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ABSTRACT 

Computational experimentation is an important tool of the military.  It 

provides useful insights at a lower cost of time and money, when compared to 

physical experiments.  Consequently, computational experiments are used to 

evaluate weapon systems for technology acquisition, examine tactics, and to 

help select among alternatives for military operations and war plans.   

Experiments often consist of a large number of factors.  Advancements in 

computing power and design of experiments (DOE) for simulation allow for the 

investigation of more of these factors through computational experiments, 

achieved with less expense in time, effort, and money.  Within the framework of 

DOE, this thesis investigates Orthogonal Latin Hypercube (OLH) and Nearly 

Orthogonal Latin Hypercube (NOLH) designs.  These designs are often used for 

computational experiments.  This research greatly expands upon the size (in 

terms of runs and, especially, variables) of the available OLH and NOLH designs.  

Previously, the largest catalogued OLH and NOLH designs were a maximum of 

29 variables and 257 runs.  OLH and good space-filling NOLH designs for up to 

512 variables in 1025 runs are now available.  This thesis also develops an 

algorithm for handling discrete factors with the designs.  Finally, the effects of 

stacking multiple OLH designs into one larger design are quantified.  All of the 

designs developed in this research are available at the Simulation Experiments & 

Efficient Designs (SEED) Center website (http://harvest.nps.edu). 
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EXECUTIVE SUMMARY 

The Simulation Experiments & Efficient Designs (SEED) Center of the 

Naval Postgraduate School (NPS) has a mission to “promote the advancement of 

collaborative development and the use of simulation and efficient designs to 

provide decision makers with timely insights on complex systems and 

operations.”   

One of the most widely used designs for computational experiments at the 

SEED Center and elsewhere is the Latin Hypercube (LH) design.  LH designs 

are attractive for computational experiments because they allow analysts to 

efficiently vary many factors simultaneously.  Furthermore, LH designs provide a 

lot of flexibility for subsequent analysis. 

For any given combination of input factors and runs, there exist a large 

number of possible LH designs.  From among the possibilities, LH designs that 

are orthogonal and with good space-filling properties are preferred.  Designs with 

good orthogonal properties are desirable because they provide uncorrelated 

estimates for the regression coefficients that analysts frequently use to analyze 

simulation models.  Good space-filling properties are useful for data analysis 

across the possible range of data because the experimental points are scattered 

throughout the domain in a uniform-like manner, providing information throughout 

the design space.  LH designs which are orthogonal can have poor space-filling 

properties.  Thus, a special class of LH designs, called Nearly Orthogonal Latin 

Hypercube (NOLH), which are nearly orthogonal but with improved space-filling 

properties, were developed by Cioppa (2002). 

Existing catalogued Orthogonal Latin Hypercube (OLH) and NOLH 

designs can handle up to 29 factors in 257 runs.  In this thesis, the number and 

size of designs currently used by the SEED Center have been dramatically 

increased.  Specifically, the readily available OLH and NOLH designs have been 
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increased to 512 input variables and 1025 design points.  Table A shows how 

this increases from the previous works of Ye (1998) and Cioppa (2002). 

 
m N k  (Ye) k (Cioppa) k (Ang) 
4 17 6 7 8 
5 33 8 11 16 
6 65 10 16 32 
7 129 12 22 64 
8 257 14 29 128 
9 513 16 37 256 

10 1025 18 46 512 

Table A. Maximum number of input variables for OLH and NOLH 

designs from Ye (1998), Cioppa (2002), and Ang (2006). 

 
By comparing the properties of LH designs with different construction, 

some of the findings include: 

- Florian’s method, used in the construction of NOLH designs, 

improves the orthogonal properties of the LH designs. 

- Increasing the combinations of permutation matrices, to increase 

the number of factors with the same number of runs, tends to cause 

downgraded orthogonal and space-filling properties. 

 
LH designs assume that the input variables are continuous.  The use of 

discrete variables affects the orthogonal and space-filling properties of the 

designs.  This thesis provides a useful guide for choosing columns for 

incorporating discrete variables into the catalogued OLH and NOLH designs.  

This guide provides designs with the best orthogonal and space-filling properties.  

Some of the findings include: 

- Positive-Negative coding is best suited for 2-level variables. 

- The orthogonal properties are affected for discrete variables with 

fewer levels, when compared to discrete variable with more levels. 



 xvii

One efficient way to improve the space-filling of an LH design is to stack 

several designs together.  While this has been done in the past, the effects have 

not been quantified.  This thesis quantifies the improvement of the orthogonal 

and space-filling properties, in relation to the number of stacks, for the various LH 

designs. The LH generator developed in the thesis allows for the flexible creation 

of whatever stacked designs a user desires. 

Users of the LH designs can benefit from the larger designs developed, 

and a clearer understanding of the effects of discrete variables and stacking on 

the orthogonal and space-filling properties of the LH designs.   These designs 

and the JAVA generator needed to construct new OLH and NOLH designs are 

available at the SEED Center website (http://harvest.nps.edu). 
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I. INTRODUCTION 

A. FRAMING THE PROBLEM 
Computer simulation and experimentation is important to the military.  It is 

used in the evaluation of weapon systems and technology prior to acquisition, 

providing the ability to analyze boundary and dangerous conditions that are 

difficult to replicate or are hazardous in physical experiments.  Computer 

simulation and experimentation of military operations and war plans, with military 

simulation models like JCATS1 and MANA2, allow military decision makers to 

study the effects of tactics, employment options, mix of forces, weapon 

acquisition, and testing of war plans.  Through computer simulation and 

experimentation, there are also savings in material, time and money.   

Military uses of computer simulation and experimentation range from the 

acquisition of the 5.56 mm round to the testing of war plans, and each simulation 

or experiment contains numerous factors.  These inputs tend to be uncertain 

(i.e., the performance of humans and systems in battle) and it is unreliable to use 

assumptions of strong prior knowledge (Cioppa & Lucas, 2006).  Unfortunately, 

the total enumeration of all possible scenarios for experimentation is an 

exhaustive task even with today’s computing power.   

In the field of design of experiments (DOE), there are effective and 

efficient methods to design computational experiments.  Specific DOE for 

computer simulation and experimentation, an extension from the traditional DOE, 

has been proposed (Kleijnen, Sanchez, Lucas, & Cioppa, 2005).   

Nearly Orthogonal Latin Hypercube (NOLH) designs possess 

improvements in space-filling properties with nearly orthogonal properties for 

Latin Hypercube (LH) designs (Cioppa, 2006), (Cioppa & Lucas, 2006).  NOLH 

designs have been commonly used for military simulation experiments since their  

                                             
1 Joint Conflict and Tactical Simulator (JCATS) http://www.jfcom.mil/about/fact_jcats.htm 

(accessed 27 May 2006). 

2 Map Aware Non-uniform Automata (MANA), developed for the New Zealand Army and 
Defense Force. 
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inception (See SEED Center website at http://harvest.nps.edu for more details).  

Current designs readily available include NOLH designs that can handle up to 29 

factors with 257 runs.  

This thesis extends the catalogue of the designs up to 512 factors with 

1025 runs.  The effects of using discrete variables with LH designs are also 

investigated, and methods for obtaining LH designs with good orthogonal and 

space-filling properties are proposed.  The effects of stacking the LH designs on 

the orthogonal and space-filling properties of the designs are also investigated 

and quantified. 

 

B. EXPERIMENTS 
By conducting experiments through computer simulation and 

experimentation, one can explore a much greater number of factors than is 

feasible through traditional physical experimentation.  Not only does the use of 

computer experimentation provide more consistent replications, but it is a great 

deal more cost efficient than traditional methods of physical experimentation.  

Computer simulation and experimentation are used to compare the 

performance of systems.  With traditional experiments, there are numerous 

methods developed to detect input variables that may or may not cause some of 

the variation in the responses.  This includes randomization, blocking, and 

replication.  In contrast, the use of computer experiments removes the 

requirement for these three methods, as computer experiments provide identical 

answers for repeated runs with the same set of inputs, reducing the need for 

randomization, blocking, and replication (Santer, Williams, & Notz , 2003).   

An experiment consists of responses due to two main types of variables, 

controlled variables and environmental variables.  Controlled variables are 

variables that can be set to “control” the product or process.  Environmental 

variables are the “uncontrollable” conditions under which the product or process 

is executed.  An example of a military experiment is the determination of the 

accuracy of a tank gun: the controlled variables include the weapon system, 



3

ammunition type, target types and the operating crew; the uncontrolled variables 

include the weather conditions.  The response of the experiment is the distance 

of the impact point from the aim point.  

A metamodel is often used to estimate the effects of the input variables on 

the responses.  The utility of metamodels is that they allow the investigation to 

focus on the important factors that may influence the experiment.  They are then 

used as quick turn-around estimates of the actual problem and to replace running 

the actual simulation, which generally takes a long time to generate results.  A 

description of metamodels can be found in subsection 1. 

The DOE Toolkit (Kleijnen, Sanchez, Lucas, & Cioppa, 2005), which 

provides designs that are used to investigate computer simulation and 

experiments, can be found in summary in subsection 2. 

 
1. Metamodel 
A metamodel describes the relationship between the output response 

(often denoted as y) and the k input variables (often denoted as 1 2, ,..., nx x x ).  A 

metamodel is a function g that can be estimated given an experimental design 

and the corresponding responses, as described in Equation 1.1. 

1 2( , ,..., )i ky g x x x=        (1.1) 

The multiple regression model3 is often used as the metamodel for 

exploration, where the inputs for the regression coefficients 0 1, ,..., kβ β β  are 

usually estimated from computer simulation and experiments by using the 

method of least squares.  The error term, ε , is often assumed to be independent 

and identically distributed ( . . .i i d ) with expectation, ( ) 0E ε = , and variance, 
2( )Var ε σ= . 

The multiple regression model with k predictor variables is 

 1 0
1

( ,.., )
k

k i i
i

g x x xβ β ε
=

= + +∑  
. .

2where (0, )
i i d

Normalε σ∼  (1.2) 

                                            
3 Montgomery, et al. (2001), Chapter 3. 
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Metamodels with more complex structures, such as the cubic polynomial 

model, 2 3
0 1 2 3y x x xβ β β β ε= + + + +  can be represented by Equation 1.2.  This is 

achieved by the assignments 2 3
1 2 3,  , and x x x x x x= = = .  Similarly, models with 

interactions, i.e., 0 1 1 2 2 12 1 2y x x x xβ β β β ε= + + + + , and quadratic polynomial with 

interactions models, i.e., 2
0 1 1 2 2 11 1 12 1 2y x x x x xβ β β β β ε= + + + + + , can also be 

represented by Equation 1.2. 

2. Design of Experiments  
The field of DOE has a rich history in a range of fields, from farming to 

medicine, and provides for the efficient conduct of experiments.  Computer 

simulation and experimentation provide a vast area in which to expand DOE.  

Some of the possible designs are proposed by the DOE Toolkit (Kleijnen, 

Sanchez, Lucas, & Cioppa, 2005) shown in Figure 1: 

 
Figure 1.   Recommended designs from DOE Toolkit (Kleijnen, Sanchez, Lucas, 

& Cioppa, 2005). 
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The number of factors, along the vertical axis, reflects the number of 

possible “controlled” factors in the simulation experiment.  Typical simulation 

experiments consist of large numbers of potential input factors.  The toolkit 

describes different designs for different applications. 

The response-surface complexity, along the horizontal axis, defines the 

continuum from simple to complex response surfaces, which are affected by the 

assumptions on the complexity of the metamodel.  “Maximal screening” is used 

when the assumed metamodel is simple, i.e., with no interactions or polynomial 

terms, and . . .i i d  errors.  “Minimal assumptions” allow for more complex 

metamodels. The horizontal axis lists these assumptions as guidance for the 

choice of the designs that can be used.   

LH designs are recommended for simulation experiments with large 

numbers of factors and minimal assumptions.  For the assumption of a linear 

model, Ye developed an algorithm (Ye, 1998) for orthogonal LH designs which 

were subsequently extended by Cioppa, who exchanged small amounts of non-

orthogonality for better space-filling and developed the NOLH designs (Cioppa, 

2002).  This thesis furthers the current research on these OLH and NOLH 

designs. 

 
C. RESEARCH GOALS 

Construction of the OLH and NOLH designs requires a large amount of 

computation, computer memory, and time.  There are currently a limited number 

of catalogued designs, and this thesis greatly expands the library of the OLH and 

NOLH designs to accommodate greater numbers of variables and runs. 

