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A System for Discovering Bioengineered Threats by Knowledge Base 

Driven Mining of Toxin Data 

 

Introduction 

This project was funded to establish a Toxin Knowledge Base (TKB) which will 

encompass information about bacterial toxins in general and toxins relevant to 

biodefense, in particular. This report includes the work done in the no-cost extension 

period as well. The overall goal of this project is to establish an easy to use database viz. a 

Knowledge Base to populate itself and expand using machine learning techniques, to 

make it more dynamic. It is designed to be a bioinformatics resource focused on 

molecular information about toxins and other virulence factors that are the natural 

products of biological and potential biological warfare (BW and PBW) agents.  The 

major aim was to mine, assimilate, synthesize, analyze and disseminate genomic and 

structural information on BW and PBW genes and their products. Using advanced 

machine learning and data mining the TKB has been developed to look for motifs, to 

design new experiments and also to predict structure and function of molecules 

(including putative chimeras) for which these data are not available.  TKB will use 

innovative computer methods to parse the literature available in public resources (web 

sites) to identify new and emerging toxins to be included in the database. 

Body 

A. Design and implementation of a highly curated Toxin Knowledge Base: 

 During the project period we have modified, improved and expanded the 

previously existing database for storing, managing and accessing molecular information 

on known as well as potential biological toxins. Here we are presenting a complete 

description with examples. This section describes our work, progress and deliverables as 

given in Specific Tasks 1, 2 and 3. As of now, the system is ready to be released as alpha 

version to test the reliability and usefulness  by interested scientists. Accordingly, we are 

requesting permission from the Army to open this as a public website with safeguards 
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and security in place. We will develop proper procedures  to keep the data and the site 

secure. 

System Architecture 

The primary motivation for developing TKB was to address the need to establish 

an infrastructure resource that will aid studies in (1) developing methods for identifying 

potential bio-warfare agents, (2) identifying and developing counter measures such as 

anti-toxins, vaccines, and inhibitors, and (3) developing a better understanding of the 

mode of actions of these toxins at the cellular, sub-cellular, and molecular levels. TKB 

also focuses on correlating known and predicted 3-dimensional structures for these toxins 

with sequence, function, and biological activity. In order to develop a system that 

satisfies all these aims, we have developed a comprehensive architecture that 

accommodates the needs of a growing system. 

TKB is comprised of two major components: (1) A powerful data-acquisition/ 

administration system for direct deposition of data related to toxins and (2) an ad-hoc 

query and reasoning system to access and to analyze information. Figure 1 shows the 

system architecture of TKB showing the querying and reasoning subsystem and the data 

acquisition subsystem. It also shows the architecture of the system, from the users’ 

perspective. 

 Toxin Knowledge Base (TKB) is used to store biological information about 

various kinds of toxins. It stores homologs and active site information for each toxin and 

models for the homologs. It provides two interfaces to the user namely: 

1. Query and Reasoning Interfaces: This facilitates the following: 

a. Toxin Search - Selective retrieval of toxin information. 

b. Homology Search - Finding toxins that are homologous to a given protein 

sequence. 

c. MuToxin - Determining whether a protein can be transformed into a toxin. 

2. Administrative Interfaces: This interface is accessible only to a user with 

administrative rights. The toxin knowledge base can be updated in two ways: 

a. User-initiated: This involves updating the knowledge base with newly 

identified toxin information and related active site information.  
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b. Automated: This involves updating the knowledge base with new homologs 

and their models for the toxins on a periodic basis, so as to keep the toxin 

knowledge base up-to-date. 

c. User Approval: This allows a new user’s identity to be verified and approved 

for use of the TKB.  

 

 

Toxin 
Knowledge Base

Homolog Search 
Interface 

Toxin Query 
Interface 

MuToxin Interface

Automated Update 
Interface 

User-Initiated 
Update Interface 

User Approval 
Interface 

Login/ Security 
Interface 

Q U E R Y    A N D   R E A S O N I N G    I N T E R F A C E S 

A D M I N I S T R A T I V E    I N T E R F A C E S 

 

Figure 1: System Architecture: The above figure represents a concise architecture of the system which has 
been developed by Brookhaven National Laboratory and Stony Brook University. The toxin knowledge 
base essentially is a data source which provides two kinds of interfaces to the user – one used to query the 
knowledge base and the other used to update the information in the knowledge base. 

TKB integrates several publicly available tools that were developed for various 

unrelated purposes, but which are engineered into a workflow for identifying potential 

mutated toxins. This is a part of the query and reasoning interface, and is explained 

further in the section on the Query and Reasoning Interfaces. The system’s architecture 

and description are organized as follows. First, the powerful data acquisition system is 

presented, along with the workflow used for the same. Second, we present the logical 

query and inference system that has been developed to identify a protein that can be 

converted into a toxin. The implementation details of the system is finally presented, with 
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a report on the current status of the knowledge base, and followed by a section on the 

results obtained so far using the system. 

Data Acquisition System 

Public databases of biological information are popular research tools in the 

biological community. While providing wealth of information, they offer little help in 

analyzing, assimilating, and collecting data related to a particular topic (like toxins). As a 

result, the user is forced to search through multiple data sources and correlate the data 

manually. TKB fills a sorely needed gap. In particular it is an integrated tool for 

collecting, aggregating, and analyzing toxin data from different data sources. The sources 

that we currently use in our data acquisition process are PUBMED, SWISS-PROT, and 

RCSB.  

 

 

SWISSPROT 

RCSB 

EMBL 

WINAGENT 

WINAGENT 

WINAGENT 

SwissProt XML 
Data 

RCSB XML Data

EMBL XML Data 
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Figure 2: Data Acquisition Workflow. The data acquisition process consists of integrating data from 
disparate sources (publicly available bioinformatics databases) into a common data repository such that the 
information can be collected and assembled so that it can be queried. 

In order to acquire data from vastly disparate sources like the RCSB, 

SWISSPROT and EMBL, an information extraction tool was built using an inbuilt tool 

known as WinAgent. This tool can be used to mine data from various web data sources. 

WinAgent is a software robot that learns to extract data from the Web by observing a 
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user’s navigation activity. By training the agent on the websites of interest, the user can 

easily teach the tool to acquire relevant data. In order to overcome the problem of data 

incompatibility among the different sites, a merger XSLT tool was built that compiles all 

the data into a single unified schema (explained further in this section) and stores it into 

the TKB. Most of the data acquisition is automated, except for situations in which a new 

data source has been identified, and the WinAgent has to be trained to extract information 

from such a data source. This process is also made easy by the fact that the training 

process is just a few clicks on the mouse and showing how the user would want to 

navigate the new data source. The data acquisition system includes algorithms that make 

it scalable in lieu of the rapidly growing amounts of data.  

The data thus acquired is stored in a single unified schema, shown in figure 3. The 

schema has been developed with great care in order to include all relevant information a 

user might want to learn about a toxin. The sample schema shown here includes the 

details presented when the user looks at a particular toxin. In this example we present the 

schema when the user has selected botulinum neurotoxin type E as his choice. As shown 

in the figure the list of schema headings (left hand side of the table) is quite 

comprehensive. Certain fields have more information – providing a summary on the 

activity and mechanism of reaction (if it is available in the data sources or through 

literature search) of a toxin, where as certain fields do not have a lot of information, but 

represented using a hyperlink. This indicates that the information was collected from a 

different public source and can be then obtained by clicking on that relevant hyperlink.  

An exception to this case is the capability of the system to provide the user with 

the structure information, if it is available. Using an internet plug-in called Chime 

(http://www.mdli.com/chime), the user can directly link to the structure and perform 

various operations on the 3 dimensional structures using mouse buttons and key board 

buttons. This allows for increased interactivity with the system, and hence improves the 

overall experience for the user while using the TKB. This usage has been further shown 

in the usage section of the report. 

The MuToxin (Trans-toxin) Workflow 

A critical part of the system is dedicated to the derivation of new knowledge from 

the existing knowledge. Hence as part of the powerful query and reasoning system, we 
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have included an engineered workflow that allows the end user to determine whether a 

given protein, (1) resembles a toxin at its active site and (2) whether residue substitutions 

at specific locations on the protein, can modify the protein into a toxin (minimally the 

active site). A flowchart is given in Figure 4.  

As shown in figure 4, the workflow integrates three separate off-the shelf 

bioinformatics and structural biology resources into a neat workflow. When the user 

provides an input protein sequence through the user interface, the homologs of the input 

sequence is collected and based on the homologs, if a structure exists within our structure 

database, a reasonable model is built using the Modeller program. Based on the active 

site information available, it is then provided as input to the SPASM program, which 

superposes the built model against a database of active site templates and compares them 

for some match using a customized substitution matrix score. This provides the end user 

with a reasonable estimate as to whether the input protein resembles a toxin in some 

fashion.  

Another output from the workflow is a table of substitution scores and positions at 

which possible residue substitutions need to be made such that the active site resembles 

the target toxin. This provides information whether the protein can be a potential chimera 

(to hide a potentially toxic active site into a benign protein). All these are illustrated in 

the usage section of this report. 
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Figure 3: Overall schema representation for Botulinum neurotoxin type E [precursor] 
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Information

Figure 4: The Mu-Toxin (Trans-Toxin) Workflow. 

System Implementation 

The system has been developed entirely using Java, Java Server Pages (JSP), 

HTML and XML/ XSLT technologies. Essentially organized into three layers (based on 

the Model View Controller design pattern), the front end (view) of the system consists of 

interacting JSP which are kept extremely functional. All the aspects of user views and 

definitions are made using XSLT, which allows for a very flexible front end to be 

developed. In fact the user is usually unaware of the existence of the XSLT since the 

code generated on the front end is very dynamic in nature.  

The controller objects are developed as Java Servlets, with ability to handle 

multiple sessions, control opening and closing of new windows as and when required, 

pass session control to JSP and retain information for further processing of user 

commands. The controller objects do not generate any HTML artifacts except for some 

administrative logs that are stored at the server end for monitoring the status of the 

system.  

The model (back end) is implemented using Oracle 10G as the primary database, 

with extensive support using XML. The database schema is very flexible in order to 
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accommodate periodic changes that may be necessary because of the ever-expanding 

knowledge within the field of toxicology.  

We also provide here the current status of the database and the various statistics as 

an estimate of the size of the database tables.  

 

Total Number of Toxins >1009 

Number of Toxins with Structures >539 

Total number of Homologs >79,658  (79 Homologs / 

Toxin) 

Total size of Toxin database ~1.64 GB 

Total number of indices used ~14 

 

Usage Scenarios 

In this section a detailed look into the system implementation is provided. We 

provide information about the various interfaces, how they are organized, how a typical 

user will navigate and use the system (both a normal user and an administrator) and also 

various screen shots of the system. 

Logging into the System 

An important step towards using the system is to have some form of 

authentication of the end users, so that the system is not compromised. To this effect all 

users need to log into the system. The login interface is a simple authentication 

mechanism, which verifies the user (through a suitable user-name/ password) and also 

provides access to the user interface that a user is privileged to use (Figure 5). This means 

that a user just needs to type in his user name and password – and the system then 

recognizes the privileges of the user and allows access to only those pages that he/she can 

use. This improves the security of the system by providing a single point of entry into the 

system. 
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Figure 5: Login Screen: The login screen is a simple welcome page that allows the user to enter his user 
name and password so that he can login to the system. There is a separate form for new users who want to 
register and start using the system. However, new users can register only after they have been screened for 
security purposes. 

Query and Reasoning Interface 

The query interface provides facilities to the user to query and use the information 

stored in the knowledge base in different ways, described in the following sections. 

Homology Search 

• This interface helps in finding homologs of a given protein sequence from the 

TKB using PSI-BLAST (Position specific iterative BLAST), which is the NCBI 

tool for homology search. 

• The “Homology search” interface (as shown below in Figure 6) accepts two forms 

of input from the user: 

1. A protein FASTA sequence (or a list of such sequences)  

2. An accession number (or a list of accession numbers) 
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Figure 6: Homolog Search Interface: The search interface helps user to find a homolog given either a 
sequence or an accession number. The right hand pane shows how a help page can be dynamically loaded 
based on the links on the form. This allows all users with minimal knowledge of the system to understand 
the terms and use the system with minimal training. 

