

Assume-Guarantee
Reasoning for Deadlock

Sagar Chaki, Software Engineering Institute

Nishant Sinha, Carnegie Mellon University

September 2006

TECHNICAL NOTE
CMU/SEI-2006-TN-028

Predictable Assembly from Certifiable Components Initiative
Unlimited distribution subject to the copyright.

 SOFTWARE ENGINEERING INSTITUTE

This report was prepared for the

SEI Administrative Agent
ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is
published in the interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2006 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO
ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM
USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the
trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this
document for internal use is granted, provided the copyright and "No Warranty" statements are
included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of
this document for external and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-
0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a
federally funded research and development center. The Government of the United States has a
royalty-free government-purpose license to use, duplicate, or disclose the work, in whole or in part
and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion
of our Web site (http://www.sei.cmu.edu/publications/pubweb.html

Table of Contents

Abstract . v

1 Introduction . 1

2 Related Work . 3

3 Failure Languages and Automata . 4

4 Assume Guarantee for Deadlock . 9
4.1 A Non-Circular AG Rule . 12
4.2 Weakest Assumption . 12

5 Learning FLA . 15
5.1 Observation Table . 15
5.2 Overall LF Algorithm . 16
5.3 Candidate Construction . 17
5.4 Adding New Failures . 17
5.5 Correctness of LF . 18

6 Compositional Language Containment . 20

7 Arbitrary Components and Circularity . 21

8 Experimental Validation . 23

9 Conclusion . 25

References . 26

CMU/SEI-2006-TN-028 i

ii CMU/SEI-2006-TN-028

List of Figures

Figure 1: (a) LTS M on Σ = {a, b, c}, (b) its FLA, and (c) its deterministic FLA. All
states of FLAs are accepting. 5

Figure 2: Algorithm MakeClosed. 16
Figure 3: Experimental results. C = # of components; St = # of states of largest

component; T = time (seconds); M = memory (MB); A = # of states of
largest assumption; * = resource exhaustion; - = data unavailable; α =
1247; β = 1708. Best figures are shown in bold. 24

CMU/SEI-2006-TN-028 iii

iv CMU/SEI-2006-TN-028

Abstract

The use of learning to automate assume-guarantee style reasoning has received a lot of
attention in recent years. This paradigm has already been used successfully for checking
trace containment, as well as simulation between concurrent systems and their specifications.
In this report, the learning-based automated assume-guarantee paradigm is extended to
perform compositional deadlock detection. Failure automata is defined as a generalization of
finite automata that accept regular failure sets. A learning algorithm LF is developed that
constructs the minimal deterministic failure automaton accepting any unknown regular
failure set using a minimally adequate teacher. This report shows how LF can be used for
compositional regular failure language containment and deadlock detection, using
non-circular and circular assume-guarantee rules. Finally, an implementation of techniques
and encouraging experimental results on several nontrivial benchmarks are presented.

CMU/SEI-2006-TN-028 v

vi CMU/SEI-2006-TN-028

1 Introduction

Ensuring deadlock freedom is one of the most critical requirements in the design and
validation of systems. The biggest challenge toward the development of effective deadlock
detection schemes remains the statespace explosion problem. Compositional
reasoning [de Roever 98, McMillan 97, Grumberg 94] is recognized to be one of the most
promising approaches for alleviating statespace explosion. This report presents an automated
compositional deadlock detection procedure based on assume-guarantee (AG) [Pnueli 85]
reasoning.

AG reasoning revolves around a proof rule that relates system components and assumptions
about them to global system properties. Typically, to apply the proof rule, you need to
construct manually appropriate assumptions that can discharge the premises of the rule. In
most realistic situations, suitable assumptions are complicated. The absence of automated
assumption-generation techniques has held back the wider practical adoption of AG
reasoning.

An important breakthrough has been the use of learning algorithms for assumption
construction [Cobleigh 03]. The general idea is to learn an automaton corresponding to the
weakest assumption [Giannakopoulou 02] that can discharge the AG premises. The learning
process is embedded in the overall verification procedure in a way that guarantees
termination with the correct result. The choice of the learning algorithm is dictated by the
kind of automaton that can represent the weakest assumption, which in turn depends on the
verification goal. For example, in the case of trace containment [Cobleigh 03], the weakest
assumptions are naturally represented as deterministic finite automata, and this leads to the
use of the L∗ learning algorithm [Angluin 87]. Similarly, in the case of simulation [Chaki 05a],
the corresponding choices are deterministic tree automata and the LT learning algorithm.

Nonetheless, neither learning algorithm is appropriate for deadlock detection. Word and tree
automata are unable to capture failures [Hoare 85], a critical concept for understanding and
detecting deadlocks. While you can transform any deadlock detection problem to an ordinary
trace containment, such schemes invariably introduce new components and an exponential
number of actions. As a result, these strategies are not scalable. Our work started with a
search for an appropriate automata-theoretic formalism that can handle failures directly. Our
deadlock detection algorithm uses learning-based automated AG reasoning and does not
require additional actions or components.

Two key parts of our solution are: (1) a new type of acceptors for regular failure languages
(RFLs) with a non-standard accepting condition and (2) a notion of parallel composition
between these acceptors that is consistent with the parallel composition of the languages they
accept. Our accepting condition is novel and employs a notion of maximality that crucially
avoids introducing an exponential number of new actions. To the best of our knowledge, such
acceptors and their composition have not been discussed before. In addition, we believe that
this report presents the first use of learning in the context of automated AG reasoning for
deadlock detection.

In Section 2, we present the theory of regular failure languages which are downward closed

CMU/SEI-2006-TN-028 1

and define failure automata that exactly accept the set of regular failure languages. Although
RFLs are closed under union and intersection but not under complementation, which is an
acceptable tradeoff for the use of maximality. Further, we show a Myhill-Nerode-like theorem
for RFLs and failure automata.

We show, in Section 3, that the failure language of a labeled transition system (LTS) M is
regular and checking deadlock freedom for M is a particular instance of the problem of
checking RFL containment. Then, we present an algorithm for checking containment of
RFLs. We cannot check containment between failure languages L1 and L2 by complementing
L2 and intersecting with L1, since (as we noted above) RFLs are not closed under
complementation.

In Section 4, we present a sound and complete non-circular AG rule, AG-NC, on failure
languages for checking failure language specifications. Given failure languages L1 and LS , we
define the weakest assumption failure language LW : for every LA such that L1 ‖ LA ⊆ LS ,
LA ⊆ LW . We then show constructively that if failure languages L1 and L2 are regular, then
LW uniquely exists, is regular, and is accepted by a minimum failure automaton AW .

Section 5 details the development of an algorithm LF to learn the minimum deterministic
failure automaton that accepts an unknown regular failure language U using a minimally
adequate teacher that can answer membership and candidate queries pertaining to U . We
show how the teacher can be implemented using the RFL containment algorithm mentioned
above.

In Section 6, we develop an automated and compositional deadlock detection algorithm that
employs AG-NC and LF .

Section 7 defines a circular AG proof rule AG-Circ for deadlock detection and shows how to
use it for automated and compositional deadlock detection.

As we show in Section 8, we have implemented our approach in the ComFoRT [Chaki 05b]
reasoning framework. We present encouraging results on several nontrivial benchmarks,
including an embedded OS and Linux device drivers.

Finally, Section 9 summarizes our conclusions.

2 CMU/SEI-2006-TN-028

2 Related Work

Machine-learning techniques have been used in several contexts related to verification
[Peled 99, Groce 02, Alur 05a, Habermehl 05, Ernst 99]. We follow the approach of Cobleigh,
Giannakopoulou, and Păsăreanu [Cobleigh 03] (respectively Chaki and
colleagues [Chaki 05a]) to automate assume-guarantee reasoning for trace-containment (or
simulation) between finite state systems.1 However, we apply this general paradigm for
deadlock detection. This LF algorithm may also be of independent interest. Rivest and
Schapire proposed an improvement to Angluin’s L∗ that substantially improves its
complexity [Rivest 93]. LF has the same spirit as this improved version of L∗. The use of
circular AG rules was also investigated in the context of trace containment by Barringer,
Giannakopoulou, and Păsăreanu [Barringer 03].

Overkamp explored the synthesis of supervisory controller for discrete-event
systems [Overkamp 97] based on failure semantics [Hoare 85]. His notion of the least
restrictive supervisor that guarantees deadlock-free behavior is similar to the weakest failure
assumption in our case. However, our approach differs as follows: (1) We use failure
automata to represent failure traces; (2) We use learning to compute the weakest failure
assumption automatically; and (3) Our focus is on checking deadlocks in software modules.
Williams, Thies and Ernst investigated an approach based on static analysis for detecting
deadlocks that incorrect lock manipulation by Java programming language libraries can
cause [Williams 05].2 The problem of detecting deadlocks for pushdown programs
communicating only via nested locking has been investigated by Kahlon, Ivancic and
Gupta [Kahlon 05]. In contrast, we present a model-checking-based framework to
compositionally verify deadlock freedom for non-recursive programs with arbitrary lock-based
or rendezvous communication. Other non-compositional techniques for detecting deadlock
have been investigated in context of partial-order reduction [Holzmann 03] and for checking
refinement of CCS processes using a notion called stuck-free conformance that’s more
discriminative than failure trace refinement [Fournet 04].

Brookes and Roscoe use the failure model to show the absence of deadlock in undirectional
networks [Brookes 91]. They also generalize the approach to the class of conflict-free
networks via decomposition and local deadlock analysis. In contrast, we provide a completely
automated framework for detecting deadlocks in arbitrary networks of asynchronous systems
using rendezvous communication. Our formalism is based on an automata-theoretic
representation of failure traces. Moreover, to analyze the deadlock freedom of a set of
concurrent programs compositionally, we use both circular and non-circular
assume-guarantee rules [Pnueli 85, de Roever 98, Barringer 03]. Amla and colleagues have
presented a sound and complete assume-guarantee method in the context of an abstract
process composition framework [Amla 03]. However, they do not discuss deadlock detection
or explore the use of learning.

1 Alur, Madhusudan, and Nam have also investigated symbolic learning in this context [Alur 05b].
2 Williams, Thies and Ernst also also provide an excellent survey of related research [Williams 05].

CMU/SEI-2006-TN-028 3

3 Failure Languages and Automata

In this section, we present the theory of failure languages and failure automata. We consider
a subclass of regular failure languages and provide a lemma relating regular failure languages
(RFLs) and failure automata (FLA), analogous to Myhill-Nerode theorem for ordinary
regular languages. We begin with a few standard definitions [Roscoe 97].