Traditional LH designs have been used with the assumption of continuous 

variables.  However, real world variables often do not take on continuous values, 

rather, they take on discrete values.  The orthogonal and space-filling properties 

of the OLH and NOLH designs are diminished when used with discrete variables.  

The thesis explores the effects of this, and provides a general rule of thumb 

when using the LH designs for different numbers and levels of discrete variables. 
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D. SOFTWARE  
JAVA is used as the programming language to generate the LH designs in 

this thesis.  The code was initially developed to be run within the netBeans IDE 

5.04 running J2SE 5.0.  During the course of the development, Eclipse SDK 3.2 

for Windows was subsequently used.  In addition, an open source COLT 

package was used to supplement the existing JAVA packages.  COLT provides a 

set of Open Source Libraries for High Performance Scientific and Technical 

Computing in Java.5  

With the COLT package, the License Agreement is: 

Copyright (c) 1999 CERN - European Organization for Nuclear 
Research.  

Permission to use, copy, modify, distribute and sell this software 
and its documentation for any purpose is hereby granted without 
fee, provided that the above copyright notice appear in all copies 
and that both that copyright notice and this permission notice 
appear in supporting documentation. CERN makes no 
representations about the suitability of this software for any 
purpose. It is provided "as is" without expressed or implied 
warranty. 

 

E. THESIS ORGANIZATION 
This thesis extends previous work on OLH and NOLH designs.   Chapter II 

focuses on the DOE toolkit, in particular, the orthogonal and space-filling 

properties of LH designs, and the construction of OLH and NOLH designs.  

Chapter III investigates the properties of the LH designs with respect to 

categorical and mixed-level variables.  Chapter IV covers the results from the 

research.  Chapter V concludes and recommends future research. 

 

                                            
4 netBeans 5.0 and J2SE5.0 Update 6 is available from Sun 

http://java.sun.com/j2se/1.5.0/download.jsp (last accessed 29 May 2006). 
5 COLT package from http://dsd.lbl.gov/~hoschek/colt/ (last accessed 29 May 2006). 



7

II. DESIGN OF EXPERIMENTS FOR COMPUTER SIMULATION 
AND EXPERIMENTATION 

A. LATIN HYPERCUBE DESIGN MATRIX 
A design matrix, X, specifies how an experiment is to be conducted, as 

illustrated in Figure 2.  The rows of the matrix, n, represent the different design 

points, or runs, for the experiment.  Each row represents a single run of the 

experiment.  The columns, k, represent the different factors or controlled 

variables for the experiment.  The n k×  design matrix is used as inputs for the 

experiment, and the responses of the experiment are recorded as the experiment 

occurs. 

The values in the matrix, represented by (row, column), state the value for 

a specific variable during a specific run of the experiment.  For example, the 

representation (1, x1) reflects that the value of variable x1 for run 1 is set at one.  

The notation we use to represent a design matrix is n
kX . 

 
Figure 2.   Design matrices:   (a) A 3-factor, 2-level Full-Factorial Design;  (b) A 2-

factor Latin Hypercube Design. 
 

variables 

00 0 8 
10 0 7 
01 0 6 
11 0 5 
00 1 4 
10 1 3 
01 1 2 
11 1 1 

x3x2 x1 run 

(a) 

3 44
4 33
1 22
2 11

x2 x1run

(b) 

= Xn 

k 
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A Latin Hypercube (LH) design is represented in Figure 2(b).  The 

structure of LH designs require the columns to be permutations of the integers 

from {1,2,..., }n , as shown by 4
2X  in Figure 2(b).  

 
B. LATIN HYPERCUBE SAMPLING 

Latin Hypercube Sampling (LHS) is a statistical sampling method to 

generate inputs for computer experiments (McKay, et al., 1979).  The inputs for 

the computer experiments can be represented as either a Latin Square for two 

dimensions or an LH design for an arbitrary number of dimensions.   

Orthogonal Latin Hypercube (OLH) and Nearly Orthogonal Latin 

Hypercube (NOLH) designs are special classes of LH designs.  OLH designs 

have strict orthogonal properties, reflected by the condition number and 

maximum pairwise correlation of the design.  Both measures are described in 

Section C.  An OLH design has a condition number of 1 and a maximum pairwise 

correlation of 0.   

The algorithm by Ye (1998) for construction of OLH designs can be found 

in Section D. 

NOLH designs, a term coined by Cioppa (2002), relaxes the requirements 

on the orthogonal properties.  He chooses the most space-filling design amongst 

a few design matrices that satisfy the near orthogonal thresholds.  Typical limits 

used by Cioppa are a maximum pairwise correlation of no greater than 0.03 and 

a conditional number no greater than 1.13.   

Cioppa’s 8-step algorithm to construct NOLH designs can be found in 

Section E. 

 
C. DESIRABLE CHARACTERISTICS  

1. Orthogonal Measures 
Designs with good orthogonal properties are desirable because they 

provide uncorrelated estimates for the regression coefficients that analysts use to 

analyze simulation models.  Two of the orthogonal measures used to examine a 
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design matrix include the absolute maximum pairwise correlation, ampρ , and the 

condition number, ( )Tcond X X .   

a. Absolute Maximum Pairwise Correlation, ampρ  

The absolute maximum pairwise correlation (Hernandez, 2006) is 

the maximum ijρ , over all i,j, where i ≠ j, and ijρ  is the pairwise correlation 

between columns xi and xj.  The equation for correlation between any two column 

vectors ( iX and jX ), where i
lX and j

lX  denotes the lth entry, while iX and jX  are 

the means of the values in the columns, is given in Equation 2.1. 

( )( )

( ) ( )
1

2 2

1 1

n
i i j j
l l

l
ij n n

i i j j
l l

l l

X X X X

X X X X
ρ =

= =

 − − 
=

− −

∑

∑ ∑
      (2.1) 

ampρ  gives the worst correlation amongst all pairs of columns in the 

design matrix.  A ampρ  of 0 reflects an orthogonal design matrix.  As a measure of 

near orthogonality for a design, a smaller value is preferred. 

b. Condition Number, ( )Tcond X X  

For an n
kX  design, ( )Tcond X X =ψ1/ψn, where ψ1 and ψn are the 

largest and smallest eigenvalues of TX X , when the columns are centered to 

sum to zero and scaled to the range [-1,1].  

An orthogonal design matrix has a condition number, ( )Tcond X X , 

equal to 1.  As a measure of near orthogonality for a design, a condition number 

as close to one as possible is preferred. 

 

2. Space-Filling Measures 
Designs with good space-filling properties are useful for data analysis 

across the possible range of data because the experimental points are scattered 

throughout the domain in a uniform-like manner.  Three measures to assess the 
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space-filling properties of a design matrix are the modified 2L -discrepancy (ML2), 

the centered 2L -discrepancy (CL2), and the Euclidean maxi-min (Mm) distance. 

a. Modified L2-Discrepancy, ML2 
The pL -discrepancy is a measure of the non-uniformity of a design 

(Wei Chen & Sudjianto, 2003).  The ML2 is a variant of the pL -discrepancy and 

has been used as a space-filling measure in the construction of NOLH designs 

(Cioppa, 2002).  The measure used by Cioppa is Equation 2.2, and the same 

measure in the original source (Hickernell, 1998) is Equation 2.3.   

1
2

2
1 1

2
1 1 1

4 2( ) (3 )
3

1                          [2 max( , )]

k k kn

di
d i

kn n

di ji
d j i

ML X x
n

x x
n

−

= =

= = =

 = − − 
 

+ −

∑∏

∑∑∏
   (2.2) 

2 2
2

1 1

2
1 1 1

4 2[ ( )] (3 )
3

1                          [2 max( , )]

k kn

di
d i

kn n

di ji
d j i

ML X x
n

x x
n

= =

= = =

 = − − 
 

+ −

∑∏

∑∑∏
   (2.3) 

The two equations differ in two ways: the equation 2.3 reflects that 

ML2 is a square root of Right Hand Side (R.H.S.) of the equation, and has 2
n

 in 

place of 
12 k

n

−

.  Equation 2.2 is used in this thesis with the values normalized to 

[0,1]  in each dimension, to allow for consistency with the efforts on NOLH 

designs (Cioppa, 2002).  As a space-filling measure for a design, a smaller value 

for ML2 is preferred. 
b. Centered L2-Discrepancy, CL2 

The CL2 is another variant for the pL -discrepancy that measures 

space-filling.  The main difference from ML2, which is anchored at the origin, is 

that CL2 anchors at the center of the hypercube.  The equation 2.4 (Fang, et al., 

2000) is used with the values normalized to [0,1]  in each dimension.  As a space-

filling measure for a design, a smaller value for CL2 is preferred. 
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22
2

1 1

2
1 1 1

13 2 1 1[ ( )] (1 0.5 0.5 )
2 2 2

1 1 1 1          (1 0.5 0.5 )
2 2 2

k kn

di di
d i

kn n

di ji di ji
d j i

CL X x x
n

x x x x
n

= =

= = =

 = − + − − − 
 

+ + − + − − −

∑∏

∑∑∏
   (2.4) 

c. Euclidean Maxi-min Distance, Mm 

Mm is the other space-filling measure used by Cioppa (2002).  For 

values in the designs scaled to the domain [-1, 1]k, a distance list is defined 

composed of the Euclidean distance between all  
 
 2
n

 pairs of design points.  Mm 

is the smallest value within the list.  The Euclidean distance between any two 

design points (x1, x2) is calculated in equation 2.5 (Morris & Mitchell, 1992). As a 

space-filling measure, a larger value for Mm is preferred.   

=

= −∑ ( ) ( ) 2
1 2 1 2

1
( , ) ( )

k
i i

i
d x x x x       (2.5) 

 
D. ORTHOGONAL LATIN HYPERCUBE (OLH) DESIGNS 

The construction of an n k×  OLH is detailed by Ye (1998). The 

dimensions of n  and k  can be determined from m  (any positive integer). The   

number of runs, n, is given by2 1m + ; the number of variables, k, is given by  

2 2m − .  OLH designs are denoted as n
kO . 

The creation of an OLH requires the construction of three matrices, M, S 

and T.  

 
1. Construction of Matrix M for the OLH 
The matrix M, with dimensions q k× , consists of permutations of the first 

column, a vector e representing the positive levels of a variable.  Although vector 

e can be any ordering of the first q integers (1,2,...,q ), where 12mq −= , an OLH 

design can be guaranteed when vector e is the ascending ordering of integers.  

For example, when m = 4, q = 24-1 = 8, e = [ 1  2  3  4  5  6  7  8 ]T.   
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Permutation matrices, AL (created for 1,  2,...,  1L m= − ) are used to 

generate the other columns of matrix M.  Each of the permutation matrices is 

generated by the following equation, where matrix I is the 2 x 2 identity matrix, 

and matrix 
0 1
1 0

R  
=  
 

.   

− −

= ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
1

... ... , where  is the Kronecker productL
m L L

A I I R R 6 (2.6) 

For example, with m = 4 and L = 1, the permutation matrix A1 = I⊗I⊗R (as 

seen in Table 1) yields the resultant column of A1e = [ 2 1 4 3 6 5 9 7 ]T. 

0 1 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 

Table 1.   A permutation matrix A1 under Ye’s construction for m = 4. 
 

Additional permutation matrices can be created by multiplying any pair of 

Ai and Aj, where i ≠ j.  In Ye’s algorithm, the columns of M are composed of 

vector e, Aie for {1, 2, ...,  -1}i m∈  and AiAm-1e for {1, 2, ...,  - 2}i m∈ .  The 

algorithm uses 2m −  of the 
1

2
m − 
 
 

 2-way combinations of the set of {AL}.   

 

0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 

Table 2.   A permutation matrix A1A3 under Ye’s construction for m = 4. 
                                            

6 Given a mxn matrix A and a pxq matrix B, the Kronecker product A⊗B would be a 
(mxp)x(nxp) matrix C, with each element given by cαβ = aijbkl where α = p(i-1)+k and β = q(j-1)+l. 
(Source:  Weisstein, Eric W. "Matrix Direct Product." From MathWorld--A Wolfram Web Resource. 
http://mathworld.wolfram.com/MatrixDirectProduct.html). 
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For example, with m = 4, the first addition is the permutation matrix A1A3 

(as seen in Table 2), which yields the resultant column of A1A3e = [ 7  8  5  6  3  

4  1  2 ]T. 