• The following are the options provided for the homology search: 

1. Database: Provides a choice of database to be BLASTed against. The two 

options that are currently provided are the “TKB” and “nr”(non-redundant 

database) 

2. Number of iterations: PSI-BLAST uses the results of each "iteration" to 

refine the profile. This iterative searching strategy results in increased 

sensitivity. 

3. E-value cut-off: Lets the user define the “expect” threshold for the 

homology search. 
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• When the user submits the required inputs and options, PSI-BLAST is used to 

search against the specified database and the results are presented to the user in a 

concise yet comprehensive fashion, as the Figure 7 depicts. 

 

 

Figure 7: Results for homology search: The initial results list the query sequences (if more than one 
query has been submitted) which are links which take the user to the results page with the list of actual 
homologs.  

• The list of homologs in a page-wise format, iteration by iteration, is displayed as 

shown below in Figure 8. 
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Figure 8: Results for Homology Search: The results of the each query are reproduced in a easy-to-use 
tabular format that shows all the required information, along with the new homologs identified in 
subsequent iterations, that are highlighted as shown here. 

• Each homolog has the following information: 

1. A link to the NCBI/Swiss-Prot entry depending on whether the homologs 

are from “nr” or “TKB” respectively. 

2. New homologs in subsequent iterations are identified. 

3. Each homolog has the following information: 

� Score for each homolog 

� E-value for each homolog 

� Pair-wise alignment of the query and homolog sequence, showing 

the positives, identities and gaps. (shown in Figure 9 below) 

� Alignment details  (shown in the Figure 9 below) 
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Figure 9: Pair-wise alignment and Details: The pair-wise alignment shows the identities(the residues 
marked red) and the positives (the residues marked blue). The alignment details are also provided. 

TKB Search 

• The TKB Search interface is useful to view the toxin data stored in the TKB.  

• The user can browse through the toxins alphabetically. The user can also search for 

particular toxins by specifying certain filter criteria as shown in the Figure 10 below. 

 

 

Figure 10: TKB Search Interface: The above figure displays the search options 
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The search results containing the names of the toxins satisfying the chosen filter criteria 

are displayed as shown in the following figures (Figures 11). 

 

 

Figure 11: TKB Search Results: The above are the results that are displayed when the user searched for 
toxins starting with alphabet ‘L’ 

• The details of the toxin can be seen by clicking on that particular toxin name in the 

search results. This was illustrated in the previous section on the system design 

(figure 3). 

Trans-Toxin (Mu-Toxin) 

• This interface lets the user investigate whether a protein can be transformed into a 

toxin. 
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• It accepts the protein sequence from the user, either as file or a text string. The 

user interface is shown in Figure 12. 

 

Figure 12: MuToxin (Trans-toxin) Interface. 

A sample output from the Mutoxin (trans-toxin) interface is shown in the figure below. It 

provides two results. One is a tabulation of all the possible matches of the input protein 

against the templates of active sites in the knowledge base with the RMSD values, 

BLOSUM scores and model output by Modeller to get these results. It also provides a 

detailed view (highlighted in the picture), where in the user can see the matching active 

site residues, and the corresponding BLOSUM scores (if they were selected by the user; 
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otherwise the customized score value is calculated from the input as highlighted by the 

user). 

 

 

 

 

 

 

 

 

Administrative interfaces 

 The update interface lets the Administrator maintain a 

consistent and up-to-date knowledge base. The updates to the toxin knowledge base can 

be done in two ways: 

• Automated: This includes the following two tasks: 

o Update TKB 

o Update NR 

• User-initiated 

 

These tasks are explained in detail in the following sections. 

Update TKB 

The TKB has to be updated whenever new proteins are added to the NR database. 

New entries in the NR database could mean additional homologs for the toxins in the 

TKB. An update on the TKB is performed by blasting each toxin against the most recent 

additions to the NR database. 

Given a sequence from the TKB, the following steps in this task have been automated. 
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i. Blast the Query sequence against the most recently available updates to 

the NR database. 

ii. Process the list of homologs to obtain the list of homologs that are relevant 

to the input to be given to the modeler. This processing involves filtering 

based on e-values and identity cut-offs. 

iii. Store the desired set of homologs in the TKB. 

Update NR 

A copy of the NR database is being maintained. Sequences are added to the NR 

database whenever new proteins are released. This addition of sequences involves 

matching new sequences to existing ones and appending and/or inserting new entries in 

the NR. Throughout the process, caution is taken to maintain the non-redundant property 

of the NR database. 

User initiated update of TKB 

This is the step when a new toxin has been identified and hence an entry is made in 

the TKB along with the following information: 

• PDB ID: Using WinAgent, Swiss-Prot is searched with the toxin’s accession 

number (for example, P10844 for Botulinum neurotoxin type B), and then the 

PDB ID’s for the toxin are extracted. 

• Active site information: Using WinAgent, PDB, PDBSUM, and LPC databases 

are searched using the PDB ID of a toxin, and then the active site information, if 

there is any is extracted. 

• Models: For each homolog, the toxin to which it is homologous is known.  If the 

toxin structure information is available, a model is built for the homolog based on 

the alignment of the toxin and the homolog as well as the structure of the toxin 

using MODELLER.  MODELLER is a well-known comparative modeling tool.  

It has its own script language to control the modeling process.  Using a program 

to generate the script, the modeling process is automated. 
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Scheduler 

• The above-mentioned update tasks are long-running tasks, to be performed on a 

periodic basis. A Scheduler application has been developed to handle the updates. 

• The Administrator is provided with a facility to schedule these tasks to be executed at 

a specified time and interval. It is the responsibility of the Scheduler application to 

execute the tasks thereafter, at the predefined time and interval on a regular basis.  

The user interface for the scheduler is shown in Figure 13 below: 

 

Figure 13: The Update Interface: The administrator can schedule the Update Task by just selecting the 
Task from a menu. The administrator decides the start date for Scheduling an event.  

• The information about the status of the execution of these scheduled tasks is stored in 

the database. The Administrator will be provided with an interface to see the status of 

these scheduled tasks and also update the task information. This will include the time 

at which the task is to be executed or the interval between two successive executions 

of the task. The user will also be able to delete a pre-defined task. 

Help interface  

Help pages are provided for each module of the interface as shown in the screen 

shot (Figure 14). The help consists of hierarchical tree structure to help users to navigate 

and also a separate section on help for all information regarding the project and the site. 

Apart from this an interesting and user-friendly feature of the help pages is the ability to 
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display information “inline” – especially when forms are being used to gather user-typed 

input. This improves the functionality as well as interactivity of the user. 

 

Help 
Navigator 

Tips and 
Help Section 

Figure 14: Help Interface Design: The help interface is designed to be user friendly having a tree that 
helps the user to navigate easily through out the help. The help interface also gives useful tips and strategies 
to use the site as a whole. 

Case Studies 

This section provides briefly some observed results validated by biochemical 

experiments, as well as some results that do not yet have a thorough biochemical 

validation. First we present the result of comparing Thermolysin, Neprilysin and 

Botulinum neurotoxin type E, of which Thermolysin and Neprilysin are non neurotoxic 

proteins, whereas Botulinum neurotoxin type E is a potent neurotoxin. Next we present 

the results of comparing Endoglucanase, with Chitinase of which Chitinase is a known 

toxin. For the former set of proteins, several studies have focused on the similarities of all 

the three proteins; however, more focus has been laid on the similarity of Thermolysin 

and Neprilysin which are known zinc binding proteases. The latter set, although a couple 
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of studies have been published, there has been no conclusive evidence through 

biochemical experiments that these two proteins are indeed similar.  

Similarity of the Reaction Mechanism in Thermolysin, Neprilysin, and 

Botulinum neurotoxin Type E 
Thermolysin, Neprilysin and Botulinum share a same motif HEXXH + E and it is 

speculated that they have similar reaction mechanism.  The functional similarity of 

Thermolysin and Neprilysin has long been recognized due to a relatively significant 

sequence homology between the two proteins, as is shown in Figure 15-a.  The statistics 

of the alignment is shown in the following table. 

 

Length 333 

Number of identical matches 37 

Number of positive matches 89 

 

 
Figure 15-a. Homology between Thermolysin and Neprilysin 

In contrast, the sequence homology between Thermolysin, Neprilysin and Botulinum is 

low, which can be seen from the alignment between Thermolysin and Botulinum 

neurotoxin serotype E in Figure 15-b.  The statistics of the alignment is listed below. 

Length 421 

Number of identical matches 56 
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Number of positive matches 88 

 

Because the alignment between Thermolysin and Botulinum does not indicate that 

they are closely related, one may conclude that they may not share any significant 

structural or functional similarity.  Structural alignment of the full structures of 

Thermolysin, Neprilysin and Botulinum also fails to reveal the functional similarity 

between them.  By concentrating on the active sites, the Trans-toxin (Mutoxin interface) 

is able to find that the active sites of Thermolysin and Neprilysin are similar to that of 

Botulinum, as shown in Figure 15-c, and therefore predicts that  non-toxic proteins 

Thermolysin and Neprilysin might be mutated to function like Botulinum neurotoxin. 

         
Figure 15-b.  Remote homology between Thermolysin and Botulinum E 

Figure 15-c(1): Active site of 
Botulinum neurotoxin E light 
chain (PDB:1T3A), residues 
shown H211, E212 and H215 

Figure 15-c(2): Active site of 
human Neprilysin 
(PDB:1DMT), residues shown 
H583, E584 and H587 

Figure15-c(3): Active site of 
Thermolysin (PDB:1TLP), 
residues shown H142, E143 and 
H146 
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Similar Reactive Mechanism of Endoglucanase and Chitinase 

We chose the sequence of Endoglucanase since it is an important protein that 

binds to cellulose, as well as having a multidomain enzymatic characteristic. A sequence 

comparison between Endoglucanase (Swissprot ID: P10477) and Chitinase (PDB ID: 

1HJX) does not give a good hint about their similarity, as is shown in Figure 15-d.  The 

length of the alignment, the number of identical matches and the number of positive 

matches are as follows. 

Length 696 

Number of identical matches 74 

Number of positive matches 94 

 

Moreover, because no structure is available for Endoglucanase, one may stop at 

the sequence level and conclude that Endoglucanase do not share functional similarity 

with Chitinase without further structural analysis. 

Trans-toxin tries to build a model of Endoglucanase based on its sequence 

homology with proteins whose structures have been determined using Modeller.  Then at 

the structure level, a putative active site in Endoglucanase is similar to that of Chitinase, 

as shown in Figure 15-e thus reveals that Endoglucanase is potentially a candidate to be 

transformed to Chitinase. 

 

 

 

 

 

 

 

Figure 15-e (1): Active site of Chitinase 
(PDB: 1HJX), residues shown are R144, 
K147 and Q148 

Figure 15-e (2): Putative active site of 
Endoglucanase E precursor (Swissprot: 
P10477), residues shown are R118, 20, and 
Q117. 
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Figure 15-d.  Remote homology between Endoglucanase and Chitinase 

Profiling active sites in proteins 
Active sites in proteins are three dimensional substructures that cause them to 

perform their function. In TKB, finding substructures in a protein that are ``similar'' to the 

active sites of some protein is the key step to decide whether the protein can be 

transformed into the toxin. Active sites can be grouped into families whose members are 

related by similarity of their functions.  Since similar sites exhibit variability in their 

physico-chemical and structural features, statistical profiling methods capture the shared 

features robustly in the presence of such variations. Such methods can find substructures 

that possess the features shared by all family members but not those varying from 

member to member, which might otherwise be missed by comparison to individual active 

sites.  

We studied the possibility of adapting Profile Hidden Markov Models (PHMMs) 

that have been successfully used for analyzing biological sequences, to statistically 
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profile active site families.   Since PHMMs can only profile one-dimensional sequences, 

we developed a serialization of the three dimensional active sites that capture certain 

shared physico-chemical and geometric features of the family.  PHMM parameters are 

learnt using these serialized sequences. While traditional PHMM learning algorithms deal 

with discrete physico-chemical feature only, we expanded it to include geometric features 

drawn from a continuous probability distribution.  

