for Denis Alexandrovich Chivilev. Technical diploma warded
on 4 February 2004 for field investigation in technical lifting systems, hoists, control systems and high
pressure piping and boiler investigation.

Figure 4.8b: Russian State Certification for Denis Alexandrovich Chivilev. The certificate of
certification from Gosgorteknadzor to perform field diagnostics and technical evaluation in lifting and
piping systems.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

131

Figure 4.8c: Technical examination Denis Alexandrovich Chivilev. The student has completed the
prescribed training with the scores shown in this figure (95%). The attestation level for this
examination is grade II field diagnostics.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

132

5.0 Level II Field Diagnostics and Attestation Training

During the period December 2003 to March 2004, field diagnostic training was conducted for the MOD
12th Main Directorate by the faculty and staff from the St. Petersburg Technical Experts Company, The
St. Petersburg Railway Institute, the St. Petersburg Geophysical Institute, and the Ishgorskij Technical
Institute. The training was designed to support the MOD field operations using the major ultrasonic
testing instruments from Sonatest and Stresstel and well as the support training that is required for
MOD to retain their Level I Certifications from RSS and Gosgorteknadzor. As shown in Figure 5.1, the
training was conducted within a fixed laboratory setting for initial certification. The students work
with the RSS instructor to fully understand the instrumentation using standardized sample
(calibration standards). In this example, the MOD student is working with the Stresstel T-Mike
system to determine thickness characteristics as a component of an overall field hardness evaluation.

Figure 5.1: Laboratory Certification and Instrumentation Using the StressTel T-Mike EL System. The
student receives one-to-one instruction with technical documentation from the manufacturer. The
instruction is designed to assist the student in data analysis and data migration methods for the LIMS.

As shown in Figure 5.2, the student received detailed instruction for methods required to monitor
corrosion and field deformation that will be modeled within the LIMS. This includes sample

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

133

techniques for identifying the stress-risers in the sample and comparing actual field observations with
a priori samples (test-blocks) that have been prepared by RSS and Gosgorteknadzor. In this
illustration, the student uses the StressTel T-Mike EL system to determine localized hardness
characteristics in conjunction with field rated standards for fatigue (service manual) acquired for the
lifting manufacturer. This allows the student to compare actual field cycles against certified capacities
from the crane, hoist, or boiler manufacturer.

Figure 5.2: Fatigue Characteristics and Model Service Life Determination. In this laboratory exercise,
the student works with the RSS instructor to prepare a contrast model for estimating fatigue (duty
strength) in a field sample. A contrast model is created using the test-block as a standardized
specimen. The loading factors and approximate fatigue characteristics are shown in the service
manual (blue diagrams on the workbench surface).

The methods for characterizing a surface structure are examined by the MOD student. Repeated
samples are acquired across the planar surface and data is registered by surface position. As shown in
Figure 5.3a, the student initially works with standardized surfaces that contain certain imperfections.
Note that this test block includes some pitting and surface rust (oxidation) that significantly influence
the test results (final determination). Following the data acquisition phase, modeling is used to
remove sample outliers and further identify probable locations for examination. In Figure 5.3b, a
series of test samples are examined for fatigue and service characterization. Notice these samples are

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

134

Figure 5.3a: Surface Characterization with Standardized Samples and test Blocks.

Figure 5.3b: Surface Contrast Analysis Using Chemical and Capillary Techniques.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

135

sequentially treated with chemicals (capillary determination) to identify stress-risers and probable
sites for further analysis. The chemical methods are also used to identify (amplify) cracks or localized
imperfections that may be present in the sample. The amplified sections are then examined using the
Sonatest, Stresstel (or equivalent) ultrasonic defectoscopes. An example of this process is shown in
Figure 5.4 using the Russian defectoscopes from the Ishgorskij Technical Institute.

Figure 5.4: Laboratory Procedures for Ultrasonic Identification. In this illustration, the MOD students
prepare a laboratory diagnostic report for the test sample using the Russian (Dubeliv) Ultrasonic
Defectoscope (Sonatest, Stresstel equivalent). The student is moving a transducer across the test
surface as a method to identify internal stresses, cracks, moment deformations, and imperfections.
The system requires each student to understand the instrumentation and the proper evaluation
techniques for technical reporting and fatigue life estimation.

Within Figure 5.5a-b, the students continue their training using coupled transducers to detect surface
fractures and a priori known deformations. In Figure 5.5a, the test block includes pre-drilled holes
that are equally spaced along a known transect. The student uses the defectoscope to identify the
location of each hole and register the specific coordinates. This testing sequence is commonly used
during formal examinations, where the sample holes are not visible to the student. The examination is
then setup in a blind manner where the student must identify all know deformations, surface
fractures, and geometric conditions (drilled holes) without visually seeing these deformations. Hence,
the logical movement of the transducer and the proper registration of the instrument are the key
features for the successful determination.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

136

Figure 5.5a: Ultrasonic Flaw Detection. Surface Methods Using Coupled Transducers.

Figure 5.5b: Ultrasonic Flaw Analysis – Sweep Detection Methods.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

137

Figure 5.6a: Crane and Hoist Service Life Determination.

Figure 5.6b: Characterizing the Surface Condition of the Hoist Mechanism.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

138

The students receive formal instruction in methods for service life determination (Figure 5.7). At the
present time, only the students that have received their Level II Gosgorteknadzor attestation may
recommend finding for determining the service life on hosts, cranes, elevator systems, and high
pressure piping or boiler systems. While these students may recommend a service life condition, their
reports must be reviewed by a Level III official that records the final information. As shown in Figure
5.6a-b, the characterization requires each student to examine the principal working mechanisms
including the cable assemblies and the attachment hoists (or turnbuckle assemblies). The students
have received training in magnetic cable deformation methods using the Intros systems that were
supplied to the MOD field teams by DTRA.

Figure 5.7: Crane Examination Techniques. In this figure, the MOD student is moving along a truss
section examining the surface conditions for individual welded sections. The student is also applying
capillary methods to chemically amplify the surface deformation. In this manner, the principal cracks
and surface deformations may be identified and marked for secondary examination using the surface
hardness testing instruments and the ultrasonic defectoscopes.

A detailed illustration of the crane lifting system with compound cables is provided in Figure 5.8. In
this illustration, the MOD student is examining all working members of the hoist system, including
the attachment surfaces, the cabling systems, and the pinion wheels that govern the cables during the
lifting process.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

139

Figure 5.8: Crane Examination Techniques – Cable Lifting Systems. In this illustration the student is
working through a prescribed series of surface tests that are required to characterize the functional
operating capacity of the crane. These tests are used to develop a working model of how the hoist
should be used given the approximate working capacity of the system and the remaining service life
of duty cycle for the crane. The student is also shown methods for lubricating the cable system to
minimize surface wear and cable friction.

Examination of the under-carriage for the crane system is illustrated in Figure 5.9a,b. Within this
sequence, each student follows a sequence of testing operations beginning with basic capillary
methods and magnetic identification methods. In this example, a portion of the crane has been altered
and re-welded to correct a structural problem. The section is identified with red paint (surface
primer). In addition, the structure includes new surface welds that require certification from the
mobile team members. The students work with a fabrication specialist in Figure 5.9b to discuss the
welding methods used to rebuild the undercarriage and further strengthen the frame characteristics of
the hoisting system. The specialist describes the fabrication methods used and discusses the structural
preparation that was required prior to the formal welding sequence.

The examination of the cabling system for strength and strand deformation is shown in Figure 5.10a-b
for cable attached to the main pinion systems and in Figure 5.10c-d for cables that control the vertical

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

140

Figure 5.9a: Crane Examination Techniques – Undercarriage Examination.

Figure 5.9b: Crane Examination Techniques – Fabrication Methods. The fabrication specialist is shown
(right) working with the MOD student (left) to identify the methods used to repair the structure.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

141

Figure 5.10a: Crane Examination Techniques – Pivot Assemblies and Pinion Systems.

Figure 5.10b: Crane Examination Techniques – Cables and Turning Radius.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

142

Figure 5.10c: Crane Examination Techniques – Cable Surface Conditions.

Figure 5.10d: Crane Examination Techniques – Horizontal Examination.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

143

control systems. The figure shows the MOD students working through a series of physical tests that
are required for Level I characterization. As indicated in Figure 5.11, the crane includes long sections
of cable that require detailed magnetic examination for cable fatigue and probable service life
determination. The cable lengths are tested with the Intros systems and with semi-circular transducer
systems connected to the Sonatest and StressTel ultrasonic defectoscopes. The examination is required
to check for elongation of the metal strands that indicates unusual wear or stretching in the main cable
system.

Figure 5.11: Crane Examination Techniques – Load Testing Sequence. In this illustration, the MOD
students are preparing the crane for a sequential load test that begins with a static load and ends with
a pulsed load of a known weight. The static test is usually designed for 1.8 to 2.2 times above the
rated service capacity of the crane. When this test is perform, the cable and hoisting mechanism is
gauged to determine the stress induced during the lifting sequence. The pulsed test includes a series
of lifts and drops that simulate a jerking process. The pulse generates sharp tensions on the crane
cable that may be analyzed for elongation and probable deformation or loss of cross-section.

The examination of the surface leveling functions and lifting pivot systems is shown in Figure 5.12a,b.
In this illustration, the MOD students are shown how the crane is stabilized during the lifting
sequence using the jack assemblies that tie the understructure of the crane to the ground. In Figure
5.12b, the students examine the main hoisting assembly and are shown the safety features that are

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

144

Figure 5.12a: Crane Examination Techniques – Extending the Leveling Foot.

Figure 5.12b: Crane Examination Techniques – Examining the Lifting Pivot.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

145

used to ensure that the lift is stable and properly secured to the turnbuckle assembly. The crane
examination includes pressure testing for the main hydraulic lines and bearing surfaces. In Figure
5.13, the students are examining the bearing pivot for the surface leveling system on the main crane
assembly. The inspection also requires each student to understand how the hydraulic systems are
used to move the jack assemblies into place and the suitable methods for testing the bursting capacity
of the hydraulic lines (rubber and metal line assemblies).

Figure 5.13: Crane Examination Techniques – Hydraulic Lines and Bearing Surfaces.

The examination of the hydraulic cylinders that govern the movement of the crane boom is shown in
Figure 5.14a,b. In this illustration, the students examine the bearing surfaces and pivot assemblies
adjacent to each cylinder assembly. The examination is required to identify bearing pins that require
replacement and lubrication requirements for the extended service life of the hoisting system.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

146

Figure 5.14a: Crane Examination Techniques – Hydraulic Cylinders.

Figure 5.14b: Crane Examination Techniques – Hydraulic Friction Points.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

147

6.0 Conclusions

The CTD-LIMS system is designed to provide a detailed framework for the storage, archive, and
digital transfer of binary data from source instruments in the MOD fixed and mobile laboratory
system. The software utilizes open-source procedures as a technique to minimize the service and
maintenance costs, and maximize compatibility across the various platforms that are used by the 12th

Main Directorate. As described in this technical documentation, the LIMS is operational and is
currently being used by MOD in their fixed laboratory operations for certification and attestation.
This includes the testing of specimen samples using scanning electron optics, x-ray fluorescence
spectroscopy, and optimal investigation of metallographic surfaces using micro-hardness methods for
non-destructive testing. The LIMS is also used for the application of linear, cyclic, and surface
tensile/compressive testing for destructive modeling. In the development process, the LIMS works
with the local instrumentation to exchange and archive information from the local host system. For
the scanning electron microscope, the LIMS works with the Philips SQL server and receives
information in an Oracle/Sybase format for secure database management. The database includes
images from the formal electron optical scanner as well as spectrographic data and graphical images
or tables from the FEI scanner that is integrated within this system. The combined data records are
then transmitted to the LIMS, and parsed according to the application and technical requirements for
the testing sequence. When formal tests for Gosgorteknadzor are required, all records from the
electron optical scanner are recorded (including the primary element records that are required to
support the attestation report). The LIMS database includes the high and low-resolution images, as
well as, the spectrographic models that have been considered for the testing sequence. For the x-ray
fluorescence investigation, the database includes all tests that have been applied to the sample and the
related standards that have been used to calibrate the system. The LIMS records include the metadata
pre-processing standards that have been employed for the investigation, and the Struers sample
preparation data that documents the chain-of-custody for the sample. The chain-of-custody
information is stored by specimen identification code and by testing reference. The references include
all information concerning the analysts that have examined the sample, and the related pre-
investigation procedures that have been applied to the specimen. In effect, this maintains a complete
data record from the time the sample was acquired during the field investigation (the destructive
removal of the surface from the crane, hoist, or high-pressure system) to the period when the sample
was logged into the system by the investigation team. The x-ray fluorescence reports include detailed
spectrographic models for primary element identification -- including detailed data for the
distribution and frequency of the element that is under investigation. For the investigation of
metallographic thin-section samples, the LIMS retains all information that may be attributed to the
processing and mounting of the sample. This includes the destructive removal of sample materials
from the crane, hoist, or high-pressure system, as well as, the polishing techniques that have been
applied to the specimen to amplify the optical investigation. The polished surface is then mapped by
position (within sample location) and registered within the LIMS. The reports include high-
magnification image processing with multispectral classification for the surface feature. The
classification and the related images are stored within the CTD-LIMS and appear within the final RSS
and Gosgorteknadzor certification reports. Reports of this format were presented to the US
Delegation to St. Petersburg in February 2004. For the destructive testing sequence, the LIMS retains
all linear and cyclic information that is required to document the tensile and compressive features for
the sample. This includes the detailed sample preparation procedures that are required to construct
the convolution model. During the sample preparation sequence, MOD uses low temperature
methods to remove material from the field specimen. This procedure is required to minimize the
effects from temperature-induced bias during the tension-compression testing sequence. At the
present time, ALL is working with MOD to support specific testing procedures, instruments, and

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

148

removal standards that are required to prepare the samples with minimum bias. These methods will
be presented to DTRA for their technical review.