An example of matrix M for m = 4, n = 17, k = 6, is in Table 3. 

e A1e A2e A3e A1A3e A2A3e 
1 2 4 8 7 5 
2 1 3 7 8 6 
3 4 2 6 5 7 
4 3 1 5 6 8 
5 6 8 4 3 1 
6 5 7 3 4 2 
7 8 6 2 1 3 
8 7 5 1 2 4 

Table 3.   A matrix M under Ye’s construction for m = 4. 
 

2. Construction of Matrix S for the OLH 
Matrix S has entries ±1, and has the same dimensions as matrix M, q × k.  

The first column of matrix S consists of +1’s, and the subsequent 1m −  columns 

are identical to a two-level full factorial design for 1m −  variables.  The remaining 

2m −  columns are created by pairwise combinations in the two-level full factorial, 

corresponding to the interactions between AL used in the creation of matrix M, 

i.e., A1A3.  For example, the resultant column, i.e., S1S3, is obtained by 

multiplying, element by element, the columns of S1 and S3 together.   

Ye proposed the creation of the matrix S by defining the vector aj as 

1 2 1...j ma B B B −= ⊗ ⊗ ⊗ , where 
1

1jB
− 

=  
 

 and 
1
1iB  

=  
 

, for 

{1,  2,  ...,  -1} and i jj m∈ ≠ .  This vector replaces the columns of S1, .., Sm-1. The 

subsequent columns are pairwise combinations of the original columns. 

For example, with m = 4, the vector a1 = 
1 1 1
1 1 1

−     
⊗ ⊗     

     
 generates the 

column of S1 = [ -1  +1  -1  +1  -1  +1  -1  +1]T. 
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An example of the matrix S for m = 4, n = 17, k = 6, is in Table 4. 

S0 S1 S2 S3 S1S3 S2S3 
+ 1 -1 -1 -1 + 1 + 1 
+ 1 + 1 -1 -1 -1 + 1 
+ 1 -1 + 1 -1 + 1 -1 
+ 1 + 1 + 1 -1 -1 -1 
+ 1 -1 -1 + 1 -1 -1 
+ 1 + 1 -1 + 1 + 1 -1 
+ 1 -1 + 1 + 1 -1 + 1 
+ 1 + 1 + 1 + 1 + 1 + 1 
Table 4.   A matrix S under Ye’s construction for m = 4. 

 
 

3. Construction of Matrix T for the OLH 
Matrix T, of dimensions n k× , is created by the Hadamard product7 of 

matrix M and matrix S.  A row of 0’s and a mirror image of matrix T are appended 

to matrix T for the creation of an OLH.  The mirror for matrix T involves changing 

the sign and flipping the order of the original matrix T.  

The resultant OLH, 17
6O , with e = [ 1  2  3  4  5  6  7  8 ]T, is in Table 5. 

Run Var 1 Var 2 Var 3 Var 4 Var 5 Var 6 
1 1 - 2 - 4 - 8 7 5 
2 2 1 - 3 - 7 - 8 6 
3 3 - 4 2 - 6 5 - 7 
4 4 3 1 - 5 - 6 - 8 
5 5 - 6 - 8 4 - 3 - 1 
6 6 5 - 7 3 4 - 2 
7 7 -8 6 2 - 1 3 
8 8 7 5 1 2 4 
9 0 0 0 0 0 0 

10 - 8 - 7 - 5 - 1 - 2 - 4 
11 - 7 8 - 6 - 2 1 - 3 
12 - 6 - 5 7 - 3 - 4 2 
13 - 5 6 8 - 4 3 1 
14 - 4 - 3 - 1 5 6 8 
15 - 3 4 - 2 6 - 5 7 
16 - 2 - 1 3 7 8 - 6 
17 - 1 2 4 8 - 7 - 5 

Table 5.   17
6O  under Ye’s construction (where m = 4, k = 6, n = 17). 

Based on the measures defined, we see that the properties for this 17
6O are 

( )Tcond X X = 1.0, ampρ  = 0.0, Mm = 1.4737, ML2 = 0.0965 and CL2 = 0.2053. 

 
                                            

7 Suppose A = (aij) and B = (bij) are to n × m matrices, the Hadamard product of A and B is 
the entry-wise product of A and B, that is that resultant n × m matrix has (i,j) entries of aijbij  
(http://planetmath.org/encyclopedia/HadamardProduct.html). 
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E. NEARLY ORTHOGONAL LATIN HYPERCUBE (NOLH) DESIGNS 
Cioppa describes the construction of n k×  OLH and NOLH designs by 

extending Ye’s algorithm (Cioppa, 2002), increasing k  from 2 2m −  to 

1
2

m
m

− 
+  
 

, with the number of runs, n , remaining constant.  NOLH designs are 

denoted as n
kN . 

The matrix M is extended by using all possible two-way combinations and 

appending the additional columns, AiAje for , 1,  2,  ...,  -1 and i ji j m= ≠ .  For 

example, for the case where m = 4, the extension appends the columns, {A1A2e, 
A1A3e, A2A3e} instead of only {A1A2e, A2A3e}.  This increases the number of 

variables explored, as depicted in Table 6.  Construction of matrix S then 

requires the same number of additional columns, while the construction for matrix 

T remains unchanged. 

m n k  (Ye) k (Cioppa) 
4 17 6 7 
5 33 8 11 
6 65 10 16 
7 129 12 22 
8 257 14 29 

Table 6.   Comparison for k between Ye and Cioppa. 
 

By varying the order of e in the creation of the matrix M, different design 

matrices, which yield different properties, can be constructed.  The original vector 

e = [ 1  2  3  4  5  6  7  8 ]T provides an orthogonal design, but tends to have poor 

space-filling properties.  There are a total of 1(2 )!m−  permutations to vector e.  

This creates problems of searching for the best, as seen in the large numbers in 

Table 7.  

 
m Number of Permutations 
4 40320 
5 20922789888000 
6 263130836933694000000000000000000000 

Table 7.   Number of possible permutations of vector e. 
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The 8-step construction proposed by Cioppa is detailed (Cioppa & Lucas, 

2006)  as follows: 
Step 1: Determine the number of variables (k > 7) required. If the number of 

variables is other than 11, 16, 22, or, more generally, (
1

2
m

m
− 

+  
 

), round the 

required number of variables up to the nearest one of these numbers. 
 
Step 2: Establish a maximum threshold pairwise correlation value and a 
maximum threshold condition number. Based on extensive experimentation, we 
use maxρ  = 0.05, 0.17, 0.16, and ( )Tcond X X  = 1.15, 2.4, 2.8 for k = 11, 16, 
and 22, respectively. 
 
Step 3: Using a randomly permuted e, construct a design matrix.  
 
Step 4: Calculate the pairwise correlations and the condition number of the 
candidate matrix. 
 
Step 5: If either value in Step 4 exceeds the thresholds in Step 2, discard the 
design and return to Step 3 to regenerate with another randomly permuted e. 
Otherwise, keep the design and proceed to Step 6. Repeat Steps 3-5 until a 
desired number of candidate designs are found. Note: If not enough are found, 
relax the criteria in Step 2 and begin again. We have found that 15 candidate 
designs work well for Steps 6-8. 
 
Step 6: Subject each of the candidate designs to repeated applications of 
Florian’s method to decrease the maximum pairwise correlation and condition 
number. Stop when no further improvement is made. 
 
Step 7: Calculate the Mm distance and ML2 discrepancy for each of the Step 6 
designs. Rank the designs according to some combination of these measures. 
We chose the design with the minimum rank sum over the two measures. 
 

Step 8: If a number of variables other than 7, 11, 16, 22, or 
1

2
m

m
− 

+  
 

 is 

required, construct each possible subset having the appropriate number of 
columns from the Step 7 design and calculate the Mm distance and ML2 
discrepancy. Choose the design with the best combination of these two 
measures. 
 

With preset thresholds of ( ) 1.13Tcond X X <  and max 0.03ρ < , Cioppa 

identifies 15 designs that satisfy the definition of near orthogonality.  The one 

with the best space-filling property is chosen (as in Step 7) and catalogued as the 

best NOLH design, n
kN , for the particular n and k values.   
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F. EXTENDING OLH AND NOLH DESIGNS  
With Cioppa extending Ye’s algorithm to include all 2-way combinations 

and still maintaining orthogonal properties, the exploration into the inclusion of 3-

way and larger combinations for the permutation matrices for construction of the 

LH designs was performed.  Through the analysis, it is confirmed that the 

orthogonal properties are maintained, thus allowing the ability to investigate a 

larger number of factors with the same number of design points in an OLH 

design.   

For each design matrix, the inclusion of p-way combinations also includes 

all smaller combinations for the permutation matrices.  For example, an inclusion 

of a 4-way combination also includes both the 2-way and 3-way combinations.  

The number of factors, k, with the inclusion of p-way combinations (where the 

maximum is 1p m≤ − ), is given by the following equation: 

1

1
1  

p

j

m
k

j=

− 
= +  

 
∑        (2.7) 

The number of factors for each design is improved as shown in Table 8.     

Ang 
n m Ye’s 

OLH 
Cioppa 
(2-way) 3-way 4-way p-way8 

9 3 4 4 - - 4 
17 4 6 7 8 - 8 
33 5 8 11 15 16 16 
65 6 10 16 26 31 32 

129 7 12 22 42 57 64 
257 8 14 29 64 99 128 
513 9 16 37 93 163 256 

1025 10 18 46 130 256 512 
Table 8.   Comparison of LH designs with p-way combinations. 

The construction of the LH designs remains similar to the methods 

proposed by Ye, and also by Cioppa.  The additional permutation matrices 

include all the combinations of 
1 2

...
px x xA A A  for 1 2 px ,x ,..,x 1,2,...,m-1∈ , and 

1 2 px x ... x≠ ≠ ≠ .  For example, for p = 3, the 2-way combinations AiAj, for i j≠ , 

                                            
8 The maximum possible p-way combination depends on the value of m, where 1p m= − .  

For example, if m = 4, the maximum p-way combination is a 3-way combination.   
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and 3-way combination AiAjAk are included for the permutation matrices, for all 

i, j, k 1,2,...,m-1∈  and i j k≠ ≠ .  

For m = 4, the extension appends the column, {A1A2A3e} in addition to the 

2-way combinations.  Construction of matrix S includes the additional number of 

columns in a similar fashion.  The construction of matrix T remains unchanged.  

The details for the construction of the design matrix 17
8O  can be seen in Appendix 

A.   

With the inclusion of additional combinations for more factors, there are 

tradeoffs in the orthogonal and space-filling properties for the individual designs.  

For orthogonal properties, the extended 17
8O  has the same properties as the 

methods by Ye and Cioppa.  The space-filling properties for the designs with 

larger numbers of combinations will be worse when compared with the other 

designs, because we are putting the same number of design points in a larger 

space.  A table of comparison is shown in Table 9. 

 ( )Tcond X X  ampρ  Mm ML2 CL2 
Ye 17

6O  1.0 0.0 1.4737 0.0965 0.2053 

Cioppa 17
7O  1.0 0.0 1.479 0.1732 0.2551 

Ang 17
8O  1.0 0.0 1.7854 0.3144 0.3142 

Table 9.   Properties of 17
6O , 17

7O and 17
8O . 

 
For designs with a fixed number of runs, n, there are usually tradeoffs for 

increasing the number of variables, k, for the design.  The increase in k, 

increases the dimensionality of the design matrix, and improves Mm. However, 

the ML2 and CL2 measures reflect worse space-filling properties for a larger k.  

For NOLH designs, the limits used are ( ) 1.2Tcond X X <  and 0.05ampρ < .   
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III. DISCRETE/CATEGORICAL VARIABLES AND THEIR 
EFFECT ON PROPERTIES OF LH DESIGNS 

A. INTRODUCTION 
A discrete variable is a variable that assumes values within a discrete set, 

such as integers.  Discrete variables can either be nominal or ordinal variables.  

Nominal variables are variables where order does not matter, such as gender.  

Ordinal discrete variables have an ordering or quantitative value associated, e.g., 

the number of tanks and military ranks. 

An example of a nominal discrete variable is gender.  Male and Female 

are often represented in designs in the continuous range by values 1 and 0, or 0 

and 1, respectively, as there is no correlation between the representation and the 

nominal variable.  Another example of a nominal discrete variable with more than 

two levels is the military service, which include Army, Navy, and Air Force.  In 

general, nominal discrete variables with α  levels require 1α −  indicator 

variables.   

An example of an ordinal discrete variable is the number of soldiers or 

tanks, which can take only integer values.  Another example of an ordinal 

discrete variable is the military ranks for the Singapore Army, which have an 

ordinal scale. 