Definition 1 (Labeled Transition System) A labeled transition system (LTS) is a
quadruple (S, Init, Σ, δ) where: (i) S is a set of states, (ii) Init ⊆ S is a set of initial states,
(iii) Σ is a set of actions (alphabet), and (iv) δ ⊆ S × Σ × S is a transition relation.

We only consider LTSs such that both S and Σ are finite. We write s
α−→ s′ to mean

(s, α, s′) ∈ δ. A trace is any finite (possibly empty) sequence of actions, that is, the set of all
traces is Σ∗. We denote an empty trace by ε, a singleton trace 〈α〉 by α, and the
concatenation of two traces t1 and t2 by t1 • t2. For any LTS M = (S, Init, Σ, δ), we define
the function δ̂ : 2S × Σ∗ → 2S as follows:

δ̂(X, ε) = X and δ̂(X, t • α) =
{

s′|∃s ∈ δ̂(X, t) � s α−→ s′
}

M is said to be deterministic if |Init| = 1 and ∀s ∈ S � ∀α ∈ Σ � |δ̂({s} , α)| ≤ 1 and complete
if ∀s ∈ S � ∀α ∈ Σ � |δ̂({s} , α)| ≥ 1. Thus if M is both deterministic and complete then
|Init| = 1 and ∀s ∈ S � ∀t ∈ Σ∗ � |δ̂({s} , t)| = 1. In this case, we write δ̂(s, t) to mean the only
element of δ̂({s} , t).

Definition 2 (Finite Automaton) A finite automaton is a pair (M, F) such that
M = (S, Init, Σ, δ) is an LTS and F ⊆ S is a set of final states.

Let G = (M, F) be a finite automaton. Then, G is said to be deterministic (complete) iff the
underlying LTS M is deterministic (complete).

Definition 3 (Refusal) Let M = (S, Init, Σ, δ) be an LTS and s ∈ S be any state of M .
We say that s refuses an action α iff ∀s′ ∈ S � (s, α, s′) �∈ δ. We say that s refuses a set of
actions R and denote this by Ref(s, R), iff s refuses every element of R. Note that the
following holds: (i) ∀s � Ref(s, ∅) and (ii) ∀s, R, R′ � Ref(s, R)∧R′ ⊆ R =⇒ Ref(s, R′) (i.e.,
refusals are downward-closed).

Definition 4 (Failure) Let M = (S, Init, Σ, δ) be an LTS. A pair (t, R) ∈ Σ∗ × 2Σ is said
to be a failure of M iff there exists some s ∈ δ̂(Init, t) such that Ref(s, R). The set of all
failures of an LTS M is denoted by F(M).

Note that a failure consists of both a trace and a refusal set. A (possibly infinite) set of
failures L is said to be a failure language. Let us denote 2Σ by Σ̂. Note that L ⊆ Σ∗ × Σ̂.

4 CMU/SEI-2006-TN-028

a a

cb

a a

cb

a

c
b

(a) (b) (c)

{b, c}

{a, b}

{b, c}

Σ Σ ΣΣ

{a, c} {{a, b}, {a, c}}

Figure 1: (a) LTS M on Σ = {a, b, c}, (b) its FLA, and (c) its deterministic FLA. All states
of FLAs are accepting.

The union and intersection of failure languages are defined in the usual way. The
complement of L, denoted by L, is defined to be (Σ∗ × Σ̂) \ L. A failure language is said to
be downward-closed iff the following holds:

∀t ∈ Σ∗ � ∀R ∈ Σ̂ � (t, R) ∈ L =⇒ ∀R′ ⊆ R. (t, R′) ∈ L

In general, failure languages may not be downward closed; however, we will show later that
failure languages generated from LTSs are always downward closed because the refusal sets at
each state of an LTS are downward closed. In this report, we focus on downward-closed
failure languages, in particular, regular failure languages.

Definition 5 (Deadlock) An LTS M is said to deadlock iff F(M) ∩ (Σ∗ × {Σ}) �= ∅. In
other words, M deadlocks iff it has a reachable state that refuses every action in its alphabet.

Let us denote the failure language Σ∗ × {Σ} by LDlk. Then, it follows that M is deadlock
free iff F(M) ⊆ LDlk.

Maximality. Let P be any subset of Σ̂. The set of maximal elements of P is denoted by
M ax(P) and defined as follows: M ax(P) = {R ∈ P | ∀R′ ∈ P � R �⊂ R′}.

For example, if P = {{a}, {b}, {a, b}, {a, c}}, then M ax(P) = {{a, b}, {a, c}}. A subset P of
Σ̂ is said to be maximal iff it is non-empty and M ax(P) = P . Intuitively, failure automata
are finite automata whose final states are labeled with maximal refusal sets. Thus, a failure
(t, R) is accepted by a failure automaton M iff upon receiving input t, M reaches a final state
labeled with a refusal R′ such that R ⊆ R′. With the concept of maximality, we use only the
upper bounds of a set (according to subset partial order) to represent the complete set and
thereby concisely represent downward-closed failed languages.

Definition 6 (Failure Automaton) A failure automaton (FLA) is a triple (M, F, μ) such
that M = (S, Init, Σ, δ) is an LTS, F ⊆ S is a set of final states, and μ : F → 2bΣ is a
mapping from the final states to 2bΣ such that: ∀s ∈ F � μ(s) �= ∅ ∧ μ(s) = M ax(μ(s)).

CMU/SEI-2006-TN-028 5

Let A = (M, F, μ) be a FLA. Then A is said to be deterministic (respectively complete) iff
the underlying LTS M is deterministic (respectively complete). Part (a) of Figure 1 shows an
LTS over Σ={a, b, c}. Parts (b) and (c) show the corresponding FLA and its deterministic
version, respectively.

Definition 7 (Language of an FLA) Let A = (M, F, μ) be an FLA such that
M = (S, Init, Σ, δ). Then, a failure (t, R) is accepted by A iff the following holds:

∃s ∈ F � ∃R′ ∈ μ(s) � s ∈ δ̂(Init, t) ∧ R ⊆ R′

The language of A, denoted by L(A), is the set of all failures accepted by A.

Every deterministic FLA (DFLA) A can be extended to a complete DFLA A′ such that
L(A′) = L(A) by adding a non-final sink state. In the rest of this report, we consider FLA
and languages over a fixed alphabet Σ.3

Lemma 1 A language is accepted by an FLA iff it is accepted by a deterministic FLA, that
is, deterministic FLA have the same accepting power as FLA in general.

Proof. By subset construction. Let L be a language accepted by some FLA A = (M, F, μ).
We construct a deterministic FLA A′ = (M ′, F ′, μ′) as follows: The deterministic finite
automaton G′ = (M ′, F ′) is obtained by the standard subset construction from the finite
automaton G = (M, F). For any state s′ of M ′, let us denote Ψ(s′) as the set of states of M
from which s′ was derived by the subset construction. To define μ′, consider any final state
s′ ∈ F ′. We know that Ψ(s′) ∩ F �= ∅. Let P =

⋃
s∈Ψ(s′)∩F μ(s). Then μ′(s′) = M ax(P).

Let Init and Init′ be the initial states of M and M ′, respectively. Now, to show that
L(A′) = L, consider any failure (t, R). Then

(t, R) ∈ L(A′) ⇐⇒ ∃s′ ∈ δ̂(Init′, t) ∩ F ′ � ∃R′ ∈ μ′(s′) � R ⊆ R′

⇐⇒ ∃s′ ∈ δ̂(Init′, t) ∩ F ′ � ∃s ∈ Ψ(s′) ∩ F � ∃R′ ∈ μ(s) � R ⊆ R′

⇐⇒ ∃s ∈ δ̂(Init, t) ∩ F � ∃R′ ∈ μ(s) � R ⊆ R′ ⇐⇒ (t, R) ∈ L(A) = L

Regular Failure Languages (RFLs). A failure language is said to be regular iff it is
accepted by some FLA. It follows from the definition of FLAs that RFLs are downward
closed. Hence, the set of RFLs is closed under union and intersection but not under
complementation.4 In addition, every RFL is accepted by an unique minimal deterministic
FLA. The following Lemma is analogous to the Myhill-Nerode theorem for regular languages
and ordinary finite automata.

3 FLA are closely related to automata on guarded strings [Kozen 01], which contain arbitrary transition labels
drawn from a partially ordered set. In contrast, the state labels (refusals) in FLA are only maximal elements
from such a set. Further, since it suffices to consider refusals at the end of a trace for checking deadlock
freedom, we only label the final states of an FLA.

4 For example, consider Σ = {α} and the RFL L = Σ∗ × {∅}. Then L = Σ∗ × {{α}} is not downward-closed
and hence is not an RFL.

6 CMU/SEI-2006-TN-028

Lemma 2 Every regular failure language(RFL) is accepted by an unique (up to
isomorphism) minimal deterministic finite failure automaton.

Proof. Our proof follows that of the Myhill-Nerode theorem for finite automata. Let L be
any RFL. Let us define an equivalence relation ≡ over Σ∗ as follows:

u ≡ v ⇐⇒ ∀(t, R) ∈ Σ∗ × Σ̂ � (u • t, R) ∈ L ⇐⇒ (v • t, R) ∈ L

For any u ∈ Σ∗, we denote the equivalence class of u by [u]. Let us define a finite automaton
G = (M, F) where M = (S, Init, Σ, δ) such that: (i) S = {[u] | u ∈ Σ∗}, (ii) Init = {[ε]}, (iii)
∀u ∈ Σ∗ � ∀α ∈ Σ � [u] α−→ [u • α], and (iv) F =

{
[u] | ∃R ∈ Σ̂ � (u, R) ∈ L

}
.

Also, let us define a function μ as follows: Consider any [u] ∈ F and let P ⊆ Σ̂ be defined as
P = {R | ∃v � v ≡ u ∧ (v, R) ∈ L}. Note that since [u] ∈ F , P �= ∅. Then μ([u]) = M ax(P).
Let A be the FLA (M, F, μ).

We first show by contradiction that A is deterministic. First, note that |Init| = 1. Next,
suppose that A is nondeterministic. Then there exists two traces u ∈ Σ∗ and v ∈ Σ∗ and an
action α ∈ Σ such that u ≡ v but u • α �≡ v • α. Then there exists a failure (t, R) such that
(u • α • t, R) ∈ L ⇐⇒ (v • α • t, R) �∈ L. But then there exists a failure (t′, R) = (α • t, R)
such that (u • t′, R) ∈ L ⇐⇒ (v • t′, R) �∈ L. This implies that u �≡ v which is a contradiction.