 

Profiling protein families from partially aligned sequences 
Profile-based homology search methods can detect more remote homologues than 

pair-wise based methods such as BLAST. Among all profile-base methods, Profile 

Hidden Markov Models (PHMMs) is accepted as a powerful technique. Extant PHMM 

training approaches either use completely unaligned or aligned sequences. The PHMMs 

resulting from these two training approaches present contrasting tradeoffs w.r.t. 

alignment information and the accuracy of the search outcome.  

We developed a PHMM based technique for modeling protein families from 

partially aligned sequences, for which alignment information is available for 

subsequences of the training protein sequences. By exploiting the observation that 

partially aligned sequences give rise to independent subsequences, PHMMs 

corresponding to these subsequences are composed to build PHMMs for the entire 

sequences. An interesting aspect of the technique is that it gives rise to a family of 

PHMMs which are parameterized w.r.t. the alignment information, spanning the range 

from PHMMs trained from unaligned sequences at one extreme and those from 

completely aligned sequences at the other. 

Preliminary experiments on these techniques show that they are effective in 

practice. We are working on incorporating them in TKB. The results from this study were 

presented in a comnference (please see paper attached). 

Identifying Toxin Names and Interactions in Bio-Medical Abstracts 

In addition developing the system we have embarked on text mining to identify 

new toxins from the available literature. A fully automated entity name extraction system, 

to identify toxins present in biomedical text has been developed.  Our approach is based 

on identifying Sortal anaphors to extract proximal toxin names. We also extract protein-
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protein interactions related to the toxins talked about in the given abstract. Our extraction 

system handles complex sentences and extracts multiple and nested interactions specified 

in a sentence. Deliverables are toxin name list extracted from PubMed abstracts for the 

query “Toxin Survey” and protein interactions related to these toxins. 

Key Research Accomplishments:  

1. We have built a sophisticated Toxin Knowledge Base. 

2. This can be used to identify and store homolog information. 

3. A powerful tool WinAgent developed at Stony Brook University can be used to 

retrieve and collect data from various sources and incorporated into TKB. 

4. Various links have been incorporated into TKB for easy use. 

5. The TKB now contains molecular, structural and other information for over 1000 

toxins. 

6. TKB now stores homolog information for more than 500 toxins with an easy to use 

software to view the structural model. 

7. Text mining has been developed to identify new toxins from web site literatures. 

Reportable outcomes 

One paper presented in a conference. 

1. Arvind Ramanthan, Mike Kifer, I.V. ramakrishnan, Arvind Ramanathan, Chang Zhao, 

S. Jayaraman and S. Swaminathan . Toxin Knowledge Base: A system for discovering 

bioengineered threats. Presented as a poster in ISMB conference in Detroit, June 2005. 

2. Chang Zhao, Jalal Mahmud, I.V. Ramakrishnan and S. Swaminathan. Computing 

statistical profiles of active sites in proteins. SIAM Conference on Data Mining, 2006 

3. Saikat Mukherjee, Chang Zhao and I.V. Ramakrishnan. Profiling Protein families from 

partially aligned sequences. Presented in a Computer science conference, 2006 

 

 Conclusion 

TKB has thus provided an engineering solution to a widely acknowledged problem of 

analyzing information from various resources by combining several off-the-shelf 

software tools and developing an integrated work-flow that offers biologists with the 

ability to analyze the nature of toxins. It also provides information to users if a non-toxin 

protein can be potentially transformed into a toxin using simple substitution of amino-
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acid residues at their active sites. It is also the single largest resource on information 

regarding toxins, where in biologists can easily synthesize and disseminate knowledge 

about toxins.  

Apart from our engineering processes, our current research effort focuses on the 

development of methods to classify toxins into families based on profiles (using profile 

based Hidden Markov Models [8]). These models take into account information about 

variations even across distant homologs and can thus identify remotely related proteins 

and toxins. We have successfully used  these methods for comparing active sites in 

proteins.   

It is also equally important to enrich the knowledgebase with more knowledge 

about toxins. But, this process is generally not very simple and often unintuitive, because, 

the identification of even a single new toxin can mean that a biologist has to potentially 

go through hundreds, perhaps even thousands of abstracts and scientific articles. Our text 

mining will solve this problem. 

Future Plans 

The plans presented here will be continued, if our application for funding to 

DTRA is successful.  

1. Some toxins do not have any structure information available.  In this case, we can 

instead get a model for the toxin from MODBASE.  For example, Tityustoxin ts3 

(accession number P01496) does not have a PDB entry in Swiss-Prot, but it has a highly 

reliable model in MODBASE.     

2. There are toxins for which we cannot find the active site information in PDB, 

PDBSUM or LPC.  We need to find alternative information sources of toxin active sites. 

Because active sites are often associated with structural pockets and cavities, one possible 

approach is to locate the active site with the help of CastP, which can provide 

identification and measurements of surface accessible pockets as well as interior 

inaccessible cavities.   

3. Instead of building a model based on a pair-wise alignment and a toxin structure, we 

can build a model based on a multiple alignment of the homolog and several toxins to 

which it is homologous.  This can help us to remove redundant models and improve the 

reliability of the models.   
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4. Hidden Markov Models have been used to build profiles of protein sequences of the 

same family.  We want to extend the Profile Hidden Markov Model to the three-

dimensional space and use it to model the active sites of toxins from the same family.  

Instead of comparing each active site with the target protein, we just need to compare 

each active site profile with the target protein.  

5. The user will be allowed to submit a new toxin. The new toxins will be studied and it 

may become an entry in the TKB.  
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Appendix: 
 
Three documents are appended. 
 
1. Arvind Ramanthan, Mike Kifer, I.V. ramakrishnan, Arvind Ramanathan, Chang Zhao, S. 

Jayaraman and S. Swaminathan . Toxin Knowledge Base: A system for discovering 

bioengineered threats. Presented as a poster in ISMB conference in Detroit, June 2005. 

2. Chang Zhao, Jalal Mahmud, I.V. Ramakrishnan and S. Swaminathan. Computing statistical 

profiles of active sites in proteins. SIAM Conference on Data Mining, 2006 

3. Saikat Mukherjee, Chang Zhao and I.V. Ramakrishnan. Profiling Protein families from 

partially aligned sequences. Presented in a Computer science conference, 2006 

 



Toxin Knowledge Base: A System
Michael Kifer, I. V. Ramakrishnan, Arvind Ramanathan, Chang Zhao

Department of Computer Science, Computer Science Building,      
Stony Brook University, Stony Brook, NY 11794.

Figure 1: System Architecture
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Figure 3: Data Acquisition Workflow

SWISSPROT

RCSB

EMBL

WINAGENT

WINAGENT

WINAGENT

SwissProt XML 
Data

RCSB XML Data

EMBL XML Data

M
 E

 R
 G

 E
 R

   
 X

 S
 L

 T

TKB

BLAST

TKB

RCSB

Input sequence 
has structure

MODELLER

Homologs

Model

Structure

QUERY

SPASM

Active Site
Templates

Sequence
Information

Figure 2: The Trans-Toxin Workflow

The data for toxins lies embedded within several sources. Principal sources for the 

current work include public domain databases like SWISSPROT, EMBL and RCSB. 

Using a specially built tool called WinAgent, the data from these various sites are 

mined and assembled as XML data. This XML data is then processed using an XSLT 

to merge into the Toxin Knowledgebase. This provides a simple and extensible 

mechanism for mining toxin data from the internet. The tool created for this purpose (a 

modified version of WinAgent) is very easy to use, such that even a novice user can 

create powerful agents to mine for toxin data. This tool has been embedded within the 

design of the system such that it is transparent to the user and hence, the user can 

simply create agents by specifying a specific website and click on a few instances that 

he wants the agent to pick up (during the training phase), and then automatically 

execute the code to fetch similar sets of data from the site and then integrate it into the 

toxin repository.

This has allowed us to develop a simple, yet powerfully extensible system, that can be 

potentially applied to not only toxins, but also different classes of recognized proteins. 

Abstract
Recent developments in recombinant DNA technology has given rise to the possibility of producing bioengineered pathogens like toxins and other products on scales that 

could make them into formidable weapons of bioterrorism. Yet another kind of threat is through chimeric molecules, where in the virulent domain of a toxin is hidden in 

a non-pathogenic protein. The Toxin Knowledge Base (TKB) has been established as a bioinformatics resource to tackle the problem of identifying potential bio-warfare 

agents as well as chimeric proteins. It is a tool that can be used to assimilate, synthesize, analyze and disseminate genomic and structural information on biological and 

potential biological warfare agents, identify and develop counter measures such as vaccines, antitoxins and inhibitors and also understand the mode of actions of these 

toxins at the cellular, sub-cellular, and molecular levels. The system has been designed using a novel workflow mechanism and is seamlessly integrated using an easy-to-

use web based portal.

System Description
The system has been developed with an emphasis on the end user’s perspective in 

mind. Figure 1 shows the system architecture of TKB from that perspective. The 

Query interfaces comprise of a sophisticated inference engine, based on derivable 

knowledge in terms of the structures of toxins that exist within the database. This 

knowledge is used as a means to design the Trans-toxin workflow, whose schematic 

is shown in figure 2. Once a user inputs a sequence, a search against the sequences 

in the RCSB yields the answer to the question whether the input sequence has a 

structure. If the sequence does not have a structure, the input sequence is first 

‘BLAST’ed against the TKB sequence information to determine whether it is

possible to model the sequence using the structural information in the knowledge 

base. If so, it is passed on to the Modeller program, which provides a three 

dimensional model, which is then compared against the active site templates using 

SPASM and the results are tabulated to the end user.

The administrator’s interface is based on the fact that he spends most of his time in 

keeping the knowledge base up-to-date. The data acquisition and curation workflow 

is shown in figure 3.



for Discovering Bio-Engineered Threats
Seetharaman Jayaraman, Subramanyam Swaminathan

Biology Department, Brookhaven National Laboratory,             
Upton, NY 11973

References
1.Nikeeta Julasana, Akshat Khandelwal, Anupama

Lolage, Prabhdeep Singh, Priyanka Vasudevan, 
Hasan Davulcu, I. V. Ramakrishnan. WinAgent: a 
system for creating and executing personal 
information assistants using a web browser. 
Intelligent User Interfaces 2004: 356-357.

2. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. 
& Lipman, D.J. (1990). Basic local alignment 
search tool. J. Mol. Biol. 215:403-410.

3. G.J. Kleywegt (1999). Recognition of spatial 
motifs in protein structures. J Mol Biol 285, 1887-
1897.

4. A. Sali & T.L. Blundell. Comparative protein 
modelling by satisfaction of spatial restraints. J. 
Mol. Biol. 234, 779-815, 1993.

Acknowledgements
The authors would like to thank Sridhama Vempaty, 
Padmavathy Malligarjunan, Jigar Mehta, Darshan
Ramavat, Venkat Reddy Nukala, Sheetal Shah, Mayur
Shetty, Debashish Rawal and Pooja Virkud for their help 
in developing the system. The grant from US Army 
Medical Research Acquisition Activity (Contract No.: 
DAMD17-03-1-0520) is also gratefully acknowledged.