Our investigation of the effects of discrete variables on the properties of 

the LH designs seeks to answer the following questions: 

• How does the choice of the column used for the discrete variable 

affect the properties of the LH design? 

• What are the effects on the properties of the LH design for 

increasing numbers of discrete variables? 

• How do different levels for discrete variables affect the properties of 

the LH design? 



20

• How does different coding of discrete variables affect the properties 

of the LH design? 

 
B. METHODOLOGY OF EVALUATION 

The methodology used to investigate the effects of discrete variables on 

the properties of LH designs looks at the effects of representing, coding and 

ordering of discrete variables.  OLH and NOLH design matrices constructed 

earlier are used, and the results of this evaluation are discussed in Chapter IV.     

1. Representing Types of Discrete Variables 
Both nominal and ordinal discrete variables are investigated. Ordinal 

discrete variables are more significant, as the presence of ordinal variables is 

extremely common in real world problems.  This thesis looks at the coding 

methods for both nominal and ordinal discrete variables in the following sections. 

2. Coding Discrete Variables 
Coding of nominal discrete variables with {high, low} can be done in (at 

least) two different methods, because the ordering of the values does not matter. 

The two methods we look at are positive-negative coding and odd-even coding.  

Positive-negative coding assigns all positive values in our earlier LH designs with 

the high value and negative values with the low value.  Odd-even coding assigns 

all even numbers with the high value and the odd numbers with the low value.  

For example, both coding for the 17
7O design are shown in Table 10. 

Original -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 

Positive-

Negative 
lo lo lo Lo lo lo lo lo hi hi hi hi hi hi hi hi hi

Odd-

Even 
hi lo hi Lo hi lo hi lo hi lo hi lo hi lo hi lo hi

Table 10.   Coding methods for nominal variables. 
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The mathematical formulation of the positive-negative (PN) and odd-even  

OD) coding are: 

max     0
min     0 PN

value if x
coding

value if x
≥

=  <
 

( ,2)
max value    0
min value    0OE

remainder MOD value
if remainder

coding
if remainder

=

=
=  ≠

 

Coding discrete variables with more than 2 levels is done by distributing 

the levels uniformly across the number of levels of the discrete variables.  For 

example, the coding for the 3-level ordinal discrete variable {0, 1, 2} in the 
17
6O design is represented in Table 11. 

Original  -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 

Coding 0 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 2 

Table 11.   Coding for ordinal variables. 
 

3. Ordering Columns of a LH Design for Additional Discrete 
Variables 

For a single discrete variable, the best column to represent the discrete 

variable is obtained after comparing the orthogonal and space-filling properties of 

the design with the discrete variable coded.  All of the columns are used for the 

single discrete variable to generate additional designs.  The properties for each 

new design are ranked, and the column which gives the best properties should 

be used to represent the single discrete variable.   

For example, the 17
7O  design is used to represent a single 2-level discrete 

variable.  After generating 7 new designs, the properties of the new designs are 

collected and ranked, as seen in Table 12.  The best of the new designs (with the 

lowest overall rank) is the choice of the column for the 2-level discrete variable.  

Column 5 is the best choice for 17
7O  to represent the 2-level discrete variable. 
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Raw results Ranking Col. 

Used ( )Tcond X X  ampρ  Mm ML2 ( )Tcond X X  ampρ  Mm ML2 
Overall 
Rank 

1 4.004 0.385 1.431 0.627 4 2 3 1 10 

2 4.004 0.385 1.392 0.629 4 2 4 2 12 

3 4.004 0.385 1.458 0.640 4 2 2 4 12 

4 4.004 0.385 1.275 0.665 4 2 6 7 19 

5 2.946 0.193 1.474 0.631 1 1 1 3 5 (Best) 

6 3.710 0.385 1.341 0.648 2 2 5 6 15 

7 3.928 0.385 1.192 0.645 3 2 7 5 17 

Table 12.   Ranking and selection of columns for discrete variables. 
 

The selection of columns for new LH designs for multiple discrete 

variables will choose the best column, and sequentially choose the other 

columns that give the best orthogonal and space-filling properties. An iterative 

process determines the columns, and although this process may not provide the 

best (or global optimal) result, the saving of computational time promotes its use 

over the total enumeration of all possibilities. 

The ordering of columns to use for the designs, for additional 2-level 

variable columns for the 17
7O design, is {5, 2, 6, 3, 7, 4, 1}.  An example of 

interpreting this result for a scenario with two 2-level discrete variables using the 
17
7O design is that we should use columns 5 and 2, because they provide the best 

orthogonal and space-filling properties.  This is further described with illustration 

in Chapter IV, Tables 19 and 20.  
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IV. RESULTS OF RESEARCH 

A. SOFTWARE IMPLEMENTATION OF LATIN HYPERCUBE 
GENERATOR IN JAVA 
Within the IDE9, running primarily on a personal laptop10 or lab 

computer11, OLH and NOLH designs corresponding to Table 13 were 

successfully generated.  Properties of the individual designs are discussed in 

section B.  The largest OLH design, 1025
512O , using e = [ 1  2  … 512 ]T, took 

approximately 30 minutes to generate.  The time taken to generate different 

NOLH designs is largely dependent on the number of candidate designs 

considered.  

Additional p-way combinations for the permutation matrix n m 2-way 3-way 4-way 5-way 6-way 7-way 8-way 9-way 
17 4 7 8 NA NA NA NA NA NA 
33 5 11 15 16 NA NA NA NA NA 
65 6 16 26 31 32 NA NA NA NA 

129 7 22 42 57 63 64 NA NA NA 
257 8 29 64 99 120 127 128 NA NA 
513 9 37 93 163 219 247 255 256 NA 

1025 10 46 130 256 382 466 502 511 512 
Table 13.   List of LH designs generated. 

 
Inclusion of p-way combinations of the permutation matrices during 

construction of OLH and NOLH designs can achieve a larger LH design.  The 

catalogue of OLH designs captures all designs, and the catalogue of NOLH 

designs is still in progress.  The catalogues can be found on the SEED Center 

website (http://harvest.nps.edu); some of the designs are catalogued in Appendix 

B. 

The code for the generation of OLH and NOLH is also available on the 

SEED Center website.  

                                            
9 Eclipse SDK (Version: 3.2.0) Build id: M20060629-1905 (Available via: 

http://www.eclipse.org/downloads/). Last date accessed, Nov 2006 
10 Home laptop – Fujitsu running Intel® Pentium® M 1.73 GHz, 1.00GB RAM. 
11 Lab computer – Dell running Intel® Pentium® 4 3.40 GHz, 2.00 GB RAM. 
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Construction of NOLH designs are done in two ways, with varying 

performances in speed and properties of LH designs, namely random and 

sequential.  The random permutation of the vector e, generates NOLH design in 

slightly longer time, but with good properties.  The sequential method searches 

around a known OLH design and generates the NOLH design much faster, but 

its properties are dependent on the initial starting point.  An illustration of the idea 

for both methods is shown in Figure 3. 

 
Figure 3.   Illustration of the random and fixed permutation of the e vector for 

construction of the NOLH designs (Best viewed in color). 
 

1. Summary of Functions within JAVA Application 
The JAVA application is able to do the following: 

• Construct OLH to 5
2O to 1025

512O . 

• Construct NOLH from 5
2N to 513

93N (work is still ongoing as 2100 “is 

forever”). 

• Read in LH design (in .txt format) and output the orthogonal and 

space-filling properties of the design. 

 

 

Candidate Design from 
random permutated e vector 

Candidate Design from fixed 
permutated e vector about a 
known OLH 

Known OLH 
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• Read in LH design (in .txt format) and perform a categorical 

analysis on the design matrix, and output the order of the columns to 

use which give good properties to the now, mixed design.  

• Read in LH design (in .txt format) and stack the design based on 

user’s input, and output the design and its corresponding orthogonal 

and space-filling properties.  

 
2. Catalogues of OLH and NOLH Designs  
A partial catalogue of OLH designs is included in Appendix B.  Current 

designs include the construction for 10m ≤  (up to 1025
512O ) and are available on the 

SEED Center website. 

A catalogue of NOLH designs, where the thresholds are ( ) 1.2Tcond X X <  

and 0.05ampρ < , is available on the SEED Center website.  Construction of 

NOLH designs will continue to obtain better design matrices, and updated design 

matrices will also be available. 

With the ability to extend the OLH and NOLH designs by the inclusion of 

additional p-way combinations of permutation matrices, the design matrix of 65
31O is 

in Table 14. 
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1 -2 -4 -8 -16 -32 3 7 15 31 5 13 29 9 25 17 -6 -14 -30 -10 -26 -18 -12 -28 -20 -24 11 27 19 23 21
2 1 -3 -7 -15 -31 -4 -8 -16 -32 6 14 30 10 26 18 5 13 29 9 25 17 -11 -27 -19 -23 -12 -28 -20 -24 22
3 -4 2 -6 -14 -30 -1 5 13 29 -7 -15 -31 11 27 19 8 16 32 -12 -28 -20 10 26 18 -22 -9 -25 -17 21 -23
4 3 1 -5 -13 -29 2 -6 -14 -30 -8 -16 -32 12 28 20 -7 -15 -31 11 27 19 9 25 17 -21 10 26 18 -22 -24
5 -6 -8 4 -12 -28 7 -3 11 27 -1 9 25 -13 -29 21 2 -10 -26 14 30 -22 16 32 -24 20 -15 -31 23 -19 -17
6 5 -7 3 -11 -27 -8 4 -12 -28 -2 10 26 -14 -30 22 -1 9 25 -13 -29 21 15 31 -23 19 16 32 -24 20 -18
7 -8 6 2 -10 -26 -5 -1 9 25 3 -11 -27 -15 -31 23 -4 12 28 16 32 -24 -14 -30 22 18 13 29 -21 -17 19
8 7 5 1 -9 -25 6 2 -10 -26 4 -12 -28 -16 -32 24 3 -11 -27 -15 -31 23 -13 -29 21 17 -14 -30 22 18 20
9 -10 -12 -16 8 -24 11 15 -7 23 13 -5 21 -1 17 -25 -14 6 -22 2 -18 26 4 -20 28 32 -3 19 -27 -31 -29