Next, we show that: (C1) for any trace t, δ̂(Init, t) = [t]. The proof proceeds by induction
on the length of t. For the base case, suppose t = ε. Then δ̂(Init, t) = Init = [ε]. Now
suppose t = t′ • α for some trace t′ and action α. By the inductive hypothesis,
δ̂(Init, t′) = [t′]. Also, from the definition of A, we know that [t′] α−→ [t′ • α]. Hence,
δ̂(Init, t) = δ̂(Init, t′ • α) = [t′ • α] = [t]. This completes the proof.

Now consider any DFLA A′ = (M ′, F ′, μ′) where M ′ = (S′, Init′, Σ, δ′) such that L(A′) = L.
Let us define a function Ω : S′ → S as follows: ∀t ∈ Σ∗ � Ω(δ̂(Init′, t)) = δ̂(Init, t). First we
show that Ω is well-defined. Consider any two traces u and v such that
δ̂(Init′, u) = δ̂(Init′, v). Then for any failure (t, R), A′ accepts (u • t, R) iff it also accepts
(v • t, R). Since A′ accepts L, we find that u ≡ v. Combining this equality with C1 above we
have δ̂(Init, u) = [u] = [v] = δ̂(Init, v). Therefore, δ̂(Init, u) = δ̂(Init, v) which proves that Ω
is well-defined. In addition, Ω is a surjection since for any state [u] of A we have the following
from C1 above: [u] = δ̂(Init, u) = Ω(δ̂(Init′, u)).

We are now ready to prove the main result. In essence, we show that A is the unique
minimal DFLA that accepts L. We have already shown that A is deterministic. To show that
L(A) = L we observe that for any trace t and any refusal R, the following holds:

(t, R) ∈ L ⇐⇒ [t] ∈ F ∧ ∃R′ ∈ μ([t]) � R ⊆ R′ ⇐⇒ (t, R) ∈ L(A)

Next, recall that Ω defined above is a surjection. Hence, A′ must have at least as many states
as A. Since A′ is an arbitrary DFLA accepting L, A must be a minimal DFLA that accepts
L. To show that A is unique up to isomorphism, let A′ be another minimal DFLA accepting
L. In this case, Ω must be a bijection. We show that Ω is also an isomorphism.

CMU/SEI-2006-TN-028 7

Let us write Ω−1 to mean the inverse of Ω. Note that Ω−1 is also a bijection, and more
specifically, ∀t ∈ Σ∗ � Ω−1([t]) = Ω−1(δ̂(Init, t)) = δ̂(Init′, t). We will now prove the following
statements:

(C2) Ω−1(Init) = Init′

(C3) ∀u ∈ Σ∗ � ∀v ∈ Σ∗ � ∀α ∈ Σ � [u] α−→ [v] ⇐⇒ Ω−1([u]) α−→ Ω−1([v])

(C4) ∀s ∈ S � s ∈ F ⇐⇒ Ω−1(s) ∈ F ′

(C5) ∀s ∈ F � μ(s) = μ′(Ω−1(s))

First, C2 holds since Ω−1(Init) = Ω−1(δ̂(Init, ε)) = δ̂(Init′, ε) = Init′. To prove C3,
suppose that [u] α−→ [v]. Since [u] = δ̂(Init, u) we have [v] = δ̂(Init, u • α). Hence,
Ω−1([u]) = δ̂(Init′, u) and Ω−1([v]) = δ̂(Init′, u • α). But this implies that
Ω−1([u]) α−→ Ω−1([v]), which proves the forward implication. For the reverse implication
suppose that Ω−1([u]) α−→ Ω−1([v]). Since Ω−1([u]) = δ̂(Init′, u) we again have
Ω−1([v]) = δ̂(Init′, u • α). Therefore, [u] = δ̂(Init, u) and [v] = δ̂(Init, u • α), and hence
[u] α−→ [v].

To prove C4, consider any s ∈ S such that s = [u] = δ̂(Init, u). Hence,
Ω−1(s) = Ω−1([u]) = δ̂(Init′, u). Then

s ∈ F ⇐⇒ [u] ∈ F ⇐⇒ ∃R � (u, R) ∈ L ⇐⇒ δ̂(Init′, u) ∈ F ′ ⇐⇒ Ω−1(s) ∈ F ′

Finally, we prove C5 by contradiction. Suppose that there exists s = [u] ∈ F such that
μ(s) �= μ′(Ω−1(s)). Without loss of generality, we can always pick a refusal R such that
∃R′ ∈ μ(s) � R ⊆ R′ and ∀R′ ∈ μ′(Ω−1(s)) � R �⊆ R′. Now, we also know that s = δ̂(Init, u)
and Ω−1(s) = δ̂(Init′, u). Therefore, (u, R) ∈ L(A) \ L(A′), which implies that
L(A) = L �= L = L(A′), a contradiction.

Note that for any LTS M , F(M) is regular.5 Indeed, the failure automaton corresponding to
M = (S, Init, Σ, δ) is A = (M, S, μ) such that ∀s ∈ S � μ(s) = M ax({R | Ref(s, R)}).

5 However, there exist RFLs that do not correspond to any LTS. In particular, any failure language L corre-
sponding to some LTS must satisfy the following condition: ∃R ⊆ Σ � (ε, R) ∈ L. Thus, the RFL {(α, ∅)}
does not correspond to any LTS.

8 CMU/SEI-2006-TN-028

4 Assume Guarantee for Deadlock

We now present an assume-guarantee style [Pnueli 85] proof rule for deadlock detection in
systems composed of two components. We use the notion of parallel composition proposed in
the theory of CSP [Hoare 85] and define it formally.

Definition 8 (LTS Parallel Composition) Consider LTSs M1 = (S1, Init1, Σ1, δ1) and
M2 = (S2, Init2, Σ2, δ2). Then the parallel composition of M1 and M2, denoted by M1 � M2,
is the LTS (S1 × S2, Init1 × Init2, Σ1 ∪ Σ2, δ), such that ((s1, s2), α, (s′1, s′2)) ∈ δ iff the
following holds:

∀i ∈ {1, 2} � (α ∈ Σi ∧ (si, α, s′i) ∈ δi) ∨ (α �∈ Σi ∧ si = s′i)

Without loss of generality, we assume that both M1 and M2 have the same alphabet Σ.
Indeed, any system with two components having different alphabets, say Σ1 and Σ2, can be
converted to a bisimilar (and hence deadlock-equivalent) system [Chaki 05a] with two
components, each having the same alphabet Σ1 ∪ Σ2. Thus, all languages and automata we
consider here will also be over the same alphabet Σ.

We now extend the notion of parallel composition to failure languages. Observe that the
composition involves set-intersection on the trace part and set-union on the refusal part of
failures. Proofs of all the lemma are detailed in Section 5.

Definition 9 (Failure Language Composition) The parallel composition of any two
failure languages L1 and L2, denoted by L1 ‖ L2, is defined as follows:

L1 ‖ L2 = {(t, R1 ∪ R2) | (t, R1) ∈ L1 ∧ (t, R2) ∈ L2}

Lemma 3 For any failure languages L1, L2, L
′
1 and L′

2, the following holds:

(L1 ⊆ L′
1) ∧ (L2 ⊆ L′

2) =⇒ (L1 ‖ L2) ⊆ (L′
1 ‖ L′

2)

Proof. Let (t, R) be any failure in (L1 ‖ L2). Then there exists refusals R1 and R2 such that:
(A) R = R1 ∪R2, (B) (t, R1) ∈ L1 and (C) (t, R2) ∈ L2. From (B), (C), and the premise of
the lemma, we have (D) (t, R1) ∈ L′

1 and (E) (t, R2) ∈ L′
2. But then from (A), (D), (E)

and Definition 9, we have (t, R) ∈ (L′
1 ‖ L′

2), which completes the proof.

Definition 10 (FLA Parallel Composition) Consider two FLAs A1 = (M1, F1, μ1) and
A2 = (M2, F2, μ2). The parallel composition of A1 and A2, denoted by A1 � A2,6 is defined as
the FLA (M1 � M2, F1 × F2, μ) such that:

μ(s1, s2) = M ax({R1 ∪ R2 | R1 ∈ μ1(s1) ∧ R2 ∈ μ2(s2)})

6 We overload the operator � to denote parallel composition in the context of both LTSs and FLAs. The
actual meaning of the operator will be clear from its context.

CMU/SEI-2006-TN-028 9

Let M1, M2 be LTSs and A1, A2 be FLAs. Then, the following two lemmas bridge the
concepts of composition between automata and languages.

Lemma 4 F(M1 � M2) = F(M1) ‖ F(M2).

Proof. For any LTSs M1 and M2 over the same alphabet Σ, it can be proved that

F(M1 � M2) = {(t, R1 ∪ R2) | (t, R1) ∈ F(M1) ∧ (t, R2) ∈ F(M2)}

The lemma then follows from the above fact and Definition 9.

Lemma 5 L(A1 � A2) = L(A1) ‖ L(A2).

Proof. Let A1 = (M1, F1, μ1) and A2 = (M2, F2, μ2) where M1 = (S1, Init1, Σ, δ1) and
M2 = (S2, Init2, Σ, δ2). Then we know that A1 � A2 = (M1 � M2, F1 × F2, μ). Let (t, R) be
any element of L(A1 � A2). Then, we know that

∃(s1, s2) ∈ δ̂(Init1 × Init2, t) ∩ F1 × F2 � ∃R′ ∈ μ(s1, s2) � R ⊆ R′

From the definition of μ, we find that

∃R1 ∈ μ1(s1) � ∃R2 ∈ μ2(s2) � R ⊆ R1 ∪ R2

Therefore, (t, R1) ∈ L(A1), (t, R2) ∈ L(A2), and (t, R) ∈ L(A1) ‖ L(A2). This statement
proves that L(A1 � A2) ⊆ L(A1) ‖ L(A2). Now, let (t, R) be any element of L(A1) ‖ L(A2).
Then, we know that

∃s1 ∈ δ̂(Init1, t) ∩ F1 � ∃s2 ∈ δ̂(Init2, t) ∩ F2 � ∃R1 ∈ μ1(s1) � ∃R2 ∈ μ2(s2) � R ⊆ R1 ∪ R2

Therefore, (s1, s2) ∈ δ̂(Init1 × Init2, t) ∩ F1 × F2 and ∃R′ ∈ μ(s1, s2) � R ⊆ R′. Hence
(t, R) ∈ L(A1 � A2). This show that L(A1) ‖ L(A2) ⊆ L(A1 � A2) and completes the proof.