Results
BoNT/E          PKINSFNYNDPVNDRTILYIKPGGCQEFYKSFNIMKNIWIIPERNVIGTTPQDFHPPTSL 60
THERMO          ---------------------------------ITGTSTVGVGRGVLGDQ---------- 17

* . :   *.*:*
BoNT/E          KNGDSSYYDPNYLQSDEEKDRFLKIVTKIFNRINNNLSGGILLEELSKANPYLGNDNTPD 120
THERMO          KNINTTYSTYYYLQDN--------------TRGDGIFTYDAKYRTTLPGSLWADADN--- 60

** :::* ***.:              .* :. :: . . .. : . **
BoNT/E          NQFHIGDASAVEIKFSNGSQDILLPNVIIMGAEPDLFETNSSNISLRNNYMPSNHRFGSI 180
THERMO          QFFASYDAPAVDAHYYAGVTYDYYKNVHNR------LSYDGNNAAIRSSVHYS---QGYN 111

: * **.**: ::  * ** :. :..* ::*.. * *
BoNT/E          AIVTFSPEYSFRFNDNCMNEFIQDPALTLMHELIHSLHGLYGAKGITTKYTITQKQNPLI 240
THERMO          NAFWNGSEMVYGDGDGQTFIPLSGGIDVVAHELTHAVTDYTAGLIYQNE---SGAINEAI 168

. ..* :  .*. :.. .: *** *:: . .. .:   :   * *
BoNT/E          TNIRGTNIEEFLTFGGTDLNIITSAQSNDIYTNLLADYKKIASKLSKVQVSNPLLNPYKD 300
THERMO          SDIFGTLVEFYANK-------------NPDWEIGEDVYTPGISGDSLRSMSDPAKYGDPD 215

::* ** :* : . * :      *. * * .:*:* *
BoNT/E          VFEAKYGLDKDASGIYSVNINKFNDIFKKLYSFTEFDLRTKFQVKCRQTYIGQYKYFKLS 360
THERMO          HYSKRYTGTQDNG---GVHINSGIINKAAYLISQGGTHYGVSVVGIGRDKLGKIFYRALT 272

:. :* :* . .*:**. * :  :*:  * *:
BoNT/E          NLLNDSIYNISEGYNINNLKVNFRGQNANLNPRIITPITGRGLVKKIIRFCKNIVSVKGI 420
THERMO          QYLTPTSNFSQLRAAAVQSATDLYGSTSQEVASVKQAFDAVGVK---------------- 316

: *. :    . :  .:: *..::  . :  .: . *:                 
BoNT/E          R 421
THERMO          -

THERMO            --ITGTSTVGVGRGVLGDQKNINTTYSTYY------YLQDNTRGDGIFTYDAKYRTTLPG 52
NEP_HUMAN         GICKSSDCIKSAARLIQNMDATTEPCTDFFKYACGGWLKRNVIPETSSRYFAGESKHVVE 60           

..:. :  . :: : . . . : ::      :   *: *. :    * * . :  
THERMO            SLWADADNQFFASYDAPAVDAHYYAGVTYDYYKNVHNRLSYDGNNAAIR----SSVHYSQ 108
NEP_HUMAN         DLIAQIREVFIQTLDDLTWMDAETKKRAEEKALAIKERIGYPDKDEWISGAAVVNAFYSS 120          

.* *:  : *: : * :         : :    :::*:.* .::  * ...**.
THERMO            GYNNAFWNG--SEMVYGDGDGQTFIPLSGGIDVVAHELTHAVTDYTAGLIYQ-NESGAIN 165
NEP_HUMAN         GRNQIVFPAGILQPPFFSAQQSNSLNYGGIGMVIGHEITHGFDDNGRNFNKDGDLVDWWT 180          

* *: .: . :  : ..: .. :  .* *:.**:**.. * .:  : :  . .
THERMO            EAISDIFG--TLVEFYANKNPDWEIGEDVYTPGISGDSLRSMSDPAKYGDPDHYSKRYTG 223
NEP_HUMAN         QQSASNFKEQSQCMVYQYGNFSWDLAGGQHLNGIN-TLGENIADNGGLGQAYRAYQNYIK 239          

:  :. * :   .* * .*::. . :  **.. ..::* . *:. :  :.*
THERMO            TQDNGGVHINSGIINKAAYLISQGGTHYGVSVVGIGRDKLGKIFYRALTQYLTPTSNFSQ 283
NEP_HUMAN         KNGEEKLLPGLDLNHKQLFFLNFAQVWCGTYRPEYAVNSIKTDVHSPGNFRIIGTLQNSA 299          

.:.:  :  . .: :* :::. . . *. . :.: . .: . . :  * : *
THERMO            LRAAAVQSATDLYGSTSQEVASVKQAFDAVGVK 316
NEP_HUMAN         EFSEAFHCRKNSYMNPEKKCRVW---------- 322                  

: *.:. .: * ...::    ..: .: . .

Figure 4: Sequence comparison between botulinum neurotoxin serotype E Light Chain (BoNT/E), thermolysin (THERMO), and 
neprilysin (NEP_HUMAN), similar to a report presented in Toxin Knowledgebase. One can observe that, BoNT/E and THERMO are 
homologs; THERMO and NEP_HUMAN are homologs, and share the same active site motif (Zinc binding motif: HEXXH).

Figure 5 † (a): Active Site of botulinum 
neurotoxin E Light Chain (PDB: 1T3A), 
residues shown are H211, E212 and H215.

Figure 5 † (b): Active Site of human 
neprilysin (PDB: 1DMT), with residues 
H583, E584 and H587.

Figure 5 † (c): Active Site of thermolysin 
(PDB: 1TLP), residues H142, E143 and H146.

The initial results from using TKB are shown in figures 4 and 5. Figure 4 presents a sequence comparison of 

botulinum neurotoxin, thermolysin and neprilysin. As shown in the figure, all the three proteins share the 

same motif – HEXXH. However, one must note that botulinum neurotoxin serotype E and neprilysin are 

rather distantly related homologs. They do not show a high sequence similarity and hence one may conclude 

that the two may not share any significant structural or functional similarity.

If one follows the workflow illustrated in figure 2, the output from TKB will show that the active sites of the 

three proteins to be very similar. The arrangement of the residues at the active site and the coordination of the 

Zinc ion shows that all the three proteins not only share the same motif, but also that these proteins could be 

functionally similar. 

Conclusions and Future Work
The current work represents a successful prototype for relating sequence, structure and functional aspects of 

proteins. Sequence based comparison methods although valuable, can allow detection of related families of 

proteins, but in order to relate the functions of proteins better, better structure based methods are necessary. In 

the future, the authors plan to develop three dimensional structural profiles, that would be used to identify 

remote homologs, that may be functionally related to various proteins. It is also planned to expand the 

knowledgebase and allowing the bioinformatics community to use this web-based service.

† Figures generated using PyMOL Molecular Graphics software, (http://www.pymol.org).
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Abstract

Active sites in proteins are three dimensional substruc-
tures that cause them to perform their function. The prob-
lem of finding substructures in a protein that are “similar”
to the active sites of another protein has several impor-
tant applications in biological sciences such as drug de-
sign, genetic engineering, and diagnostic tools for analysis
of genetically engineered pathogens. Active sites can be
grouped into families whose members are related by simi-
larity of their functions. Since similar sites exhibit variabil-
ity in their physico-chemical and structural features, statis-
tical profiling methods capture the shared features robustly
in the presence of such variations. In this paper, we adapt
Profile Hidden Markov Models (PHMMs) that have been
successfully used for analyzing biological sequences, to sta-
tistically profile active site families. Since PHMMs can only
profile one dimensional sequences, we develop a serializa-
tion of the three dimensional active sites that captures cer-
tain shared physico-chemical and geometric features of the
family. PHMM parameters are learnt using these serial-
ized sequences. While traditional PHMM learning algo-
rithms deal with discrete physico-chemical feature only, we
expand it to include geometric features drawn from a con-
tinuous probability distribution. Experimental results with
our PHMM based method for profiling active sites suggest
that it is effective in practice.

1 Introduction

Proteins are essential to the structure and function of all
living cells and viruses. Understanding the function of a
protein is fundamental for gaining insight into many biolog-
ical processes. Technically, proteins are amino acid chains
that fold into unique three-dimensional structures that cause
them to function. In particular, within the protein structure
are key areas called active sites and biochemical reactions at
these sites with other proteins or other chemical substances

cause the protein to perform a function of one type or an-
other.

A problem of significant importance in computational bi-
ology is this: Are active sites of different proteins similar?
i.e., do they share similar physico-chemical and geometric
properties. Active sites with such shared properties may
perform similar functions. Answer to the aforementioned
similarity question drives a number of important biologi-
cal applications. For instance it can be used to predict the
function of a protein with a substructure similar to the ac-
tive site of another protein whose function is known. An-
other important application is toxicology tools such as the
Toxin Knowledge Base (TKB) system that we have devel-
oped [9, 15, 21], for automated diagnosis of bioengineered
pathogens. In such pathogens the virulent domains of toxins
can be hidden in otherwise non-toxic proteins. Specifically,
the active site of a non-toxic protein that is similar to that of
a toxin, has the potential to become toxic by suitably alter-
ing the residues1 in the site.

State-of-the-art techniques for determining active site
similarity are exemplified by the SPASM tool [10, 22]. Its
inputs include a protein’s structure; the 3-D coordinates of
the residues in the active site of another protein whose func-
tion is known, substitutions for these residues and a RMSD
(root mean square distance) cutoff value. SPASM attempts
to identify 3-D substructure(s) of the former protein that are
isomorphic to the active site within the specified RMSD cut-
off.

There are two problems with the pairwise similarity test-
ing approach embodied in SPASM. Firstly, although there
are general guidelines for choosing RMSD values such as
“If you use only a few residues (3-5), an RMSD less than
one Å tends to be obtained for similar arrangements of
residues,”2 in general it is a laborious trial and error pro-
cess. However, the more serious problem is that similarity

1Informally, the residues are the elements joined together in the amino
acid sequence.

2 Å denotes an angstrom which is the distance measure between atoms.
One angstrom is 1.0× 10

−10 meters.



tests are done separately with one active site at a time. Con-
sequently, it does not exploit the common physico-chemical
and structural features that can exist amongst the family of
active sites of proteins. A family here means that the ac-
tive sites of all of its members exhibit similar functional-
ity and can also include evolutionarily unrelated proteins
that share no overall sequence or fold similarities. Pairwise
comparisons may use features that may not be common to
all the family members and hence can fail to identify fam-
ily members, especially “remote”3 members. For instance,
SPASM fails to find the similarity between the active sites of
BOVINE RIBONUCLEASE (PDB ID: 3RN3)4 and a vari-
ant of RIBONUCLEASE (PDB ID: 1RBC) for reasonable
RMSD cutoffs because atoms not directly related to the pro-
tein’s function differ a lot in these two structures. Note how-
ever that a “profile” of the common features in a collection
of active sites belonging to a family would have revealed
the irrelevance of such atoms and hence would have been
excluded as a shared feature. So a principal benefit of pro-
file based methods is that they capture the essential features
shared by all of the family members thereby making it pos-
sible to determine the similarity of remote members.

Automated construction of active site family profiles to
discern common features is a fairly unexplored problem. In
this paper we formulate a solution to this problem inspired
by the successful profile-based search methods for homolo-
gous protein sequences5 [16].

Note that physico-chemical and structural features of
similar active sites may exhibit some degree of variability.
So similarity notions rooted in statistics can serve as a ro-
bust framework for profiling the active sites of a family.

Profile Hidden Markov Model (PHMM), a statistical
learning technique used in profile based sequence homol-
ogy search methods, has been shown to be very effec-
tive for capturing sequence similarity [5]. Several software
tools based on PHMM have also been developed [6, 7, 8].
PHMMs are in essence HMMs adapted for profiling se-
quence similarity. HMMs are a class of probabilistic au-
tomata used in a number of applications, especially se-
quence labeling problems such as recognizing words in dig-
itized speech [17], attribute data extraction from text se-
quences [3] and biological sequence analysis.

We adapt PHMM for profiling the three dimensional ac-
tive sites in proteins. To begin with, the adaptation re-
quires choosing a representative set of active site features.
Whereas only residue types (such as Histidine, Glutanmate,
etc) are used as features in PHMMs for prtein sequences we

3These are active sites that have few features in common with the other
family members.

4PDB –http://www.rcsb.org – is the Protein Data Bank of 3-D
protein structures uniquely indexed by an ID

5A protein sequence is simply a linear string of amino acids that con-
stitute the primary structure of a protein. Sequences that are similar are
referred to as homologues.

will now have to contend with the structural (i.e., geomet-
ric) features of active sites also. So in addition to using the
atoms’ types in the active site residues we also use their dis-
tances from their center of mass as the structural features.
Furthermore these distances are assumed to be drawn from
a probability distribution. Next we adapt the training phase
of PHMM to learn the parameters of this distribution and
finally modify the scoring phase to assign a similarity score
to the input data.