10 9 -11 -15 7 -23 -12 -16 8 -24 14 -6 22 -2 18 -26 13 -5 21 -1 17 -25 3 -19 27 31 4 -20 28 32 -30
11 -12 10 -14 6 -22 -9 13 -5 21 -15 7 -23 -3 19 -27 16 -8 24 4 -20 28 -2 18 -26 30 1 -17 25 -29 31
12 11 9 -13 5 -21 10 -14 6 -22 -16 8 -24 -4 20 -28 -15 7 -23 -3 19 -27 -1 17 -25 29 -2 18 -26 30 32
13 -14 -16 12 4 -20 15 -11 -3 19 -9 -1 17 5 -21 -29 10 2 -18 -6 22 30 -8 24 32 -28 7 -23 -31 27 25
14 13 -15 11 3 -19 -16 12 4 -20 -10 -2 18 6 -22 -30 -9 -1 17 5 -21 -29 -7 23 31 -27 -8 24 32 -28 26
15 -16 14 10 2 -18 -13 -9 -1 17 11 3 -19 7 -23 -31 -12 -4 20 -8 24 32 6 -22 -30 -26 -5 21 29 25 -27
16 15 13 9 1 -17 14 10 2 -18 12 4 -20 8 -24 -32 11 3 -19 7 -23 -31 5 -21 -29 -25 6 -22 -30 -26 -28
17 -18 -20 -24 -32 16 19 23 31 -15 21 29 -13 25 -9 -1 -22 -30 14 -26 10 2 -28 12 4 8 27 -11 -3 -7 -5
18 17 -19 -23 -31 15 -20 -24 -32 16 22 30 -14 26 -10 -2 21 29 -13 25 -9 -1 -27 11 3 7 -28 12 4 8 -6
19 -20 18 -22 -30 14 -17 21 29 -13 -23 -31 15 27 -11 -3 24 32 -16 -28 12 4 26 -10 -2 6 -25 9 1 -5 7 
20 19 17 -21 -29 13 18 -22 -30 14 -24 -32 16 28 -12 -4 -23 -31 15 27 -11 -3 25 -9 -1 5 26 -10 -2 6 8 
21 -22 -24 20 -28 12 23 -19 27 -11 -17 25 -9 -29 13 -5 18 -26 10 30 -14 6 32 -16 8 -4 -31 15 -7 3 1 
22 21 -23 19 -27 11 -24 20 -28 12 -18 26 -10 -30 14 -6 -17 25 -9 -29 13 -5 31 -15 7 -3 32 -16 8 -4 2 
23 -24 22 18 -26 10 -21 -17 25 -9 19 -27 11 -31 15 -7 -20 28 -12 32 -16 8 -30 14 -6 -2 29 -13 5 1 -3
24 23 21 17 -25 9 22 18 -26 10 20 -28 12 -32 16 -8 19 -27 11 -31 15 -7 -29 13 -5 -1 -30 14 -6 -2 -4
25 -26 -28 -32 24 8 27 31 -23 -7 29 -21 -5 -17 -1 9 -30 22 6 18 2 -10 20 4 -12 -16 -19 -3 11 15 13
26 25 -27 -31 23 7 -28 -32 24 8 30 -22 -6 -18 -2 10 29 -21 -5 -17 -1 9 19 3 -11 -15 20 4 -12 -16 14
27 -28 26 -30 22 6 -25 29 -21 -5 -31 23 7 -19 -3 11 32 -24 -8 20 4 -12 -18 -2 10 -14 17 1 -9 13 -15
28 27 25 -29 21 5 26 -30 22 6 -32 24 8 -20 -4 12 -31 23 7 -19 -3 11 -17 -1 9 -13 -18 -2 10 -14 -16
29 -30 -32 28 20 4 31 -27 -19 -3 -25 -17 -1 21 5 13 26 18 2 -22 -6 -14 -24 -8 -16 12 23 7 15 -11 -9
30 29 -31 27 19 3 -32 28 20 4 -26 -18 -2 22 6 14 -25 -17 -1 21 5 13 -23 -7 -15 11 -24 -8 -16 12 -10
31 -32 30 26 18 2 -29 -25 -17 -1 27 19 3 23 7 15 -28 -20 -4 -24 -8 -16 22 6 14 10 -21 -5 -13 -9 11
32 31 29 25 17 1 30 26 18 2 28 20 4 24 8 16 27 19 3 23 7 15 21 5 13 9 22 6 14 10 12
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
-1 2 4 8 16 32 -3 -7 -15 -31 -5 -13 -29 -9 -25 -17 6 14 30 10 26 18 12 28 20 24 -11 -27 -19 -23 -21
-2 -1 3 7 15 31 4 8 16 32 -6 -14 -30 -10 -26 -18 -5 -13 -29 -9 -25 -17 11 27 19 23 12 28 20 24 -22
-3 4 -2 6 14 30 1 -5 -13 -29 7 15 31 -11 -27 -19 -8 -16 -32 12 28 20 -10 -26 -18 22 9 25 17 -21 23
-4 -3 -1 5 13 29 -2 6 14 30 8 16 32 -12 -28 -20 7 15 31 -11 -27 -19 -9 -25 -17 21 -10 -26 -18 22 24
-5 6 8 -4 12 28 -7 3 -11 -27 1 -9 -25 13 29 -21 -2 10 26 -14 -30 22 -16 -32 24 -20 15 31 -23 19 17
-6 -5 7 -3 11 27 8 -4 12 28 2 -10 -26 14 30 -22 1 -9 -25 13 29 -21 -15 -31 23 -19 -16 -32 24 -20 18
-7 8 -6 -2 10 26 5 1 -9 -25 -3 11 27 15 31 -23 4 -12 -28 -16 -32 24 14 30 -22 -18 -13 -29 21 17 -19
-8 -7 -5 -1 9 25 -6 -2 10 26 -4 12 28 16 32 -24 -3 11 27 15 31 -23 13 29 -21 -17 14 30 -22 -18 -20
-9 10 12 16 -8 24 -11 -15 7 -23 -13 5 -21 1 -17 25 14 -6 22 -2 18 -26 -4 20 -28 -32 3 -19 27 31 29

-10 -9 11 15 -7 23 12 16 -8 24 -14 6 -22 2 -18 26 -13 5 -21 1 -17 25 -3 19 -27 -31 -4 20 -28 -32 30
-11 12 -10 14 -6 22 9 -13 5 -21 15 -7 23 3 -19 27 -16 8 -24 -4 20 -28 2 -18 26 -30 -1 17 -25 29 -31
-12 -11 -9 13 -5 21 -10 14 -6 22 16 -8 24 4 -20 28 15 -7 23 3 -19 27 1 -17 25 -29 2 -18 26 -30 -32
-13 14 16 -12 -4 20 -15 11 3 -19 9 1 -17 -5 21 29 -10 -2 18 6 -22 -30 8 -24 -32 28 -7 23 31 -27 -25
-14 -13 15 -11 -3 19 16 -12 -4 20 10 2 -18 -6 22 30 9 1 -17 -5 21 29 7 -23 -31 27 8 -24 -32 28 -26
-15 16 -14 -10 -2 18 13 9 1 -17 -11 -3 19 -7 23 31 12 4 -20 8 -24 -32 -6 22 30 26 5 -21 -29 -25 27
-16 -15 -13 -9 -1 17 -14 -10 -2 18 -12 -4 20 -8 24 32 -11 -3 19 -7 23 31 -5 21 29 25 -6 22 30 26 28
-17 18 20 24 32 -16 -19 -23 -31 15 -21 -29 13 -25 9 1 22 30 -14 26 -10 -2 28 -12 -4 -8 -27 11 3 7 5 
-18 -17 19 23 31 -15 20 24 32 -16 -22 -30 14 -26 10 2 -21 -29 13 -25 9 1 27 -11 -3 -7 28 -12 -4 -8 6 
-19 20 -18 22 30 -14 17 -21 -29 13 23 31 -15 -27 11 3 -24 -32 16 28 -12 -4 -26 10 2 -6 25 -9 -1 5 -7
-20 -19 -17 21 29 -13 -18 22 30 -14 24 32 -16 -28 12 4 23 31 -15 -27 11 3 -25 9 1 -5 -26 10 2 -6 -8
-21 22 24 -20 28 -12 -23 19 -27 11 17 -25 9 29 -13 5 -18 26 -10 -30 14 -6 -32 16 -8 4 31 -15 7 -3 -1
-22 -21 23 -19 27 -11 24 -20 28 -12 18 -26 10 30 -14 6 17 -25 9 29 -13 5 -31 15 -7 3 -32 16 -8 4 -2
-23 24 -22 -18 26 -10 21 17 -25 9 -19 27 -11 31 -15 7 20 -28 12 -32 16 -8 30 -14 6 2 -29 13 -5 -1 3 
-24 -23 -21 -17 25 -9 -22 -18 26 -10 -20 28 -12 32 -16 8 -19 27 -11 31 -15 7 29 -13 5 1 30 -14 6 2 4 
-25 26 28 32 -24 -8 -27 -31 23 7 -29 21 5 17 1 -9 30 -22 -6 -18 -2 10 -20 -4 12 16 19 3 -11 -15 -13
-26 -25 27 31 -23 -7 28 32 -24 -8 -30 22 6 18 2 -10 -29 21 5 17 1 -9 -19 -3 11 15 -20 -4 12 16 -14
-27 28 -26 30 -22 -6 25 -29 21 5 31 -23 -7 19 3 -11 -32 24 8 -20 -4 12 18 2 -10 14 -17 -1 9 -13 15
-28 -27 -25 29 -21 -5 -26 30 -22 -6 32 -24 -8 20 4 -12 31 -23 -7 19 3 -11 17 1 -9 13 18 2 -10 14 16
-29 30 32 -28 -20 -4 -31 27 19 3 25 17 1 -21 -5 -13 -26 -18 -2 22 6 14 24 8 16 -12 -23 -7 -15 11 9 
-30 -29 31 -27 -19 -3 32 -28 -20 -4 26 18 2 -22 -6 -14 25 17 1 -21 -5 -13 23 7 15 -11 24 8 16 -12 10
-31 32 -30 -26 -18 -2 29 25 17 1 -27 -19 -3 -23 -7 -15 28 20 4 24 8 16 -22 -6 -14 -10 21 5 13 9 -11
-32 -31 -29 -25 -17 -1 -30 -26 -18 -2 -28 -20 -4 -24 -8 -16 -27 -19 -3 -23 -7 -15 -21 -5 -13 -9 -22 -6 -14 -10 -12

Table 14.   Design matrix of 65
31O . 
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B. PROPERTIES OF OLH AND NOLH DESIGNS 
1. Experimenting and Extending the OLH and NOLH Designs  
Through experimentation, new design matrices to include up to p-way 

combinations of permutation matrices were constructed.  These designs have 

maintained their orthogonal properties of ( )Tcond X X =1.0 and ampρ = 0.0, even 

with the inclusion of 3-way, 4-way, …, ( 1)m − -way combinations when the vector 

e is [1, 2, …, 2m-1]T.  The properties for the LH designs that include 3-way and 4-

way combinations are in Table 15, in comparison with the mean of 100 Flexible 

Random Latin Hypercube (FRLHS) designs. 

3-way 4-way Mean of 100 FRLHS 
m n k 

( )Tcond X X  
ampρ  

Mm 
ML2 k 

( )Tcond X X  
ampρ  

Mm 
ML2 k 

( )Tcond X X  
ampρ  

Mm 
ML2 

4 17 8 1.0 
0.0 

1.78 
0.314 8 NA NA 8 2.47 

0.24 
1.27 
0.35 

5 33 15 1.0 
0.0 

2.20 
7.01 16 1.0 

0.0 
2.42 
11.52 15 2.11 

0.17 
1.96 
6.23 

6 65 26 1.0 
0.0 

2.70 
8.67E2 31 1.0 

0.0 
3.18 

1.04E4 26 1.77 
0.10 

2.77 
4.31E2

7 129 42 1.0 
0.0 

3.27 
1.76E6 57 1.0 

0.0 
4.14 

5.24E9 42 1.54 
0.07 

3.27 
1.78E5

Table 15.   Construction of OLH designs with 3-way and 4-way combinations. 
 

Orthogonal properties of the LH designs are maintained with the inclusion 

of higher order combinations, but these designs have less ideal space-filling 

properties.  Depending on the type of scenario and the limitations to the number 

of runs, different design matrices may be used.   

After the initial test with additional columns confirmed success in 

generating OLH designs, additional OLH designs were generated and the 

properties of the designs are shown in Table 16. 

Observations for these designs include: 

a) Increasing the number of possible combinations of the permutation 

matrices increases the number of factors for the design matrices.  

However, the space-filling nature is less favorable in comparison with 

designs with fewer combinations of the permutation matrices. 
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k n ( )Tcond X X  ampρ  Mm ML2 CL2 
7 17 1.00 0.00 1.48 0.17 0.26 
8 17 1.00 0.00 1.79 0.31 0.31 

11 33 1.00 0.00 1.67 0.95 0.41 
15 33 1.00 0.00 2.20 7.01 0.73 
16 33 1.00 0.00 2.42 11.52 0.83 
16 65 1.00 0.00 1.79 7.98 0.72 
22 129 1.00 0.00 1.79 96.58 1.39 
26 65 1.00 0.00 2.70 867.17 2.25 
29 257 1.00 0.00 1.81 1701.28 2.92 
31 65 1.00 0.00 3.19 1.E+04 3.816 
32 65 1.00 0.00 3.34 2.E+04 4.261 
37 513 1.00 0.00 1.86 5.E+04 6.81 
42 129 1.00 0.00 3.27 2.E+06 11.34 
46 1025 1.00 0.00 1.91 2.E+06 18.24 
57 129 1.00 0.00 4.14 5.E+09 49.27 

Table 16.   Properties of OLH designs (from 17
7O  to 129

57O ). 
 

b) The results shown are intuitive.  For example, comparing the 

designs 33
16O and 65

16O , shows that a design with more runs, n, improves the 

space-filling property of the design for a fixed number of variables. 

c) The orthogonal properties of an OLH design (where ( )Tcond X X  = 1.0, 

ampρ  = 0.0) are dependent on the permutation of vector e.  With a total 

enumeration of the possible permutations of vector e for a 17 run design, 

there are a total of 640 17
7O and 640 17

8O .  These designs result from the 

same vector e that is used in the construction.  The total enumeration of 

larger designs is not possible because the total number of permutations of 

the vector e becomes too big, as shown earlier in Table 7. 