Regular Failure Language Containment (RFLC). We develop a general compositional
framework for checking RFLC. This framework is also applicable to deadlock detection since,
as we will show later, deadlock freedom is a form of RFLC. Recall that RFLs are not closed
under complementation. Given RFLs L1 and L2, it is not possible to verify L1 ⊆ L2 in the
usual manner by checking if L1 ∩ L2 = ∅. However, as is shown by the following crucial
lemma, it is possible to check containment between RFLs using their representations in terms
of deterministic FLA without having to complement the automaton that corresponds to L2.

Lemma 6 Consider any FLA A1 and A2. Let A′
1 = (M1, F1, μ1) and A′

2 = (M2, F2, μ2) be
the FLA obtained by determinizing A1 and A2 respectively, and let M1 = (S1, Init1, Σ, δ1)
and M2 = (S2, Init2, Σ, δ2). Then L(A1) ⊆ L(A2) iff for every reachable state (s1, s2) of
M1 � M2 the following condition holds:

s1 ∈ F1 =⇒ (s2 ∈ F2 ∧ (∀R1 ∈ μ1(s1) � ∃R2 ∈ μ2(s2) � R1 ⊆ R2))

10 CMU/SEI-2006-TN-028

Proof. First, we note that L(A1) = L(A′
1) and L(A2) = L(A′

2). Now let
M1 = (S1, Init1, Σ, δ1) and M2 = (S2, Init2, Σ, δ2). For the forward implication, we prove the
contrapositive. Suppose that there exists a reachable state (s1, s2) of M1 � M2 such that
s1 ∈ F1 and either s2 �∈ F2 or ∃R1 ∈ μ1(s1) � ∀R2 ∈ μ2(s2) � R1 �⊆ R2. Since M1 and M2 are
deterministic, let t ∈ Σ∗ be a trace such that (s1, s2) = δ̂(Init1 × Init2, t). Now, we choose a
refusal R as follows. If s2 �∈ F2 then let R be any element of μ1(s1). Otherwise let R be some
R1 ∈ μ1(s1) such that ∀R2 ∈ μ2(s2) � R1 �⊆ R2. Now, it follows that (t, R) ∈ L(A′

1) \ L(A′
2).

Hence L(A′
1) �⊆ L(A′

2) and therefore L(A1) �⊆ L(A2).

For the reverse implication we also prove the contrapositive. Suppose L(A1) �⊆ L(A2) and let
(t, R) be any element of L(A1) \ L(A2) = L(A′

1) \ L(A′
2). Let s1 = δ̂(Init1, t) and

s2 = δ̂(Init2, t). But we know that ∃R1 ∈ μ1(s1) � R ⊆ R1 and either s2 �∈ F2 or
∀R2 ∈ μ2(s2) � R �⊆ R2. However, this implies that s1 ∈ F1 and either s2 �∈ F2 or
∃R1 ∈ μ1(s1) � ∀R2 ∈ μ2(s2) � R1 �⊆ R2. In addition, (s1, s2) is a reachable state of M1 � M2.
This completes the proof.

In other words, we can check if L(A1) ⊆ L(A2) by determinizing A1 and A2, constructing the
product of the underlying LTSs and checking if the condition in Lemma 6 holds on every
reachable state of the product. In essence, the condition says that for every reachable state
(s1, s2), if s1 is final, then s2 is also final and each refusal R1 labeling s1 is contained in some
refusal R2 labeling s2.

Now suppose that L(A1) is obtained by composing two RFLs L1 and L2, i.e., L(A1) =
L1 ‖ L2 and let L(A2) = LS , the specification language. To check RFLC between L1 ‖ L2

and LS , the approach presented in Lemma 6 requires us to directly compose L1, L2 and LS ,
a potentially expensive computation. In the following, we first show that checking
deadlock-freedom is a particular case of RFLC and then present a compositional technique to
check RFLC (and hence deadlock-freedom) that avoids composing L1 and L2 (or their FLA
representations) directly.

Deadlock as RFLC. Given three RFLs L1, L2 and LS , we can use our regular language
containment algorithm to verify whether (L1 ‖ L2) ⊆ LS . If this is the case, then our
algorithm returns true. Otherwise it returns false along with a counterexample
CE ∈ (L1 ‖ L2) \ LS . Also, we assume that L1, L2 and LS are represented as FLA. To use
our algorithm for deadlock detection, recall that for any two LTSs M1 and M2, M1 � M2 is
deadlock free iff F(M1 � M2) ⊆ LDlk. Let L1 = F(M1), L2 = F(M2) and LS = LDlk. Using
Lemma 4, this deadlock check reduces to verifying if L1 ‖ L2 ⊆ LS . Observe that we can use
our RFLC algorithm provided L1, L2 and LS are regular. Recall that since M1 and M2 are
LTSs, L1 and L2 are regular. Also, LDlk is regular, since it is accepted by the failure
automaton A = (M, F, μ) such that: (i) M = ({s} , {s} , Σ, δ), (ii) δ =

{
s

α−→ s | α ∈ Σ
}

, (iii)
F = {s}, and (iv) μ(s) = M ax({R | R ⊂ Σ}). For instance, if Σ = {a, b, c}, then
μ(s) = {{a, b} , {b, c} , {c, a}}. Thus, we find that deadlock detection is just a specific instance
of RFLC.

Suppose we are given three RFLs L1, L2 and LS in the form of their accepting FLA A1, A2

and AS . To check L1 ‖ L2 ⊆ LS , we can construct the FLA A1 � A2 (see Lemma 10) and
then check if L(A1 � A2) ⊆ L(AS) (see Lemma 5 and 6). The problem with this naive
approach is statespace explosion. To alleviate this problem, we present a compositional
language containment scheme based on AG-style reasoning in the next section.

CMU/SEI-2006-TN-028 11

4.1 A Non-Circular AG Rule
Consider RFLs L1, L2 and LS . We are interested in checking whether L1 ‖ L2 ⊆ LS . In this
context the following non-circular AG proof rule, called AG-NC, is both sound and
complete:

L1 ‖ LA ⊆ LS L2 ⊆ LA

L1 ‖ L2 ⊆ LS

Proof. The completeness of AG-NC follows from the fact that if the conclusion holds, then
L2 can be used as LA to discharge the two premises. To prove soundness, let us assume that
the two premises hold. Then from the second premise and Lemma 3, we have
L1 ‖ L2 ⊆ L1 ‖ LA. Combining this statement with the first premise, we get L1 ‖ L2 ⊆ LS

which is the desired conclusion.

In principle, AG-NC enables us to prove L1 ‖ L2 ⊆ LS by discovering an assumption LA

that discharges its two premises. In practice, we are left with two critical problems. First, it
provides no effective method for constructing an appropriate assumption LA. Second, if no
appropriate assumption exists; that is, if the conclusion of AG-NC does not hold, then
AG-NC does not help in obtaining a counterexample to L1 ‖ L2 ⊆ LS . In this report we
develop and employ a learning algorithm that solves both the above problems. Specifically,
our algorithm learns automatically and incrementally the weakest assumption LW that can
discharge the first premise of AG-NC. During this process, it is guaranteed to reach one of
the following two situations in a finite number of steps and to terminate with the correct
result:

1. It discovers an assumption that can discharge both premises of AG-NC
and terminates with true.

2. It discovers a counterexample CE to L1 ‖ L2 ⊆ LS and returns false
along with CE.

We present complete details of our algorithm, as well as its complexity, later in Section 5.
First we discuss formally the notion of the weakest assumption LW .

4.2 Weakest Assumption

Consider the proof rule AG-NC. For any L1 and LS , let L̂ be the set of all languages that
can discharge the first premise of AG-NC. In other words, L̂ = {LA | (L1 ‖ LA) ⊆ LS}. The
following central theorem asserts that L̂ contains a unique weakest (maximal) element LW

that is also regular. This result is crucial for showing the termination of our approach.

Theorem 1 Let L1 and LS be any RFLs and f is a failure. Let us define a language LW as
follows: LW = {f | (L1 ‖ {f}) ⊆ LS}. Then the following holds: (i) L1 ‖ LW ⊆ LS, (ii)
∀L � L1 ‖ L ⊆ LS ⇐⇒ L ⊆ LW , and (iii) LW is regular.

12 CMU/SEI-2006-TN-028

Proof. We first prove (i) by contradiction. Suppose there exists (t, R1) ∈ L1 and (t, R2) ∈ LW

such that (t, R1 ∪ R2) �∈ LS . But then (t, R1 ∪ R2) ∈ L1 ‖ {(t, R2)} which means
L1 ‖ {(t, R2)} �⊆ LS . However, this contradicts (t, R2) ∈ LW .

Now, we only prove the forward implication of (ii). The reverse implication follows from (i)
and Lemma 3. This proof is also by contradiction. Suppose there exists a language L such
that L1 ‖ L ⊆ LS and L �⊆ LW . Then there exists some (t, R2) ∈ L \ LW . But since
(t, R2) �∈ LW , there exists (t, R1) ∈ L1 such that (t, R1 ∪ R2) �∈ LS . However, this means that
(t, R1 ∪ R2) ∈ L1 ‖ L, which contradicts L1 ‖ L ⊆ LS .

Finally, to prove that LW is regular we construct an FLA AW such that L(AW) = LW . Let
A1 = (M1, F1, μ1) and AS = (MS , FS , μS) be deterministic and complete FLA accepting L1

and LS respectively such that M1 = (S1, Init1, Σ, δ1) and MS = (SS , InitS , Σ, δS). Then
AW = (M1 � MS , FW , μW). To define the set of final states FW and the labeling function μW

of AW , we define the extended labeling function μ̂ : S → 2bΣ of any FLA as follows:
μ̂(s) = μ(s) if s is a final state and ∅ otherwise. Then the extended labeling function μ̂ of AW

is defined as follows:

μ̂(s1, sS) =
{

R ∈ Σ̂ | ∀R1 ∈ μ̂(s1) � ∃RS ∈ μ̂(sS) � (R1 ∪ R) ⊆ RS

}

Note that the set μ̂(s1, sS) is always downward-closed. In other words

∀R ∈ Σ̂ � ∀R′ ∈ Σ̂ � R ∈ μ̂(s1, sS) ∧ R′ ⊆ R =⇒ R′ ∈ μ̂(s1, sS)

Then the definitions of FW and μW follow naturally as below:

FW = {(s1, sS) | μ̂(s1, sS) �= ∅}

∀(s1, sS) ∈ FW � μW (s1, sS) = M ax(μ̂(s1, sS))

Note that since A1 and AS are both deterministic and complete, so is AW . Also, for any
state (s1, sS) of AW and any t ∈ Σ∗, we have δ̂((s1, sS), t) = (δ̂(s1, t), δ̂(sS , t)). We now prove
that L(AW) = LW . Consider any failure (t, R) ∈ (Σ∗ × Σ̂). Let (s1, sS) = δ̂((Init1, InitS), t).
We consider two sub-cases.