The LIMS uses independent workstations to pre-process and organize data according to RSS and
Gosgorteknadzor standards. Within the fixed laboratory system, any workstation may be used that
has an installed StarLIMS client. At the present time, MOD utilizes six floating licenses for this effort.
The licenses are dynamic and may be used within any of the testing laboratories with no loss of
function or related technical information. In addition, the LIMS supports mobile docking stations that
provide the ideal framework for transferring information from field instruments that support data-
logging capabilities. The mobile docking approach yields numerous benefits for MOD: first, the
technique is highly generalized. Hence, any instrument that can transmit data onto a laptop can also
transfer information into the LIMS using one or more of the SQL or PL/SQL procedures described in
Section 2 and Section 3 of this manuscript. Second, the docking configuration allows the user to
operate LIMS procedures in a purely mobile environment – without the technical requirements or
administration guidelines required for the fixed laboratory. Hence, the two laboratories (fixed and
mobile) can operate as independent facilities. This is required for specific investigations that are either
independent or delineated with respect to mobile investigations or MOD procedures. Third, the
algorithms are shown to be web-client based for open source transfer of digital information using html
and other standard protocols such as TCP/IP and the equivalent SQL/SMTP.

The LIMS examples provided in Section 2 and Section 3 should be used in conjunction with the SQL
productivity tools shown in Appendix A-G. Although the LIMS graphical user interface is strictly
controlled with respect to MOD security and processing requirements, the PL/SQL and SQL
algorithms are completely open for design and modification. Indeed, the data transfer utilities used
within the main LIMS server are written in SQL and PL/SQL to access the data from the various
instruments and servers on the CTD network. In this design, the CTD-LIMS uses primary SQL,
whereas, the Oracle specific CTD materials database uses PL/SQL to maintain the Oracle specific
features requested by MOD. The algorithms are shown to be open source and may be used to
minimize future requirements for software upgrades and proprietary software. All code examples use
ISO compliant SQL and PL/SQL to maximize transfer of information throughout the fixed and mobile
laboratory system.

As presented in this technical manuscript, the MOD certification and training programs are on-
schedule for final examinations from Gosgorteknadzor. The students are completing their Level II
attestations and will continue their training program as required for the safe and secure operation of
the MOD facility. We will work closely with DTRA to assist their technical staff in the future support
of this training and certification program.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

149

7.0 References

Acoustic Emissions. Terms, Definitions and Acronyms. (GOST 27655-88). General Reference:
Assessment of Mechanical Attributes of Materials Based on the Acoustic Emission Method. (RD-50-
568-85).

ASTM, Guide E2066-00 Standard Guide for Validation of Laboratory Information Management
Systems, 2001.

ASTM Standard E-622 Guide for Developing Computerized Systems.

ASTM Standard E-623 Guide for Developing Functional Requirements for Computerized Systems.

ASTM LIMS Guide. In 1994 Book of ASTM Standards; American Society for Testing and Materials; 1994;
Vol. 14.01.

Bangia, Ramesh, Database Management Systems (DBMS) (2000), A. H. Wheeler Publishing Co Ltd.

Batory D. and Thomas J., "P2: A Lightweight DBMS Generator", Journal of Intelligent Information
Systems, 9, 107-123 (1997).

Beresniewicz, John, Feuerstein, Steven, Dye, Charler, Oracle Built in Packages (1998) Cambridge:
O’Reilly & Associates, Inc.

Bonner A., Shrufi A. , and Rozen S. LabFlow-1: A database benchmark for high-throughput workflow
management. In Proceedings of the 5th Int. Conference on Extending Database Technology (EDBT96),
Avignon, France, 3 1996.

Brown, Philip J. Measurement, Regression, and Calibration (1994), Oxford: Clarendon Press.

Cascio, Joseph, Woodside, Gayle and Mitchell, Philip, ISO14000 Guide: The New Environmental
Management Standards (1966), Milwaukee: American Society for Quality Control (ASQC).

Comprehensive Inspection of Crane Tracks for Lifting Machinery. Section 1. RD-10-138.

Decision Regarding the Individual Functions of the State Mining and Industrial Inspectorate of Russia
and the Inspection Office of the State Technical Inspectorate of the Armed Forces of the RF. (MOD
order 39, 1994).

Dietrich, C.F. Uncertainty, Calibration and Probability: The Statistics of Scientific and Industrial
Measurement Second Edition (1997), Bristol: Adam Hilger.

Elevator Installation and Operational Safety Rules. (Order_1 of Gostekhnadzor RF,
11 February 1992).

EPA Good Automated Laboratory Practices, Recommendations for Ensuring Data Integrity in
Automated Laboratory Operations. Washington, D.C. August, 1995.

FDA. Quality System Regulation. 21 Code of Federal Regulations part 820, 1996

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

150

Feigenbaum, Armand V. Total Quality Control, Third Edition (1983), New York: McGraw Hill.

Feuerstein, Steven, Oracle PL/SQL Programming, Third Edition (2002), Cambridge: O’Reilly &
Associates, Inc.

Feuerstein, Steven, Advanced Oracle PL/SQL Programming with Packages (1996) Cambridge: O’Reilly &
Associates, Inc.

Feuerstein, Steven, Oracle PL/SQL Best Practices (2001) Cambridge: O’Reilly & Associates, Inc.

Flanagan, David, JavaScript The Definitive Guide Third Edition (1998), Cambridge: O’Reilly & Associates,
Inc.

Garfield, Frederick M. Quality Assurance Principles for Analytical Laboratories Second Edition (1991)
Baltimore: AOAC.

Geary, David M. Graphic JAVA, Mastering the JFC, Volume II Swing (1999) Palo Alto: Sun
Microsystems, Inc.

Gennick, Jonathan, Oracle SQL *Plus: The Definitive Guide (1999), Cambridge: O’Reilly & Associates,
Inc.

Goodman, Danny, Dynamic HTML: The Definitive Reference (2nd Edition) (2002), Cambridge: O’Reilly &
Associates, Inc.

Goodman N.,Rozen S., and Stein L. Labbase: A database to manage laboratory data in a large-scale
genome-mapping project. IEEE Computers in Medicine and Biology, 14:702 -- 709, December 1995.

GOS Standard Technical Specifications for the Repair of Industrial Steam and Hot Water Boilers
(Order of Gosgortekhnadzor RF, 4 July 1994). General Reference: Methodological Procedures for
Technical Diagnostics of Boilers with a Working Pressure Rate of < 4.0 MPa. RD 34.17.435-95.

Greenwald, Rick and Milbery, James, Oracle 9ias Portal Bible (2001), New York: Hungry Minds, Inc.

Guidance for Federal State Mining and Industrial Inspectorate Regulations and Technical Documents
Related to the Development, Production, Operation, Upgrading and Renovation of Equipment and
Systems under the Oversight of the State Technical Inspectorate of the Armed Forces of the RF (RTB-
95). General Reference: (Order 214 of the RF MOD, 1995).

Hansen Gary W. and Hansen, James V. Database Management and Design, Second Edition (1995), New
York: Prentice Hall.

Harold, Elliotte Rusty, JAVA I/O (1999), Cambridge: O’Reilly & Associates, Inc.

Harrington, H. James Total Improvement Management (1994) Milwaukee: American Society for Quality
Control (ASQC).

Hilton, Mary D (1994). Laboratory Information Management Systems: Development and Implementation for a
Quality Assurance Laboratory New York: Marcel Dekker.

Hoffer, Jeffrey A, Prescott, Mary B., McFadden, Fred R. Modern Database Management (6th Edition)
(2002) New York: Prentice Hall.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

151

Huber, L. Validation of Automated Computer Systems; InterPham Press: Buffalo Grove, IL,1995; pp 4-58

Huber, Ludwig, Validation of Computerized Analytical Systems (1995) Boca Raton: CRC Press LLC.

Interim Program for Technical Diagnostics of DKVR and DG Steam Boilers Based on the Acoustic
Emission Method. (Central Design and Research Institute of Boilers and Turbines, 19 June 1996).

Kyte, Thomas, Effective Oracle by Design(2003), New York: McGraw-Hill Osborne Media.

Kyte, Thomas, Expert One-on-One Oracle (2001), New York: Wrox Press Ltd.

Land, Russ, Fire in the Hole! Measuring the Value of Continuous Improvement, QP, Jan 2001 pg 89-93.

Lifting Crane Installation and Operational Safety Rules. (Orde _12 of Gostekhnadzor RF, 12 May 1993).

Lifting Machinery. Metallic Structures. Radiation Monitoring. General Provisions. RD RosEK-002-96.
General Reference: Ultrasonic Monitoring RD RosEK-001-96.

Litwin, Witold, Morzy, Vossen, Gottfried, Advances in Databases and Information Systems (1998), Berlin:
Springer-Verlag.

Loney, Kevin and Koch, George, Oracle 9i: The Complete Reference (2002) New York: McGraw-Hill
Osborne Media.

Lyon, Douglas A. Image Processing in JAVA (1999), Upper Saddle River: Prentice Hall.

Mahaffey, Richard R. & Reinhold Van Nostrand, LIMS: Applied Information Technology for the Laboratory
(1990), Dordrecht: Kluwer Academic Publishers.

Major Safety Requirements for Electric Bridge and Gantry Cranes Load Limits. RD-10-118.

McDowall, Robert D., Laboratory Information Management Systems, Concepts, Integration,
Implementation (1987), New York: John Wiley & Sons.

McDowell RD. Operational Measures to Ensure Continued Validation of Computerized Systems in
Regulated or Accredited Laboratories, Lab Automat Info Manage 31, 1995.

McFarlane, Nigel, Instant JavaScript (1997), New York: Wrox Press Ltd.

McLaughlin, Gregory C. Total Quality in Research and Development (1995) Boca Raton: St Lucie Press.

Methodological Procedures for Determining the Remaining Service Life of Potential Hazardous Sites
Subject to Gostekhnadzor Oversight. (Order _ 57 of Gostekhnadzor RF, 17 November 1995). General
Reference: National Research Institute of Lifting and Transportation Machinery (12 July 1991).

Methodological Procedures for Inspecting Lifting Machinery Whose Service Life Has Expired. Section
5. Bridge and Gantry Cranes. (RD-10-11112-5-97). General Reference: All-purpose, Self-propelled
Derrick Cranes. (RD-10-112-2-97). Separate Provisions: (RD-10-112-96).

Methodological Procedures for Technical Diagnostics and Extending the Service Life of Pressurized
Vessels. (RD 34.17.439-96).

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

152

Methodological Procedures. Ultrasonic Monitoring of Metal Structure Welds When Inspecting Lifting
Cranes. (RD IKTs KRAN-001-92).

Methodological Recommendations. The Use of the Acoustic Emission Method to Establish Destructive
Strength Attributes. (MR 204-87).

Mishra, Sanjay and Beaulieu, Alan, Mastering Oracle SQL (2002), Cambridge: O’Reilly & Associates,
Inc.

Morris, Alan S. Measurement and Calibration Requirements for Quality Assurance to ISO 9000 (1998), New
York: John Wiley & Sons.

Nakagawa, Allen S. LIMS Implementation and Management. Royal Society of Chemistry, Cambridge,
1994.

National Institute for Science and Technology. Software Verification and Validation: Its Role in
Computer Assurance and Its Relationship with Software Project Management Standards, 1996.

Nilsen, Clifford L. Managing the Analytical Laboratory Plain and Simple Boca Raton: CRC/ Interpharm
Press.

Non-destructive Examination. Ultrasonic Transducers. Measurement Methods for Major Parameters.
(GOST 23702-85). General Reference: (GOST 17410-77).

Non-destructive Examination. Seamless, Cylindrical Metal Pipes. Ultrasonic Defectoscopy Methods.
(GOST 17410-78).

