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INTRODUCTION: 
 
An ever-increasing number of military personnel and civilians alike must work daily without 
adequate sleep.  Although considerable data show that sleep deprivation alters many aspects of 
behavior, including motor skills and cognitive performance, little is known about changes in the 
brain substrate underlying the behavioral effects.  Even less is known about the cerebral effects 
of recovery sleep.  The overarching objective of this study is to investigate the effects of 2 full 
nights of sleep loss (about 66 hours total) and 2 full nights of recovery sleep on cognitive 
performance and brain function.  To accomplish this goal, we will study 40 individuals for 6 
nights and 6 days.  Over the course of this period, subjects will receive 4 polysomnograms and 
10 functional magnetic resonance imaging (FMRI) sessions.  During the FMRI sessions, 
functional brain imaging data will be collected while subjects perform each of 3 cognitive tasks: 
sustained attention, arithmetic working memory, and verbal learning. Together, these data will 
provide a rich amount of information concerning the effects of prolonged total sleep deprivation 
and recovery sleep on cognitive performance and the cerebral underpinnings of that 
performance. In addition to the 40 individuals in the sleep deprivation protocol, we will recruit 10 
separate individuals to serve as control subjects who will participate only in the FMRI portion of 
the protocol, not the sleep or sleep deprivation portions.  These data will allow us to determine 
the effects on FMRI measures of brain activation due to repeated measurements, independent 
of any sleep or sleep deprivation-related effects.  Preliminary analyses of the sleep deprivation 
data are revealing the course of deterioration and recovery in cognitive performance and the 
specific component processes of cognition affected by sleep deprivation. We have also initially 
reported distinct patterns of recovery for different sleep parameters after sleep deprivation, and 
the possibility of using the FMRI measures to identify neural correlates of vulnerability and 
resilience to sleep deprivation. 
 
 
BODY: 
 
As of the end of Year 4 of this project, July 15 2006, we have completed the main sleep 
deprivation portion of the protocol and all related items from the Statement of Work. In addition, 
we have completed more than half of the subjects planned for the control arm of the study. 
 
In total, approximately 700 individuals have been initially screened for the main sleep 
deprivation study.  Fifty-one (51) were determined to be preliminarily eligible and signed 
informed consent to participate in the main sleep deprivation protocol. Of those, 40 (18 females) 
have fully completed the study. Of those who did not complete, 6 voluntarily withdrew for 
personal reasons prior to the first experimental night, 4 were withdrawn due to further screening 
determining they were ineligible, and 1 subject voluntarily withdrew because he was unwilling to 
remain awake after approximately 20 hours of sleep deprivation.   
 
Six (6), subjects have completed the control arm of this study. As reported last year, in recruiting 
subjects for the control arm, we found that the majority of individuals prefer to participate in the 
main sleep deprivation protocol, because 1) the compensation is considerably greater, and 2) it 
requires less travel (since participants live in the lab rather than appear for two separate 
appointments each day). Thus, we decided to complete all 40 subjects in the sleep deprivation 
protocol prior to continuing the control arm. We are now actively recruiting subjects for this 
control arm and will complete this item in the Statement of Work by the end of the No Cost 
Extension period (July 2007). 
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The 46 subjects who have completed the both arms of this study represent 1380 separate 
functional MRI scans (10 sessions/subject x 3 cognitive task scans/session) and 460 anatomical 
MRI scans. Each functional scan requires approximately 10-12 hours to fully process and 
prepare the data for group level analyses.   
 
This year, we have continued to publish conference abstracts and to report preliminary analyses 
at scientific conferences. Furthermore, we have submitted three manuscripts for peer-reviewed 
publication (two have been accepted for publication) and are currently preparing four others. In 
addition to the abstracts and manuscripts, Dr. Drummond gave a platform presentation at the 
2006 Military Health Research Forum in San Juan, Puerto Rico that reported data from this 
study. He has also presented these data during invited presentations at the University of 
Arizona and at the National Institutes of Health. 
 
All submitted manuscripts and abstracts are included in the appendix. Nonetheless, a few are 
briefly described here. The first paper to be accepted for publication described the effects of 
sleep deprivation and recovery sleep on inhibitory abilities. The results showed that sleep 
deprivation significantly impairs one’s ability to stop oneself from performing an action, even 
when that action is inappropriate, but that a single night of recovery sleep restores this ability.  
This has implications for operational settings where a war fighter may need to withhold what is 
an otherwise over-trained automatic response. A second paper uses newly developed analytical 
techniques to examine functional connectivity within the brain. This paper reports that a network 
of brain regions responsible for learning new information is altered by sleep deprivation. Some 
of these alterations appear to allow individuals to continue to learn despite sleep loss.  One of 
the papers in preparation (anticipated submission in August 2006) uses computational modeling 
to examine the specific aspects of working memory performance that are impaired by sleep 
deprivation. Results of that analysis show that the working memory buffer is most severely 
impacted. Importantly, though, we identified individual differences in which component cognitive 
processes of working memory were impaired by sleep deprivation.  This approach to 
understanding the effects of sleep deprivation on cognitive function may allow us to develop 
individualized management tools for mitigating and/or overcoming the effects of sleep loss. 
Finally, we have recently submitted a manuscript describing the effects of sleep deprivation on 
decision making. We found that while overall accuracy of specific decisions did not change with 
sleep deprivation, the way information is used to make those decisions did change. Along with a 
conference presentation on risk preference during decision making, these data may help 
improve the way commanders and other war fighters make decisions.  In addition to peer-
reviewed manuscripts, we presented six abstracts at this year’s Associated Professional Sleep 
Societies meeting. Of these six, five received platform presentations and all three that were 
eligible for awards received one.  Three of these seven abstracts are among the manuscripts 
outlined above and we anticipate turning the others into manuscripts in the future.  
 