Case 1 [(t, R) ∈ L(AW)]. Then we know that R ∈ μ̂(s1, sS). Now consider the language
L = L1 ‖ {(t, R)}. By Definition 9, any element of L must be of the form (t, R1 ∪R) for some
R1 ∈ μ̂(s1). Also, from the definition of μ̂ above we have ∃RS ∈ μ̂(sS) � (R1 ∪ R) ⊆ RS .
Hence (t, R1 ∪ R) ∈ LS . Since (t, R1 ∪ R) is an arbitrary element of L we conclude that
L ⊆ LS . Hence, from the definition of LW above we have (t, R) ∈ LW which completes the
proof of this subcase.

Case 2 [(t, R) �∈ L(AW)]. In this case, R �∈ μ̂(s1, sS). Then, from the definition of μ̂ above,
we have ∃R1 ∈ μ̂(s1) � ∀RS ∈ μ̂(sS) � (R1 ∪ R) �⊆ RS . Now consider the language
L = L1 ‖ {(t, R)}. By Definition 9, (t, R1 ∪ R) ∈ L. However, from
∀RS ∈ μ̂(sS) � (R1 ∪ R) �⊆ RS , we have (t, R1 ∪ R) �∈ LS . Hence, L �⊆ LS . Thus, from the
definition of LW above we have (t, R) �∈ LW , which completes the proof of this subcase and of
the entire theorem.

Now that we have proved that the weakest environment assumption LW is regular, we can
apply a learning algorithm to iteratively construct an FLA assumption that accepts LW . In

CMU/SEI-2006-TN-028 13

particular, we develop a learning algorithm LF that iteratively learns the minimal DFLA
corresponding to LW . LF asks queries about LW to a minimally adequate teacher (MAT)
and learns from the answers. In the next Section, we present LF . Subsequently, in section 6,
we describe how LF is used in our compositional language containment procedure. If you are
only interested in the overall compositional deadlock-detection algorithm and not the
intricacies of LF , you should skip to Section 6.

14 CMU/SEI-2006-TN-028

5 Learning FLA

In this section we present an algorithm LF to learn the minimal FLA that accepts an
unknown RFL U . Our algorithm will use a minimally adequate teacher (MAT) that can
answer two kinds of queries regarding U :

1. membership query: Given a failure e, the MAT returns true if e ∈ U
and false otherwise.

2. candidate query: Given a DFLA C, the MAT returns true if L(C) = U .
Otherwise, it returns false along with a counterexample failure
CE ∈ (L(C) \ U)

⋃
(U \ L(C)).

5.1 Observation Table
LF uses an observation table to record the information it obtains by querying the MAT. The
rows and columns of the table correspond to specific traces and failures respectively.
Formally, a table is a triple (T, E, R) where: (i) T ⊆ Σ∗ is a set of traces; (ii) E ⊆ Σ∗ × Σ̂ is a
set of failures or experiments; and (iii) R is a function from T̂ × E to {0, 1} where
T̂ = T ∪ (T • Σ). For any table T = (T, E, R), the function R is defined as follows:

∀t ∈ T̂ � ∀e = (t′, R) ∈ E � R(t, e) = 1 ⇐⇒ (t • t′, R) ∈ U

Thus, given T and E, algorithm LF can compute R via membership queries to the MAT. For
any t ∈ T̂, we write R(t) to mean the function from E to {0, 1} defined as follows:

∀e ∈ E � R(t)(e) = R(t, e)

An observation table T = (T, E, R) is said to be well-formed iff the following holds:

∀t1 ∈ T � ∀t2 ∈ T � t1 �= t2 =⇒ R(t1) �= R(t2)

Essentially, this means that any two distinct rows t1 and t2 of a well-formed table can be
distinguished by some experiment e ∈ E. There is also an upper bound on the number of
rows of any well-formed table, as expressed by the following lemma.

Lemma 7 Let n be the number of states of the minimal DFLA accepting U and let
T = (T, E, R) be any well-formed observation table. Then |T| ≤ n.

Proof. The proof is by contradiction. Suppose that |T| > n. Let the minimal DFLA
accepting U be A. Then there exists two distinct traces t1 and t2 in T such that
δ̂(Init, t1) = δ̂(Init, t2). In other words, the FLA A reaches the same state on input t1 and
t2. But since T is well-formed, there exists some failure e = (t, p) ∈ E such that
R(t1, e) �= R(t2, e). In other words, (t1 • t, p) ∈ U iff (t2 • t, p) �∈ U . This case is impossible,
since A would reach the same state on inputs t1 • t and t2 • t.

CMU/SEI-2006-TN-028 15

Input: Well-formed observation table T = (T, E, R)
while T is not closed do

pick t ∈ T and α ∈ Σ such that ∀t′ ∈ T � R(t • α) �= R(t′)
add t • α to T and update R accordingly

return T

Figure 2: Algorithm MakeClosed.

Closed Observation Table. An observation table T = (T, E, R) is said to be closed iff it
satisfies the following:

∀t ∈ T � ∀α ∈ Σ � ∃t′ ∈ T � R(t • α) = R(t′)

Intuitively, if we extend any trace t ∈ T by any action α, then the result is indistinguishable
from an existing trace t′ ∈ T under the current set of experiments E. Note that any
well-formed table can be extended so that it is both well-formed and closed. This extension
can be achieved by the algorithm MakeClosed shown in Figure 2. Observe that at every
step of MakeClosed, the table T remains well-formed and hence, by Lemma 7, cannot grow
infinitely. Also note that restricting the occurrence of refusals to E allows us to avoid
considering the exponential possible refusal extensions of a trace while closing the table.
Exponential number of membership queries are required only if all possible refusals occur in
E.

5.2 Overall LF Algorithm
Algorithm LF is iterative. It initially starts with a table T = (T, E, R) such that T = {ε} and
E = ∅. The initial table is well-formed. Subsequently, in each iteration LF performs the
following steps:

1. Make T closed by invoking MakeClosed.

2. Construct candidate DFLA C from T and make candidate query with C.

3. If the answer is true, LF terminates with C as the final answer.

4. Otherwise, LF uses the counterexample CE to the candidate query to add
a single new failure to E and repeats from Step 1.

In each iteration, LF either terminates with the correct answer (Step 3) or adds a new failure
to E (Step 4). In the latter scenario, the new failure to be added is constructed so that it
guarantees an upper bound on the total number of iterations of LF . This construction
ensures its ultimate termination. We now present the procedures for: (i) constructing a
candidate DFLA C from a closed and well-formed table T (used in Step 2 above), and (ii)
adding a new failure to E based on a counterexample to a candidate query (Step 4).

16 CMU/SEI-2006-TN-028

5.3 Candidate Construction
Let T = (T, E, R) be a closed and well-formed observation table. The candidate DFLA C is
constructed from T as follows: C = (M, F, μ) and M = (S, Init, Σ, δ) such that

• S = T : Each state of M corresponds to a distinct row of T .

• Init = ε : The initial state of M corresponds to the empty trace. The
empty trace always belongs to T, since initially T = {ε} and subsequently
T grows monotonically.

• δ is constructed as follows: Consider any t ∈ T and α ∈ Σ. Since T is
well-formed and closed, we know that there exists an unique t′ ∈ T such
that R(t • α) = R(t′). Then, we add t

α−→ t′ to δ. In other words

δ =
{

t
α−→ t′ | R(t • α) = R(t′)

}

• The state corresponding to a row t is final if there exists a successful failure
e ∈ E from t such that the trace component of e is empty. In other words

F = {t | ∃e = (ε, p) ∈ E � R(t, e) = 1}

Finally, the mapping μ is constructed as follows. Let t ∈ F be any final state of M . Consider
the set P = {R | e = (ε, R) ∈ E ∧ R(t, e) = 1}. From the definition of F above, we know that
P �= ∅. Then μ(t) = M ax(P). We now present the algorithm to add new failures to T using
a counterexample CE to a candidate query made with a DFLA C constructed as above.

5.4 Adding New Failures
Let C = (M, F, μ) be a candidate DFLA such that M = (S, Init, Σ, δ). Let CE = (t, R) be a
counterexample to a candidate query made with C. In other words,
CE ∈ L(C) ⇐⇒ CE �∈ U . The algorithm NewExp adds a single new failure to T as
follows. Let t = α1 • . . . • αk. For 0 ≤ i ≤ k, let ti be the prefix of t of length i and ti be the
suffix of t of length k − i. In other words, for 0 ≤ i ≤ k, we have ti • ti = t.

Additionally, for 0 ≤ i ≤ k, let si be the state of C reached by executing ti. In other words,
si = δ̂(ti). Since the candidate C was constructed from an observation table T , it
corresponds to a row of T , which in turn corresponds to a trace. Let us also refer to this
trace as si. Finally, let bi = 1 if the failure

(
si • ti, R

)
∈ U and 0 otherwise. Note that we can

compute bi by evaluating si and then making a membership query with
(
si • ti, R

)
. In

particular, s0 = ε, and hence b0 = 1 if CE ∈ U and 0 otherwise. We now consider two cases.

Case 1: [b0 = 0] means that CE �∈ U and hence CE ∈ L(C). Recall that CE = (t, R) and
t = α1 • . . . •αk. Consider the state sk = δ̂(t) as described above. Since CE ∈ L(C), we know
that sk ∈ F and ∃R′ ∈ μ(sk) � R ⊆ R′.

Also, since C was constructed (see Section 5.3) from a table T = (T, E, R), we know that
(ε, R′) ∈ E and R(sk, R

′) = 1. However, this means that the failure (sk, R
′) ∈ U . Since

CMU/SEI-2006-TN-028 17

R ⊆ R′, it follows that (sk, R) ∈ U and therefore bk = 1. Since b0 = 0 and bk = 1, there exists
an index j ∈ {0, . . . , k} such that bj = 0 and bj+1 = 1. In this case, LF finds such an index j
and adds the failure

(
tj+1, R

)
to E. We now show that the failure e =

(
tj+1, R

)
has a special

property.

