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Enhancement of Stochastic Resonance Using Optimization Theory

Xingxing Wu, t Zhong-Ping Jiang, I Daniel W. Repperger, § and Yi Guo ¶

Abstract. The traditional stochastic resonance is realized by adding an optimal amount of noise, while the parameter-

tuning stochastic resonance is realized by optimally tuning the system parameters. This paper reveals the possibility to further

enhance the stochastic resonance effect by tuning system parameters and adding noise at the same time using optimization

theory. The further improvement of the maximal normalized power norm of the bistable double-well dynamic system with white

Gaussian noise input can be converted to an optimization problem with constraints on system parameters and noise intensity,

which is proven to have one and only one local maximum for the Gaussian-distributed weak input signal. This result is then

extended to the arbitrary weak input signal case. For the purpose of practical implementation, a fast-converging optimization

algorithm to search the optimal system parameters and noise intensity is also proposed. Finally, computer simulatiolls are

performed to verify its validity and demonstrate its potential applications in signal processing.

Keywords: Optimization, Stochastic Resonance, Signal Processing

1. Introduction. Since put forward by Benzi in 1981, stochastic resonance has been increasingly

attracting the interest of researchers. It is a phenomenon of certain nonlinear systems in which the syn-

chronization between the input signal and the noise occurs when an optimal amount of additional noise

is inserted into the system. In this case, the extra noise will help, rather than hinder, the performance

improvement of the system by maximizing or minimizing the chosen performance measure, such as output.

signal-to-noise ratio (SNR), or mutual information. The concept of stochastic resonance was first proposed

to address the problem of the periodically recurrent ice ages [1]. Basically, the stochastic resonance has four

elements: nonlinear system, information-carrying input signal, noise, and performance measure [2]. Many

kinds of nonlinear systems have demonstrated the stochastic resonance phenomena, such as static systems

[3], dynamic systems [4][19], discrete systems [21], and coupled systems [4][20]. The traditional stochastic

resonance requires the information-carrying signal to be weak and periodic. Now, aperiodic and suprathresh-

old signals can also be the input of certain stochastic resonance systems, in terms of aperiodic stochastic

resonance (ASR) [5] and suprathreshold stochastic resonance (SSR) [6] respectively. For the noise, it is no
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longer limited to white Gaussian noise. It can be colored [7], or non-Gaussian noise [8]. The performance

measure is adopted here in order to quantify the stochastic resonance phenomenon and describe it more

exactly. For the periodic stochastic resonance, the output signal-to-noise ratio [4] is the most commonly

used measure. Other measures, such as cross-correlation [9], mutual information [10], are used for describing

aperiodic stochastic resonance. Over the years, stochastic resonance has found applications in many different

areas, such as in physics, chemistry, biomedical science, and engineering [4][19]. The noise has been used

to enhance the tactile sensation [11]. The suprathreshold stochastic resonance has been applied to (:ocblalr

implant coding [12]. One of the important applications of stochastic resonance is in signal processing. such as

signal detection [13][22], signal transmission [14][15], and signal estimation [16]. For a stochastic resonance

system, the chosen performance measure will reach its maximum or minimum when the synchronization

between input signal and the noise occurs. In order to convert noise to a positive factor, the stochastic

resonance system should be adjusted properly to maximize or minimize the performance measure, such as

the signal-to-noise ratio. For traditional stochastic resonance systems, this is realized by supplementing the

input with an optimal amount of additional noise [4]. Recently, it was demonstrated that the stochastic

resonance effect can also be realized by tuning the, system parameters to their optimal values without adding

noise. This is called parameter-tuning stochastic resonance [17][23]. It is also shown that tuning system

parameters is a better method in some situations than adding noise, especially when the initial noise inten-

sity is already beyond the resonance region [18]. Among this research, either noise is added, or the system

parameters are tuned, but not both. This paper will focus on investigating the possibility to further enhance

the stochastic resonance effect by tuning system parameters and adding noise at the same time, based on our

initial research results in [26]. This enhancement will cause the chosen performance measure to be further

increased or decreased and will, in turn, have the potential to further improve the system performance.