Non-destructive Examination. Ultrasonic Defectoscopy. Measurement Methods for Major Parameters.
(GOST 23667-85).

Non-destructive Examination. Welds. Ultrasonic Methods. (GOST 14782-86).

Oaks, Scott & Wong, Henry, JAVA Threads Second Edition (1999), Cambridge: O’Reilly & Associates,
Inc.

Odewahn, Andrew, Oracle Web Applications (1999), Cambridge: O’Reilly & Associates, Inc.

Oelker, Greg, How Dowes LIMS Use Help Laboratory Function. SC&A.

Ozsu, M. Tammer and Valduriez, Patrick, Principles of Distributed Database Systems, Second
Edition(1999) New York: Prentice Hall.

Passenger and Freight Elevators. Methodological Procedures for Inspecting the Status of Elevators
Whose Standard Service Life Has Expired. (Order of Gosgortekhnadzor RF, 22 July 1994).

Paszko, Christine, Miller, Tom, Vranken, Russ, Plugging Into LIMS: Evolution and Advances in the Age of
PCs How Personal Computers Have Revolutionized Laboratory Automation and Data Management
http://www.atlab.com/Events%20and%20Publications/Publications/plugginintolims.html .

Paszko, Christine, Turner, Elizabeth and Hilton, Mary D (2001). Laboratory Information Management
Systems Revised & Expanded Second Edition. New York: Marcel Dekker.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

153

Paszko, Christine Extending LIMS Functions Over The Internet, Accelerated Technology Laboratories,
Inc. AOAC International, April 1998.

Paszko, Christine and Pugsley, Carol, Considerations in Selecting a Laboratory Information
Management System (LIMS), American Laboratory, September, Volume 32 No 18, 2000.

Powell, Thomas & Schneider, Fritz, JavaScript: The Complete Reference (2001) New York: McGraw-Hill
Osborne Media.

Pressurized Vessel Installation and Operational Safety Rules. (Order _ 20 of Gostekhnadzor RF, 18
April 1995). General Reference: Steam and Hot Water Pipes. (RD-03-29-93).

Procedure for Issuing Special Permits to Conduct High Hazard Operations at State Technical
Inspectorate Sites of the Armed Forces of the Russian Federation. (Decision 152/190 of the State
Technical Inspectorate of the Armed Forces of the RF, 31 March 1995.

Ramakrishnan, Raghu, Gehrke, Johannes, Database Management Systems, Third Edition (2003), New
York: McGraw Hill – Higher Education.

RD RosEK-01-013-97. Regulation on the Procedure for Specialist Training and Certification for Expert
Inspections and Technical Diagnostics.

Regulation on the Technical Diagnostics System for Industrial Steam and Hot Water Heaters. (Central
Design and Research Institute of Boilers and Turbines, 27 March 1992; National Research Institute of
Nuclear Material, 20 March 1992; Central Research Institute of Machine Building Technology, 19
March 1992).

Requirements for Non-destructive Examination and Diagnostic Laboratories (RD-RosEK-005-96).
General Reference: Visual and Measurement Inspection Procedures (RD-34.10.130-96).

Rob, Peter, Coronel, Carlos, Database Systems: Design, Implementation, and Management, Fifth Edition
(2001), Boston: Course Technology.

Rozenshtein, David, Abramovich, Anatoly, Birger, Eugene, Optimizing Transact-SQL: Advanced
Programming Techniques (1997) New York: SQL Forum Press.

Rules for Organizing and Conducting Acoustic Emission Monitoring of Vessels, Equipment, Boilers
and Process Pipes. (RD-03-131-97. Order _ 44 of Gostekhnadzor RF, 11 November 1996).

Saltor, F. Ramos, I and Alonso G., editors The Proceedings of EDBT98, the 6th International Conference on
Extending Database Technology, volume 1377 of Lecture Notes in Computer Science, pages 193-197.
Springer, 1998.

Silberschatz, Abraham, Korth, Henry F., Sudarshan, S, Database System Concepts, Fourth Edition (2002),
New York: McGraw Hill – Higher Education.

Stafford, J.E.H, Advanced LIMS Technology, Case Studies and Business Opportunities (1995), Dordrecht:
Kluwer Academic Publishers.

Steam and Hot Water Boiler Installation and Operational Safety Rules. (Order _ 12 of Gostekhnadzor
RF, 12 May 1993). Also, Durability Calculations and Testing. The Use of Acoustic Emission Method to
Monitor Pressurized Vessels and Pipes. (MR 204-86).

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

154

Teague, Jason Cranford, DHTML For the World Wide Web (1998), Berkley, CA: Peachpit Press.

Turner, Elizabeth, Paszko, Christine and Kolva, Don, Implementing a Laboratory Information
Management System (LIMS) in an Army Corps of Engineer’s Water Quality Testing Laboratory,
Journal of the Association of Laboratory Automation Vol 6 No. 5 November 2001 pages 60-63.

Urman, Scott, Oracle 9i PL/SQL Programming (2001), New York: McGraw-Hill Osborne Media.

Vesterli, Sten E. Oracle Web Applications 101 (2001) New York: McGraw-Hill Osborne Media.

Weinberg, Spelton & Sax, GALP Regulatory Handbook (1994), Lewis Publishers, CRC Press.

Woodall, Jack, Rebuck, Deborah K. and Voehl, Frank, Total Quality in Informational Systems and
Technology (1996), Boca Raton: St Lucie Press.

Laboratory Instruments and Data Management Systems: Design of Software User Interfaces and End-User
Software Systems Validation, Operation, and Monitoring; Approved Guideline; NCCLS: Wayne, PA, 1995;
GP-19A.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

155

Appendix A: LIMS Time-Date Formats

The LIMS uses specialized functions for formatting the technical reports that are required by
RSS and Gosgorteknadzor. Within this technical appendix, the algorithms required for
managing dates and times are provided. These methods are used for the “time-stamp”
conventions that have been displayed throughout this report, and are used within the
StarLIMS and the CTD materials database. The time indexes are placed within the metadata
records for the 12th Main Directorate. As a result, these algorithms are required for the final
technical reports that include the QA/QC models and the chain-of-custody references.

A.1 Convert a String To a Date – Day First

Each date contains the: century, year, month, day, and hour, minute and second. Since date formats
can fluctuate, it is necessary to allow for varying input parameters. This example accepts, as a
parameter, any string in a day-month-year format and returns a final date that is organized according
to MOD requirements. The following section demonstrates a variety of functions and procedures that
can be used to convert to and from the date format.

Create or replace Function StringToDate(pString varchar2) return date is

returnval date;

BEGIN
if pstring is not null then

returnval:=to_date(pString);
end if;
return (returnval);

exception
when others then
begin
 returnval:=to_date(pString,'dd/MM/yy');
 return (returnval);

exception
 when others then
 begin
 returnval:=to_date(pString,'dd/MM/yyyy');
 return (returnval);

 exception
 when others then
 begin

returnval:=to_date(pstring,'dd-MON-yyyy');
return (returnval);

 exception

 when others then
begin
returnval:=to_date(pstring,'dd-MONTH-yyyy');
 return (returnval);
exception
when others then
begin

 returnval:=to_date(pstring,'ddMONTHyyyy');
 return (returnval);

 exception
when others then
begin
returnval:=to_date(pstring,'ddMONyy');
return (returnval);
exception
when others then

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

156

begin
returnval:=to_date(pstring,'ddMONyyyy');

 return (returnval);
exception
 When others then

return(NULL);
end; end; end;
end; end; end;
end;

 end StringToDate;
 /

The following SQL statement may be used to validate the procedure. The result is a standard string
date in the CTD format:

SQL> select stringtodate('01-01-2004') from dual;

STRINGTODATE

01-JAN-04

A.2 Convert a String To a Date – Month First

 Create or Replace Function StringToDateMonthFirst(pString varchar2)
return date is returnval date;

BEGIN
if pstring is not null then

returnval:=to_date(pString,'MM-dd-yy');
end if;
return (returnval);

exception
when others then
begin

returnval:=to_date(pString,'month-dd-yyyy');
return (returnval);

exception
when others then
begin

returnval:=to_date(pString,'MM-dd-yyyy');
return (returnval);

exception
when others then

begin

returnval:=to_date(pstring,'MM/dd/yyyy');
return (returnval);

exception
when others then

begin
returnval:=to_date(pstring,'Mon/dd/yyyy');

 return (returnval);
exception

When others then
Return(StringToDateMonthFirst(pString));
null;
end;
end;
end;
end;

 end StringToDateMonthFirst;
 /

The following SQL statement may be used to validate the procedure. The result is a standard string
date in the RSS format. This format uses the day-month-year convention:

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

157

SQL> select stringtodatemonthfirst('Jan-28-2004') from dual;

STRINGTODATEMONTHFIRST

28-JAN-04

A.3 Convert a String To a Date – Year First

Create or Replace Function StringToDateYearFirst(pString varchar2) return date is
returnval date;
begin

if pstring is not null then
returnval:=to_date(pString,'yy-MM-dd');

end if;
return (returnval);

exception
when others then
begin

returnval:=to_date(pString,'yyyy-MM-dd');
return (returnval);

exception
when others then
begin

returnval:=to_date(pString,'yyyy/MONTH/dd');
 return (returnval);
exception

when others then
begin

returnval:=to_date(pstring,'yyyy-Mon-dd');
return (returnval);

exception
when others then
begin

returnval:=to_date(pstring,'yy-Mon-dd');
return (returnval);

exception
When others then

Return(StringToDateMonthFirst(pString));

end; end;
end; end;

 end StringToDateYearFirst;
 /

The following SQL statement may be used to validate the procedure. The result is a standard string
date in the RSS format. The year 2004 has been relocated to the proper position.

SQL> select stringToDateYearFirst('2004-Jan-28') from dual;

STRINGTODATEYEARFIRST

28-JAN-04

A.4 Convert String To Date time

Create or Replace Function StringToDateTime(pString varchar2) return date is
returnval date;
begin

if pstring is not null then
returnval:=to_date(pString);

end if;
return (returnval);

exception
when others then

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

158

begin
returnval:=to_date(pString,'dd/MM/yy hh24:mi');
return (returnval);

exception
when others then
begin

returnval:=to_date(pString,'dd/MM/yyyy hh24:mi');
return (returnval);

exception
when others then
begin

returnval:=to_date(pstring,'dd-MON-yyyy hh24:mi');
return (returnval);

exception
when others then
begin

returnval:=to_date(pstring,'dd-MONTH-yyyy hh24:mi');
return (returnval);

exception
when others then
begin

returnval:=to_date(pstring,'ddMONTHyyyy hh24:mi');
return (returnval);

exception
when others then
begin

returnval:=to_date(pstring,'ddMONyy hh24:mi');
return (returnval);

exception
when others then
begin

returnval:=to_date(pstring,'ddMONyyyy hh24:mi');
return (returnval);

exception
When others then

Return(StringToDateYearFirst(pString));
end; end; end;
end; end; end;

 end;
 end StringToDateTime;
 /

The following SQL statement may be used to validate the procedure. The result is a standard string
date in the Gosgorteknadzor format. The string includes the additional time data for QA/QC
modeling. This format is used within the StarLIMS and the CTD materials database.

SQL> select stringtodatetime('30/04/200410:45') from dual;

STRINGTODATETIME(‘'30/04/200410:45')

4/30/2004 10:45:00 AM

 A.5 Convert Date to a String

It is frequently necessary to convert a date to a string. This is used when displaying a specific format.
The following example demonstrates a method to convert a date to a string:

Create or Replace Function DateToString(pDate date) return varchar2 is
begin

return(to_char(pDate,'dd-Mon-yyyy'));
end DateToString;

SQL> select datetostring('28-Jan-2004') from dual;

DATETOSTRING('28-JAN-2004')
--
28-Jan-2004

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

159

 A.6 Convert Date Time to a String

Converting a date time is frequently required for RSS technical reports. This function may be used to
perform this basic operation:

Create or Replace Function DateTimeToString(pDate date) return varchar2 is
BEGIN

return(to_char(pDate,'dd-Mon-yyyy hh24:mi'));
end DateTimeToString;

SQL> select datetimetostring(sysdate) from dual;

DATETIMETOSTRING(SYSDATE)
--
24-Feb-2004 09:36

 A.7 Convert a date/time to GMT

The GMT time is required for all data that is forwarded to the International Organization of
Standardization (ISO). In general, this time form is not required by MOD, but is used by RSS and
Gosgorteknadzor for forwarding information to the European certification bureaus.