Since C contained a transition sj
αj+1−→ sj+1, it must be the case that R(sj • αj+1) = R(sj+1).

However, R(sj • αj+1, e) = bj �= bj+1 = R(sj+1, e). Thus, after adding e to E, the table is no
longer closed. Hence, when LF attempts to make T closed in the very next iteration, it will
be forced to increase the number of rows of T by at least one.

Case 2: [b0 = 1] means that CE ∈ U and hence CE �∈ L(C). We consider two subcases.
First, suppose that bk = 0. Then there exists an index j ∈ {0, . . . , k} such that bj = 1 and
bj+1 = 0. In this case, LF finds such an index j and adds the failure

(
tj+1, R

)
to E. As in

Case 1 above, this guarantees that the number of rows of T must strictly increase in the next
iteration of LF .

Otherwise, we have bk = 1, but this means that the failure (sk, R) ∈ U . However, since
CE �∈ L(C) we know that either sk is not a final state of C or ∀R′ ∈ μ(sk) � R �⊆ R′. In this
scenario, LF computes a maximal element Rmax such that R ⊆ Rmax and (sk, Rmax) ∈ U . It
then adds the failure (ε, Rmax) to E.

The addition of (ε, Rmax) to E must lead to at least one of two consequences in the next
iteration of LF in terms of the next computed candidate DFLA. First, the number of rows of
T and states of the candidate may increase. Otherwise, either the state sk changes from a
non-final to a final state or the set μ(sk) gets an additional element, namely, Rmax.

Relationship Between LF and L∗. Although LF and L∗ are similar in their overall
structure, there are a number of differences. First, since LF learns a failure automaton, the
columns of the observation table store failures instead of traces as in L∗. Second, when LF

learns from a counterexample, every iteration may not involve an increase in the number of
states; instead, the failure label on one or more states may be enlarged.

5.5 Correctness of LF

Algorithm LF always returns the correct answer in Step 3, since it always does so after a
successful candidate query. To confirm that LF always terminates, observe that in every
iteration, the candidate C that LF computes undergoes at least one of these three changes:

• (Ch1) The number of states of C and the number of rows in the
observation table T , increases.

• (Ch2) The states and transitions of C remain unchanged, but a state of C
that was previously non-final becomes final.

• (Ch3) The states, transitions and final states of C remain unchanged, but
for some final states s of C, the size of μ(s) increases.

Of the above changes, Ch1 can happen at most n times where n is the number of states of
the minimal DFLA accepting U . Between any two consecutive occurrences of Ch1, there can

18 CMU/SEI-2006-TN-028

only be a finite number of occurrences of Ch2 and Ch3. Hence, there can only be a finite
number of iterations of LF . Therefore, LF always terminates.

Number of Iterations. To analyze the complexity of LF , we must impose a tighter bound
on the number of iterations. We already know that Ch1 can happen at most n times. Since
a final state can never become non-final, Ch2 can also occur at most n times. Now, let the
minimal DFLA accepting U be A = (M, F, μ) such that M = (S, Init, Σ, δ). Consider the set
P =

⋃
s∈F μ(s) and let n′ = |P |. Since each Ch3 adds an element to μ(s) for some s ∈ F , the

total number of occurrences of Ch3 is at most n′. Therefore, the maximum number of
iterations of LF is 2n + n′ = O(n + n′).

Time Complexity. Let us make the standard assumption that each MAT query takes O(1)
time. From the above discussion, we see that the number of columns of the observation table
is at most O(n + n′). The number of rows is at most O(n). Let us assume that the size of Σ
is a constant. Then, the number of membership queries, and hence time, needed to fill up the
table is O(n(n + n′)).

Let m be the length of the longest counterexample returned by a candidate query. Then to
add each new failure, we have to make O(log(m)) membership queries to find the appropriate
index j. Also, let the time required to find the maximal element Rmax be O(m′). The total
time required for constructing each new failure is O((n + n′)(log(m) + m′)). Finally, the
number of candidate queries equals the number of iterations and hence is O(n + n′). In
summary, we find that the time complexity of LF is O((n + n′)(n + log(m) + m′)), which is
polynomial in n, n′, m and m′.

Space Complexity. Let us again make the standard assumption that each MAT query
takes O(1) space. Since the queries are made sequentially, the total space requirement for all
of them is still O(1). Also, the procedure for constructing a new failure can be performed in
O(1) space. A trace corresponding to a table row can be O(n) long, and there are O(n) of
them. A failure corresponding to a table column can be O(m) long, and there are O(n + n′)
of them. Space required to store the table elements is O(n(n + n′)). Hence the total space
required for the observation table is O((n + m)(n + n′)). The space required to store
computed candidates is O(n2). Therefore, the total space complexity is O((n + m)(n + n′)),
which is also polynomial in n, n′ and m.

CMU/SEI-2006-TN-028 19

6 Compositional Language Containment

Given RFLs L1, L2 and LS (in the form of FLA that accept them), we want to check whether
L1 ‖ L2 ⊆ LS . If not, we also want to generate a counterexamples CE ∈ (L1 ‖ L2) \ LS . To
this end, we invoke the LF algorithm to learn the weakest environment corresponding to L1

and LS . We present an implementation strategy for the MAT to answer the membership and
candidate queries that LF poses. In the following, we assume that A1, A2 and AS are the
given FLAs such that L(A1) = L1, L(A2) = L2 and L(AS) = LS .

Membership Query. The answer to a membership query with failure e = (t, R) is true if
the following condition (which can be effectively decided) holds or is otherwise false:
∀(t, R1) ∈ L1 � (t, R1 ∪ R) ∈ LS .

Candidate Query. A candidate query with an FLA C is answered step-wise as follows:

1. Check if L(A1 � C) ⊆ L(AS). If not, let (t, R1 ∪ R) be the counterexample
obtained. Note that (t, R) ∈ L(C) \ U . We return false to LF along with
the counterexample (t, R). If L(A1 � C) ⊆ L(AS), we proceed to Step 2.

2. Check if L(A2) ⊆ L(C). If so, we have obtained an assumption, namely,
L(C), that discharges both premises of AG-NC. In this case, the overall
language containment algorithm terminates with true. Otherwise, let
(t′, R′) be the counterexample obtained. We proceed to Step 3.

3. We check if there exists (t′, R′
1) ∈ L(A1) such that (t′, R′

1 ∪ R′) �∈ L(AS). If
so, then (t′, R′

1 ∪ R′) ∈ L(A1 � A2) \ L(AS), and the overall language
containment algorithm terminates with false and the counterexample
(t′, R′

1 ∪ R′). Otherwise, (t′, R′) ∈ U \ L(C), and we return false to LF

along with the counterexample (t′, R′).

Note that in these queries, we are never required to compose A1 with A2. In practice, the
candidate C (that we compose with A1 in Step 1 of the candidate query) is much smaller
than A2. Thus, we are able to alleviate the statespace explosion problem. Also, note that our
procedure will ultimately terminate with the correct result from either Step 2 or 3 of the
candidate query. This assumption follows from the correctness of LF algorithm: In the worst
case, the candidate query will be made with an FLA C such that L(C) = LW . In this
scenario, termination is guaranteed to occur due to Theorem 1.

20 CMU/SEI-2006-TN-028

7 Arbitrary Components and Circularity

We investigated two approaches for handling more than two components. First, we applied
AG-NC recursively. This approach can be demonstrated for languages L1, L2, L3 and LS by
the following proof-rule.

L1 ‖ L1
A ⊆ LS

L2 ‖ L2
A ⊆ L1

A L3 ⊆ L2
A

L2 ‖ L3 ⊆ L1
A

L1 ‖ L2 ‖ L3 ⊆ LS

At the top level, we apply AG-NC on the two languages L1 and L2 ‖ L3. Now the second
premise becomes L2 ‖ L3 ⊆ L1

A, and we can again apply AG-NC. In terms of the
implementation of the MAT, the only difference is in Step 2 of the candidate query (see
Section 6). More specifically, we now invoke the language containment procedure recursively
with L(A2), L(A3) and L(C) instead of checking directly for L(A2) ⊆ L(C). This technique
can be extended to any finite number of components.

Circular AG Rule. We also explored a circular AG rule. Unlike AG-NC however, the
circular rule is specific to deadlock detection and not applicable to language containment in
general. For any RFL L, let us write W (L) to denote the weakest assumption against which
L does not deadlock. In other words, ∀L′ � L ‖ L′ ⊆ LDlk ⇐⇒ L′ ⊆ W (L). It can be shown
that: (PROP) ∀t ∈ Σ∗ � ∀R ∈ Σ̂ � (t, R) ∈ L ⇐⇒ (t, Σ \ R) �∈ W (L). The following theorem
provides a circular AG rule for deadlock detection.

Theorem 2 Consider any two RFLs L1 and L2. Then the following proof rule, which we
call AG-Circ, is both sound and complete.

L1 ‖ L1
A ⊆ LDlk L2 ‖ L2

A ⊆ LDlk

W (L1
A) ‖ W (L2

A) ⊆ LDlk

L1 ‖ L2 ⊆ LDlk

Proof. We first prove soundness by contradiction. Assume that three premises hold but the
conclusion does not. There exists a trace t and a refusal R such that (t, R) ∈ L1 and
(t, Σ \ R) ∈ L2. From the first premise, we see that (t, Σ \ R) �∈ L1

A. Similarly, from the
second premise, we get (t, R) �∈ L2

A. Therefore, we have (t, R) ∈ W (L1
A) and

(t, Σ \ R) ∈ W (L2
A). But then (t, Σ) ∈ W (L1

A) ‖ W (L2
A), which contradicts the third premise.

We now prove completeness. Let us assume the conclusion. We show that if we set
L1

A = W (L1) and L2
A = W (L2), then all three premises are satisfied. The first two premises

follow from the definitions of W (L1) and W (L2). We prove the third premise by
contradiction. Suppose there exists a trace t and a refusal R such that (t, R) ∈ W (W (L1))
and (t, Σ \ R) ∈ W (W (L2)), but then we know that (t, Σ \ R) �∈ W (L1) and (t, R) �∈ W (L2).

CMU/SEI-2006-TN-028 21

However, this supposition means that (t, R) ∈ L1 and (t, Σ \ R) ∈ L2 and implies that
(t, Σ) ∈ L1 ‖ L2, which contradicts the conclusion.