Comparing these 640 designs, the properties for the best space-

filling designs are in Table 17.  The best designs show improvements to 

the space-filling property, ML2.  A pairwise plot of the best 17
8O  design is 

shown in Figure 4. 
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k n ( )Tcond X X  ampρ  Mm ML2 CL2 Remarks 
7 17 1.00 0.00 1.48 0.17 0.26 e = [1,2,..,8] 
7 17 1.00 0.00 1.479 0.1519 0.2426 Best of 640 
8 17 1.00 0.00 1.79 0.31 0.31 e = [1,2,..,8] 
8 17 1.00 0.00 1.7854 0.2893 0.3003 Best of 640 

Table 17.   Properties of 17
7O  and 17

8O  with total enumeration of e. 
 

 
Figure 4.   Pairwise plot of the 17

8O design. 
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d) The extension of Ye’s algorithm maintains the following two 

theorems (Ye, 1998):  

Theorem 4 (Ye, 1998).   For the LH design constructed, 

the elementwise square of each column is orthogonal to all the 

columns in the LH design. 

Theorems 5 (Ye, 1998). For the LH designs constructed, 

the elementwise product of every two columns is orthogonal to 

all columns in the LH design.   

The result of the two theorems provides subsequent estimates of 

quadratic and bilinear interaction effects that are uncorrelated with the 

estimates of the linear effects.  

 

2. Exploring the Construction of Latin Hypercube Designs 
OLH and NOLH designs can be constructed by different methods, and two 

methods of construction were compared against catalogued designs.  The two 

methods include random generation and using algorithms proposed by Ye and 

Cioppa.  The driving factors for this investigation are the speed and ease of 

construction vis-à-vis the orthogonal and space-filling properties of the LH 

designs.   

From the 100 designs generated from Random Latin Hypercube Sampling 

(RLHS)12, Florian’s method was performed on the RLHS designs, obtaining new 

designs called Flexible RLHS (FRLHS) designs with improvements to the 

orthogonal properties.  The mean of these 100 designs are used for the 

comparison.  

Designs that were constructed from the algorithm include OLH and NOLH 

designs and the existing catalogue of designs from the SEED Center website.  

                                            
12 RLHS method used MATLAB’s X = lhsdesign(n,p) that generates a Latin Hypercube 

sample X containing n values on each of p variables.  The RLHS refers to the average of 100 
RLHS designs.  FRLHS are Flexible RLHS design that used Florian’s method to improve the 
orthogonal properties. 
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A subset of the comparison of the properties can be seen in Table 18, with 

a larger compilation of results seen in Appendix C. 

K N Type ( )Tcond X X  
ampρ  Mm ML2 

OLH 1.00 0.00 1.48 0.17 
SEED 1.00 0.00 1.48 0.15 
NOLH 1.17 0.05 1.44 0.16 
RLHS 9.53 0.52 0.97 0.57 

7 17 

FRLHS 2.24 0.23 1.11 0.19 
OLH 1.00 0.00 1.79 0.31 

SEED NA NA NA NA 
NOLH 1.06 0.03 1.79 0.30 
RLHS 14.41 0.57 1.12 0.92 

8 17 

FRLHS 2.47 0.24 1.27 0.35 
Table 18.   Properties of LH designs of different construction (for n = 17). 

 
Four properties were considered while comparing the different LH 

designs: they are the orthogonal properties ( )Tcond X X  and ampρ ; and the space-

filling properties Mm and ML2. 

The comparison of the properties is based on the results for 50 different 

designs, using 11 designs (each) from the RLHS, FRLHS, OLH and NOLH 

designs; and 6 designs from the NOLHdesign_v4.xls (available on the SEED 

Center website). 

In comparing the speed and the ease of construction, the RLHS designs 

and the NOLH designs from SEED are the easiest and fastest, followed by the 

FRLHS designs, OLH designs, and NOLH designs. 

A parallel plot of the properties for the different LH designs based on 

different construction methods can be seen in Figure 5. 
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Figure 5.   Comparison of speed and ease of construction vs. properties of LH 

designs (Best viewed in color). 
 

The parallel plot in Figure 5 reflects the improvement of Florian’s method 

on the RLHS to RLHS-F designs, as seen in charts (b) and (c).  The odd line of 

the OLH designs (chart (d)) is due to poor space filling properties of larger 

designs.  OLH and NOLH designs show similar space filling properties, 

comparable to the average of 100 RLHS and RLHS-F designs.  The notable 

differences between the different construction methods for the LH designs are 

that: 

a. Florian’s method improves the orthogonal properties of the design 

matrices of the RLHS, and the improvement is largely dependent on the n 

and k values.  The comparison of matrices with similar n and k reveals that 

the orthogonal properties are slightly worse than the OLH and NOLH 

designs.  However, RLHS designs have attractive space-filling properties. 

FRLHS 
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b. For smaller design matrices, the space-filling properties do not 

differ greatly from the OLH with the NOLH or RLHS.  However, the Mm 

and ML2 measures tend to reflect a downgraded performance with larger 

design matrices. 

c. The comparison between design matrices with the same number of 

runs, n, i.e., including the design matrices with 2-way, 3-way and 4-way 

combinations of permutation matrices, reveals that the inclusion of higher 

order combinations of permutation matrices causes downgraded 

properties for ( )Tcond X X , ampρ , and ML2, but an improved Mm property, 

as there is a bigger space in which to push the design points apart.   

 
3. Exploring the OLH and NOLH Designs for Discrete Variables 
Exploration into the representation of discrete variables, both nominal and 

ordinal, is important to fitting a scenario into a chosen design matrix.  From a 

user’s point of view of a NOLH tool for the design of experiments, having in-depth 

knowledge on the method of construction for the different designs for different 

scenarios may not be important.  But, given a choice, the user should prefer a 

better design if available.   

The exploration looked into the modifications of an LH design with the 

inclusion of discrete data, to find the “best” design from the original LH design. 

Interesting results were obtained from the study into the properties of OLH 

and NOLH designs with different numbers and levels of discrete variables.  

 

a. For 2-level discrete variables, Odd-Even coding leads to problems 

with increased numbers of variables.  Although the coding provides for a 

better orthogonal property with the addition of a single discrete variable 

with 2-levels, it leads to problems when additional 2-level discrete 

variables are to be included for the design.  The comparison between 

successive additions of 2-level discrete variables on 17
7O with different 

coding methods is shown on Table 19.   
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For example, when the 17
7O with Odd-Even coding requires three 2-level 

discrete variables, it has 1ampρ = .  The result of 1ampρ =  is also reflected for all 

other OLH and NOLH designs.       

Properties of O7-17 with Pos-Neg Coding Properties of O7-17 with Odd-Even Coding 

  ( )Tcond X X  ampρ  Mm ML2   ( )Tcond X X ampρ  Mm ML2 
Original 1.00 0.00 1.48 0.17 Original 1.00 0.00 1.48 0.17 

5 2.946 0.192 1.474 0.631 3 2.667 0.000 1.458 0.622 
2 3.817 0.385 1.244 1.062 1 16.000 0.889 1.639 1.165 
6 3.042 0.096 1.237 1.483 6 1.6E+17 1.000 1.620 1.868 
3 4.355 0.385 1.125 1.912 4 3.4E+17 1.000 0.612 2.492 
7 3.613 0.192 1.008 2.349 5 1.5E+49 1.000 0.559 3.386 
4 4.743 0.385 1.000 2.840 2 Infinity 1.000 0.250 4.028 O

rd
er

 o
f C

ol
um

ns
 

ch
an

ge
d 

1 1.438 0.056 0.000 3.281 

O
rd

er
 o

f C
ol

um
ns

 
ch

an
ge

d 

7 Infinity 1.000 0.000 5.070 
Table 19.   Problems with Odd-Even coding with addition 2-level discrete 

variables (demonstrated on 17
7O ). 

 

The 17
7O design, with Positive-Negative coding, starts with ( ) 1Tcond X X =  

and 0ampρ =  (as seen in Table 19). If one 2-level discrete variable is required, the 

use of column 5 gives the best properties, as reflected in the chart.  If two 2-level 

discrete variables are required, the use of column 5 and column 2 results in a LH 

design with better orthogonal and space-filling properties. 

Properties of O7-17 with Pos-Neg Coding Properties of O7-16 with Pos-Negative Coding 

  ( )Tcond X X  ampρ  Mm ML2   ( )Tcond X X ampρ  Mm ML2 
Original 1.00 0.00 1.48 0.17 Original 1.00 0.00 1.69 0.23 

5 2.946 0.192 1.474 0.631 5 2.805 0.198 1.969 0.669 
2 3.817 0.385 1.244 1.062 2 3.613 0.396 1.904 1.086 
6 3.042 0.096 1.237 1.483 6 2.567 0.099 2.512 1.466 
3 4.355 0.385 1.125 1.912 1 3.926 0.396 2.559 1.832 
7 3.613 0.192 1.008 2.349 4 2.805 0.198 2.610 2.173 
4 4.743 0.385 1.000 2.840 3 3.845 0.396 2.872 2.494 O

rd
er

 o
f C

ol
um

ns
 

ch
an

ge
d 

1 1.438 0.056 0.000 3.281 

O
rd

er
 o

f C
ol

um
ns

 
ch

an
ge

d 

7 1.000 0.000 3.464 2.789 
Table 20.   Pos-Neg coding with additional 2-level variables for 17

7O  and 16
7O . 
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Removing the centre row of zeros for 17
7O  obtains the 16

7O  design.  The 

effect of additional 2-level discrete variables results in an orthogonal design when 

all the columns are used to represent 2-level discrete variables (as seen in Table 

20).  This result holds true for the OLH designs. 

b. For ordinal variables, the number of levels, l, for the discrete 

variables affects the performance of the design matrix.  Each column will 

only have values from 1,2, .., l if the column is used to represent an l-level  

discrete variable. For example, if representing a 3-level discrete variable, 

the column used in 17
7O  will be [ 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 ]T. 

The properties (in particular, the orthogonal measures) of 17
7O  are affected 

by fewer levels, and the results stabilize as the levels increase.  Figure 6 shows 

the properties for 17
7O  with different levels of discrete variables, similar for other 

OLH and NOLH designs. 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

l -level variables

Condition Correlation Euclidean Mm ML2

 
Figure 6.   Comparison of properties when one l-level discrete variable is added to 

the 17
7O design (Best viewed in color). 
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c. There is no effect on the orthogonal properties for the addition of 

discrete variable columns for “complete”13 designs, which includes 17
8O , 

33
16O , 65

32O , …, 1025
512O .  “Complete” designs do not have variations in the 

orthogonal properties when the different columns are selected, unlike the 

smaller designs which result in variation in the orthogonal properties.  

However, some of the space-filling properties have minor changes.  

Though with poorer space-filling properties compared to “not complete” 

designs, this property could be useful to note while considering the design 

to use, i.e., the use of the OLH and NOLH designs with a larger number of 

discrete variables. 

 
4. Exploring the Effects of Stacking on OLH and NOLH Designs  
Stacking with random permutation of the columns improves the space-

filling properties of LH designs.  The basic principle behind stacking is that the 

random permutation of columns maintains the orthogonal properties of an OLH 

design.  Adding additional copies of the designs with random permutation 

improves the space-filling properties while maintaining orthogonal properties.   

Furthermore, these are easily constructed and allow replication at each level. 

The notation of n
ks:O  describes a design with an n

kO  appended with 1s −  

other n
kO  with randomly permuted columns.  For example, the illustration in 

Figure 7 shows the construction of 5
22:O . 

1 -2  1 -2  -2 1  1 -2 
2 1  2 1  1 2  2 1 
0 0  -1 2  2 -1  0 0 
-1 2  -2 -1  -1 -2  -1 2 
-2 -1        -2 -1 
         -2 1 

   1 2 
   2 -1 
   -1 -2 

Original 5
2O  

design   

5
2O  design  

(with row of 0s 
removed)  

Random 
permutation of 
columns of 5

2O  
design (with row 
of 0s removed)  

5
22:O  design 

Figure 7.   Stacking of 5
2O to form a 5

22:O  design. 
                                            

13 “Complete” designs refer to designs where the construction includes all possible p-way 
combinations of the permutation matrices. 
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The orthogonal and space-filling properties of the best of five n
ks:O  

designs are captured in the Table 20.  
n
KO  Number of Stacks (s) 

n k Properties 
Original  

Matrix (1) 2 5 10 15 
Mm 1.369 0.500 0.354 0.000 0.000 
ML2 0.054 0.053 0.054 0.057 0.058 9 4 
CL2 0.184 0.179 0.173 0.173 0.174 
Mm 1.785 1.212 0.829 0.530 0.559 
ML2 0.314 0.203 0.156 0.129 0.128 17 8 
CL2 0.314 0.245 0.196 0.171 0.167 
Mm 2.417 1.620 1.395 1.038 1.104 
ML2 11.525 6.324 3.211 2.306 1.828 33 16 
CL2 0.834 0.605 0.403 0.313 0.262 
Mm 3.342 2.036 1.952 1.680 1.809 
ML2 1.72E+04 1.03E+04 5.22E+03 3.51E+03 2.98E+03 65 32 
CL2 4.261 3.043 1.943 1.385 1.135 
Mm 4.673 3.225 3.055 2.660 2.772 
ML2 3.01E+11 1.06E+11 4.87E+10 2.96E+10 2.28E+10 129 64 
CL2 98.993 70.275 44.563 31.554 25.775 

Table 21.   Properties of n
Ks:O  for different numbers of stacks. 