We have implemented a prototype of our adaptation of
PHMM. Using this system we can determine the similar-
ity of protein substructures with the family profile of active
sites. In fact our system determined that the active sites of
BOVINE RIBONUCLEASE (PDB ID: 3RN3) and a variant
of RIBONUCLEASE (PDB ID: 1RBC) are similar which
SPASM had failed to do as was mentioned earlier. Tem-
plates for capturing active site features are described in [20]
and more recently in [19]. However these templates are
constructed manually. In contrast our system learns these
features automatically. Finally and most importantly in our
approach there is no need to manually figure out RMSD
cut-offs as is needed to be done when using SPASM.

The rest of the paper is organized as follows. Section 2
presents an overview of protein active sites and PHMMs
to set the context for understanding the rest of the paper.
Section 3 provides details of our adaptation of PHMM for
active site profiling. Section 4 presents experimental results
of our approach. Related work appears in Section 5 and
conclusions in Section 6.

2 Technical Preliminaries

In this section we review the technical background
needed to understand our technical approach. In particular
the review focuses on active sites in proteins and PHMM.

2.1 Protein Active Site

The building blocks of proteins are twenty amino acids.
Examples of these include Alanine, Valine, Histidine,
Glycine, etc. They are usually referred to by their symbolic
(3-letter and 1-letter) abbreviations e.g., the 3-letter ALA or
the 1 letter A for Alanine, VAL or V for Valine and so on.

All of the twenty amino acids have in common a central
carbon atom (Cα) to which are attached a hydrogen atom,
an amino group (NH2), and a carboxyl group (COOH).
The rest of an amino acid, which is called the side chain,
is different for different amino acids. These terms are il-
lustrated in Figure 1. Amino acids are joined end-to-end to
form a polypeptide chain when the carboxyl group of one
amino acid condenses with the amino group of the next to
eliminate water, as shown in Figure 2. The repeating units
in the polypeptide chain are called residues. In Figure 2 the
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elements within each “shaded triangular” area correspond
to a residue. A residue is usually referred to by its name or
abbreviation followed by its position in the chain. For ex-
ample, H233 refers to the 233rd residue in a chain, which is
a histidine.

The polypeptide chain of a protein folds in space to form
the three-dimensional structure of the protein. The folding
of the polypeptide chain typically creates a crevice or cav-
ity on the protein surface. This crevice, called an active
site, contains a set of residue side chains which might be far
apart in the polypeptide chain. They are brought together
in the 3-D structure and are disposed in such a way that
they can make noncovalent bonds only with certain part-
ners, which can be a protein, DNA, metal ion, etc. The 3-D
structure of a protein, especially the localized structure of
its active site, determines the functional properties of the
protein. Figure 3 sketches the formation of an active site.
Note that a protein can have several active sites. By exam-
ining the interaction of a protein and its binding partner, the
protein’s active site can be identified. Alternatively, active
sites can be inferred by computational tools such as MOE
Active Site Finder [23] and Q-SiteFinder [13].

Figure 4 shows the active site of butolinum neurotoxin
serotype E. It contains three residues: H211, E212, and
H215, represented by the sticks in the figure. It determines
that this protein has the function of binding a zinc ion which

folding

active site

... ... ... ...

polypeptide chain 3D structure

Figure 3. Formation of an Active Site

Figure 4. Active Site of Botulinum Neurotoxin
Serotype E(PDB ID: 1T3A)

is represented by the ball in the figure.

2.2 Profile Hidden Markov Model

A PHMM is a statistical learning-based technique for
modeling DNA and protein sequences families. The under-
lying principles of PHMMs are based upon the mathematics
of Hidden Markov Models [17] which have found wide ap-
plicability in sequence analysis tasks. An HMM is a proba-
bilistic finite state automaton defined by a set of states, a set
of state transitions with probabilities assigned to them and
a set of observation symbols that are emitted in a state with
certain probabilities. The sequence of states corresponding
to a visible observation sequence is “hidden” and hence has
to be estimated.

PHMMs extend the traditional notion of HMMs to model
biological sequence families. In this section, we briefly re-
view PHMMs and their application in modeling biological
sequence families. A more detailed discussion can be found
in [5]. We remark that PHMMs for modeling DNA and
protein sequences mainly differ in the domain of emission
symbols used. So without loss of generality our review will
describe PHMMs for protein sequences only.

Protein sequences typically come in families. Members
of a family have a common ancestor and normally main-



HBA_HUMAN ...VGA--HAGEY...
HBB_HUMAN ...V----NVDEV...
MYG_PHYCA ...VEA--DVAGH...
GLB3_CHITP ...VKG------D...
GLB5_PETMA ...VYS--TYETS...
LGB2_LUPLU ...FNA--NIPKH...
GLB1_GLYDI ...IAGADNGAGV...

*** *****

Figure 5. A Segment from the Multiple Align-
ment of 7 Globin Protein Sequences

tain the same or related function. Although they have di-
verged during evolution through insertions and deletions,
their functional residues are usually conserved. A multi-
ple alignment of family members reveals the relationship
among them. For example, in Figure 5 which is a segment
of the multiple alignment of seven globin protein sequences
taken from [5], it is obvious that residues in some columns
are more conserved than in others. A simple rule to decide
whether a column is conserved is that if more than half of
the sequences have a residue instead of a dash present in
the column, then that column is conserved. In Figure 5, the
columns marked with stars are conserved. The two non-
starred residues in GLB1 GLYDI correspond to insertions.
If a sequence has a dash in a conserved column, then it has
undergone a deletion.

PHMMs are HMMs whose structures are specialised to
capture such conserved residues as well as insertions and
deletions in sequence families. Figure 6 shows the struc-
ture of a PHMM. The structure has a Begin state and an
End state, denoted B and E respectively in the figure, and
a sequence of columns of states between B and E. Each
column, from 1 to n, has three states - a match, insert,
and delete state. These are denoted by Mi, Ii, and Di re-
spectively for the ith column. Intuitively, match states cor-
respond to conserved residues among sequences while in-
sert and delete states correspond to divergence in sequences
from a common ancestor due to insertions and deletions re-
spectively. The insert state I0 corresponds to insertions be-
fore the first matching residue in sequences. Observe from
Figure 6 that the structure of the model is parameterized
only by the length of the model, i.e., the number of columns
of states.

The transitions in the model structure are fixed and corre-
sponds to the underlying semantics of matches, insertions,
and deletions. In particular, a match state Mi can make a
transition to Mi+1, Ii and Di+1 respectively. An insert state
Ii has transitions to Mi+1, Di+1, and to Ii itself. A delete
state Di has transitions to Mi+1, Di+1, and Ii. These state
transitions are also shown in Figure 6.

B EMn−1

I

D D

I

Mn

D2

I2

M2M1

I1

D1

I0 nn−1

nn−1

Figure 6. PHMM structure

For protein sequences, the emission symbols are the
twenty amino acids. Match and insert states emit residues
while delete states are non-emitting silent states. The non-
emission of residues from delete states conforms to the se-
mantics of these states – a residue in the representation of
the family is not observed in an individual sequence. The
begin and end states define the start and end markers of the
model and consequently they do not emit residues.

The parameters of a PHMM are usually learned from a
set of sequences known as members of a family. When the
alignment of the sequences is given, computing the model
probabilities reduces to smoothed maximum-likelihood pa-
rameter estimation using the frequency counts of transition
and emission events. Figure 7 (taken from [5]) is a PHMM
of length 8. Emission probabilities are shown as bars op-
posite the different amino acids for each match state, and
the values of transition probabilities are indicated by the
thickness of the lines. Th self looping transitions on the in-
sert states are probability values given as percentages. The
emission probabilities are uniformly distributed among 20
amino acids for all the insert states except I3 where the
emission probabilities are 0.09 for amino acid A and D and
0.045 for all the others.

When the alignment of the training sequences is un-
known, learning PHMM parameters is done with Baum-
Welch’s [2] iterative algorithm which is a special case of the
more general Expectation-Maximization (EM) algorithm
[4]. Starting from initial parameter values, the algorithm
terminates after a fixed number of iterations or after a local
maximum has been reached. In each iteration, the current
parameter values are used to first compute transition and
emission expectations (E step) which are then subsequently
used to generate the best possible parameter values for the
next iteration (M step).

Given a PHMM model M profiling a family S and an
input protein sequence x the model determines if x is a
member of S, i.e., is it similar to the members of S pro-
filed by M? At a high level this is done as follows: First,
the best path (i.e., state sequence) is computed using the
well known Viterbi algorithm [17]. In particular, the
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Figure 7. An Example PHMM

Viterbi algorithm efficiently computes a state sequence y′

that maximize the conditional joint probability P (x, y|M),
i.e., y′ = arg maxy P (x, y|M). For example, the best path
for the sequence “VGAHAGEY” and the model in Figure 7
is found to be Start → M1 → M2 → M3 → M4 →
M5 → M6 → M7 → M8 → End. Next, we compute
p(x, y′|M ′) where M ′ is a random model that is identical
to M in length and transition probabilities. However, the
emission probability for each emission symbol a is inde-
pendent of the states, i.e., for all match and insert states a

always occurs with the same frequency qa. A choice for qa

is the frequency of the amino acid a occurring in a standard
sequence database such as SWISS-PROT [24]. Finally we
compute the base 2 log-odds ratio log( P (x,y|M)

P (x,y|M ′) ) called the
bit score. If this score falls above a threshold then x is said
to be a member of S. The threshold is a global value and
details on how it is determined appears in [25].

3 Profiling Active Sites with PHMM

Note that active sites with similar functions can exhibit
variability in their physico-chemical and geometrical con-
figurations. So any technique for profiling active sites
should factor in such variations. PHMMs have been used
for biological sequence analysis with a high degree of suc-
cess since they can statistically capture commonalities and
variations among sequences that have evolved from a com-
mon ancestor. Thus they have the potential to serve as a
robust framework for profiling active sites also.

However, adapting PHMMs for this problem is not en-
tirely straightforward. Let us examine the underlying is-
sues. Firstly, observe that PHMM is a sequential model in
the sense that it was developed to handle protein sequences
which are simply 1-D strings of amino acids. On the other

hand active sites are 3-D structures. So the immediate prob-
lem is one of serializing these 3-D structures in such a way
that salient aspects of their physico-chemical and geomet-
ric properties are still retained. Secondly, each state in a
traditional PHMM emits only one discrete symbol (i.e., an
amino acid) at a time. For active sites these emissions must
include both physico-chemical features such as the discrete
valued residue types as well as geometric features. So emis-
sions are tuples ranging over the physico-chemical and geo-
metric feature set. A robust description of geometric config-
urations of active sites is best done using continuous mea-
sures. Hence in contrast to traditional PHMMs where only
discrete probabilities of emission symbols are estimated we
will now need to estimate the joint distribution of physico-
chemical and geometric features. In the rest of this section
we describe how we address these issues.

3.1 Serializing Active Sites

Since PHMM is a sequential model the task now is to
identify a set of 3-D features and serialize them. This serial-
ization will represent the observation sequence correspond-
ing to an active site.