The rest of the paper is organized as follows. In Section 2, the normalized power norm of the bistable

double-well dynamic system with Gaussian-distributed weak input signal is proven to reach a higher maxi-

mum by tuning system parameters and adding noise at the same time, compared with that by either tuning

system parameters or adding noise. This result will be extended to the situation with an arbitrary weak

input signal in Section 3. In order to meet the high-speed requirement of some tasks, Section 4 proposes a

fast-converging optimization algorithm to search the optimal system parameters and noise intensity. Section

5 will focus on verifying, via computer simulations, the improvement of the maximal normalized power norm

by comparing with the traditional stochastic resonance and parameter-tuning stochastic resonance. The



potential application of this scheme in signal processing is also mentioned in this section. Finally, Section 6

concludes the paper with some brief remarks.

2. Enhancement of Stochastic Resonance with Gaussian-Distributed Weak Input Signals.

In traditional stochastic resonance systems, the chosen performance measure is taken as a function of the

noise intensity, while it is only taken as a function of the system parameters by fixing the noise intensity

at its initial level in parameter-tuning stochastic resonance, systems. In some stochastic resonance systems,

the performance measure is affected by both the system parameters and the noise intensity. This, however,

does not necessarily mean that it is possible to enhance the stochastic resonance effect by tuning the system

parameters and adding noise at the same time. We have demonstrated this in [26]. Now, we will examine the

interesting situation where the stochastic resonance can be further enhanced by tuning the system parameters

and adding noise at the same time.

In this paper, we will choose the nonlinear bistable double-well dynamic system as the stochastic reso-

nance system. This is a typical stochastic resonance system which has been extensively used in the work of

others [2][4] [9] [19]. As shown in our literature, the bistable double-well system has found several applications

in signal processing. In [27], it is used to amplify the coherent signals. As a nonlinear filter, it is also used to

recover the multi-frequency signals corrupted by noise [17]. Reducing the bit-error rate (BER) of the binary

signal transmission is another application of this system [28].

In [9], the aperiodic stochastic resonance (ASR) was demonstrated in the following nonlinear bistable

double-well dynamic system

dx OU
t (1)

where U(x) = -[A - S(t)]x2/2 + x'/4 is the symmetric potential function with a fluctuating barrier. A

is taken as a positive system parameter in this paper and is used to shift the input signal. S(t) is the

input signal with zero-mean average. ý(t) is white Gaussian noise with zero mean and an autocorrelation of

(6(t)ý(s)) = 2D5(t - s). The angular brackets denote the ensemble average.

The performance measures chosen to describe this aperiodic stochastic resonance are cross-correlation

measures (power norm Co and normalized power norm C1 ) defined as follows [9]

Co = max{S(t)R(t +±r)), (2)



CoC, = , (3)
[S 2(t) ]1/2{ [R(t) - R(t) ]2}1/2

where S(t) is the input signal. R(t) is the system response characterized by mean transition rate of the

system. The overbar denotes an average over time. r is a time lag.

Usually, there is no explicit expression for the power norm. If the input signal is weak, (i.e., S(t)2 < A2),

and is a Gaussian distribution, the ensemble averaged power norm (Co) and the ensemble averaged normalized

power norm(Cl) can be approximated by [9]

(Co) QoAo exp[-eo + A T
2 (7)/2] Y2(t), (4)

(C1O A (t ]1/2 (5)
(exp[A2S 2 (t)] - 1 + u(D)Qo 2 exp[2o - AS-2(-t)[)/2'(

where
.7(D)=Kj<(j(t)), ýR_(t)) -• Q0exp[-O0 + A t)/],

Qo=KoA/V2ir, eo = A2/4D, Ao = A/2D.

According to [9], the parameter K0 is used to account for normalization factors in the construction of

the mean transition rate. The parameter K, is used for the estimation of the noise-induced variance o(D).