 
The points of interest on the effect of stacking to improve the space-filling 

properties of LH designs include: 

a. Random permutation of columns being stacked provides 

improvements to the space-filling properties.  But it does not provide the 

design with the best properties. Total enumeration is extremely tedious as 

the total possible permutations is given mathematically as  

Total permutations = ( !) ^k s .     (4.1) 

b. For the smaller designs (such as 5
2O  and 9

4O ), the Mm property 

becomes 0 due to the randomized permutation repeating the design points 

due to the stacking of additional matrices.  The other space-filling 

properties of ML2 and CL2 show worse performance with an additional 

number of stacks, possibly due to the same reasons. 
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c. For the larger designs, although the Mm measure becomes worse 

for all cases, this is due to additional design points being added to the 

design matrix.  The other space-filling properties of ML2 and CL2 show 

improvement in performance with the increased number of stacks. 
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V. CONCLUSIONS AND FUTURE RESEARCH 

A. CONCLUSION OF RESULTS 
From the OLH designs proposed by Ye to the NOLH designs by Cioppa, 

the need for bigger and better designs can be seen.  Bigger designs allow for the 

design of larger computer simulations and experimentation.  This, in turn, 

enables more comprehensive analysis.  The inclusion of additional combinations 

during construction, and the use of JAVA for construction, extends the current 

catalogues of OLH and NOLH designs to include 1025
512O  and 1025

512N  designs.     

The presence of discrete variables is common in most computer 

simulation and experiments.  This thesis provides a useful guide for knowing 

which columns to change in order to maintain the best orthogonal and space-

filling properties; how the effect of different levels affects the properties of the LH 

design; and, how the use of positive-negative coding is best suited for 2-level 

nominal variables. 

The space-filling properties of LH designs are improved by stacking the 

designs.  The LH generator in JAVA allows for the creation of stacked designs as 

desired. 

 
B. FUTURE RESEARCH 

A subsequent literature review led to a proposed methodology (Steinberg 

& Lin, 2006) for creating an additional increase in the number of factors for an 

OLH design.  However, the construction method could not be found to access 

other matrices with similar constructs to compare the space-filling and orthogonal 

properties.  An investigation into this method of construction for the LH designs 

would be an interesting study, to determine the space-filling properties of the 

designs in comparison with designs by Ye and Cioppa. 

Further analysis of the predictive powers of the extended LH design 

(which includes both OLH and NOLH designs) is suggested.  NOLH designs  

have orthogonal properties thresholds for selecting candidate designs.  It would 
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be interesting to discover how these limits affect the predictive powers of the 

designs.  

Within the milieu of the JAVA application to generate and access the 

properties of the LH designs, a smarter and more efficient method to search the 

space could be investigated to improve the speed of generating the design. 
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APPENDIX A. EXTENDING THE ORTHOGONAL LATIN 
HYPERCUBE FOR M = 4 

1. Construction of M for the OLH 17
8O  

The e vector used is e =  [ 1  2  3  4  5  6  7  8 ]T. 

For L = 1, A1e = [ 2  1  4  3  6  5  8  7 ]T where A1 = I I R⊗ ⊗  yields 

the following permutation matrix.  

0 1 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 1 0 

For L = 2, A2e = [ 4  3  2  1  8  7  6  5 ]T where A2 = I R R⊗ ⊗ . 

For L = 3, A3e = [ 8  7  6  5  4  3  2  1 ]T where A3 = R R R⊗ ⊗ . 

Additional permutation matrices are constructed, for example A1A3 
that would obtain A1A3e = [ 7  8  5  6  3  4  1  2 ]T, yields the following 

permutation matrix. 

0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 1 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
1 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 

  A1A2, gives A1A2e = [ 3  4  1  2  7  8  5  6 ]T 

A2A3, gives A2A3e = [ 5  6  7  8  1  2  3  4 ]T 

A1A2A3, gives A1A2A3e = [ 6  5  8  7  2  1  4  3 ]T 
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Thus M would be the following matrix. 

e A1 A2 A3 A1A2 A1A3 A2A3 A1A2A3 
1 2 4 8 3 7 5 6 
2 1 3 7 4 8 6 5 
3 4 2 6 1 5 7 8 
4 3 1 5 2 6 8 7 
5 6 8 4 7 3 1 2 
6 5 7 3 8 4 2 1 
7 8 6 2 5 1 3 4 
8 7 5 1 6 2 4 3 

2. Construction of S for the OLH 17
8O  

From the original matrix with S0, S1, … , S3, additional columns are 

generated.  These additional columns are just multiplications of the two columns 

together, and include S1S2, S1S3, S2S3 and S1S2S3. 

S0 S1 S2 S3 S1S2 S1S3 S2S3 S1S2S3 
+ 1 -1 -1 -1 + 1 + 1 + 1 -1 
+ 1 + 1 -1 -1 -1 -1 + 1 + 1 
+ 1 -1 + 1 -1 -1 + 1 -1 + 1 
+ 1 + 1 + 1 -1 + 1 -1 -1 -1 
+ 1 -1 -1 + 1 + 1 -1 -1 + 1 
+ 1 + 1 -1 + 1 -1 + 1 -1 -1 
+ 1 -1 + 1 + 1 -1 -1 + 1 -1 
+ 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 

3. Construction of T for the OLH 17
8O  

Hadamard product of M and S, adding a row of 0s, and the mirror image, 

results in the design. 

Run Var 1 Var 2 Var 3 Var 4 Var 5 Var 6 Var 7 Var 8 
1 1 -2 -4 -8 3 7 5 -6 
2 2 1 -3 -7 -4 -8 6 5 
3 3 -4 2 -6 -1 5 -7 8 
4 4 3 1 -5 2 -6 -8 -7 
5 5 -6 -8 4 7 -3 -1 2 
6 6 5 -7 3 -8 4 -2 -1 
7 7 -8 6 2 -5 -1 3 -4 
8 8 7 5 1 6 2 4 3 
9 0 0 0 0 0 0 0 0 

10 -1 2 4 8 -3 -7 -5 6 
11 -2 -1 3 7 4 8 -6 -5 
12 -3 4 -2 6 1 -5 7 -8 
13 -4 -3 -1 5 -2 6 8 7 
14 -5 6 8 -4 -7 3 1 -2 
15 -6 -5 7 -3 8 -4 2 1 
16 -7 8 -6 -2 5 1 -3 4 
17 -8 -7 -5 -1 -6 -2 -4 -3 
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APPENDIX B. CATALOGUE OF ORTHOGONAL LATIN 
HYPERCUBE DESIGNS 

The designs that are included are as follows. 

 Description Location 
 Design Matrix for 17

7O  Page 44 
 Design Matrix for 17

8O  Page 44 
 Design Matrix for 33

16O  Page 45 
 Design Matrix for 65

16O  Page 46 
 Other Design Matrix for 65

32O  to 
1025
512O  

SEED Center Website 
http://harvest.nps.edu/  
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Design Matrix for 17
7O  

x1 x2 x3 x4 x5 x6 x7 
1 -2 -4 -3 8 7 5 

2 1 -8 -7 -4 -3 6 

8 -4 2 -6 -1 5 -7 

4 8 1 -5 2 -6 -3 

5 -6 -3 4 7 -8 -1 

6 5 -7 8 -3 4 -2 

7 -3 6 2 -5 -1 8 

3 7 5 1 6 2 4 

0 0 0 0 0 0 0 

-1 2 4 3 -8 -7 -5 

-2 -1 8 7 4 3 -6 

-8 4 -2 6 1 -5 7 

-4 -8 -1 5 -2 6 3 

-5 6 3 -4 -7 8 1 

-6 -5 7 -8 3 -4 2 

-7 3 -6 -2 5 1 -8 

-3 -7 -5 -1 -6 -2 -4 

 
Design Matrix for 17

8O  
x1 x2 x3 x4 x5 x6 x7 x8 

1 -2 -4 -8 3 7 5 -6 

2 1 -3 -7 -4 -8 6 5 

3 -4 2 -6 -1 5 -7 8 

4 3 1 -5 2 -6 -8 -7 

5 -6 -8 4 7 -3 -1 2 

6 5 -7 3 -8 4 -2 -1 

7 -8 6 2 -5 -1 3 -4 

8 7 5 1 6 2 4 3 

0 0 0 0 0 0 0 0 

-1 2 4 8 -3 -7 -5 6 

-2 -1 3 7 4 8 -6 -5 

-3 4 -2 6 1 -5 7 -8 

-4 -3 -1 5 -2 6 8 7 

-5 6 8 -4 -7 3 1 -2 

-6 -5 7 -3 8 -4 2 1 

-7 8 -6 -2 5 1 -3 4 

-8 -7 -5 -1 -6 -2 -4 -3 
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Design Matrix for 33
16O  

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 
1 -2 -4 -8 -16 3 7 15 5 13 9 -6 -14 -10 -12 11 
2 1 -3 -7 -15 -4 -8 -16 6 14 10 5 13 9 -11 -12 
3 -4 2 -6 -14 -1 5 13 -7 -15 11 8 16 -12 10 -9 
4 3 1 -5 -13 2 -6 -14 -8 -16 12 -7 -15 11 9 10 
5 -6 -8 4 -12 7 -3 11 -1 9 -13 2 -10 14 16 -15 
6 5 -7 3 -11 -8 4 -12 -2 10 -14 -1 9 -13 15 16 
7 -8 6 2 -10 -5 -1 9 3 -11 -15 -4 12 16 -14 13 
8 7 5 1 -9 6 2 -10 4 -12 -16 3 -11 -15 -13 -14 
9 -10 -12 -16 8 11 15 -7 13 -5 -1 -14 6 2 4 -3 

10 9 -11 -15 7 -12 -16 8 14 -6 -2 13 -5 -1 3 4 
11 -12 10 -14 6 -9 13 -5 -15 7 -3 16 -8 4 -2 1 
12 11 9 -13 5 10 -14 6 -16 8 -4 -15 7 -3 -1 -2 
13 -14 -16 12 4 15 -11 -3 -9 -1 5 10 2 -6 -8 7 
14 13 -15 11 3 -16 12 4 -10 -2 6 -9 -1 5 -7 -8 
15 -16 14 10 2 -13 -9 -1 11 3 7 -12 -4 -8 6 -5 
16 15 13 9 1 14 10 2 12 4 8 11 3 7 5 6 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
-1 2 4 8 16 -3 -7 -15 -5 -13 -9 6 14 10 12 -11 
-2 -1 3 7 15 4 8 16 -6 -14 -10 -5 -13 -9 11 12 
-3 4 -2 6 14 1 -5 -13 7 15 -11 -8 -16 12 -10 9 
-4 -3 -1 5 13 -2 6 14 8 16 -12 7 15 -11 -9 -10 
-5 6 8 -4 12 -7 3 -11 1 -9 13 -2 10 -14 -16 15 
-6 -5 7 -3 11 8 -4 12 2 -10 14 1 -9 13 -15 -16 
-7 8 -6 -2 10 5 1 -9 -3 11 15 4 -12 -16 14 -13 
-8 -7 -5 -1 9 -6 -2 10 -4 12 16 -3 11 15 13 14 
-9 10 12 16 -8 -11 -15 7 -13 5 1 14 -6 -2 -4 3 

-10 -9 11 15 -7 12 16 -8 -14 6 2 -13 5 1 -3 -4 
-11 12 -10 14 -6 9 -13 5 15 -7 3 -16 8 -4 2 -1 
-12 -11 -9 13 -5 -10 14 -6 16 -8 4 15 -7 3 1 2 
-13 14 16 -12 -4 -15 11 3 9 1 -5 -10 -2 6 8 -7 
-14 -13 15 -11 -3 16 -12 -4 10 2 -6 9 1 -5 7 8 
-15 16 -14 -10 -2 13 9 1 -11 -3 -7 12 4 8 -6 5 
-16 -15 -13 -9 -1 -14 -10 -2 -12 -4 -8 -11 -3 -7 -5 -6 
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Design Matrix for 65
16O  