The primary issue in serialization is inventing an order-
ing for the sequence. For primary protein sequences of
amino acid chains this is simply the position of the residue
in the chain. For 3-D active sites there is no such obvi-
ous ordering. Let us first examine the desiderata for such
an ordering. Ideally, if a and b are two conserved atoms
in one active site, a′ and b′ are atoms in another active
site corresponding to a and b, respectively, then the order
of a and b in the serialized sequence derived from the for-
mer active site should be consistent with that of a′ and b′

in the sequence derived from the latter. A candidate for



Atom Name X-Cord Y-Cord Z-Cord Distance
N 36.729 107.613 20.276 2.427
CA 35.813 107.722 21.395 1.133
C 36.031 109.051 22.149 1.732
O 37.157 109.446 22.496 2.519
CB 35.875 106.405 22.220 1.016
CG 34.949 106.290 23.394 1.622
OD1 33.858 106.833 23.442 2.169
OD2 35.341 105.659 24.387 2.602

Table 1. Example Active Site Atoms

such an ordering is the distance of the atoms in the active
site from their center of mass. Given a set of n atoms with
coordinates (x1, y1, z1), (x2, y2, z2), . . . , (xn, yn, zn), their
center of mass is the expression:
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In other words the center of mass is the average over each
of the coordinate positions of the atoms. For illustration,
suppose an active site contains only one residue D260 with
atoms whose coordinates are listed in the first four columns
of Table 1. The 3-D coordinate of their center of mass is
(35.719, 107.377, 22.470). Distances of each atom from the
center of mass are shown in the last column of Table 1. The
ordering of atoms arranged in ascending order of their dis-
tances from the center of mass is: < CB, CA, CG, C, OD1,
N, O, OD2 >.

To capture physico-chemical feature, we adopt the
atom classification in [14] which classifies all non-
hydrogen atoms in proteins into 40 classes according to
the atom location (side-chain or backbone), connectiv-
ity, and chemical nature. We denote the atom type by
ResidueName.AtomName, which can be unambigu-
ously mapped to an atom type in [14]. For example, the
type of the first atom in Table 1 is represented by D.N.

As far as geometric feature is concerned, an obvious idea
is to use an atom’s 3-D coordinate. However, the coordi-
nates of atoms from two active sites are comparable only af-
ter those active sites are superposed. Typically, superposing
algorithms take two point sets with each point represented
by its (x, y, z) coordinate, and perform rigid transforma-
tions such as translation and rotation to minimize the RMSD
of these two point sets. Since these points are assumed to
be typeless, any two points are always superposable. But
the problem here is that superposed positions may not be
compatible with the atom types at those positions (e.g., in
general nitrogen and oxygen atoms cannot be superposed).
There are tools such as SPASM [22] that allow users to de-
fine superposable atom types. The main problem with this
is that knowledge about what are superposable atom types

2DHC <D.OD2,2.91> - -
1CHO <D.OD2,3.08> - <H.CB ,3.17>
1ACE <E.OE1,2.32><H.CD2,2.32><H.CB ,2.45>

* *

2DHC - <H.CA ,3.10><H.O ,3.20>
1CHO <D.CG ,3.22><H.CA ,3.63> -
1ACE - <H.CA ,3.31><E.CD ,3.46>

* *

2DHC <H.C ,3.46><D.CG ,3.47><D.OD1,3.50>
1CHO <H.C ,4.06> - -
1ACE <H.C ,3.94> - <E.OE2,4.06>

* *

Figure 8. A Segment of a Multiple Alignment

varies from family to family. A desiderata of geometric fea-
ture is that it be preserved under serialization. Features that
use relative instead of absolute positions can satisfy such a
requirement. Observe that distances of atoms to their cen-
ter of mass are relative quantities and hence can serve as a
geometric feature.

In summary, our feature set is the pair 〈AtomType,

Distance To CenterOfMass〉, where the first element
is the physico-chemical feature and the second is the ge-
ometric feature. The general form of an observation se-
quence corresponding to an active site following serializa-
tion using our feature set will be: 〈t1,d1〉, 〈t2,d2〉, . . .,
〈tn,dn〉 where n is the number of atoms in the active site,
ti is the atom type and di is the distance to the center of
mass for i = 1, . . ., n, and di < di + 1 for i=1, . . ., n-1. For
our example active site, it is 〈D.CB,1.016〉, 〈D.CA,1.133〉,
〈D.CG,1.622〉, 〈D.C,1.732〉, 〈D.OD1,2.169〉, 〈D.N,2.427〉,
〈D.O,2.519〉, 〈D.OD2,2.602〉.

3.2 PHMM for Active Sites

When observation sequences of multiple active sites
with similar function are put together, one can identify
which atoms are conserved by aligning them. Figure 8
shows a segment of the alignment of three similar active
sites6, namely, acetylcholinesterase (PDB ID: 1ACE) with
residues S200, E327, and H440 ; chymotrypsin (PDB ID:
1CHO) with residues H57, D102, and S195; haloalkane de-
halogenase (PDB ID: 2DHC) with residues D124, D260,
and H289. Although their constituting residues are differ-
ent, all of them perform similar catalytic function.

This alignment reveals that the consensus sequence has
six atoms (see columns marked by ’*’ in the figure). The
atoms appearing in the non-starred columns are insertions.
Observe also that the sequence of 2DHC goes through a
deletion between the first match and the third match; 1CHO

6Because of width constraints the sequences in the figure run over to
multiple lines.



goes through two deletions: one between the third match
and the fifth match and the other after the fifth match.

We can learn the PHMM parameters (transition and
emission probabilities) from such multiple alignments.
However, it is labor intensive to come up with such a mul-
tiple alignment. One can also learn these parameters from
unaligned sequences. First, the number of match states (i.e.
the length of the PHMM) is estimated by taking the aver-
age length of the training sequences. Then the Baum-Welch
algorithm is applied to estimate the transition probabilities
and emission probabilities.

We adapt this process for learning PHMM parameters
from training data consisting of unaligned serialized active
site sequences belonging to a family. First, we estimate the
length of the PHMM from the training sequences. This is
the average length of the sequences. For example, the aver-
age length for the sequences in Figure 8 without the dashes
is six.

To learn the other two PHMM parameters, we modify the
Baum-Welch algorithm. Since emission symbols are pairs
〈atomtype, distance〉, we will need to compute the joint
distribution of these pairs for each state. Making the stan-
dard independence assumption done in HMMs, namely, that
the random variables in the joint distribution are indepen-
dent, the probabilities of the atom types and their distances
are computed separately. Let us define the probability of
atom type t in a state as P (t) and the probability of the dis-
tance d from center of mass as P (d). We calculate the emis-
sion probability P (b) of the emission symbol b = 〈t, d〉 to
be P (t) × P (d).

The distance from the center of mass is a continuous fea-
ture. We assume that its probability distribution is generated
by a multivariate Gaussian distribution whose probability
density function is:

e−( (d−µ)2

2σ2 )

σ
√

2π

where d is the distance, µ is the mean and σ is the stan-
dard deviation of distances to the center of mass. Suppose
the distances to the center of mass from atoms that are emit-
ted by a state are d1, . . . , dm. We compute µ and σ at this
state using the expressions:
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The small constant ε is added so that σ is always positive
even when n = 1.

Recall that we need 42 parameters to describe the emis-
sion distribution for each state. Forty of these parameters

correspond to the emission probabilities of the 40 atom
types and they must sum up to 1. The remaining two are
µ and σ that represent the distribution of the distances of
atoms emitted from the state to their center of mass.

For a set of unaligned sequences, Baum-Welch algorithm
iteratively updates the parameters of the model to increase
the overall probability of the set of training sequences to be
generated by the model. We modify the Baum-Welch algo-
rithm to take into account the new emission parameter set
and the joint emission probability. At each step of iteration,
we calculate the individual probabilities of atom type and
distance from center of mass and multiply these probabili-
ties to get the joint probability. For a family of observation
sequences of active sites, this modified Baum-Welch algo-
rithm is used to estimate the parameters of the PHMM that
profiles this family.

Armed with a PHMM M trained on a family S of se-
rialized active site sequences we can now answer questions
about similarity of active sites. To determine if a protein has
substructures similar to the active sites in S we proceed as
follows: First we find candidate substructures in the protein
structure. This can be done with tools such as MOE Active
Site Finder [23] and Q-SiteFinder [13]. Then a serialized
observation sequence is generated for each candidate sub-
structure. Those are the candidate observation sequences
for the protein. For each such observation sequence, we ap-
ply the Viterbi algorithm to compute the the probability of
its most likely path in the PHMM M. To compute the prob-
ability of observing a pair 〈t, d〉 at a state, the Viterbi al-
gorithm computes the probabilities of observing atom type
t and distance d separately using the emission distribution
parameters of that state, and then multiply them to get the
emission probability of the pair.

The step that remains is computation of the log-odds ra-
tio (see Section 2.2 ). For the PHMM M we define a ran-
dom model M ′ whose length and transition probabilities
are identical to those in M . The emission parameters are
assumed to be uniform for all the insert and match states.
These state-independent parameters are computed as fol-
lows:

1. The emission probability for atom type a is
∑

r where a∈r
q(r)

num of atoms in r
, where r is a residue

and q(r) is the frequency of r (see Section 2.2).

2. Randomly sample substructures from PDB, each of
which contains the same number of residues as the
training examples.

3. For each such substructure, compute the center of mass
and the distances of the atoms to this center.

4. Compute the mean µ and the standard deviation σ over
all distances and over all substructures.
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Figure 10. Recall Performance of Protein Fam-
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Armed with M and M ′, we can compute the bit score of
an observation sequence in M and decide similarity as was
described in Section 2.2.

4 Evaluation

We implemented our PHMM-based profiling of active
sites. In this section we report on its experimental perfor-
mance. It is organized into the following subsections: The
experimental setup for the evaluation; the performance met-
rics measured; the experimental results; and discussion of
the results.

4.1 The Experimental Setup

The evaluation was conducted over different sets of pro-
tein families detailed below.
Protein Families
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Figure 11. F-Measure Performance of Protein
Families

We developed PHMM profiles for five different protein
families, namely, Ribonuclease A, Ribonuclease T1, Eu-
karyotic Lysozyme, Prokaryotic Lysozyme, Nu:-His-Elec
catalytic triad. The Nu:-His-Elec family is further divided
into five subfamilies according to the residues that comprise
the catalytic triads, which are Ser-His-Asp, Ser-His-Glu,
Asp-His-Asp, Ser-His-Trp, and Cys-His-Asn. They are de-
noted by sub1, sub2, sub3, sub4, and sub5, respectively. We
also built profiles for these five subfamilies.

Training and Test Data
We used 35, 34, 30, 35 and 153 members respectively

of Ribonuclease A, Ribonuclease T1,Eukaryotic Lysozyme,
Prokaryotic Lysozyme and Nu:-His-Elec catalytic triad
families. For profiling the subfamilies we used 30, 35, 25,
31, 32 members of sub1, sub2, sub3, sub4, and sub5 respec-
tively.

The active sites per family were divided into two mu-
tually exclusive training and test sets. The active sites of
a family included in the test set associated with the family
were labeled as positive test examples. For each family, we
augmented its test set with a subset of active sites belonging
to other four families. These augmented active sites were
labeled as negative test examples.

Statistics associated with the experimental data used are
listed in table 2 for the five families and in table 3 for the
subfamilies of Nu:-His-Elec catalytic triad.

From these statistics observe that on the average we used
around 43 and 44 active sites respectively for training and
testing each family.

We built a separate PHMM per family. The parameters
were learnt using the training set associated with the family.
The global threshold for the log-odds ratio was set to 0.



Table 2. Data Statistics for Different Protein Families
Protein Families Average No

of Active Site
Atoms

Size of Train-
ing Set

Size of Test Set No of Positive
Examples in the
Test Set

No of Negative
Examples in the
Test Set

Ribonuclease A 20 25 30 10 20
Ribonuclease T1 24 24 35 10 25

Eukaryotic Lysozyme 29 30 20 8 12
Prokaryotic Lysozyme 21 35 31 15 16

Nu:-His-Elec catalytic triad 24 103 105 40 65

Table 3. Data Statistics for Subfamilies of Nu:-His-Elec Catalytic Triad
Protein Families Average No of

Active Site Atoms
Size of Training
Set

Size of Test Set No of Positive Ex-
amples in the Test
Set

No of Negative Ex-
amples in the Test
Set

sub1 20 18 32 12 20
sub2 22 20 35 15 20
sub3 26 15 22 10 12
sub4 28 18 25 13 12
sub5 24 21 21 11 10
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Figure 12. Precision Performance of Protein
Sub Families of Nu:-His-Elec Catalytic Triad
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Figure 13. Recall Performance of Protein Sub
Families of Nu:-His-Elec Catalytic Triad
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Figure 14. F-Measure Performance of Protein
Sub Families of Nu:-His-Elec Catalytic Triad

4.2 Performance Metrics

We evaluated the PHMM with respect to three perfor-
mance metrics: recall, precision and f-measure 7 using the
test data set constructed above.