In this paper, we will set them to the same constant values as in [9], i.e., Ko = 1, K1 = 0.019.

If the system parameter A is fixed, the normalized power norm (C1) will reach its maximal value when

an optimal amount of noise is added into this nonlinear system [9]. We will now investigate whether the

stochastic resonance effect of this system can be further enhanced by tuning the system parameters and

adding noise at the same time. This is in fact a problem of checking whether the optimization problem

of maximizing (C1) with the constraints on both the system parameters and noise intensity has i local

maximizer. The computer simulations, however, show that this constrained optimization problem has no

local maximizer for some weak input signals. So two additional parameters are introduced into the system

and the new system equation becomes

Ta (t) = [A - S(t)]x(t) - x + •(t), (6)X 2
b

where -r, is a positive system parameter affecting the system response time and Xb is a positive system

parameter affecting the barrier height of its potential function.

For the system described by (6), its potential function is



X2 X4

U(x) = -[A - S(t)] +ý-t4X" (7)
2 b

"If Ta = 1, the ensemnble-averaged escape rate is expressed as [9]

(R(t))ý- 1 u" (xmin)IU"(xmar)Iexp[ (XDiý) v(X.) )l (8)

where U is the potential function, xmin is one of the local minimizers and xmax is the local maximizer of

the potential function.

Using the method of [9], similar to (5), we derive the approximation expression of (C1) for system (6)

As
(exp[A 2

s
2

] - 1 + KiQ-'exp[cTaAQ - s
2

A
2

/2])
1
/

2
' (9)

where KoA X A =7_ X2A
Q E -,O= 4A =ý2ý ' "Q A T [S2(t)]1/2' c = , 27"/2KO.

_/2,, 7_4 2D c=

We will choose the normalized power norm (C1 ) as the objective function to be maximized, because it

emphasizes the similarity between the input and the system output and can still predict its real shape even

when the noise intensity is outside its validity range [9]. The enhancement of stochastic resonance can then

be converted to finding the local maximizer of the following optimization problem

max (C1 ), (10)

subject to: S(t)2 <A 2 , A>0, Do_<D•<D 1

The constraint S(t)2 «A 2 comes from the requirement of weak input signals. The system parameter A

is positive. We assume that the noise cannot be removed from the system, so the noise intensity D cannot

be less than its initial value Do. Of course, it cannot be arbitrarily large either.

Both A and D will be taken as the optimization parameters for this optimization problem (10), while

r'a and Xb are taken as the supporting parameters to ensure this constrained optimization problem has local

maximizer as shown later. To simplify the derivation and calculation, the direct optimization parameters of

(10) are A and Q, from which the values of A and D can be calculated.

In order to prove that the constrained optimization problem (10) has a local maximizer, we will first

consider the following unconstrained optimization problem

max (C1 ). (11)

Proposition 1 The first-order necessary condition for the local maximizer of unconstrained optimization

problem (11) has one and only one solution (Q*, A*).
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Proof. According to the first-order necessary condition for the local maximizer of (11), we have

O(C0) = 0 and 6(C1) 0 .(12)
oA O

From (12), we can derive Q 1 = CTaA, and also

(2 - 2s
2 A

2 )exp[s 2
A

2] - 2 + cTýKi(A + s 2 A 3 )exp[1 - s 2 A 2 /21 = 0. (13)

Let

f(A) = (2 - 2s2A2)exp[s 2A2 1 - 2 + crKl((A + s2 A3)exp[1 - s2A2 /2]. (14)

We have

f '(A) = (-4S2 A - 4s 4 A 3 )exp[s 2 A 2] + craKl(1 H+ 2s 2 A 2 
- 84A 4 )exp[1 - s 2 A 2 /2]. (15)

From (14) and (15), we know that f(0) = 0 and f(+oo) =-oo. f'(A) will be positive, if A 0 + 0. Based

on these, we can conclude the first-order necessary condition has at least one positive solution (A*, Q').