Create or Replace Function ConvertTimeToGMT(pTime varchar2,pOffset varchar2 default 'EST')
return date IS

 RETURNVAL DATE;
BEGIN

RETURNVAL:=to_date(pTime,'dd-mon-yyyy:hh24mi');
IF pOffset = 'EST' THEN

SELECT NEW_TIME(RETURNVAL,'EST','GMT') into
RETURNVAL FROM dual;

ELSIF pOffset = 'CST' THEN
SELECT NEW_TIME(RETURNVAL,'CST','GMT') into RETURNVAL FROM dual;

ELSIF pOffset = 'MST' THEN

SELECT NEW_TIME(RETURNVAL,'MST','GMT') into RETURNVAL FROM dual;
ELSIF pOffset = 'PST' THEN

SELECT NEW_TIME(RETURNVAL,'PST','GMT') into RETURNVAL FROM dual;
ELSIF pOffset = 'AST' THEN

SELECT NEW_TIME(RETURNVAL,'AST','GMT') into RETURNVAL FROM dual;
ELSIF pOffset = 'BST' THEN

SELECT NEW_TIME(RETURNVAL,'BST','GMT') into RETURNVAL FROM dual;
ELSIF pOffset = 'HST' THEN

SELECT NEW_TIME(RETURNVAL,'HST','GMT') into RETURNVAL FROM dual;
ELSIF pOffset = 'NST' THEN

SELECT NEW_TIME(RETURNVAL,'NST','GMT') into RETURNVAL FROM dual;
ELSIF pOffset = 'YST' THEN

SELECT NEW_TIME(RETURNVAL,'YST','GMT') into RETURNVAL FROM dual;
END IF;
return(returnval);

exception when OTHERS then
begin

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

160

 RETURNVAL:=to_date(pTime,'dd-mon-yyyy:hh24:mi');
 IF pOffset = 'EST' THEN

 SELECT NEW_TIME(RETURNVAL,'EST','GMT') into RETURNVAL FROM dual;
 ELSIF pOffset = 'CST' THEN

 SELECT NEW_TIME(RETURNVAL,'CST','GMT') into RETURNVAL FROM dual;
 ELSIF pOffset = 'MST' THEN

 SELECT NEW_TIME(RETURNVAL,'MST','GMT') into RETURNVAL FROM dual;
 ELSIF pOffset = 'PST' THEN

 SELECT NEW_TIME(RETURNVAL,'PST','GMT') into RETURNVAL FROM dual;
 ELSIF pOffset = 'AST' THEN

 SELECT NEW_TIME(RETURNVAL,'AST','GMT') into RETURNVAL FROM dual;
 ELSIF pOffset = 'BST' THEN

 SELECT NEW_TIME(RETURNVAL,'BST','GMT') into RETURNVAL FROM dual;
 ELSIF pOffset = 'HST' THEN

 SELECT NEW_TIME(RETURNVAL,'HST','GMT') into RETURNVAL FROM dual;
 ELSIF pOffset = 'NST' THEN

 SELECT NEW_TIME(RETURNVAL,'NST','GMT') into RETURNVAL FROM dual;
 ELSIF pOffset = 'YST' THEN

 SELECT NEW_TIME(RETURNVAL,'YST','GMT') into RETURNVAL FROM dual;
 END IF;

return(returnval);
end;

end ConvertTimeToGMT;

The following SQL statement may be used to validate the procedure. The result is a standard string
date in the ISO format – indexed to GMT time.

SQL> Select ConvertTimeToGMT('01-Jan-2004:11:00') from dual

CONVERTTIMETOGMT(’01-JAN-2001:11:00’,’EST’)
--
1/1/2004 4:00:00 PM.

A.8 Convert Zulu To Date

The following functions are used to manage zulu time conventions used in military service. The
models utilize the ISO standards for time-date exchange:

Create or Replace Function ConvertZuluToDate(pZulu varchar2) return date
IS

returnval date:=SYSDATE;

BEGIN
returnval:=to_date(pZulu,'ddhh24mi"z"MonYYYY');
return (returnval);

exception
when value_error then

return (sysdate);
end ConvertZuluToDate

The following SQL statement may be used to validate the procedure. The result is a standard string
parsed from the original zulu representation.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

161

SQL> Select ConvertZulutoDate('011101zJan2004') from dual

CONVERTZULUTODATE(‘011101ZJAN2004’)
--
1/1/2004 11:01:00 AM

The reverse operation (moving from date back to zulu) is shown as:

Create or Replace Function ConvertDateToZulu(pDate date) return varchar2 is

begin
return (to_char(pDate,'ddhh24mi"z"MonYYYY'));

end ConvertDateToZulu;

The following SQL statement may be used to validate the converse procedure. The result is the
standard zulu date representation:

SQL> select convertdatetozulu('01-MAR-2004') from dual;

CONVERTDATETOZULU('01-MAR-2004')
--
010000zMar2004

A.9 Convert Custom Date

Frequently, dates do not follow a pre-defined format. For example, time/date information that is
forwarded to the LIMS from a specific vendor. When this occurs, it is necessary to convert the sting
into the standard CTD format:

Create or Replace FUNCTION convertCustomDate(pDateString Varchar2) return Date
IS
BEGIN

 Return to_date(pDateString,'DD-MM-YYYYHH:MI AM "ET"');
 End convertCustomDate;

The following SQL statement may be used to validate the custom conversion procedure. The result is
the standard CTD date representation:

SQL> select convertcustomdate('01-01-2004 10:00 AM ET') from dual;

CONVERTCUSTOMDATE(’01-01-200410:00AMET’)
--
01-JAN-04 10:00:00 AM

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

162

Appendix B: Arrays and Temporary Data Storage

The LIMS uses specialized functions for holding critical information. The functions use array data
structures to manage the digital information required for the specific processing task. In general, any
process that sorts information, or parses data, utilizes an array structure to manage intermediate
processing tasks. In this appendix, we examine the main utility functions that are required to define
associative arrays, user defined arrays, and custom configurations for time and date management.

B.1 Associative Arrays

The associative array is a predefined map or table. Conceptually, an associative array is composed of
a collection of keys, and a collection of values. In this organization, each key is associated with one
value. The operation of finding the value (associated with a key) is called a lookup or indexing. The
following example demonstrates the basic functionality of an associative array.

DECLARE
 TYPE machine_type IS TABLE OF VARCHAR2(500) INDEX BY VARCHAR2(64);
 machine_active machine_type;
 machine_obsolete machine_type;

 active NUMBER;
 obsolete NUMBER;
 ctr VARCHAR2(64);
BEGIN
 machine_active('Machine1') := 'AB123';
 machine_active('Machine2') := 'AC456';
 machine_obsolete('Machine3') := 'RE975';
 machine_obsolete('Machine4') := 'ZA345';
 active := machine_active.COUNT;
 obsolete:=machine_obsolete.COUNT;

 DBMS_OUTPUT.PUT_LINE ('COUNT ACTIVE = ' || active);
 DBMS_OUTPUT.PUT_LINE ('COUNT OBSOLETE = ' || obsolete);
 ctr := machine_obsolete.FIRST;

 DBMS_OUTPUT.PUT_LINE ('Obsolete Machine ID: '||machine_obsolete(ctr));
 ctr := machine_obsolete.LAST;
 DBMS_OUTPUT.PUT_LINE ('Obsolete Machine ID: '||machine_obsolete(ctr));
 ctr := machine_active.FIRST;

 DBMS_OUTPUT.PUT_LINE ('Active Machine ID: '||machine_active(ctr));
 ctr := machine_active.LAST;
 DBMS_OUTPUT.PUT_LINE ('Active Machine ID: '||machine_active(ctr));
END;
/

During execution, the procedure yields the following output:

COUNT ACTIVE = 2
COUNT OBSOLETE = 2
Obsolete Machine ID: RE975
Obsolete Machine ID: ZA345
Active Machine ID: AB123
Active Machine ID: AC456

B.2 User-Defined Type
The user-defined data types are composed of the built-in structures or previously declared objects.
The objects may include both attributes and methods. Incomplete object types (without either
attributes or methods) can be declared to enable dependent objects. The user-defined objects can be
further organized to define a column in a relational table. This sequence may be extended to define an

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

163

object table (or to define a relationship to another data type). The following example demonstrates the
creation and implementation of a user-defined type:

CREATE TABLE APP_TBL
(
 MACHINE_ID NUMBER ,
 MACHINE_NAME VARCHAR2(500) ,
 ROCKWELL_HARDNESS NUMBER
)

Next types are created to enable access to components of the table that was just created.

CREATE OR REPLACE type application_tbl
as table of application_type

CREATE OR REPLACE type application_type
as object
(MACHINE_ID NUMBER,
MACHINE_NAME VARCHAR2(100),
ROCKWELL_HARDNESS NUMBER)

CREATE OR REPLACE PACKAGE APPLICATION_SET AS
FUNCTION getApplication(MACHINEID IN NUMBER DEFAULT 0,
MACHINENAME IN VARCHAR2 DEFAULT NULL)
return application_TBL;
END APPLICATION_SET;
/

CREATE OR REPLACE PACKAGE BODY APPLICATION_SET AS

 FUNCTION getapplication (MACHINEID IN NUMBER DEFAULT 0,MACHINENAME IN VARCHAR2 DEFAULT
NULL) RETURN application_TBL

 IS
 l_data application_TBL;

 BEGIN
 select cast(multiset(select * from app_tbl WHERE MACHINE_ID=MACHINEID OR
MACHINE_NAME=MACHINENAME)
 AS application_TBL)
 into l_data
 from dual;
 return l_data;
 END;
END APPLICATION_SET;
/

DECLARE
DATA APPLICATION_TBL;

BEGIN
DATA:=APPLICATION_SET.GETAPPLICATION(1005,NULL);
FOR i IN 1..DATA.COUNT LOOP

 dbms_output.put_line(DATA(i).MACHINE_ID||' '||DATA(i).MACHINE_NAME||'
'||DATA(i).ROCKWELL_HARDNESS);
END LOOP;
END;
/

During execution, the procedure yields the following output:

1005 Machine A 5

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

164

Appendix C: Date Algebra

When dealing with temporal data, specific operations are required to edit the information. This
includes indexing operations and arithmetic processes that are used to increment and update the
process. The following utilities are required to perform simple operations on dates and times. These
algorithms are automatically used within the LIMS during the chain-of-custody operations.

C.1 Add A Number Of Months From A Date

The following example adds the number of months specified in the parameter months_shift to the
parameter passed to the function in date_in.

create or replace function new_add_months(date_in IN DATE,months_shift IN NUMBER)
 Return Date
 is
 return_value DATE;
 BEGIN
 return_value:=Add_months(date_in,months_shift);
 if date_in=Last_day(date_in)
 then
 return_value:=
 least(return_value,to_date(to_char(return_value,'MMYYYY')||
 to_char(date_in,'DD'),

 'MMYYYYDD'));
 end if;
 return return_value;
 end new_add_months;

/

The following SQL statement may be used to validate the procedure:

SQL> select new_add_months('30-JAN-2004',1) AS NEWMONTH FROM DUAL;

NEWMONTH

29-FEB-04

C.2 Last Day Of The Month

This function returns the last day of the month for the parameter pDateString.

Create or Replace FUNCTION lastDayOfMonth(pDateString Varchar2) return Date
IS
BEGIN

 Return Last_day(pDateString);
 End lastDayOfMonth;

The following SQL statement may be used to validate the procedure:

SQL> select lastDayOfMonth('30-JAN-2004') from dual;

LASTDAYOFMONTH(’30-JAN-2004’)
--
31-JAN-04

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

165

C.3 Additions and the Last Day of the Month

Combining two built-in date functions, Add_months and Last_day are used in this process. The
function returns a calculated value for the number of days (from the last day of the month). This is
demonstrated in the following example:

Create or Replace FUNCTION lastDayOfMonth_ADDMONTHS(pDateString Varchar2 DEFAULT
SYSDATE,NUM_MONTHS NUMBER DEFAULT 1) return Date

IS
BEGIN

 Return Last_day(ADD_MONTHS(pDateString,NUM_MONTHS));
 End lastDayOfMonth_ADDMONTHS;
/

The following SQL statement may be used to validate the procedure:

SQL> SELECT lastDayOfMonth_ADDMONTHS('01-JAN-2004',2) FROM DUAL;

LASTDAYOFMONTH_ADDMONTHS(’28-JAN-2004’,4)

31-MAR-04

C.4 Days Until the End of the Month

This function returns the number of days until the end of the month from the parameter pDateString,
which is specified when the function is initially applied.

Create or Replace FUNCTION daysLeftInMonth(pDateString Varchar2 DEFAULT SYSDATE) return
number

IS
BEGIN

 Return (Last_day(pDateString)-sysdate);
 End daysLeftInMonth;
/

The following SQL statement may be used to validate the procedure:

SQL> select daysleftinmonth('04-Mar-2004') from dual;

DAYSLEFTINMONTH('04-MAR-2004')

 27.3448264

C.5 Next Day of the Month

This function returns the next day, specified by day_name, from pDate, which is passed into the
function. This is required for leap-year calculations and month-by-month indexing.