 
KEY RESEARCH ACCOMPLISHMENTS: 
 

• Forty (40) subjects have completed the sleep deprivation protocol 
• Six (6) subjects have completed the control arm of the protocol 
• Three (3) papers have been submitted for peer-reviewed publication 
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REPORTABLE OUTCOMES: 
 

1. Three (3) manuscripts accepted and/or submitted (Ref 1-3) 
2. Three (3) manuscripts in preparation (the first will be submitted in August 2006) 
3. Seven (7) abstract presentations at the Associated Professional Sleep Societies meeting 

in June 2005 (Ref 4-9) 
a. Five earned platform presentations (Ref 4-8) 
b. Three were awarded merit-based awards from the Sleep Research Society (Refs 

4, 7-8) 
4. Three (3) invited talks (Ref 10-12), including at the 2006 Military Health Research Forum 

 
 
CONCLUSIONS: 
 
Overall, we have completed all of the items in the Statement of Work related to the sleep 
deprivation portion of this study. We will complete the control arm of the study during the next 
year. Specifically, we completed 40 subjects through the week-long sleep deprivation protocol 
and have completed 6 (of 10) though the control arm of the study. This represents over 1300  
individual functional magnetic resonance imaging scans. Over the four years of the study, we 
have produced 15 conference abstracts (8 were platform presentations and 7 received merit-
based awards), 8 invited presentations at international meetings, 3 submitted manuscripts, and 
3 in-preparation manuscripts. During the next year, we will complete the control arm of the study 
and continue to analyze data and submit manuscripts for peer-reviewed publication. 
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Effects of two nights sleep deprivation and two nights recovery

sleep on response inhibition

SEAN P . A . DRUMMOND1 , MART IN P . PAULUS 2 and SUSAN F . TAPERT 1

1Psychology Service and 2Psychiatry Service, VA San Diego Healthcare System, Department of Psychiatry, University of California San Diego,

San Diego, CA, USA1

Accepted in revised form 19 May 2006; received 9 December 2005

SUMMARY This study examined the effects of two nights of total sleep deprivation (TSD) and two

nights of recovery sleep on response inhibition. Thirty-eight young, healthy adults

performed a Go-NoGo task at 14 : 00 after: (1) a normal night of sleep; (2) each of two

consecutive nights of TSD; and (3) each of two consecutive nights of recovery sleep;

they also performed the task at 05 : 00 during the first night of sleep deprivation. We

hypothesized that TSD would lead to an impaired ability to withhold a response that

would be reversed with recovery sleep. Subjects did experience a significant increase in

false positive responses throughout all of TSD, errors of omission (i.e. missed �go�
targets) were not significant until after the second night of TSD. Both components

(withholding a response and automatic responding) of the task returned to baseline

levels after one night of recovery sleep. These data suggest that individuals experience

difficulty in withholding an inappropriate response during TSD, even when they are

able to attend to the incoming stimuli and respond accurately to appropriate stimuli.

k e yword s ?????????2

INTRODUCTION

Response inhibition is the cognitive process necessary to stop

oneself from engaging in a prepotent response when that

reaction is not appropriate. Response inhibition involves two

cognitive components: attention to incoming stimuli and

prevention of an automatic response (Lezak et al., 2004).

Poor response inhibition has been reported as one of the

cognitive symptoms of a variety of conditions, such as

schizophrenia (Weisbrod et al., 2000), substance use disorders

(Fillmore, 2003), and attention deficit/hyperactivity disorder

(Willcutt et al., 2005).

Response inhibition is often measured with a Go–NoGo

task. Such a task requires frequent automatic responding to

stimuli interspersed with the need to withhold a response from

a specific, less frequently occurring, stimulus. It is well

established that sleep deprivation can affect performance such

that automatic responding is slowed and more variable during

sleep deprivation (Doran et al., 2001; Dorrian et al., 2005).

The effect of sleep deprivation on withholding a prepotent or

automatic response, though, has not been extensively studied.