Let f (A) = (2 - 2s 2A2)exp[s 2A 2 1, (16)

f 2 (A) = cTaKiA(1 + s2 A2)exp[ 1 - s2 A2/2] - 2,. (17)

f1 (A) will decrease monotonically to -oo as A -- +oo, starting from fl(0) = 2. f 2(A) will first increase

from -2, and then decrease to zero. From the special characteristics of f1 (A) and f 2(A), it follows readily

that the first-order necessary condition can only has one positive solution.

Changing the values of Ta and s which are positive can only affect the values of Q* and A*. It will not

affect the property that the necessary condition has one and only one solution. This can be shown in Fig. 1
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to Fig.2.

Proposition 2 The system parameter Ta, can be used to continuously adjust the value of A* satisfying the

first-order necessary condition for the local maximizer of (11).

Proof. f 2 (A), but not f1 (A), is affected by the system parameter -,,. From the special characteristics of

these two functions, we can find out that the increase of Tr value will also increase the value of A* satisfying

(13). If Ta is getting close to zero, A* will also approach zero. This means the value of A* can be adjusted

continuously by changing Ta,. This completes the proof of this proposition.

Proposition 3 The unconstrained optimization problem (1'1) has one and only one local maximizer when

the input is weak (s < 1) and the values of system parameters Ta and Xb .are chosen properly.

Proof. We need to prove that the only solution (A*, Q*) of the first-order necessary condition will also

satisfy the second-order sufficient condition for a local maximizer, that is, the Hessian matrix is negative

definite at the point (AW, Q*).



At the point (A*, Q*), we can get
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A (exp[sUA*Ul - 1 + KiQ*-lexp[1 - -s--2 12 )3/2 , 18

2(2 -) -c3  1sK8A*4 )
Q2 =2(exp[s2A. 2 ] - 1 + KQ*-lexp[1 - s2A*2]]3/2 2

2 J

0 2(CI [82(CI- -c
2 rsglA* 2exp[1 - 1 ])3/2

AOQ OQOA -2(exp[s
2A* 2] - 1 + KiQ*-lexp[ - s2A2])3/2(

-sa*exp~s'a !- 2C oSKlA* +----)exp[1 -

2 210

- -A2exp[s2 A 21 + 2 - c(aKi A*21 - s + s2
1*

2 + + 2)]exp[1 -])/2

22

- -2s 2 A*2exp[s2 A.2 ] < 0.

f(18), (19), and (20), it follows that e - , and t are all negative at ( = A1, a

Q=Q*.
The Hessian matrix of the optimization problem (11) is defined as

8Ž3z OLX8QI

\ Q8A 0Q
2 /

At the point (A*, Q*), the determinant value of this Hessian matrix is
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Proposition 4 The constrained optimization problem (10) with weak input signal (s <K 1) has one and only

one local maximizer, if the system parameters Ta and Xb are chosen properly.

Proof. From (9), we can get A* = 2/A*. The constfaint (A*) 2 > s2 will be satisfied if s2 (A*) 2 <K 4.

Combined with the requirements s(A*) 2 > 1 and s <K 1 used for the derivation of the above propositions,

all the constraints on the system parameter will be met, if Ta value is chosen properly such that

S < S2s(A*) 2 < 4. (22)

Also, D* will be greater than Do and less than D1 for the properly chosen parameter Xb, because of

D* =araX2/A*2 .

From these, we prove that the one and only one local maximizer of the unconstrained optimization

problem (11) will also be the one and only one local maximizer of the constrained optimization problem (10)

for the weak input signal (s << 1), when the values of Ta and Xb are chosen properly.

Obviously, the only local maximizer of (10) is also its global maximizer. This completes the proof of this

proposition.

According to the above propositions, the normalized power norm (C1 ) of the bistable double-well system

with Gaussian-distributed weak input signal can be maximized by tuning system parameter A and adding

noise at the same time and will reach a higher maximal value compared with that by only tuning the systeem

parameter or by only adding noise.