Create or Replace FUNCTION theNextDay(pDate in date,day_name in varchar2) return date
IS
BEGIN

 Return next_day(pDate,day_name);
 End theNextDay;
/

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

166

The following SQL statement may be used to validate the procedure:

SQL> select theNextDay('28-Feb-2004','Tuesday') from dual;

THENEXTDAY

02-MAR-04

C.6 Day of the Month Calculations

This function returns the next day from the date pDateString parameter passed into the function.

Create or Replace FUNCTION getDay(pDateString in varchar2,date_period in varchar2) return
varchar2

IS
BEGIN

 Return to_char(to_date(pDateString),date_period);
 End getDay;

The following SQL statement may be used to validate the procedure:

SQL> select getDay('24-FEB-2004','DAY') from dual;

GETDAY('24-FEB-2004','DAY')
--
TUESDAY

 C.7 Round To First Day of Month

This function rounds the date entered within pDateString to the first day of the month.

Create or Replace FUNCTION roundDate(pDateString in varchar2,date_period in varchar2)
return date

IS
BEGIN

 Return round(to_date(pDateString),date_period);
 End roundDate;

The following SQL statements may be used to validate the procedure. The first statement shows the
methods for rounding upward to the first day of the month. The second statement shows the converse
operation.

Round Up To First Day of Month:
SQL> select select roundDate('24-FEB-2004','MONTH') from dual;

ROUNDDATE('24-FEB-2004','MONTH')
--
01-MAR-04

Next, Round Down To First Day of Month

SQL> select roundDate('6-FEB-2004','MONTH') from dual;

ROUNDDATE('6-FEB-2004','MONTH')
--
01-FEB-04

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

167

C.8 Round Day and Hours

This function returns the next day or hour from the date pDateString parameter passed into the
function. The PM and AM suffix is applied to the final result.

Create or Replace
FUNCTION roundToDay(pDateString in
varchar2 default sysdate,hours in varchar default '12',

minutes in varchar2 default '00', seconds in varchar2 default '00',
amPm in varchar2 default 'PM',fcnType in varchar2 default 'DD') return varchar2

IS
BEGIN

Return to_char(round(to_date(pDateString||'
'||hours||':'||minutes||':'||seconds||amPm||'',

'DD-MM-YY HH:MI:SS AM'),fcnType),'DD-MON-YY HH:MI AM');
End roundToDay;
/

The following SQL statements may be used to validate the procedure. This utility may be used to
round day-dates to the nearest hour.

Round To Nearest Day

 select roundToDay('24-FEB-2004','12','01','01','PM','DD') from dual;

ROUNDTODAY('24-FEB-2004','12','01','01','PM','DD')
--
25-FEB-04 12:00 AM

Round To Nearest Hour

 select roundToDay('24-FEB-2004','12','01','01','PM','HH') from dual;

ROUNDTODAY('24-FEB-2004','12','01','01','PM','HH')
--
24-FEB-04 12:00 PM

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

168

Appendix D: Productivity Functions

In this section, we examine the basic productivity tools that have been written in SQL to accelerate the
processing of string, character, and numeric data. The tools include basic processing algorithms for
the management of geometric data, and ancillary information that contains spatial records. The
functions are used by MOD within the CTD and IAS facilities for the management of geo-positioning
data.

D.1 Occurrence Counting

This simple function counts the incident of the string p_char that occurs in the string p_data.

CREATE OR REPLACE FUNCTION count_char (
 p_data VARCHAR2
 ,p_char VARCHAR2 DEFAULT ' '
)
 RETURN VARCHAR2 IS
 v_count NUMBER := 0;

BEGIN
 FOR i IN 1 .. LENGTH (p_data) LOOP
 IF substr (p_data, i, length(p_char)) = p_char THEN
 v_count := v_count + 1;
 END IF;
 END LOOP;

 RETURN v_count;
END;
/

The following SQL statements may be used to validate the procedure. This utility is counting the
characters in the demonstration string:

1* select count_char('Now is the time for all good men to come to the aid of their
party','the')
SQL> /

COUNT_CHAR('NOWISTHETIMEFORALLGOODMENTOCOMETOTHEAIDOFTHEIRPARTY','THE')
--
3

SQL>

D.2 Word Counting

This simple function counts the words found within the input string str:

CREATE OR REPLACE FUNCTION wordcount (str IN VARCHAR2)
 RETURN PLS_INTEGER
AS
 words PLS_INTEGER := 0;
 len PLS_INTEGER := NVL(LENGTH(str),0);
 inside_a_word BOOLEAN;
BEGIN
 FOR i IN 1..len + 1
 LOOP
 IF ASCII(SUBSTR(str, i, 1)) < 33 OR i > len
 THEN
 IF inside_a_word
 THEN
 words := words + 1;
 inside_a_word := FALSE;

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

169

 END IF;
 ELSE
 inside_a_word := TRUE;
 END IF;
 END LOOP;
 RETURN words;
END;
/

The following SQL statements may be used to validate the procedure. This utility is counting the
separate words in the demonstration string:

1* select wordcount('This is a sentance with 7 words') from dual;

WORDCOUNT('THISISASENTANCEWITH7WORDS')

 7

D.3 Describe Numbers

This function converts an input number num to a string representation of the number written as text.

CREATE OR REPLACE FUNCTION NUMBER_CONVERSION(NUM NUMBER) RETURN VARCHAR2
IS
 A VARCHAR2(1000);
 B VARCHAR2(20);
 X NUMBER;
 Y NUMBER := 1;
 Z NUMBER;
 LSIGN NUMBER;
 NO NUMBER;
BEGIN
 X:= INSTR(NUM, '.');
 LSIGN := SIGN(NUM);
 NO := ABS(NUM);
 IF X = 0 THEN
 SELECT TO_CHAR(TO_DATE(NO, 'J'), 'JSP') INTO A FROM DUAL;
 ELSE
 SELECT to_char(to_date(SUBSTR(NO, 1,
 NVL(INSTR(NO, '.')-1, LENGTH(NO))),
 'J'), 'JSP') INTO A FROM DUAL;
 SELECTLENGTH(SUBSTR(NO, INSTR(NO, '.')+1)) INTO Z FROM DUAL;
 A := A ||' POINT ';
 WHILE Y< Z+1 LOOP

 SELECT TO_CHAR(TO_DATE(SUBSTR(NO, (INSTR(NO, '.')+Y), 1), 'J'), 'JSP')
 INTO B FROM DUAL;123

A := A || B ||' ';
y :=y+1;

 END LOOP;
 END IF;
 IF LSIGN = -1 THEN
 RETURN 'NEGATIVE '||A;
 ELSE
 RETURN A;
 END IF;
END;
/

The following SQL statements may be used to validate the procedure. This utility is describing the
number using alphanumeric descriptions:

SQL> SELECT NUMBER_CONVERSION(123) FROM DUAL;

NUMBER_CONVERSION(123)

ONE HUNDRED TWENTY-THREE

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

170

D.4 Calculate Coordinates

This function returns the decimal equivalent of degrees, minutes and seconds entered as a parameter
when the function is called.

Create or Replace FUNCTION CalculateCoordinates(pDeg NUMBER, pMin NUMBER, pSec NUMBER)
RETURN FLOAT IS
 returnval FLOAT(126);
 BEGIN
 IF pDeg IS NULL OR pMin IS NULL OR pSec IS NULL Then
 returnval:=0.0;
 ELSIF pDeg < 0 THEN
 returnval:=(-1 * ((-1 * pDeg) + (pMin/60) + (pSec/3600)));
 ELSE
 returnval:=(pDeg + (pMin/60) + (pSec/3600));
 END IF;
 RETURN returnval;
 END CalculateCoordinates;

The following SQL statements may be used to validate the procedure:

SQL> select calculateCoordinates(45,21,13) from dual;

CALCULATECOORDINATES(45,21,13)

 45.3536111

D.5 Calculate Degrees Minutes Seconds

This function returns the degrees, minutes and seconds of a decimal coordinate passed into the
process.

Create or Replace FUNCTION CalculateDegMinSec(pCode CHAR DEFAULT 'D', pCoord FLOAT)
RETURN NUMBER IS
 fTemp FLOAT(126);
 nDegree NUMBER(38,5);
 nMinute NUMBER(38,5);
 nSecond NUMBER(38,5);
 returnval NUMBER(38,5);
 BEGIN
 IF pCoord IS NULL THEN
 RETURN 0;
 ELSE
 fTemp:=ABS(pCoord);
 --nDegree:=TO_NUMBER(TO_CHAR(fTemp,'999'));
 nDegree:=TO_NUMBER(SUBSTR(TO_CHAR(fTemp),1,INSTR(TO_CHAR(fTemp)||'.','.')));
 fTemp:=fTemp - nDegree;

 nMinute:=fTemp * 60;

 --nSecond:=ROUND((fTemp - (nMinute/60))*3600,0);
 nSecond:=nvl(ROUND((TO_NUMBER(SUBSTR(TO_CHAR(nMinute),

INSTR(TO_CHAR(nMinute)||'.','.')))*60),0),0);
 END IF;

 IF UPPER(pCode) = 'D' Then
 returnval:=nDegree;

 If pCoord < 0 THEN
 returnval:=returnval * -1;
 END IF;
 ELSIF UPPER(pCode) = 'M' Then
 returnval:= nvl(TO_NUMBER(SUBSTR(TO_CHAR(nMinute),

 1,INSTR(TO_CHAR(nMinute)||'.','.'))),0);

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

171

 ELSIF UPPER(pCode) = 'S' THEN
returnval:=nSecond;

 ELSE
 returnval:=0;
 END IF;
 RETURN returnval;
 END CalculateDegMinSec;

The following SQL statements may be used to validate the procedure:

SQL> select CalculateDegMinSec('D',45.3536111) from dual;

CALCULATEDEGMINSEC('D',45.3536111)

 45

SQL> select CalculateDegMinSec('M',45.3536111) from dual;

CALCULATEDEGMINSEC('M',45.3536111)

 21

SQL> select CalculateDegMinSec('S',45.3536111) from dual;

CALCULATEDEGMINSEC('S',45.3536111)

 13

D.6 Selecting Rows M through N of a Result

Frequently a situation arises when a user only wants to select part of a set of information from a
dataset, such as the first two rows. This example demonstrates a method to return records between a
minimum and maximum row number. The variable MAX_ROW sets the maximum row number, and
MIN_ROW the minimum row number, that will be displayed in the final result.

DECLARE
MAX_ROW NUMBER:= 2;
MIN_ROW NUMBER:=1;
stmt varchar2(1000);

type mbrCursorType is ref cursor;
iCursor mbrCursorType;
machine_id number;
machine_name varchar2(100);
machine_cost number;

BEGIN
stmt:='select MACHINE_ID,MACHINE_NAME,MACHINE_COST from
(select a.*, rownum rnum from (select machine_id,MACHINE_NAME,
MACHINE_COST from test2_tbl order by machine_id) a
where rownum <=:MAX_ROW)where rnum >= :MIN_ROW';

OPEN iCursor FOR stmt using MAX_ROW,MIN_ROW;

 /*Format headings */
 dbms_output.put_line('Machine Data');
 dbms_output.put_line('------------------------');
 dbms_output.put_line(rpad('Machine ID',20,' ')||' '||

 rpad('Machine Name',30,' ')||' '||
 rpad('Rockwell Hardness',30,' '));
 dbms_output.put_line('--');

LOOP
 FETCH iCursor into machine_id,machine_name,Rockwell_hardness;
Exit when iCursor %NOTFOUND;

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

172

 dbms_output.put_line(rpad(machine_id,20,' ')||' '||
 rpad(machine_name,30,' ')||' '||

 rpad(machine_cost,30,' '));

END LOOP;
END;
/

The following SQL statements may be used to validate the procedure:

Machine Data

Machine ID Machine Name Rockwell Hardness

1 Machine 1 5
2 Machine 2 6

D.7 Binary Objects (Blobs)

A Blob data type is used to store large binary objects that would be out of line for storage within the
main database. This means that when a table has a Blob column, a row of data for that table contains a
pointer or locator to the actual (within memory) position for the raw data. The Blob can be up to four
gigabytes in size, and they participate fully in database transactions. In other words, any changes
made to a Blob can be rolled back or committed along with other outstanding changes in the
transaction. The following shows a simple example for a Blob application within the CTD materials
database:

DROP TABLE T;

CREATE TABLE T
(
 NAME VARCHAR2(100),
 LOB BLOB,
 LOADTIME DATE
)

CREATE OR REPLACE PROCEDURE writeDataToLOB_proc(p_name in
varchar2,
 p_buffer in RAW)
 IS
 Lob_loc BLOB;

 BEGIN
 insert into t (name, lob, loadtime)
 values (p_name, empty_blob(), sysdate)
 RETURNING lob into lob_loc;

 dbms_lob.writeAppend(lob_loc, utl_raw.length(p_buffer), p_buffer);
 end;
 /

CREATE OR REPLACE PROCEDURE ReadDataFromLOB_proc(p_name in
varchar2)

 IS
 Lob_loc BLOB;

 BEGIN
 SELECT lob INTO Lob_loc
 FROM t
 WHERE name = p_name;

 dbms_output.put_line('THE LENGTH IS: '||dbms_lob.getlength(lob_loc));

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

173

 -- just print out the first 200 bytes since put_line
 -- cannot do more then 255

 dbms_output.put_line('the blob is read: '||
 utl_raw.cast_to_varchar2(dbms_lob.substr(lob_loc, 200, 1))
);
 END;
 /

The following SQL statements may be used to validate the procedure:

SQL> exec writeDataToLob_proc('1001', utl_raw.cast_to_raw('101023'));

PL/SQL procedure successfully completed.