Implementation. To use this rule for deadlock detection of two components L1 and L2 (the
approach generalizes to any finite number of components), we use this iterative procedure:

1. Using the first premise, construct a candidate C1 similar to Step 1 of the
candidate query in AG-NC (see Section 6). Similarly, using the second
premise, construct another candidate C2. Construction of C1 and C2

proceeds exactly as in the case of AG-NC.

2. Check if W (L(C1)) ‖ W (L(C2)) ⊆ LDlk. This check is done either directly
or via a compositional language containment using AG-NC. We compute
the automata for W (L(C1)) and W (L(C2)) using the procedure described
in the proof of Theorem 1. If the check succeeds, then there is no deadlock
in L1 ‖ L2 and we exit successfully. Otherwise, we proceed to Step 3.

3. From the counterexample obtained above, construct t ∈ Σ∗ and R ∈ Σ̂ such
that (t, R) ∈ W (L(C1)) and (t, Σ \ R) ∈ W (L(C2)). Check if (t, R) ∈ L1

and (t, Σ \ R) ∈ L2. If both these checks pass, then we have a
counterexample t to the overall deadlock-detection problem and we
terminate unsuccessfully. Otherwise, without loss of generality, suppose
(t, R) �∈ L1. But then, from PROP, (t, Σ \ R) ∈ W (L1). Again from
PROP, since (t, R) ∈ W (L(C1)), (t, Σ \ R) �∈ L(C1), which is equivalent to
a failed candidate query for C1 with counterexample (t, Σ \ R). We repeat
from Step 1 above.

Note that even though we have presented AG-Circ in the context of only two components,
it generalizes to an arbitrary, but finite, number of components.

22 CMU/SEI-2006-TN-028

8 Experimental Validation

We implemented our algorithms in the ComFoRT [Chaki 05b] reasoning framework and
experimented with a set of real-life examples. All our experiments were done on a 2.4GHz
Pentium 4 machine running RedHat Linux 9 and with a time limit of one hour and a memory
limit of 2GB. Our results are summarized in Table 3. The MC benchmarks are derived from
Micro-C Version 2.70, a lightweight OS for real-time embedded applications. The IPC
benchmark is based on an interprocess communication library used by an industrial robot
controller software. The ide, syn, mx and tg3 examples are based on Linux device drivers.
Finally, DP is a synthetic benchmark based on the well-known dining philosophers example.

For each example, we obtained a set of benchmarks by increasing the number of components.
For each such benchmark, we tested one version without deadlock and another with an
artificially introduced deadlock. In all cases, deadlock was caused by incorrect
synchronization between components—the only difference was in the synchronization
mechanism. Specifically, the dining philosophers synchronized using “forks.” In all other
examples, synchronization was achieved via a shared “lock.”

For each benchmark, a finite LTS model was constructed via a predicate
abstraction [Chaki 05b] that transformed the synchronization behavior into appropriate
actions. For example, in the case of the ide benchmark, calls to the spin lock and
spin unlock functions were transformed into lock and unlock actions, respectively. These
function calls make sense because, for instance, multiple threads executing the driver for a
specific device will acquire and release a common lock specific to that device by invoking
spin lock and spin unlock respectively.

For each abstraction, appropriate predicates were supplied externally so that the resulting
models would be precise enough to display the presence or absence of deadlock. In addition,
care was taken to ensure that the abstractions were sound with respect to deadlocks, that is,
the extra behavior introduced did not eliminate any deadlock in the concrete system. Each
benchmark was verified using explicit brute-force statespace exploration (referred to in
Table 3 as “Plain”), the non-circular AG rule (referred to as AG-NC), and the circular AG
rule (referred to as AG-Circ). When using AG-Circ (i.e., checking if
W (L(C1)) ‖ W (L(C2)) ⊆ LDlk), Step 2 was done via compositional language containment
using AG-NC.

We observe that the AG-based methods outperform the naive approach for most benchmarks.
More importantly, for each benchmark, the growth in memory consumption combined with
the increasing number of components is benign for both AG-based approaches. This bounded
growth indicates that AG reasoning is effective in combating statespace explosion even for
deadlock detection. We also note that larger assumptions (and hence time and memory) are
required for detecting deadlocks as opposed to detecting deadlock freedom. Among the
AG-based approaches, AG-Circ is generally faster than AG-NC, but it consumed negligible
extra memory on a few occasions. In several cases, AG-NC runs out of time, while
AG-Circ is able to terminate successfully. Overall, whenever AG-NC and AG-Circ differ
significantly in any real-life example, AG-Circ is superior.

CMU/SEI-2006-TN-028 23

E
x
p

L
O

C
C

S
t

N
o

D
ea

d
lo

ck
P

la
in

A
G

-N
C

A
G

-C
ir

c
T

M
T

M
A

T
M

A
M

C
7
2
7
2

2
2
8
7
4

-
*

3
0
8

9
0
3

5
3
0
7

9
0
3

6
M

C
7
2
7
2

3
2
8
7
4

-
*

7
6
6

1
1
5
5

1
1

4
5
9

1
1
5
5

1
2

M
C

7
2
7
2

4
2
8
7
4

-
*

*
1
4
5
3

-
7
1
6

1
4
5
3

2
4

id
e

1
8
9
0
5

3
6
7
2

5
7
1

*
3
3
8

5
0

1
1

6
2

4
7

1
2

id
e

1
8
9
0
5

4
7
1
6

9
7
2

*
*

6
3

-
1
9
5

5
5

2
4

id
e

1
8
9
0
5

5
7
6
0

1
0
8
2

*
*

8
4

-
6
3
9

8
5

4
8

sy
n

1
7
2
6
2

4
1
1
7

7
3
3

*
1
5
4
7

1
9

2
1

5
8

2
1

2
4

sy
n

1
7
2
6
2

5
1
2
7

7
1
3

*
*

1
9

-
2
2
4

4
7

4
8

sy
n

1
7
2
6
2

6
1
3
7

7
6
7

*
*

2
7

-
1
8
1
5

1
8
9

9
6

m
x

1
5
7
1
7

3
1
9
9
5

1
1
5
4

*
2
0
7
9

1
4
0

1
1

6
3
9

1
2
3

1
2

m
x

1
5
7
1
7

4
2
0
5
8

1
5
4
5

*
-

1
6
8

-
7
1
3

1
3
9

2
4

m
x

1
5
7
1
7

5
2
1
2
1

1
6
6
0

*
-

1
7
9

-
2
1
3
1

1
8
5

4
8

tg
3

3
6
7
7
4

3
1
6
5
3

9
7
1

*
1
5
6
8

1
1
8

1
1

4
0
6

1
1
1

1
2

tg
3

3
6
7
7
4

4
1
6
7
3

9
2
7

*
-

1
4
9

-
4
8
6

1
3
1

2
4

tg
3

3
6
7
7
4

5
1
6
9
3

1
0
8
6

*
-

1
5
8

-
1
3
3
8

1
6
5

4
8

tg
3

3
6
7
7
4

6
1
7
1
3

1
2
5
2

*
-

1
5
7

-
3
4
0
6

3
1
3

9
6

IP
C

8
1
8

3
3
0
2

1
9
5

α
7
0
3

3
3
8

4
9

4
7
8

3
5
5

4
9

D
P

8
2

6
3
0

2
7
4

*
1
0
0

3
3
0

1
1

2
8
6

4
1
4

9
D

P
1
0
9

8
3
0

3
0
2

*
1
5
5
1

5
6
5

1
1

*
1
4
7
4

-

D
ea

d
lo

ck
P

la
in

A
G

-N
C

A
G

-C
ir

c
T

M
T

M
A

T
M

A
3
7
2

β
3
8
6

9
8
0

1
3

3
1
3

9
7
9

1
6

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

7
5
5

*
*

8
0

-
5
5
7

5
5
1

1
2
5

9
7
8

*
*

8
4

-
2
9
1
3

*
-

1
0
8
2

*
*

8
9

-
*

4
9
8

-

8
6
4

*
1
2
7

1
8
1

2
1
3
3

1
8
1

6
1
0
8
8

*
8
4
4

*
-

8
6
7

*
-

-
*

1
1
8
8

*
-

-
*

-

1
1
8
2

*
6
5
7

3
6
4

2
6
3
0

3
6
4

5
1
3
0
9

*
1
6
2
7

*
-

1
2
0
6

*
-

-
*

3
3
6
8

*
-

2
2
7
6

*
-

8
9
4

*
4
8
6

3
9
3

2
4
9
9

3
9
3

5
1
0
9
6

*
1
0
3
6

*
-

1
0
3
7

*
-

-
*

2
1
8
6

*
-

1
6
6
8

*
-

1
2
7
8

*
*

-
-

1
9
5
4

*
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

Figure 3: Experimental results. C = # of components; St = # of states of largest component;
T = time (seconds); M = memory (MB); A = # of states of largest assumption; * = resource
exhaustion; - = data unavailable; α = 1247; β = 1708. Best figures are shown in bold.

24 CMU/SEI-2006-TN-028

9 Conclusion

In this report, we have extended the learning-based automated assume-guarantee paradigm
to deadlock detection. We have defined a new kind of automata, which are similar to finite
automata but accept failures instead of traces. We have also developed an algorithm called
LF that is similar to L∗ and learns the minimal failure automata accepting an unknown
regular failure language using a minimally adequate teacher. We have shown how LF can be
used for compositional deadlock detection using both circular and non-circular
assume-guarantee rules. Finally, we have implemented our technique and obtained
encouraging experimental results on several nontrivial benchmarks.

We believe this work leaves several avenues open for further investigation. An intriguing
question concerns the relationship between learning and abstraction refinement. While both
approaches construct approximations iteratively, abstraction refinement always strengthens
its approximation. On the other hand, learning may either strengthen or weaken its
assumption depending on the counterexample to the candidate query that the MAT returns.
Another issue is the possibility of increasing the efficiency of our approach via symbolic
implementations. Finally, the question of extending the automated assume-guarantee via
learning paradigm to yet other types of conformances is not yet settled. For instance, it is
unclear how you may use this paradigm to carry out model checking against specifications
written in a temporal logic, such as the μ-calculus, CTL or LTL.