Observe that an active site in the test data for a family
was uniquely labeled as a positive or negative test example.
These labels are used to classify the similarity results pro-
duced by PHMM on the test data into true positives, false
positives, true negatives and false negatives. Based on these
classifications the recall/precision/F-measures are directly
computed from their definitions.

7Recall value for a protein family is defined as the ratio of correctly
identified proteins (which are members of the family) over the total number
of family members present in the test set. For precision, the denominator
is taken as the total number of proteins (both positive as well as negative
test examples) present in the test which are identified as members of the
family. F-measure is defined as the harmonic mean of recall and precision



4.3 Experimental Results

The results of the experimental evaluation are shown in
figures 9, 10, 11, 12, 13 and 14.

Figure 9 shows the precision performance for each of the
protein families. They range from 86% (for Ribonuclease
T1) to 92% (for Ribonuclease A). Figure 12 shows the pre-
cision performance for each sub-families of Nu:-His-Elec
catalytic triad.

Figure 10 shows the recall performance for each of the
protein families. They range from 88% (for Ribonuclease
T1 and Nu:-His-Elec catalytic triad ) to 90% (for Ribonu-
clease A and Eukaryotic Lysozyme ). Figure 13 shows the
recall performance for the subfamilies of Nu:-His-Elec cat-
alytic triad.

We also calculated f-measure for each of the families.
Figure 11 shows the f-measure for each of the families. It
ranges from 87% (for Ribonuclease T1) to 91% (for Ri-
bonuclease A). Figure 14 shows the f-measure performance
for the sub-families of Nu:-His-Elec catalytic triad.

4.4 Discussion

The experimental performance suggests that PHMM-
based methods described in this paper for determining sim-
ilarity of active sites works well in practice. The PHMM
constructed for each family exhibits reasonably high recall,
precision and f-measure values. A high degree of shared
features by family members results in higher performance
metrics. For instance the active sites of Ribonuclease A
shares many atom types along with their geometric config-
uration. This is reflected by its high recall, precision and
f-measures (90%, 92%, 91%). On the other hand the low
degree of shared features observed in Ribonuclease T1 has
translated into low recall, precision and f-measure values
(86%, 88%, 87%).

.

5 Related Work

We review here computational tools and techniques re-
lated to the problem of determining similarity of active sites.

On the tool front the best known system is SPASM [10,
22]. It takes the pair 〈 protein structure, target active site
〉 as the input and finds substructures in the protein that
are similar to the active site. As we had discussed earlier
comparing a substructure to an active site independently of
other members of the active site’s family fails to exploit the
commonality amongst them. Consequently, it can fail to es-
tablish similarity with some family members, especially re-
mote ones. A profile based approach as is done in the paper
addresses this problem since profiles can capture common
features of family members.

The idea of profiling active sites was first explored in
the context of building the PROCAT database [20, 26], in
which the term “functional template” was used for what we
refer to as the active site profile in this paper. In PROCAT,
functional templates are manually defined for several en-
zyme families. For example, it includes templates for Ri-
bonuclease A and the five subfamilies of Histidine-based
catalytic triad (see Tables 2 and 3). These templates con-
sist of only a subset of atoms in the active site residues. For
instance, only the Oγ atom is included in the template for
the Ser-His-Asp subfamily. The decision of which atoms
to include is done manually through close inspection of the
structures and functional mechanisms of all the proteins in
the family. The template so constructed captures the fea-
tures shared by the family members. Th problem here is that
template construction is a manual process thereby limiting
scalability. In contrast our approach to “learn the templates”
is highly automated.

A more recent work is Catalytic Site Atlas (CSA) [19,
27], a database documenting enzyme active sites and cat-
alytic residues present in enzymes with 3-D structures. The
active sites are labeled either original or derived. The for-
mer are extracted from scientific literature while the latter
are associated with proteins whose primary sequences are
homologous to the primary sequences of proteins contain-
ing the original active sites. An original active site and all of
its derived sites constitutes a family. Templates with shared
features are again constructed manually for each family.

MultiBind is yet another recent work that takes a set of
active sites and automatically aligns all of them [18, 28].
The multiple alignment reveals what are the subset of atoms
that are conserved among all the active sites in the set.
Firstly, this approach is not statistical unlike ours. But the
more important difference is that multiple alignment alone
does not provide any quantitative measure of how close an
active site is to the aligned sites. Without such measures it
is not possible to algorithmically deduce similarity.

PHMMs were used for profiling entire protein structures
in [1]. The 3-D structure is serialised into a sequence of
3-D coordinates. In other words this work uses only one ge-
ometric feature. Such an approach is useful for determining
similarity of entire protein structures whose superposition
has the lowest RMSD value. As we had discussed earlier
(see Section 3.1) 3-D coordinates alone may not adequately
capture the salient shared features of the family. Good su-
perpositions in terms of low RMSD values may produce in-
compatible atom types at the superposed positions. Fac-
toring in both physico-chemical and geometric features as
is done in our approach can result in more accurate deter-
minations of similarity and our experimental results seem
to validate this hypothesis. Futhermore, as discussed below,
there is no correlation between similarity of entire structures
as is done in this work and active site similarity.



Finally, we remark that protein functions can also be
predicted based on sequence homology or overall structure
similarity. However it has been observed that there is no
significant correlation between conservation of sequences,
structures and active sites [11]. Hence function prediction
by detection of substructures in proteins that are similar to
active sites of proteins with known functions complement
those based on sequence homology and structural similarity
methods.

6 Conclusion

In this paper we described computational techniques for
statistically profiling active sites in proteins. Specifically we
adapted the successful PHMM based approach for analysis
of linear sequences to encode the profiles of 3-D active sites
belonging to a family. Our preliminary experience with a
prototype implementation of our approach indicates that it
is effective in practice.

There are several avenues for future work along the lines
pursued in this paper. In our experimentation, we only uti-
lized one geometric feature, namely distance to the center of
mass. This is a relatively coarse measure. It should be pos-
sible to incorporate other geometric features as well, such as
pair-wise distances between atoms. We can also incorporate
additional physico-chemical features such as stereochemi-
cal and charge constraints of the active sites. Adding these
features will yield richer profiles and may further improve
the accuracy of prediction.

Another major idea is to depart from the linear structure
of HMMs. Transitions in HMMs depend only on the previ-
ous state. While HMMs are appropriate for modeling pri-
mary structures of proteins, active sites are 3-D structures
and a state transition is necessarily influenced by a set of
neighboring states. Linearizing 3-D structures fails to cap-
ture such dependencies between neighboring states. Hidden
Markov Random Fields (HMRF) [12] relax this limitation.
HMRFs operate over undirected state graphs. The probabil-
ity distribution of a random variable associated with a state
in a HMRF is a function of the states in its neighborhood as
defined by the graph structure. It appears that HMRFs offer
a natural computing model for profiling active sites. Esti-
mating HMRF parameters for this problem is a promising
research direction.
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Abstract

Profile Hidden Markov Models (PHMMs) are recog-
nized as powerful computational vehicles for homology
search of protein sequences. Extant PHMM training ap-
proaches either use completely unaligned or aligned se-
quences. The PHMMs resulting from these two training
approaches present contrasting tradeoffs w.r.t. align-
ment information and the accuracy of the search out-
come. This paper describes a PHMM based technique
for modeling protein families from partially aligned se-
quences. By exploiting the observation that partially
aligned sequences give rise to independent subsequences,
PHMMs corresponding to these subsequences are com-
posed to build PHMMs for the entire sequences. An
interesting aspect of the technique is that it gives rise
to a family of PHMMs which are parameterized w.r.t.
the alignment information. We present experimental
comparison of the performance of our technique against
several state of the art homology detection methods.

1 Introduction

The success of genomic work on various species has re-
sulted in an enormous multitude of biological sequence
information. This has created a rich research area cen-
tered around the development of automated techniques
for analysis of these sequences. An effective means
of understanding the characteristics of a new biologi-
cal polymer from its sequence is through homology –
whereby the sequence is compared to other similar se-
quences with known rich biological information. Profile
hidden Markov Model[2, 5] has been proven to be able
to detect remote homology.

The two dominant approaches for training PHMMs
differ mainly in the way training sequences are utilized.
At one extreme is training from completely aligned se-
quences where all the residues in every sequence are
mapped to a column representation taking into ac-
count insertions and deletions. In contrast, (inexpen-
sive) training from completely unaligned sequences uses
no such information. Not surprisingly, PHMMs trained
from completely aligned sequences (which we will re-
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fer to as A PHMMs) have been shown to identify re-
mote homologs with a much higher degree of accuracy
than those trained from unaligned sequences (which we
will refer to as U PHMMs). However, producing the
information about alignments is a labor intensive pro-
cess involving expensive structural analysis of entire se-
quences. The contrasting trade-offs at the two ends
of the alignment spectrum gives rise to the question:
Can we develop techniques for learning profile PHMMs
that trade the accuracy of remote homolog identification
for alignment information? Using the notion of par-

tially aligned sequences where only parts of sequences
are aligned against each other, we formulate this prob-
lem as one of estimating PHMM parameters from such
sequences. We will refer to PHMMs trained with such
partially labeled sequences as P PHMMs.

The essence of our approach for training PH-
MMs from partially aligned sequences (referred to as
P PHMM from now on) rests on the observation that
a consecutive string of unaligned residues between two
aligned residues can be generated only from the se-
quence of states lying between the match states for the
aligned residues in the P PHMM structure. Based on
this observation, the algorithm decomposes P PHMM
into submodels whose parameters are separately esti-
mated and then composed together to produce the orig-
inal P PHMM parameters. The technique is parame-

terized w.r.t. the alignment information in the sense
that by varying the alignment information we can es-
timate the parameters of PHMMs spanning the entire
spectrum from aligned PHMM at one end to unaligned
PHMM (U PHMM) at the other end.

The idea of combining PHMMS has been explored
by MetaMEME[4]. However, our approach uniformly
models both motif and non-motif regions as full PHMMs
with match, insert, and delete states. This leads to
more precise results especially when motifs do not cover
significant portions of the sequences. Another closely
related work is TCoffee[7] which can be used to generate
a multiple alignment (from which a family model can be
learned) from partial alignments.

The rest of the paper is organized as follows:
In Section 2, we present algorithmic details of our
technique for building P PHMMs. Section 3 presents
experimental results on the performance of P PHMM.
Section 4 concludes the paper.
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Figure 1: Partial alignment information for ten ig sequences

2 Partial Alignment Profiling

Building P PHMMs rests on the use of partial alignment

information to decompose a PHMM structure into sub-
models and compose parameters computed from these
submodels into the PHMM’s parameters.
Partially Aligned Sequences: In a set of par-
tially aligned sequences, alignment information is known
only for a subsequence of residues in every individ-
ual sequence in the set. C1, C2, and C3 in Figure 1
show three aligned columns in the ten sequences of
the ig family. The alignment C1 spans the residues
A, V, L, I, L,A,K, V,M , and A in the ten sequences re-
spectively and is illustrated by the leftmost solid line.
Similarly, the alignment C3 spans the Y residues in each
of the ten sequences as indicated by the rightmost solid
line. As illustrated in C2, where the residues S,D, F, T ,
and D in only the last five sequences are aligned, it
is not necessary that an alignment information has to
cover all the sequences in the set. In the event of align-
ment being known for all the residues in every sequence,
partial alignment collapses to complete alignment while
total absence of any alignment information reduces to a
set of unaligned sequences.