SQL> exec readDataFromLob_proc('1001');
THE LENGTH IS: 6
the blob is read: 101023

PL/SQL procedure successfully completed.

SQL> exec writeDataToLob_proc('1002', utl_raw.cast_to_raw('Hello World'));

PL/SQL procedure successfully completed.

SQL> exec readDataFromLob_proc('1001');
THE LENGTH IS: 6
the blob is read: 101023

D.8 Exponential Calculations

A simple example for using exponential arithmetic within the CTD materials database. The function is
commonly used with the logarithmic functions provided in the StarLIMS shell.

SELECT POWER (2,150) FROM DUAL;

The following SQL statements may be used to validate the procedure:

SQL> SELECT POWER(2,150) FROM DUAL;

POWER(2,150)

 1.4272E+45

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

174

Appendix E: SQL Management Functions

In this section, we examine certain SQL functions that are used by the systems administrator to correct
errors and deficiencies in the RDBMS process. This includes tools that are required to select
information, create ancillary tables, manage specialized reports, and organize metadata records with
the data dictionary functions. This appendix also illustrates the set-commands that are required to
implement these procedures within the Oracle 8.i materials database.

E.1 Process Editing – Rollback Functions

In this example, the Rollback function is demonstrated. The Rollback is used to correct some (or all) of
the changes made during a specific session. The sample use of this procedure (from within Oracle 8.i)
includes the following statements:

SQL> SELECT * FROM TEST2_TBL;

MACHINE_ID MACHINE_NAME MACHINE_COST
---------- --
 1 Machine 1 150000
 2 Machine 2 160000
 3 Machine 3 170000

SQL> INSERT INTO TEST2_TBL VALUES(4,'Machine4',258999);

1 row created.

SQL> ROLLBACK;

SQL> SELECT * FROM TEST2_TBL;

MACHINE_ID MACHINE_NAME MACHINE_COST
---------- --
 1 Machine 1 150000
 2 Machine 2 160000
 3 Machine 3 170000

Rollback complete.

E.2 Creating a new Table from within an Existing Table

This example creates a new table (from an existing table), and then populates it with data contained in
the original table. This is required for basic cut-copy-paste operations and data migration processes
that occur between two or more tables. The sample use of this procedure (from within Oracle 8.i)
includes the following statements:

SQL> SELECT * FROM TEST_NEW;
SELECT * FROM TEST_NEW
 *
ERROR at line 1:
ORA-00942: table or view does not exist

SQL> CREATE TABLE TEST_NEW AS (SELECT * FROM TEST2_TBL);

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

175

Table created.

SQL> COMMIT;

Commit complete.

SQL> SELECT * FROM TEST_NEW;

MACHINE_ID MACHINE_NAME MACHINE_COST
--
 1 Machine 1 150000
 2 Machine 2 160000
 3 Machine 3 170000

E.3 Creating a new Table from two or more Existing Tables

This example creates a new table, from more than one existing table, using the “outer-join” operations.
The sample use of this procedure (from within Oracle 8.i) includes the following statements:

SQL> SELECT * FROM TEST2_TBL;

MACHINE_ID MACHINE_NAME MACHINE_COST
--
 1 Machine 1 150000
 2 Machine 2 160000
 3 Machine 3 170000

SQL> SELECT * FROM TEST4_TBL;

MACHINE_ID MACHINE_RETIRED
---------- ---------
 1 15-JAN-04
 2 28-JAN-04

CREATE TABLE TEST_NEW AS (SELECT tes.machine_id, tes.machine_name, tes.machine_cost,
t2.machine_retired
 FROM test2_tbl tes, test4_tbl t2
 WHERE ((tes.machine_id = t2.machine_id(+))));

The following SQL statements may be used to validate the selected operations:
SQL> SELECT * FROM TEST_NEW;

MACHINE_ID MACHINE_NAME MACHINE_COST MACHINE_RETIRED

 1 Machine 1 150000 15-JAN-04
 2 Machine 2 160000 28-JAN-04
 3 Machine 3 170000 29-JAN-04

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

176

Appendix F: SQL Plus Functions

In this section, we examine the SQL functions that are included in the SQL-Plus Oracle Package.
These functions assist the MOD in their management of metadata records, including transcript
procedures that are used for the chain-of-custody modeling. The examples include data dictionary
terms, and set commands, that are required to hold the SQL statements for future examination at the
systems administration level.

F.1 Parameters for the Data Dictionary

The following variables and parameters are used to define the data dictionary within SQL-Plus:

USER_TABLES All tables with their name, number of
columns, storage information and
statistical information

USER_CATALOG Tables, views and synonyms
USER_COL_COMMENTS Comments on columns
USER_CONSTRAINTS Constraint definitions for tables
USER_INDEXES All information about indexes created for

tables
USER_OBJECTS All database objects owned by the user
USER_TAB_COLUMNS Columns of the tables and views owned by

the user
USER_TAB_COMMENTS Comments on tables and views
USER_TRIGGERS Triggers defined by the user
USER_USERS Information about the current user
USER_VIEWS Views defined by the user

F.2 Creating Log Files with Spool Functions

To send an SQL query (log) to a file use the spool <file> command. All information displayed on the
screen is then stored in <file>, which automatically gets the first extension (as the naming convention).
The command spool off turns all spooling off. The following SQL statements may be used to
demonstrate the spooling functions:

SQL> spool c:\test2_tbl.dat
SQL> select machine_id as ID, machine_name as NAME,
machine_cost as COST2 from test2_tbl;

 ID NAME COST
--
 1 Machine 1 150000
 2 Machine 2 160000
 3 Machine 3 170000

SQL> spool off

File has been written to c:\test2_tbl.dat.
To format the file to a more easily readable format:

select machine_id as ID, machine_name as NAME,
 to_char(machine_cost,'$9G999G999G999') as COST from test2_tbl;

SQL> spool c:\test2_tbl.dat
SQL> select machine_id as ID, machine_name as NAME,

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

177

2 to_char(machine_cost,'$9G999G999G999')
3 as COST from test2_tbl;

ID NAME COST
--
 1 Machine 1 $150,000
 2 Machine 2 $160,000
 3 Machine 3 $170,000

SQL> spool off

F.3 The Set Command

With the Set command, the current settings of the SQL*Plus environment (for the current operating
session) can be modified at the systems administration level. The following list shows the syntax and
description of the most frequent settings:

COMMAND DESCRIPTION

ECHO {OFF|ON} Determines if commands of an SQL script
are displayed as they run

FEED[BACK] {6|n|ON|OFF} States how many lines are returned from a
query.

HEA[DING] {ON|OFF} Turns column headings on or off.
LIN[ESIZE] {80|n} Determines the number of characters per

line
NUMF[ORMAT] <format> Sets the default format for displaying

numbers
PAGES[IZE] {24|n} Sets the number of lines per page.
PAUSE {ON|OFF} Pauses the display after each page is

displayed
SPACE <number> Set number of spaces between columns

displayed
TAB {OFF|ON} Tabs are used to display the results
TERM[OUT] {ON|OFF} Controls output to the display
TRIMS[POOL] {ON|OFF} Removes trailing spaces at the end of

lines in the spool file.
VER[IFY] {ON|OFF} SQL commands will not signal success to

the display if off.

The following SQL statements may be used to validate the selected operations:
SQL> set pause on;

Display one screen at a time. Display will pause and wait for user to press the enter key
to continue.

SQL> set head off;
SQL> select * from test2_tbl;

 1 Machine 1 150000
 2 Machine 2 160000
 3 Machine 3 170000

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

178

Appendix G: Security Package

In this section, we provide the foundation procedures for creating user accounts and password
privileges on the LIMS system, and within the CTD materials database. These procedures are
accessible at the root privilege level, and cannot be adjusted by the Level I or Level II analyst. The
procedures are used to maintain security throughout the CTD complex, and manage new field
engineers that enter or exit the facility. The security packages use hash values to store all passwords --
assuring that no user can discover the phrase by accessing the database directly. Modifications can be
added to this package to establish user roles, system counters, and other LIMS features.

Three tables are used with this package. The users_tbl stores the user information and the hash value
(for the password). The privilege table privilege lk stores roles that can be assigned to users. The session
table session_tbl holds active users who are currently logged into the system.

CREATE TABLE USERS_TBL
(
 USERNAME VARCHAR2(50 BYTE) NOT NULL,
 FULL_NAME VARCHAR2(100 BYTE),
 PRIV INTEGER DEFAULT 0,
 KEY_VALUE VARCHAR2(2048 BYTE),
 EMAIL_ADDRESS VARCHAR2(50 BYTE),
 ORGANIZATION VARCHAR2(50 BYTE),
 CREATION_DATE DATE,
 ACCESSED NUMBER DEFAULT 0
)

CREATE TABLE PRIVLEDGE_LK
(
 PRIV_CODE NUMBER NOT NULL,
 PRIV_VALUE VARCHAR2(50 BYTE)
)

CREATE TABLE SESSION_TBL
(
 SESSION_ID NUMBER,
 TIMESTAMP DATE,
 USERNAME VARCHAR2(40 BYTE)
)

CREATE OR REPLACE PACKAGE security IS

--***

CSSFile VARCHAR2(50) := 'docman.css';
graphicspath VARCHAR2(50) := 'graphics/';
Users VARCHAR2(20) := 'USERS_TBL';
Session_Table VARCHAR2(50) := 'SESSION_TBL';

--**

PROCEDURE CREATE_USER(
p_username IN VARCHAR2 default null,
p_password IN VARCHAR2 default null,
fullname IN VARCHAR2 default null,
priv IN int default null,
email in varchar2 default null,
organ in varchar2 default null

);

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

179

PROCEDURE DELETE_USER(

updatestatus in varchar2 default 'FALSE',
p_username in varchar2 default null

);

PROCEdURE USER_MODIFY_PASSWORD(p_username in varchar2 default null,
p_password in varchar2 default null,
p_password_verify in varchar2 default null,
updatestatus in varchar2 default 'FALSE',
message in varchar2 default null);

PROCEDURE STORE_USER(p_username IN VARCHAR2 default null,
p_password in varchar2 default null,
fullname in varchar2 default null,
priv in int default 0,
email in varchar2 default null,
organ in varchar2 default null,
submitvalue in varchar2 default null);

FUNCTION DIGEST(p_username in varchar2, p_password in varchar2)return varchar2;
PROCEDURE VALIDATE_USER(p_username in varchar2, p_password in varchar2);
FUNCTION authenticate_username return boolean;

PROCEDURE log_cookie(p_username in varchar2, p_password in varchar2,mapid in varchar2
default null);

FUNCTION check_permission(pro_name in varchar2) return boolean;

PROCEDURE postlogin(mapid in varchar2 default null,
p_password in boolean,
password_expired in boolean,
p_username in varchar2 default null);

PROCEDURE LOGIN (initial boolean default false,
mapid in varchar2 default null);
PROCEDURE LOGOUT;

END security;
/

CREATE OR REPLACE PACKAGE BODY security AS

PROCEDURE create_user(
p_username IN VARCHAR2 default null,
p_password IN VARCHAR2 default null,
fullname IN VARCHAR2 default null,
priv IN int default null,
email in varchar2 default null,
organ in varchar2 default null
)

IS
uname_cookie owa_cookie.cookie;
priv_cookie owa_cookie.cookie;
the_uname varchar2(50);
stmt varchar2(3000);
user_role varchar2(50);
ampersand VARCHAR2(1) := CHR(38);

CURSOR cuPRIV
 IS
 SELECT *
 FROM PRIVLEDGE_LK
 ORDER BY PRIV_VALUE ASC;

BEGIN
 IF SECURITY.authenticate_username THEN

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

180

uname_cookie:= owa_cookie.get('user_name');
the_uname := uname_cookie.vals(1);
priv_cookie := owa_cookie.get('user_role');
user_role := priv_cookie.vals(1);

--htp.print('<html><head>');
htp.print('</head><title>Security</title>

<script language="JavaScript1.2">
 function init(){

 }

function returnHome(){
window.open(" ", TARGET="_self");