3. Enhancement of Stochastic Resonance with Arbitrary Weak Input Signals. The above

propositions are derived under the assumption of Gaussian-distributed weak input signal. Now, we will prove

"that all these propositions can be extended to the case with arbitrary weak input signals.

Under the condition of A2S(t)2 <K 1, the normalized power norm (C1 ) can be approximated by

As
(C1) (A2s 2 + - ± + --l -A2s2 + A4_)exp[cr€aQA])1/2. (23)

The related constrained optimization problem is then changed to

max (Cl), (24)

subject to: A>0, s2 <A 2 , A2s2 < 1, D 0 _<D_<D1 .

To prove Proposition 1, the following can be derived from the first-order necessary condition for a local

maximizer of the optimization problem (11) with the new (C1) expression (23):

9



c-a AQ=I, (25)

--s 4 A3 + cT,'eKl (1 + S2A2/2 - 3s 4 A 4 /8) = 0. (26)

From this, the Proposition 1 and Proposition 2 can be proven in the similar way as before.

In order to prove Proposition 3, the following can be determined if the constraint s2A*2 < 1 is satisfied

by adjusting Ta properly

-cTaeKlS 2 A*2 + s 2 A*(-4 + 282 A* 2 ) - cTaeKiS 2 A*2 (2 - 3s 2 A*2/4) < 0, (27)

and -s 4 A 4 /8 + (-1 + S2 A*2 /2) < 0. (28)

From these, a9, ý , and a are all proven to be negative at A = A*, and Q = Q*.

For (23), the numerator of its Hessian matrix determinant value can be simplified, at A = A* and

Q =Q*, as

4A*3 S2 *4414 9s
2 A.2

s4 A 3 (2-2s2A*2) + creKls'A*(- 8 )
A*4 c s2A*2 sA*7 5 sA*

3craeKisA* craeKi , * s5 7  
l5crr, ,eK1 s8

+(S4A*3 + 82 )± + 64+ (29)8 2 2+-7 64

If s
2

A*
2 < 1, this numerator value will be positive. Similarly, Proposition 3 is proven to hold for this

optimization problem (24).

The constraint s2 <K A*
2 will be satisfied if s 2 A* 2 <K 1 is met by properly adjusting r,,, because of

A* = 2/A*. The Proposition 4 is hereby proved for the optimization problem (24).

4. Optimization Algorithms. The constrained optimization problem (24) has no closed-form solution.

The optimization algorithm should be developed to search the optimal system parameter and the optimal

noise intensity. In order to meet the high-speed requirement of some tasks, a fast-converging optimization

algorithm is proposed for (24) with an arbitrary weak input signal in this paper.

Proposition 5 The Newton's method for solving nonlinear equations can be used to search the optimal

parameters of the constrained optimization problem (24) with a local Q-quadratic converqence, if the initial

value, -a and Xb values are properly chosen.

Proof. According to Proposition 4, the constrained optimization problem (24) has one and only one local

maximizer (A*, Q*) which satisfies the equations (25) and (26), if Ta and Xb values are chosen properly. In

this case, the optimal parameters (A*, D*) can be obtained by solving the nonlinear equation (26).

Let

10



f 3 (A) - s4A3 + cTaeKl(1 + s 2 A 2 /2 - 3s 4 A 4 /8). (30)

Vf3(A*) will be non-singular in this case. According to the standard arguments from [25], the Newton's

method can be used to solve (26) with a local Q-quadratic convergence, if the initial value A0 is sufficiently

close to A*.

Based on Proposition 5, our proposed optimization algorithm will first estimate the initial AO value which

will be sufficiently close to its optimal value A*, then the standard Newton algorithm will be called to search

the optimal value. The algorithm is divided into two cases. In the first case, only A and D are adjustable,

while the system parameters ra and Xb are given beforehand. Their values will ensure the existence of the

local maximizer for the constrained optimization problem (24). In the second case, the system parameters

ra and Xb should also be optimized.