We have used the simple heuristic of taking the av-
erage length of the sequences to estimate the model
length. For instance, for the ten ig family members in
Figure 1, the model length computed by averaging over
the size of the ten sequences is 74. By the definition of
alignment, all residues aligned at a particular column
are generated from the same state in the PHMM. We
estimate this state by averaging over the positions of
the residues, belonging to the alignment, in their cor-
responding sequences. For instance, for the alignment
C1 in Figure 1, the mean position where a residue in
the alignment occurs in a sequence is 12. Consequently,

all the ten residues in C1 are generated from the match
state M12. Similarly, the ten residues in C3 and the five
residues in C2 are generated from the match states M65

and M21 respectively.
Model Decomposition: The key to using partial
alignment information for estimating PHMM param-
eters is the observation that a substring of unaligned
residues between any two aligned residues can only be
generated from the sequence of states in model positions
between those corresponding to the aligned residues.
For instance, in the first sequence 1LTK in Figure 1,
the residues A (C1) and Y (C3) belong to match states
M12 and M65. The substring of unaligned symbols from
R to K between the two aligned residues can be gener-
ated only from states in model positions 13 to 64 and
the insert state I12. This observation lets us decompose
the PHMM structure into submodels where each sub-
model generates substrings from the original sequence.
In what follows, we have ignored gaps in alignment in-
formation for simplicity of exposition of our technique.

In our decomposition framework, aligned residues
are generated from singleton match states while sub-
strings of unaligned residues are generated from PH-
MMs consisting of states in sequences of consecutive
positions in the original model. We construct these PH-
MMs, or submodels, from the appropriate states in the
original model and add begin and end states to complete
the submodel structure. The PHMM P1 in Figure 2
illustrates an example submodel. During decomposi-
tion, for a sequence with aligned residues αn, αm gener-
ated at match states Mi,Mj respectively and with the
intermediate unaligned substring αn+1 · · ·αm¡1 gener-
ated from the submodel P , transitions are created from
Mi to P and from P to Mj . In the event of consecu-
tive aligned residues (i.e. αm = αn+1), the submodel P
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Figure 2: Decomposition of a 74 length PHMM struc-
ture using the partially aligned sequences in Figure 1

does not exist and Mi directly transitions to Mj . Fig-
ure 2 illustrates the decomposition on a PHMM struc-
ture with model length 74 using the ten partially aligned
sequences of the ig family in Figure 1.
Parameter Composition: The essence of our compo-
sition technique is to estimate the original PHMM pa-
rameters from expectations of transition and emission
events computed from submodels and singleton match
states.

Recall that a submodel generates a set of unaligned
residue substrings. For instance, the submodel P1 in
Figure 2 generates the first eleven residues of all the
ten ig family sequences shown in Figure 1. This allows
individual submodel parameters to be estimated by
Baum-Welch training.

The singleton match states corresponding to aligned
columns generate a set of residues. For instance, in Fig-
ure 2, M65 emits only the Y residue while M12 emits
the residues A, V, L, I,K, and M . The emission proba-
bilities of residues in these match states are estimated
by smoothed maximum likelihood frequency counting.
Also, transition probabilities between submodels and
neighboring match states and vice-versa are estimated
using a smoothed maximum likelihood approach. For
instance, in Figure 2, if nM12,P2

and nM12,P4
denote the

number of sequences where transitions from M12 to P2

and from M12 to P4 occur respectively, the probability
of transition from M12 to P2, pM12,P , is computed as

nM12,P2
+1

nM12,P2
+nM12,P4

+2 .

The partial alignment information in a sequence
can be such that:

1. Alignment occurs at the match states Mk and Ml,
where k < i and j < l, for the residues αn and αm

respectively.
2. Alignment occurs at the match state Mi for the

residue αn but not at Mi+1.
3. Alignment occurs at the match state Mi+1 for the

residue αm but not at Mi (the converse of the
above).

4. Alignment occurs at both Mi and Mi+1 for residues
αn and αn+1 respectively.

Given a sequence, these four scenarios influence the
computation of transition expectations for the three
kinds of states in a PHMM. Let AS1,S2

denote the tran-
sition expectation between state S1 and S2. Apparently
scenario 4 only contributes to AMi,Mi+1

which in this
case is just the count of the number of times a transi-
tion is made between the singleton match states Mi and
Mi+1. For the other three scenarios, Table 1 summa-
rizes how the transition expectations are estimated.

Scenario 1 2 3

ADi,Di+1
BW N/A N/A

ADi,Ii
BW N/A BW

ADi,Mi+1
BW N/A AP

Di,EP
× pP,Mi+1

AIi,Ii
BW N/A N/A

AIi,Di+1
BW N/A N/A

AIi,Mi+1
BW N/A AP

Ii,EP
× pP,Mi+1

AMi,Ii
BW pMi,P × AP

BP ,Ii
BW

AMi,Di+1
BW pMi,P × AP

BP ,Di+1
N/A

AMi,Mi+1
BW pMi,P × AP

BP ,Mi+1
AP

Mi,EP
× pP,Mi+1

Table 1: Transition Expectations

In Table 1, all entries marked by ’BW’ means that
the expectation is estimated from Baum-Welch on the
appropriate submodel. For example, the expectation
ADi,Di+1

from delete state Di to Di+1 for scenario 1 is

given by
∑t=m¡1

t=n+1 ξt(Di, Di+1).
Scenario 2 and 3 require considering a neighboring

singleton match state. Let us work out scenario 3 for
ADi,Mi+1

. In such a situation, Di makes a transition
to the end state EP of the submodel P which generates
the unaligned substring preceding the aligned residue in
Mi+1. Thus ADi,Mi+1

is estimated as AP
Di,EP

×pP,Mi+1
,

where pP,Mi+1
is the probability of transition between

P and Mi+1.
Finally, the sum of the expectations for any event

over all the sequences are used to estimate its prob-
ability using a smoothed maximum likelihood tech-
nique. For instance, the probability of transition be-
tween Mi,Mi+1 is given by:

pMi,Mi+1
=

P

AMi,Mi+1
+1

P

AMi,Mi+1
+

P

AMi,Ii
+

P

AMi,Di+1
+3 ,

where the summation denotes the cumulative value
of the expectation over all the sequences.

Emission expectations of residues in states are esti-
mated from submodels, by Baum-Welch, and from sin-
gleton match states by frequency counting. Smoothed
maximum likelihood is used to compute the emission
probabilities from these expectations.

3 Experimental Results

Experiments were conducted to compare the perfor-
mance of P PHMM against vanilla PHMM (U PHMM),
SAM which is a state of the art PHMM tool,
an advanced multiple alignment tool TCoffee, and
metaMEME. The effect of varying training set size as
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ID M
P PHMM U PHMM SAM TCOF. MME. RE

T F T F T F T F T F T F

ps00012 221 130 3 115 0 165 6 127 2 139 967 169 143

ps00475 80 70 8 71 6 72 2 66 0 60 851 57 11

ps00622 100 55 3 45 0 85 21 85 0 84 1225 77 4

ps00675 91 86 11 81 19 86 49 73 1 86 1412 70 138

ps01330 96 82 5 80 2 90 0 90 0 24 164 59 0

ID Members Aligned Cols

a.1.1.2 60 186

b.1.1.2 59 122

b.34.2.1 26 176

c.47.1.5 31 101

d.169.1.1 28 173

(a) (b)

Figure 3: (a)Experimental data with 15% training set on the 5 Prosite families (b)The 5 SCOP families
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Figure 4: (a) P PHMM precision against SAM and
metaMEME (b) P PHMM recall against U PHMM and
TCoffee

well as alignment information on the performance were
also investigated.
Datasets: Regular expression based signature informa-
tion available for families in the PROSITE database[3]
were used to generate partially aligned sequences.
Matches of a family’s signature in sequences which be-
long to it constitute the partial alignment information
for these sequences. To demonstrate the effectiveness of
our technique in homology identification, 5 PROSITE
families, each having at least 50 members, were chosen
where RE-based pattern signatures were not very effec-
tive in identifying family members. The first column
in Figure 3(a) shows the families used while the second
column shows the number of members of each family in
the Swiss-Prot database [1]. The models trained with
P PHMM, U PHMM, SAM, and TCoffee were used
with hmmsearch of HMMER [2] to detect homologs in
Swiss-Prot while for metaMEME its own search tool,
mhmms, was used. Default cutoff values were used in
both the cases.
Recall and Precision: Figure 3(a) tabulates the re-
sults of the experiments for the five models on the five
families using 15% of the members of each family as
the training set. The columns T and F for each model
reflect the number of true and false positives respec-
tively in the test set. Figure 4 summarizes the re-
sults w.r.t. recall and precision. Observe from Fig-
ure 4(a) that the precision of P PHMM is significantly

better than metaMEME for all the families. The re-
call of P PHMM is better than metaMEME for 3 of the
5 families as shown in Figure 3(a). The precision of
P PHMM is significantly better than SAM for ps00622
and ps00675 while being comparable for the other 3
families. Figure 4(b) illustrates the recall of P PHMM
against U PHMM and TCoffee. P PHMM has better
recall for 4 of the families compared to U PHMM and,
apart from ps00622, has better or similar recall com-
pared to TCoffee.
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Figure 5: Comparing recall of P PHMM with U PHMM
and metaMEME for (a) ps00012, (b) ps00475, (c)
ps00622, and (d) ps01330

Effect of varying training set: A desirable property
of any supervised learning algorithm is the improvement
in performance with increased training. Figures 5 shows
the change in recall with increasing training set size
for P PHMM, U PHMM, and metaMEME. Observe
that for all the four families the recall of P PHMM
increases with training set size. In contrast, vanilla
PHMM or U PHMM does not always show a increase
as evident in ps00012 and ps01330. This is even more
true for metaMEME which, in spite of having similar
recall numbers as P PHMM in Figure 3(a), does not
demonstrate better performance with more training.
Effect of varying alignment information (SCOP):
The parameterized nature of the P PHMM algorithm
was borne out by experiments conducted on families
from the SCOP [6] database. The SCOP database
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Figure 6: Impact on P PHMM performance of varying alignment information for the SCOP families (a) a1.1.2,
(b) b1.1.2, and (c) b.34.2.1
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Figure 7: Impact on P PHMM performance of vary-
ing alignment information for the SCOP families (a)
c.47.1.5, and (b) d.169.1.1

provides detailed and comprehensive description of the
structural and evolutionary relationship between pro-
teins. For the purposes of our experiments, we selected
5 SCOP families each having at least 25 members. Mul-
tiple alignment of these families was derived from the
PALI [8] database which provides alignments of pro-
teins in the SCOP database. Column 1 in Figure 3(b)
lists the ids of these 5 families, while Columns 2 and 3
show the number of family members and the number of
aligned columns in their multiple alignment.

P PHMMs were trained for each of these 5 families.
The training set size, for each family, was fixed at
a randomly chosen set of 25% of its total members.
The amount of alignment information was successively
varied from the use of 0% (completely unaligned), to
20%, 40%, 60%, and 80% of the number of aligned
columns in the multiple alignment of the family. The
test set for each of these families consisted of all the 5179
domains from all the 1029 families in PALI release 2.3.
Recall, precision, and F-measure of homology detection
were calculated for them. Figure 6 and Figure 7
graphically illustrates the impact on the three metrics
with varying alignment information on all the 5 families.
While all the 5 families show increase in the values of
the three metrics with alignment information, this is
especially perceptible in the SCOP families c.47.1.5 and
d.169.1.1 in Figure 7(a) and (b) respectively.

4 Discussions

In this paper, we proposed a parameterized technique
for learning PHMMs from partially aligned sequences.

Our technique was based upon decomposing a PHMM
structure into submodels and composing these submod-
els’ parameters into that of the PHMM.

Usually, PHMM parameters are learned with the
Baum-Welch algorithm from unaligned sequences. Note
that it is non-trivial to modify Baum-Welch to handle
partial alignment information. Baum-Welch is defined
in terms of a pair of algorithms which are formulated
in a greedy, recursive manner without any lookahead
capability. Consequently, incorporating alignment in-
formation at a current position for residues which occur
after it in the sequence is difficult. Considering such
information is necessary to restrict the assignment of
expectation values to valid states only. Incorporating
other sources of partial alignment information, such as
PSSMs, into our framework is a topic worth exploring.
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