}

</script>
');
htp.p('
<center>');

htp.p('</center>');
utility.loadcss;
menu.displaymenu;
ui_display.FormValidation;
htp.p('</head>');

htp.p('<body onLoad="init()" bgcolor="#ffffff" topmargin="3"
leftmargin="3" marginwidth="1" marginheight="1" text="#000066"
href="#000066" link="#000066" alink="#000066" vlink="#000000" >
');

htp.print ('

<table colspan="2"align="center"
width="30%" border="1" cellpadding="4" cellspacing="2">');
--htp.p('<tr><td align="center" class="bigtitlestart"> td></tr>');

htp.print ('<form name="createuser" method="post"
action='store_user' onsubmit="return validateForm(this);">');
htp.print ('<table align="center" width="30%" border="1"
cellpadding="4" cellspacing="2">');
htp.print ('<tr><td nowrap class=hfld> Username:</td><td
nowrap class=hfld><input alt="blank" type=text name=p_username
size="25"></td></tr>');
htp.print ('<tr><td nowrap class=hfld> Password:</td><td
nowrap class=hfld><input type=hidden name=p_password size="25"></td></tr>');
htp.print ('<tr><td nowrap class=hfld> Full Name:
</td><td nowrap class=hfld><input alt="blank" type=text
name=fullname value="'||fullname||'" size="25"></td></tr>');
--htp.print ('<tr><td nowrap> priv:</td><td><select ');

htp.p('<tr><td nowrap class=hfld> Privledges:</td><td
class=hfld><select size=1 name="priv" >');

 for crPRIV in cuPRIV
 LOOP
 if crPRIV.PRIV_CODE=1 then
 htp.p('<option value="'||crPRIV.PRIV_CODE||'">'||crPRIV.PRIV_value||'</option>');
 end if;
 end loop;

 htp.p('</select></td></tr>');

--htp.print ('</table>');
htp.print ('<tr><td nowrap class=hfld> Email
Address:</td><td nowrap class=hfld colspan=2>
<input alt="email"type=text name=email value="'||email||'" size="35"></td></tr>');

htp.print ('<tr><td nowrap class=hfld>
Organization:</td><td nowrap class=hfld
colspan=2><input alt="blank"type=text name=organ
value="'||organ||'" size="35"></td></tr>');

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

181

--htp.p('<table align="center" width="30%" border="1"
cellpadding="4" cellspacing="2">
htp.p('<tr><td nowrap class=hfld>');
htp.print ('</td><td nowrap class=hfld align=center>
<input type=submit value="Create User">
<input type=button value=" Cancel "
onClick="returnHome();"></td>
</tr>');

htp.p('</form>');
htp.p('</table>');
htp.print ('</body></html>');

 ELSE SECURITY.LOGIN;
 END IF;
END create_user;

PROCEDURE USER_MODIFY_PASSWORD(p_username
in varchar2 default null,

p_password in varchar2 default null,
p_password_verify in varchar2 default null,
updatestatus in varchar2 default 'FALSE',
message in varchar2 default null)

IS
hash_dat varchar2(2048);
stmt varchar2(4000);
BEGIN
 ui_display.FormValidation;
 utility.LoadCSS;
 htp.p('<html><script>
function updateStatus(){
document.usermodify.updatestatus.value=''TRUE'';
}

function logout(){
parent.window.location = ''' ''';

}
</script>');

if updatestatus ='TRUE' THEN

 hash_dat:=digest(p_username, p_password);

 stmt:= 'UPDATE '||package_init.userstbl||' SET KEY_VALUE=:hash_dat WHERE
USERNAME='''||p_username||'''';
 EXECUTE IMMEDIATE stmt USING hash_dat;

 COMMIT;
htp.p('<script> setTimeout("parent.window.location = “ ", 100);</script>');

END IF;
 htp.p('<body bgcolor="#ffffff" topmargin="3"
leftmargin="3" marginwidth="1" marginheight="1"
text="#000066" href="#000066" link="#000066"
alink="#000066" vlink="#000000" >
');

htp.print ('

<table colspan="2"align="center"
width="30%" border="1" cellpadding="4" cellspacing="2">');
if message is not null then
 htp.p('<td class=val align=center>Your password
has expired...please modify</td>');
else
 htp.p('<td class=val align=center>Your
initial password has expired...please modify</td>');
end if;

htp.print ('<form name="usermodify" method="post"
action="security.user_modify_password" onsubmit="updateStatus();return
validateForm(this);">');
htp.print ('<table align="center" width="30%"
border="1" cellpadding="4" cellspacing="2">');
htp.print ('<tr><td nowrap class=hfld> Username:</td>

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

182

<td nowrap class=hfld colspan=2>'||p_username||'<input
alt="blank" type=hidden name=p_username
value="'||p_username||'" size="15"></td></tr>');
htp.print ('<tr><td nowrap class=hfld> Password:
</td><td nowrap class=hfld colspan=2><input alt="pwd"
type=password name=p_password size="15"></td></tr>');
htp.print ('<tr><td nowrap class=hfld> Verify Password:
</td><td nowrap class=hfld colspan=2><input
alt="equalto|p_password" type=password name=p_password_verify
size="15"></td></tr>');
HTP.P('<input type=hidden name=updatestatus value="FALSE">');
HTP.P('<td class=hfld ><input type=submit value="Update
Database"></td><td class=hfld ><input type=reset value=Cancel
onClick="logout();"></td></tr>');
htp.p('</body></html>');
END;

PROCEDURE delete_user(
updatestatus in varchar2 default 'FALSE',
p_username varchar2 default null

)
IS
ampersand VARCHAR2(1) := CHR(38);

fullname varchar2(100);
priv int;
priv_value varchar2(50);
pwrd varchar2(50);
email varchar2(50);
organization varchar2(50);

CURSOR cuUSERS
 IS
 SELECT *
 FROM USERS_TBL
 ORDER BY FULL_NAME ASC;

 CURSOR cuPRIV
 IS
 SELECT *
 FROM PRIVLEDGE_LK
 ORDER BY PRIV_VALUE ASC;

BEGIN

 ui_display.FormValidation;
 utility.LoadCSS;
htp.p('
<center>');
menu.displaymenu;

htp.p('</center>');

htp.print('<html><head>');
htp.print('</head><title>Security</title>

<script language="JavaScript1.2">
 function init(){

 }
function validateChoice(){

var answer=confirm("This Will Permanently
Alter The User Table...Do You Wish To Continue?");

 if(answer){
 return true;
 }else{
 return false;
 }

}

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

183

function returnHome(){
 window.open(" ", TARGET="_self");

}

function delete_the_user(){

window.open("security.store_USER?p_username='||
p_username||'&submitvalue=Delete%20User",TARGET="_self");
}

</script>

<link rel=stylesheet type="xxx.CSS">

<style type="text/css"><!--
.myStyle {
 position: absolute;
 visibility: hidden;
}
//--></style>
</head>');

--UI_DISPLAY.toolbar('Modify/Delete User');
if updatestatus='FALSE' then
htp.p('<body onLoad="init()" bgcolor="#ffffff" topmargin="3"
leftmargin="3" marginwidth="1" marginheight="1"
text="#000066" href="#000066" link="#000066" alink="#000066"
vlink="#000000" >
');
htp.print ('

<table colspan="2"align="center"
width="30%" border="1" cellpadding="4" cellspacing="2">');
htp.print('<td class=hfld colspan=2>Choose
User To Modify Or Delete:</td></tr><tr>');
for crUSERS in cuUSERS

LOOP
htp.p('<td class=hfld width=40%>
</td><td class=hfld><a
href="SECURITY.DELETE_USER?UPDATESTATUS=TRUE&p_username='||
crUSERS.username||'"
onMouseOver="status=''Click To Modify or Delete User:
'||crUSERS.FULL_NAME||''';return true"
 onMouseOut="status='' '';return true"

 onClick=""
 title="Click To Modify or

 Delete User: '||crUSERS.FULL_NAME||'"
>'||crUSERS.FULL_NAME||'</td></tr>');

 end loop;
 htp.p('</table>');

else
select u.full_name, u.priv,u.email_address,u.organization
into fullname,pwrd,email,organization
from users_tbl u
where username=p_username;

htp.p('<body onLoad="init()" bgcolor="#ffffff" topmargin="3" leftmargin="3"
marginwidth="1" marginheight="1" text="#000066" href="#000066" link="#000066"
alink="#000066" vlink="#000000" >
');

htp.print ('

<table colspan="2"align="center"
width="30%" border="1" cellpadding="4" cellspacing="2">');
--htp.p('<tr><td align="center" class="bigtitlestart"> Administration Package</td></tr>');

htp.print ('<form name="createuser" method="post"
action='security.store_user' onsubmit="return validateForm(this);">');
htp.print ('<table align="center" width="30%" border="1"
cellpadding="4" cellspacing="2">');
htp.print ('<tr><td nowrap class=hfld> Username:
</td><td nowrap class=hfld colspan=2>'||p_username||'<
input alt="blank" type=hidden name=p_username
value="'||p_username||'" size="15"></td></tr>');
if p_username='kurt' or p_username='joel' then
htp.print ('<tr><td nowrap class=hfld> Password:
</td><td nowrap class=hfld colspan=2><input

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

184

alt="blank" type=password name=p_password
value="" size="15"></td></tr>');

else
htp.print ('<tr><td nowrap class=hfld>
Password:</td><td nowrap class=hfld colspan=2>
<input alt="pwd" type=password name=p_password
value="" size="15"></td></tr>');

end if;
htp.print ('<tr><td nowrap class=hfld> Full Name:
</td><td nowrap class=hfld colspan=2><input
alt="blank"type=text name=fullname value="'||fullname||'" size="15"></td></tr>');
--htp.print ('<tr><td nowrap> priv:</td><td><select
');

htp.p('<tr><td nowrap class=hfld> Privledges:</td>
<td class=hfld colspan=2><select size=1 name="priv" >');

 for crPRIV in cuPRIV
 LOOP
 if crpriv.priv_value=priv_value then
 htp.p('<option value="'||crPRIV.PRIV_CODE||'"

selected>'||crPRIV.PRIV_value||'</option>');
else
htp.p('<option

value="'||crPRIV.PRIV_CODE||'">'||crPRIV.PRIV_value||'</option>');
end if;

 end loop;
 htp.p('</select></td></tr>');

htp.print ('<tr><td nowrap class=hfld> Email
Address:</td><td nowrap class=hfld colspan=2>
<input alt="email"type=text name=email value=
"'||email||'" size="35"></td></tr>');

htp.print ('<tr><td nowrap class=hfld>
Organization:</td><td nowrap class=hfld
colspan=2><input alt="blank"type=text name=organ
value="'||organization||'" size="35"></td></tr>');

--htp.print ('</table>');

--htp.p('<table align="center" width="30%" border="1"
cellpadding="4" cellspacing="2">

htp.print ('</td><td nowrap class=hfld><input
type=button name=submitvalue value="Delete User"
onClick="delete_the_user();"></td>');
htp.print ('</td><td nowrap class=hfld><input
type=submit name=submitvalue value="Modify User"></td>');
htp.p('<td nowrap class=hfld><input type=button
value=" Cancel " onClick="returnHome();"></td></tr>');
htp.p('</form>');
htp.p('</table>');

end if;
htp.print ('</body></html>');

END delete_user;

PROCEDURE store_user (p_username IN VARCHAR2 default null,

p_password IN VARCHAR2 default null,
fullname IN VARCHAR2 default null,
priv IN int default 0,
email in varchar2 default null,
organ in varchar2 default null,
submitvalue in varchar2 default null)
IS

hash_dat VARCHAR2(2048);
newhash varchar2(2048);

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

185

stmt VARCHAR2(200);
nullvalue varchar2(10) default null;
zerovalue number default 0;

BEGIN

 hash_dat:=digest(p_username, p_password);
 newhash:=digest(p_username,'setInitialPassword’);

if submitvalue= 'Delete User' then
DELETE FROM USERS_TBL
WHERE USERNAME=p_USERNAME;
commit;

elsif submitvalue='Modify User' then

stmt:= 'UPDATE '||USERS||' SET USERNAME=:p_username,
FULL_NAME=:fullname, PRIV=:priv, KEY_VALUE=:hash_dat,
EMAIL_ADDRESS=:email, ORGANIZATION=:organ
where USERNAME=:p_username ';

EXECUTE IMMEDIATE stmt USING p_username,
fullname, priv, hash_dat,email,organ,p_username;
else
stmt:= 'INSERT INTO '||Users||'
VALUES (:p_username, :fullname, :priv, :hash_dat,:
email,:organ,:created,:accessed)';

EXECUTE IMMEDIATE stmt USING lower(p_username),
fullname, priv, newhash,email,organ,sysdate,zerovalue;
end if;
COMMIT;
 -- if (sql%rowcount>0) then

 htp.p('<script>
 function doRedirect()

 {
 setTimeout("parent.window.location = ", 2000);

 }
</script>');

 htp.p('<body onload="doRedirect()">
 <table border=0 width=100%>
 <tr align=center>
 <td align=center><font size="4" face="verdana,arial,times"

 color="#000066">');
 if submitvalue= 'Delete User' then

 menu.displaymenu;
 htp.p('<font size="4" face="verdana,arial,times"

 color="#000066"> User: '||p_username||'
 has been deleted from the database.