CMU/SEI-2006-TN-028 25

References

[Alur 05a] Alur, R.; Cerny, P.; Gupta, G.; Madhusudan, P.; Nam, W.; &
Srivastava, A. “Synthesis of Interface Specifications for Java
Classes,” 98–109. Edited by Palsberg, J. & Abadi, M.
Symposium on Principles of Programming Languages 2005
(Popl 05). Long Beach, CA, January 12–14, 2005. New York,
NY: ACM Press, January 2005.

[Alur 05b] Alur, R.; Madhusudan, P.; & Nam, W. “Symbolic
Compositional Verification by Learning Assumptions,”
548–562. Edited by Etessami, K. & Rajamani, S. K.
Proceedings of the 17th International Conference on
Computer Aided Verification (CAV ’05), Volume 3576 of
Lecture Notes in Computer Science. Edinburgh, Scotland,
July 6–10, 2005. New York, NY: Springer-Verlag, July 2005.

[Amla 03] Amla, N.; Emerson, E. A.; Namjoshi, K. S.; & Trefler, R. J.
“Abstract Patterns of Compositional Reasoning,” 423–438.
Edited by Amadio, R. M. & Lugiez, D. Proceedings of the
14th International Conference on Concurrency Theory
(CONCUR ’03), Volume 2761 of Lecture Notes in Computer
Science. Marseille, France, September 3–5, 2003. New York,
NY: Springer-Verlag, September 2003.

[Angluin 87] Angluin, D. “Learning Regular Sets from Queries and
Counterexamples.” Information and Computation 75, 2
(November 1987): 87–106.

[Barringer 03] Barringer, H.; Giannakopoulou, D.; & Păsăreanu, C. S.
“Proof Rules for Automated Compositional Verification,”
14–21. Proceedings of the 2nd Workshop on Specification and
Verification of Component Based Systems (SAVCBS ’03).
Helsinki, Finland, September 1–2, 2003. Ames, Iowa: Iowa
State University, September 2003.

[Brookes 91] Brookes, S. D. & Roscoe, A. W. “Deadlock Analysis of
Networks of Communicating Processes.” Distributed
Computing 4 (December 1991): 209–230.

[Chaki 05a] Chaki, S.; Clarke, E. M.; Sinha, N.; & Thati, P. “Automated
Assume-Guarantee Reasoning for Simulation Conformance,”
534–547. Edited by Etessami, K. & Rajamani, S. K.
Proceedings of the 17th International Conference on
Computer Aided Verification (CAV ’05), Volume 3576 of
Lecture Notes in Computer Science. Edinburgh, Scotland,
July 6–10, 2005. New York, NY: Springer-Verlag, July 2005.

26 CMU/SEI-2006-TN-028

[Chaki 05b] Chaki, S.; Ivers, J.; Sharygina, N.; & Wallnau, K. “The
ComFoRT Reasoning Framework,” 164–169. Edited by
Etessami, K. & Rajamani, S. K. Proceedings of the 17th
International Conference on Computer Aided Verification
(CAV ’05), Volume 3576 of Lecture Notes in Computer
Science. Edinburgh, Scotland, July 6–10, 2005. New York,
NY: Springer-Verlag, July 2005.

[Cobleigh 03] Cobleigh, J. M.; Giannakopoulou, D.; & Păsăreanu, C. S.
“Learning Assumptions for Compositional Verification,”
331–346. Edited by Garavel, H. & Hatcliff, J. Proceedings of
the 9th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS ’03),
Volume 2619 of Lecture Notes in Computer Science. Warsaw,
Poland, April 7–11, 2003. New York, NY: Springer-Verlag,
April 2003.

[de Roever 98] de Roever, W. P.; Langmaack, H.; & Pnueli, A., editors.
Compositionality: The Significant Difference, International
Symposium, COMPOS’97, Revised Lectures, Volume 1536 of
Lecture Notes in Computer Science, Bad Malente, Germany,
September 8–12, 1997. New York, NY: Springer-Verlag, 1998.

[Ernst 99] Ernst, M. D.; Cockrell, J.; Griswold, W. G.; & Notkin, D.
“Dynamically Discovering Likely Program Invariants to
Support Program Evolution,” 213–224. Proceedings of the
21st International Conference on Software Engineering (ICSE
’99), Los Angeles, CA, May 16–22, 1999. Los Angeles, CA:
IEEE Computer Society Press, May 1999.

[Fournet 04] Fournet, C.; Hoare, C. A. R.; Rajamani, S. K.; & Rehof, J.
“Stuck-Free Conformance,” 242–254. Edited by Alur, R. &
Peled, D. Proceedings of the 16th International Conference on
Computer Aided Verification (CAV ’04), Volume 3114 of
Lecture Notes in Computer Science, Boston, MA, July 13–17,
2004. New York, NY: Springer-Verlag, July 2004.

[Giannakopoulou 02] Giannakopoulou, D.; Păsăreanu, C. S.; & Barringer, H.
“Assumption Generation for Software Component
Verification,” 3–12. Proceedings of the 17th International
Conference on Automated Software Engineering (ASE ’02).
Edinburgh, Scotland, September 23–27, 2002. Los Alamitos,
CA: IEEE Computer Society Press, September 2002.

[Groce 02] Groce, A.; Peled, D.; & Yannakakis, M. “Adaptive Model
Checking,” 357–370. Edited by Katoen, J. P. & Stevens, P.
Proceedings of the Eighth International Conference on Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS ’02), Volume 2280 of Lecture Notes in Computer

CMU/SEI-2006-TN-028 27

Science. Grenoble, France, April 8-12, 2002. New York, NY:
Springer-Verlag, April 2002.

[Grumberg 94] Grumberg, O. & Long, D. E. “Model Checking and Modular
Verification.” ACM Transactions on Programming Languages
and System (TOPLAS) 16, 3 (May 1994): 843–871.

[Habermehl 05] Habermehl, P. & Vojnar, T. “Regular Model Checking Using
Inference of Regular Languages,” 21–36. Proceedings of the
6th International Workshop on Verification of Infinite-State
Systems (INFINITY ’04), London, England, September 4,
2004, Volume 138(3) of Electronic Notes in Theoretical
Computer Science. December 2005.

[Hoare 85] Hoare, C. A. R. Communicating Sequential Processes.
London, England: Prentice Hall, 1985.

[Holzmann 03] Holzmann, G. The SPIN Model Checker: Primer and
Reference Manual. Boston, MA: Addison-Wesley, 2003.

[Kahlon 05] Kahlon, V.; Ivancic, F.; & Gupta, A. “Reasoning About
Threads Communicating via Locks,” 505–518. Edited by
Etessami, K. & Rajamani, S. K. Proceedings of the 17th
International Conference on Computer Aided Verification
(CAV ’05), Volume 3576 of Lecture Notes in Computer
Science. Edinburgh, Scotland, July 6–10, 2005. New York,
NY: Springer-Verlag, July 2005.

[Kozen 01] Kozen, D. Automata on Guarded Strings and Applications
(Technical Report TR2001-1833). Ithaca, NY: Cornell
University, 2001.

[McMillan 97] McMillan, K. L. “A Compositional Rule for Hardware Design
Refinement,” 24–35. Edited by Grumberg, O. Proceedings of
the 9th International Conference on Computer Aided
Verification (CAV ’97), Volume 1254 of Lecture Notes in
Computer Science. Haifa, Israel, June 22–27, 1997. New York,
NY: Springer-Verlag, June 1997.

[Overkamp 97] Overkamp, A. “Supervisory Control Using Failure Semantics
and Partial Specifications.” IEEE Transactions on Automatic
Control 42, 4 (April 1997): 498–510.

[Peled 99] Peled, D.; Vardi, M. Y.; & Yannakakis, M. “Black Box
Checking,” 225–240. Edited by Wu, J.; Chanson, S. T.; &
Gao, Q. Proceedings of the Joint International Conference on
Formal Description Techniques for Distributed Systems and
Communication Protocols (FORTE ’99), Volume 156 of IFIP
Conference Proceedings, Beijing, China, October 5–8, 1999.
Norwell, MA: Kluwer Academic Publishers, October 1999.

28 CMU/SEI-2006-TN-028

[Pnueli 85] Pnueli, A. “In Transition from Global to Modular Temporal
Reasoning About Programs.” Logics and Models of
Concurrent Systems 13 (1985): 123–144.

[Rivest 93] Rivest, R. L. & Schapire, R. E. “Inference of Finite Automata
Using Homing Sequences.” Information and Computation
103, 2 (April 1993): 299–347.

[Roscoe 97] Roscoe, A. W. The Theory and Practice of Concurrency.
New York, NY: Prentice-Hall International, 1997.

[Williams 05] Williams, A.; Thies, W.; & Ernst, M. D. “Static Deadlock
Detection for Java Libraries,” 602–629. Edited by Black, A. P.
Proceedings of the 19th European Conference on
Object-Oriented Programming (ECOOP ’05), Volume 3586 of
Lecture Notes in Computer Science. Glasgow, UK, July
25–29, 2005. New York, NY: Springer-Verlag, July 2005.

CMU/SEI-2006-TN-028 29

 SOFTWARE ENGINEERING INSTITUTE

 SOFTWARE ENGINEERING INSTITUTE

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations
and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-
0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

September 2006
3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Assume-Guarantee Reasoning for Deadlock
5. FUNDING NUMBERS

FA8721-05-C-0003
6. AUTHOR(S)

Sagar Chaki and Nishant Sinha
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2006-TN-028

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

The use of learning to automate assume-guarantee style reasoning has received a lot of attention in recent years. This
paradigm has already been used successfully for checking trace containment, as well as simulation between concurrent
systems and their specifications. In this report, the learning-based automated assume-guarantee paradigm is extended
to perform compositional deadlock detection. Failure automata is defined as a generalization of finite automata that
accept regular failure sets. A learning algorithm LF is developed that constructs the minimal deterministic failure
automata accepting any unknown regular failure set using a minimally adequate teacher. This report shows how LF can
be used for compositional regular failure language containment and deadlock detection, using non-circular and circular
assume-guarantee rules. Finally, an implementation of techniques and encouraging experimental results on several
nontrivial benchmarks are presented.

14. SUBJECT TERMS

deadlock detection, learning algorithm, assume guarantee, failure automata, finite
automata

15. NUMBER OF PAGES

38

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Assume-Guarantee Reasoning for Deadlock
	Table of Contents
	List of Figures
	Abstract
	1 Introduction
	2 Related Work
	3 Failure Languages and Automata
	4 Assume Guarantee for Deadlock
	5 Learning FLA
	6 Compositional Language Containment
	7 Arbitrary Components and Circularity
	8 Experimental Validation
	9 Conclusion
	References