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 X11 X12 x13 x14 x15 x16 
1 -2 -4 -8 -16 -32 3 7 15 31 5 13 29 9 25 17 
2 1 -3 -7 -15 -31 -4 -8 -16 -32 6 14 30 10 26 18 
3 -4 2 -6 -14 -30 -1 5 13 29 -7 -15 -31 11 27 19 
4 3 1 -5 -13 -29 2 -6 -14 -30 -8 -16 -32 12 28 20 
5 -6 -8 4 -12 -28 7 -3 11 27 -1 9 25 -13 -29 21 
6 5 -7 3 -11 -27 -8 4 -12 -28 -2 10 26 -14 -30 22 
7 -8 6 2 -10 -26 -5 -1 9 25 3 -11 -27 -15 -31 23 
8 7 5 1 -9 -25 6 2 -10 -26 4 -12 -28 -16 -32 24 
9 -10 -12 -16 8 -24 11 15 -7 23 13 -5 21 -1 17 -25 

10 9 -11 -15 7 -23 -12 -16 8 -24 14 -6 22 -2 18 -26 
11 -12 10 -14 6 -22 -9 13 -5 21 -15 7 -23 -3 19 -27 
12 11 9 -13 5 -21 10 -14 6 -22 -16 8 -24 -4 20 -28 
13 -14 -16 12 4 -20 15 -11 -3 19 -9 -1 17 5 -21 -29 
14 13 -15 11 3 -19 -16 12 4 -20 -10 -2 18 6 -22 -30 
15 -16 14 10 2 -18 -13 -9 -1 17 11 3 -19 7 -23 -31 
16 15 13 9 1 -17 14 10 2 -18 12 4 -20 8 -24 -32 
17 -18 -20 -24 -32 16 19 23 31 -15 21 29 -13 25 -9 -1 
18 17 -19 -23 -31 15 -20 -24 -32 16 22 30 -14 26 -10 -2 
19 -20 18 -22 -30 14 -17 21 29 -13 -23 -31 15 27 -11 -3 
20 19 17 -21 -29 13 18 -22 -30 14 -24 -32 16 28 -12 -4 
21 -22 -24 20 -28 12 23 -19 27 -11 -17 25 -9 -29 13 -5 
22 21 -23 19 -27 11 -24 20 -28 12 -18 26 -10 -30 14 -6 
23 -24 22 18 -26 10 -21 -17 25 -9 19 -27 11 -31 15 -7 
24 23 21 17 -25 9 22 18 -26 10 20 -28 12 -32 16 -8 
25 -26 -28 -32 24 8 27 31 -23 -7 29 -21 -5 -17 -1 9 
26 25 -27 -31 23 7 -28 -32 24 8 30 -22 -6 -18 -2 10 
27 -28 26 -30 22 6 -25 29 -21 -5 -31 23 7 -19 -3 11 
28 27 25 -29 21 5 26 -30 22 6 -32 24 8 -20 -4 12 
29 -30 -32 28 20 4 31 -27 -19 -3 -25 -17 -1 21 5 13 
30 29 -31 27 19 3 -32 28 20 4 -26 -18 -2 22 6 14 
31 -32 30 26 18 2 -29 -25 -17 -1 27 19 3 23 7 15 
32 31 29 25 17 1 30 26 18 2 28 20 4 24 8 16 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
-1 2 4 8 16 32 -3 -7 -15 -31 -5 -13 -29 -9 -25 -17 
-2 -1 3 7 15 31 4 8 16 32 -6 -14 -30 -10 -26 -18 
-3 4 -2 6 14 30 1 -5 -13 -29 7 15 31 -11 -27 -19 
-4 -3 -1 5 13 29 -2 6 14 30 8 16 32 -12 -28 -20 
-5 6 8 -4 12 28 -7 3 -11 -27 1 -9 -25 13 29 -21 
-6 -5 7 -3 11 27 8 -4 12 28 2 -10 -26 14 30 -22 
-7 8 -6 -2 10 26 5 1 -9 -25 -3 11 27 15 31 -23 
-8 -7 -5 -1 9 25 -6 -2 10 26 -4 12 28 16 32 -24 
-9 10 12 16 -8 24 -11 -15 7 -23 -13 5 -21 1 -17 25 

-10 -9 11 15 -7 23 12 16 -8 24 -14 6 -22 2 -18 26 
-11 12 -10 14 -6 22 9 -13 5 -21 15 -7 23 3 -19 27 
-12 -11 -9 13 -5 21 -10 14 -6 22 16 -8 24 4 -20 28 
-13 14 16 -12 -4 20 -15 11 3 -19 9 1 -17 -5 21 29 
-14 -13 15 -11 -3 19 16 -12 -4 20 10 2 -18 -6 22 30 
-15 16 -14 -10 -2 18 13 9 1 -17 -11 -3 19 -7 23 31 
-16 -15 -13 -9 -1 17 -14 -10 -2 18 -12 -4 20 -8 24 32 
-17 18 20 24 32 -16 -19 -23 -31 15 -21 -29 13 -25 9 1 
-18 -17 19 23 31 -15 20 24 32 -16 -22 -30 14 -26 10 2 
-19 20 -18 22 30 -14 17 -21 -29 13 23 31 -15 -27 11 3 
-20 -19 -17 21 29 -13 -18 22 30 -14 24 32 -16 -28 12 4 
-21 22 24 -20 28 -12 -23 19 -27 11 17 -25 9 29 -13 5 
-22 -21 23 -19 27 -11 24 -20 28 -12 18 -26 10 30 -14 6 
-23 24 -22 -18 26 -10 21 17 -25 9 -19 27 -11 31 -15 7 
-24 -23 -21 -17 25 -9 -22 -18 26 -10 -20 28 -12 32 -16 8 
-25 26 28 32 -24 -8 -27 -31 23 7 -29 21 5 17 1 -9 
-26 -25 27 31 -23 -7 28 32 -24 -8 -30 22 6 18 2 -10 
-27 28 -26 30 -22 -6 25 -29 21 5 31 -23 -7 19 3 -11 
-28 -27 -25 29 -21 -5 -26 30 -22 -6 32 -24 -8 20 4 -12 
-29 30 32 -28 -20 -4 -31 27 19 3 25 17 1 -21 -5 -13 
-30 -29 31 -27 -19 -3 32 -28 -20 -4 26 18 2 -22 -6 -14 
-31 32 -30 -26 -18 -2 29 25 17 1 -27 -19 -3 -23 -7 -15 
-32 -31 -29 -25 -17 -1 -30 -26 -18 -2 -28 -20 -4 -24 -8 -16 
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APPENDIX C. PROPERTIES OF LATIN HYPERCUBES WITH DIFFERENT CONSTRUCTION  

OLH NOLH (SEED) Mean of 100 RLHS Mean of 100 RLHS-F 
k n ( )Tcond X X

 ampρ  Mm ML2 CL2 
( )Tcond X X

 ampρ  Mm ML2 CL2 
( )Tcond X X

 ampρ  Mm ML2 CL2 
( )Tcond X X

 ampρ  Mm ML2 CL2 

7 17 1.00 0.00 1.48 0.17 0.26 1.00 0.00 1.48 0.15 0.24 9.53 0.52 0.97 0.57 0.45 2.24 0.23 1.11 0.19 0.27 

8 17 1.00 0.00 1.79 0.31 0.31 - - - - - 14.41 0.57 1.12 0.92 0.53 2.47 0.24 1.27 0.35 0.33 

11 33 1.00 0.00 1.67 0.95 0.41 1.12 0.02 1.76 0.73 0.36 8.44 0.44 1.28 1.94 0.56 1.76 0.14 1.41 0.83 0.38 

15 33 1.00 0.00 2.20 7.01 0.73 - - - - - 16.64 0.48 1.72 11.31 0.96 2.11 0.17 1.96 6.23 0.71 

16 33 1.00 0.00 2.42 11.52 0.83 - - - - - 19.73 0.49 1.83 17.06 1.08 2.24 0.17 2.06 9.94 0.82 

16 65 1.00 0.00 1.79 7.98 0.72 1.10 0.02 2.04 4.46 0.54 6.47 0.35 1.60 8.61 0.73 1.45 0.08 1.73 4.80 0.57 

22 129 1.00 0.00 1.79 96.58 1.39 1.04 0.01 2.27 37.78 0.86 4.65 0.26 1.97 53.45 1.03 1.27 0.05 2.06 37.26 0.89 

26 65 1.00 0.00 2.70 867.17 2.25 - - - - - 15.50 0.39 2.53 562.75 2.42 1.77 0.10 2.77 431.13 2.08 

29 257 1.00 0.00 1.81 2.E+04 2.92 1.02 0.00 2.73 482.91 1.44 3.61 0.20 2.35 488.63 1.61 1.17 0.03 2.42 392.36 1.48 

31 65 1.00 0.00 3.19 1.E+04 3.816 - - - - - 22.84 0.40 2.96 4.E+03 4.33 1.97 0.12 3.26 4.E+03 3.77 

32 65 1.00 0.00 3.34 2.E+04 4.261 - - - - - - - - - - - - - - - 
37 513 1.00 0.00 1.86 5.E+04 6.81 - - - - - - - - - - - - - - - 
42 129 1.00 0.00 3.27 2.E+06 11.34 - - - - - 11.26 0.30 3.44 2.E+05 10.18 1.54 0.07 3.68 2.E+05 9.32 

46 1025 1.00 0.00 1.91 2.E+06 18.24 - - - - - - - - - - - - - - - 
57 129 1.00 0.00 4.14 5.E+09 49.27 - - - - - - - - - - - - - - - 
63 129 1.00 0.00 4.56 1.E+11 89.03 - - - - - - - - - - - - - - - 
64 129 1.00 0.00 4.67 2.E+11 98.99 - - - - - - - - - - - - - - - 
64 257 1.00 0.00 3.88 2.E+11 131.73 - - - - - - - - - - - - - - - 
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OLH NOLH (SEED) Mean of 100 RLHS Mean of 100 RLHS-F 

k n ( )Tcond X X

 ampρ  Mm ML2 CL2 
( )Tcond X X

 ampρ  Mm ML2 CL2 
( )Tcond X X

 ampρ  Mm ML2 CL2 
( )Tcond X X

 ampρ  Mm ML2 CL2 

93 513 1.00 0.00 4.52 1.E+18 4.E+03 - - - - - - - - - - - - - - - 
99 257 1.00 0.00 5.25 3.E+19 5.E+03 - - - - - - - - - - - - - - - 

120 257 1.00 0.00 6.13 2.E+24 3.E+04 - - - - - - - - - - - - - - - 
127 257 1.00 0.00 6.49 9.E+25 6.E+04 - - - - - - - - - - - - - - - 
128 257 1.00 0.00 6.57 1.E+26 7.E+04 - - - - - - - - - - - - - - - 
130 1025 1.00 0.00 5.12 2.E+27 5.E+05 - - - - - - - - - - - - - - - 
163 513 1.00 0.00 6.52 9.E+34 9.E+06 - - - - - - - - - - - - - - - 
219 513 1.00 0.00 8.05 1.E+48 2.E+09 - - - - - - - - - - - - - - - 
247 513 1.00 0.00 8.91 3.E+54 2.E+10 - - - - - - - - - - - - - - - 
255 513 1.00 0.00 9.21 2.E+56 5.E+10 - - - - - - - - - - - - - - - 
256 513 1.00 0.00 9.26 3.E+56 5.E+10 - - - - - - - - - - - - - - - 
256 1025 1.00 0.00 7.93 7.E+57 9.E+11 - - - - - - - - - - - - - - - 
382 1025 1.00 0.00 10.35 5.E+87 4.E+17 - - - - - - - - - - - - - - - 
466 1025 1.00 0.00 11.99 2.E+107 9.E+20 - - - - - - - - - - - - - - - 
502 1025 1.00 0.00 12.79 3.E+115 2.E+22 - - - - - - - - - - - - - - - 
511 1025 1.00 0.00 13.04 3.E+117 4.E+22 - - - - - - - - - - - - - - - 
512 1025 1.00 0.00 13.08 5.E+117 4.E+22 - - - - - - - - - - - - - - - 
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