 </td>');
 elsif submitvalue='Modify User' then
 menu.displaymenu;

 htp.p('<font size="4" face="verdana,arial,times"
 color="#000066"> User: '||p_username||'

has been modified in the database.
 </td>');

 else
 menu.displaymenu;
 htp.p('<font size="4" face="verdana,arial,times"

color="#000066"> User: '||p_username||'
has been stored in the database.

 </td>');
 end if;
 htp.p('</tr>

</table>
</body>');
-- null;
 ---- end if;

 EXCEPTION

 WHEN DUP_VAL_ON_INDEX THEN

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

186

htp.p('<script>alert("The user '||p_username||'
has already been used. Please enter a unique user name");
</script>');

security.create_user(p_username,p_password,fullname,priv);
END store_user;

FUNCTION digest(p_username in varchar2, p_password in varchar2)
RETURN varchar2
IS
BEGIN
RETURN ltrim(to_char(dbms_utility.get_hash_value(upper(p_username)||'/'||
upper(p_password),1000000000, power(2,30)),rpad('X',29,'X')||'X'));
END digest;

PROCEDURE validate_user(p_username in varchar2, p_password in varchar2)
is
 l_cnt integer;
 handle integer;
 stmt varchar2(200);
 l_password varchar2(255) default digest(p_username,p_password);

begin

stmt:= 'select count(*) into l_cnt from '||Users||'
where username = :p_username and key_value = :l_password';

 Execute Immediate stmt using p_username, l_password;

 if (sql%rowcount=1) then
 NULL;
 end if;

 if (sql%rowcount = 0) then
 raise_application_error(-20001, 'Invalid username/password');
 end if;
end validate_user;

FUNCTION authenticate_username return boolean
IS

 l_id number;
 l_username varchar2(30);
 session_cookie owa_cookie.cookie;
 stmt varchar(200);
 thesysdate date;

BEGIN

--IF security.check_permission(owa_util.get_procedure) THEN
 -- htp.p('Permissions OK');

select sysdate into thesysdate from dual;
-- get the cookie value into l_id
session_cookie:= owa_cookie.get('session_id');

 IF session_cookie.num_vals < 1 then
 --SECURITY.LOGIN;
 return false;

 ELSE
 l_id:=session_cookie.vals(1);

 STMT:='UPDATE '||session_table||' set timestamp = :sdate
 WHERE session_id = :l_id AND timestamp > (:sdate - 1/24)';
 Execute Immediate STMT using thesysdate, l_id, thesysdate;
 --returning username INTO L_USERNAME; -- expire the session after
 one hour of inactivity

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

187

 IF (sql%rowcount = 0) THEN

htp.p('</head><table align="center"><tr><td>Your login information is either
incorrect or you session has expired
</td></tr>

<tr align=center><td>Please
re-enter your user information again</td></tr></html>');
htp.p('<meta HTTP-EQUIV="REFRESH" CONTENT="60;
URL='||package_init.login||'">');

 return FALSE;
 ELSE
 return TRUE;
 END IF;

 END IF;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN TRUE;

END authenticate_username;

PROCEDURE log_cookie(p_username in varchar2,
p_password in varchar2,mapid in varchar2 default null)

IS
 l_cnt number;
 l_password varchar(255) default digest(p_username,p_password);
 l_session_id number;
 l_user_role number;
 stmt varchar2(200);
 type theRefCursorType is Ref Cursor;
 iCursor theRefCursorType;
 theSysDate date;
 passwordchange boolean;
 initial_password number;
 userdate date;
 passwordexpired boolean default false;

BEGIN
 -- validate the username/password is correct here...
 begin

 select creation_date into userdate from users_tbl
 where username=''||p_username||'';

exception when no_data_found then
 null;
end;

 if sysdate>(userdate+package_init.password_expire_days) then

 passwordexpired:=true;
 end if;
 --if (it is correct)

 if p_password=''||package_init.initialpassword||'' then
 passwordchange:=true;
 end if;

 Select sysdate into theSysDate from dual;
 --htp.p(mapid);
 STMT := 'select count(*) from '||users||' where
 username = :p_username and key_value = :l_password';
 open iCursor for stmt using p_username, l_password;
 Fetch iCursor into l_cnt;
 Close iCursor;

 IF (l_cnt=0) THEN

 htp.print('<table width="100%" align="center"><tr>

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

188

 <td align="center">

Your username and password has failed to match the database –
please try logging in again</tr></td>

<tr><td align="center">If you
continue to have problems logging in please contact the
administrator</td></tr></table>');

ELSE

 --Select the users privlage into a variable
 stmt:='select priv from '||users||' where username = :p_username';
 open iCursor for stmt using p_username;
 fetch iCursor into l_user_role;
 close iCursor;

 select to_char(dbms_random.value(1,35)) INTO l_session_id FROM dual;

-- set the cookie to be l_session_id
stmt:= 'INSERT INTO '||session_table||' VALUES

 (:l_session_id, :thedate, :p_username)';
 execute immediate stmt using l_session_id, thesysdate, p_username;

stmt:= 'UPDATE '||USERS||' SET ACCESSED=ACCESSED+1
 WHERE USERNAME='''||p_username||'''';

EXECUTE IMMEDIATE STMT;
 commit;

 OWA_UTIL.mime_header('text/html', FALSE);
 OWA_COOKIE.send('session_id',l_session_id);
 OWA_COOKIE.send('user_role', l_user_role);

 OWA_COOKIE.send('user_name', p_username);
 OWA_UTIL.http_header_close;

 --Once vlidated the user is directed to display_iap
 SECURITY.POSTLOGIN(mapid,passwordchange,passwordexpired,p_username);

END IF;

END LOG_COOKIE;

function check_permission(pro_name in varchar2) return boolean
IS
 uname_cookie owa_cookie.cookie;
 PRIV_cookie owa_cookie.cookie;
 the_uname varchar2(30);
 the_role varchar2(30);
 l_id number;
 l_username varchar2(30);
 session_cookie owa_cookie.cookie;
 stmt varchar(200);
 thesysdate date;
 pro_permission integer;
 ctr integer default 0;

BEGIN
 --IF SECURITY.authenticate_username THEN

 uname_cookie:= owa_cookie.get('user_name');
 the_uname := uname_cookie.vals(1);
 priv_cookie := owa_cookie.get('user_role');
 the_role := priv_cookie.vals(1);

if ctr=0 then
 return true;
else

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

189

 return false;
end if;

-- ELSE SECURITY.LOGIN;
-- END IF;

end check_permission;

PROCEDURE postlogin(mapid in varchar2 default null,
p_password in boolean,
password_expired in boolean,
p_username in varchar2 default null) is
user_priv integer default null;

BEGIN

--gather user privlage info from the cookie
htp.p('<html><head>');
if p_password or password_expired then
if password_expired then
 htp.p('<meta HTTP-EQUIV="REFRESH" CONTENT="0;
URL='||package_init.schema||'.security.user_modify_password?p_username='||p_username||'&me
ssage=expire">');
else
 htp.p('<meta HTTP-EQUIV="REFRESH" CONTENT="0;
URL='||package_init.schema||'.security.user_modify_password?p_username='||p_username||'">'
);

end if;
else
select priv
into user_priv
from users_tbl
where username=p_username;

if user_priv =0 or user_priv=1 then
htp.p('<meta HTTP-EQUIV="REFRESH" CONTENT="0;
URL='||package_init.schema||'.ui_display.display">');
elsif user_priv=2 then
htp.p('<meta HTTP-EQUIV="REFRESH" CONTENT="0;
URL='||package_init.schema||'.picture_book.display">');

else
null;

end if;

end if;
htp.p('</head></html>');

END postlogin;

PROCEDURE LOGIN (initial boolean default false,
 mapid in varchar2 default null)

IS
ampersand VARCHAR2(1) := CHR(38);
BEGIN
ui_display.FormValidation;
IF INITIAL THEN

htp.p('<script> function setFocus(){
document.login.p_username.focus();
}

</script>');

utility.LoadCSS;
--htp.p(mapid);
htp.p('<body onLoad="setFocus();">');
htp.print ('<table colspan="2" valign ="center"
align="center" width="200" border="0" cellpadding="4"

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

190

cellspacing="2">');
--htp.print ('<tr><td colspan="2">'||package_init.InstName||'</td></tr>');
htp.print ('<form name="login" method="post"
action='||package_init.Schema||'.security.log_cookie>');
htp.print ('<tr><td nowrap> Username:</td><td
align="center"><input type=text name=p_username
size="15"></td></tr>');
htp.print ('<tr><td nowrap> Password:</td><td
align="center"><input type=password name=p_password
size="15"></td></tr>');
htp.p('<input type=hidden name=mapid value='||mapid||'>');
htp.p('<td colspan=2 align=center>');
htp.print ('<img src="login.gif"
onclick="document.login.submit()"></td></tr>');
htp.p('<div id="f_sub" style=''visibility:visible;
position:absolute;top:0;left:0;''><input type=submit></div>');

htp.print ('</form>');
htp.print ('</table></div>');
htp.print ('</body></html>');

ELSE
--IF security.check_permission(owa_util.get_procedure) THEN
--htp.print ('<html><head>');
--htp.print ('<link rel=stylesheet type="text/css"
href="'||package_init.servername||''||package_init.cssfile||'"></head>');
--htp.print ('</head><title></title>');
htp.p('<script> function setFocus(){
document.login.p_username.focus();

}
</script>');

htp.p('<body onLoad="setFocus();">');

htp.print ('<table colspan="2" valign ="center"
align="center" width="200" border="0" cellpadding="4" cellspacing="2">');
--htp.print ('<tr><td colspan="2">'||package_init.InstName||'</td></tr>');
htp.print ('<form name="login" method="post"
action='||package_init.Schema||'.security.log_cookie>');
htp.print ('<tr><td nowrap> Username:</td><td
align="center"><input type=text name=p_username size="15"></td></tr>');
htp.print ('<tr><td nowrap> Password:</td><td
align="center"><input type=password name=p_password size="15"></td></tr>');
htp.p('<td colspan=2 align=center>');
htp.print ('</td></tr>');
htp.p('<div id="f_sub" style=''visibility:visible;
position:absolute;top:0;left:0;''><input type=submit></div>');
htp.print ('</form>');
htp.print ('</table></div>');
htp.print ('</body></html>');

END IF;
END LOGIN;

PROCEDURE LOGOUT
IS

sess_Cookie owa_cookie.cookie;
thesession number;
stmt varchar(2000);

BEGIN

 sess_cookie:= owa_cookie.get('session_id');
 thesession:= sess_cookie.vals(1);

 stmt:='delete from session_tbl where session_id = :thesession';
 execute immediate stmt using thesession;
 commit;
 ui_display.INTRO;

END LOGOUT;

END security;
/

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

191

The following SQL statements may be used to apply the security methods. As shown, cookies are
used on each workstation to facilitate data login operations (for registered users). All security tools
work with Microsoft Windows and Unix operating systems. There design allows the user to set
privileges to a level that far exceeds the usual standards provided under windows for user access.

IS
uname_cookie owa_cookie.cookie;
the_uname varchar2(30);

 BEGIN
 IF SECURITY.authenticate_username THEN

 uname_cookie:= owa_cookie.get('user_name');
 the_uname := uname_cookie.vals(1);

 <procedure>

 ELSE SECURITY.LOGIN;
 END IF;

The security procedures have been requested by MOD for their case specific operations. It is
understood that MOD will use these tools to develop additional security requirements (new keys) that
may be used for secure field operations. These modifications will be conducted by MOD based upon
the new and emerging security requirements for database access within the 12th Main Directorate.

Laboratory Information Analysis within the Russian Center for Technological Diagnostics

Reference: N62558-02-C-9041

192

Appendix H: Screen Images and Laboratory Demonstrations for the CTD LIMS

In this section, we provide a series of images and screen views that demonstrate the working LIMS
system. This documentation includes case examples that have been approved by the MOD 12th Main
Directorate in Moscow for distribution to DTRA on 26 March 2004.

The MOD staff scientists wrote the discussion with assistance from Intek engineers in St. Petersburg.
For this reason, the explanation and English usage may be difficult. In addition, certain phrases from
the original text have been removed or edited based upon the specific security requirements for the
scientific research facility.

In this regard, the appendix is a pre-release for the complete photographic documentation that will be
presented to DTRA by CPT. Devochkin and COL. Kochin during the next delegation visit to St.
Petersburg. This will also include a walk-through technical demonstration for all systems shown in
this Appendix.