Case 1:

In order to estimate the initial values for different input signals, a table is constructed which describes

the relationship between the input signal average amplitude value s = [S 2(t) 11/2 and the optimal value A*

related to this input. In order to construct the table, we can first select a series of signal average amplitude

values. Usually, these values divide the signal average amplitude range evenly. For each signal average

amplitude s value, the related optimal value A* satisfying (26) can be obtained off-line using the standard

Newton algorithm. Then, the pair (s, A*) can be inserted into the table. If the algorithm is implemented in

software, the table can be represented by a one-dimensional array. For any given input, the related initial

value A0 can then be estimated based on the information provided by this table, such as using interpolation.

It will be sufficiently close to its optimal value to ensure the required convergence speed, if the table is

constructed properly. Algorithm 1 is the optimization algorithm for the first case.

Algorithm 1:

Step 1:

Calculate the average amplitude s = [S 2 (t) ]1/2 for the given input signal;

Step 2:

Estimate initial Ao, using the constructed table;

Step 3:

Solve (26) using standard Newton algorithm [25];

Step 4:

Calculate A* and D*, then stop.
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Case 2:

In this case, system parameters Ta and Xb are unknown and should be optimized for the constrained

optimization problem (24). Here, we also assume 7TXi is a properly chosen constant which ensures the

existence of the local maximizer of (24). The equation (23) reveals that the smaller the Ta value is, the

larger the (C1) will be if other parameters are fixed. This means that there will be no local maximizer for

parameter Ta. Also, a smaller ra value will generate a smaller A* satisfying (26) and make it easier to satisfy

the requirement of A*2s 2 < 1. Too small r, value, however, will make it difficult to satisfy the constraints

on noise intensity, because of D* raX2/A*2 . For a given input signal, there will be a region for Ta value

in which the constrained optimization problem (24) will have a local maximizer. The optimal Ta value will

take the extremum. In the following algorithm, we will take the smallest Ta value as its optimal value, which

will ensure the existence of the local maximizer.

Similarly, tables will be constructed to increase this algorithm's convergence speed. Case 2 will have

two tables. The first one describes the relationship of A* with input signal average amplitude s and system

parameter Ta. The second one describes the relationship between input signal average amplitude s and 7-,*

which is the optimal value under this definition related to this input signal. For the first table, we will first

select a series of (s, 7a) values. For each pair (s, Ta), the related A* satisfying (26) can be calculated off-line

using standard Newton algorithm. Then the pair (s, 7a, A*)is inserted into table one. For the second table,

a series of input average amplitude values should also be chosen first. The related optimal value 7, can be

obtained off-line. The pair (s, T*) is then inserted into table two. If the algorithm is implemented in software,

table one can be represented by a two-dimensional array, and table two is represented by a one-diniensional

array.

For a given input signal, the optimal T," value can be estimated based on the information provided by

table two. It will then be used to estimate AO from table one which will be used as the initial value to solve

(26) by Newton algorithm. Both of the estimations can be performed using related interpolation algorithms.

The optimal values of A*, A* and D* will then be evaluated to decide how T, value should be changed for

next loop. If A*2 s2 I< 1 or D* > Do is not satisfied, Tr value will then be decreased. If D* < D1 is not met,

its value will be increased instead. The detailed algorithm is shown in Algorithm 2.

Algorithm 2:

Step 1:

Calculate s = S2(t)]1/ 2 
, set xo = 0, yo = +co;

Step 2:
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Estimate T, take it as the initial value r 0 ;

Step 3:

Estimate the initial value A0 ;

Step 4:

Solve (26) using standard Newton algorithm [25];

Step 5:

If Tak is too large:

Yk+l -Tak, Xk+l Xk, Ta(k+l) =-- 2

else:

Yk+1 = Yk, Xk+1 = Tak

if Yk+1 = +00:

Ta(k+1) = 
2

-ak

else:

Ta(k+l) = (Xk+l + Yk+1)/
2

Step 6:

if I7-a(k+l) - Tak! <e

If all constraints are satisfied

Calculate A*, and D*, then stop.

else

No optimal solution

else:

Go back to Step 3

In the above algorithm, the condition "too large" means D < D 1. In addition, the "no optimal solution"

problem can be solved by adjusting r.Xg value properly.

The above algorithms are used to search the optimal values of system parameter A and noise intensity D

at the same time. In this algorithm, the nonlinear equation (26) should be solved to obtain the optimal value

A*. It will have no overhead, compared with the algorithms which are used to search either the optimal

value of system parameter A or the optimal value of the noise intensity D. If only the noise intensity is

adjustable and the value of system parameter A is fixed, the optimization algorithm for (24) will only search

the optimal value D* to maximize (C1). From (9), we can find that Q will be constant and (CI) will be

the function of A. From the necessary condition for a local maximizer (C1 ) = 0, we can get a nonlinear
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equation similar to (26). The optimal value A* can be obtained by solving this equation. From A*r we can

get the optimal noise intensity D*. Similarly, if only the system parameter A is adjustable and the noise

intensity D is fixed, the optimization algorithm for (24) will only search the optimal value A* to maximize

the (C1). Also from (9), we can notice that (C1) will be the function of Q. From the necessary condition for

a local maximizer . = 0, we can also get a nonlinear equation similar to (26) from which the optimal

value Q* can be calculated. The optimal value A* will in turn be obtained. From above analysis, we can

conclude that the optimization algorithm for searching both A* and D* will have the same complexity as

that for searching either A* or D*. The only difference is the nonlinear equation which needs to be solved.

5. Simulations. Computer simulations are performed to verify the above propositions and demonstrate

the improvement of the maximal normalized power norm (C1), compared with that by only tuning the system

parameter and that by only adding noise. Figure 3 shows that the constrained optimization problem (24)
has the local maximizer. Figure 4 compares the maximal (C1 ) reached by three different methods: (1) only

adjusting system parameter A while letting D = 0.1 (2) only adjusting noise intensity D while letting A = I

(3) tuning system parameter A and adjusting the noise intensity D at the same time. Fr6m this figure. we

can see the enhancement of stochastic resonance effect by this scheme.

Also, computer simulations are performed to reveal its potential application in weak signal recovery. The

enhancement of the stochastic resonance effect mentioned above means the similarity between the input signal

and the output of the bistable double-well dynamic system with white Gaussian noise input is enhanced.

The system output will carry more information about the weak input signal, if it is used for the weak signal

recovery. This will make it easier to recover the weak input signal from the noisy system output. Figure 5

is the simulation model. In this model, A, a, and b are the system parameters and a = 1/ra, b 1/(T(,X2).
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The noise intensity D will affect the output of the White Noise block. The Constant block with varlue "shi[t

is used to shift the average value of the input pulse to zero. The User-Defined Functions block f(u) is used

to generate x3 . Figure 6 is the original weak input signal and the white noise. The system outputs under

different system parameter values and different noise intensity are shown in Figure 7. From this simulation,

it is obvious that the similarity between input and output, or the input signal information carried by the

system output, is greatly affected by the choices of the system parameters and noise intensity. The weak

input signal can be better recovered from the noisy system output when the system parameter values and

noise intensity are chosen properly.

6. Conclusion. This paper explicitly reveals that it is possible to further enhance the stochastic

resonance effect of the bistable double-well dynamic system with white Gaussian noise input by tuning system,

parameters and adding noise at the same time. The fast-converging optimization algorithm introduced
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enables this scheme to be applied into applications with high-speed requirements. The enhancement of

stochastic resonance effect means the enhancement of the similarity between the input signal and system

output. This will help the weak signal recovery from the noisy system output. Our future work will be

directed at extending the initial results of the applications of this scheme in signal processing.
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