The few published studies in this area have reported inconsis-

tent results. One reason for the inconsistency is that most

studies have used fairly complex cognitive tasks involving a

number of demands beyond withholding a response. For

example, some studies have employed stimulus-response

incompatibility paradigms that required not only inhibition

of an automatic response but also initiation of a less salient

response (Harrison and Horne, 1998; Jennings et al., 2003;

Smulders et al., 1997). Studies have also used complex choice

reaction time tasks (Jennings et al., 2003; Smulders et al.,

1997), negative priming (Harrison and Espelid, 2004), or tasks

with vague inhibitory demands (Fallone et al., 2001). Another

reason for the inconsistent findings is that with a few

exceptions, the aims of these studies were not specifically to

examine response inhibition. Rather, withholding a response

was but one part of a larger set of cognitive demands, all of

which influenced the behavioral outcome.

Thus, it remains unclear whether total sleep deprivation

(TSD) affects the ability to withhold a response specifically or

whether errors of commission result from deficits in other task

demands. Here, we used a Go–NoGo task to address this issue.

J S R 5 3 5 B Dispatch: 5.6.06 Journal: JSR CE: M. Priya

Journal Name Manuscript No. Author Received: No. of pages: 6 PE: Meenakshi

Correspondence: Sean P. A. Drummond, UCSD/VA San Diego
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This task is ideal for focusing on withholding of an automatic

response because of the simplicity of the design. Subjects

performed the task at baseline, three times during TSD, and

after each of two nights of recovery sleep. We hypothesized

that (a) TSD would impair response withholding; (b) this

impairment would be greater than that seen for automatic

responding; and (c) recovery sleep would reverse the expected

performance decrements.

METHODS

Subjects and conditions

Thirty-eight young healthy adults (18 females; age: 24.1 ± 5.0;

education: 15.3 ± 1.6) free of medical and psychiatric disor-

ders participated in this study after providing written informed

consent. All subjects reported habitually obtaining 7–9 h of

sleep. They completed sleep diaries and wore actigraphs for

1 week before the study to verify adherence to a regular sleep–

wake schedule. After an adaptation night in the laboratory,

subjects returned the next night and were then sequestered in

the laboratory until completion of the study. The subjects slept

according to their normal schedule on night 2, underwent TSD

for the next two nights (about 64 h total), and then were given

two nights of recovery sleep (again, according to their habitual

sleep–wake schedule).

Testing procedures

At 14 : 00 on each day starting after night 2, plus at 05 : 00

during the first TSD night, subjects performed a Go–NoGo

task. Thus, the task was administered at an average of 21.75,

30.75 and 54.75 h TSD (standard deviation of each ¼ 0.44 h),

as well as 6.75 ± 0.44 h after waking on the baseline day and

after each recovery night. The computer-administered task

involved viewing stimuli presented individually in the center of

the screen in a semi-random order for 200 ms with a 1300 ms

interstimulus interval. A total of 181 stimuli were shown

during the 4.5 min task. Stimuli consisted of two geometric

shapes in each of two sizes (see Fig. 1 for examples). Subjects

were instructed to respond �as fast as possible� with a button

press on the keyboard to all shapes except the target shape and

to withhold a response for the target shape. The task directions

emphasized both speed and accuracy of responding. To

develop a prepotent tendency to respond positively with a

button press, the need to respond quickly was emphasized

repeatedly in the directions, 68.5% of the stimuli were �go�
stimuli, and the �NoGo� stimulus shared a perceptual feature in

common with two of the Go shapes (size or geometric shape,

respectively).

Six different versions of the test were constructed. A

previous pilot study, not designed as a direct control for this

study, with 21 subjects from the same demographic as those

reported here examined the practice effects and comparab-

ility of task versions. In that pilot, each subject took five of

the six different versions of the Go–NoGo task, once each

on five separate days after normal sleep. These test

administration days were either consecutive or included

two non-testing days (i.e. Saturday and Sunday) when the 5-

day testing period included a weekend. Briefly, with respect

to practice effects, only false positive rate showed a main

effect of time (P ¼ 0.018), with an improvement from test 1

to test 2, and no significant changes thereafter. Overall,

these data suggest that the practice effects for this task are

GoGo NoGoGo

5Figure 1. Examples of task stimuli. Each row shows the stimuli from 1 of the 6 matched versions of the task. In each case, the first three shapes

represented �go� stimuli where subjects were required to press a button as quickly as possible when they appeared. The far right shape was the

�NoGo� stimulus where subjects were required to withhold a response. Note that to increase the tendency to respond with a button press, the NoGo

shape shared a perceptual feature with each of two Go shapes (size or geometric shapes, respectively). While the shapes are shown in gray scale

here, the actual stimuli were in color (all shapes of a given version were the same color).
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modest and largely resolved after the first administration

(Table 1). With respect to version compatibility, analyzes

showed no differences in any version of the task on any

variable (Table 2).

Data analysis

The outcome variables for task performance included (1) hit

rate (correct button press for Go stimuli); (2) response time

(RT) for correct hits; and (3) false positive rate (error of

commission for NoGo stimuli). Automatic responding was

measured with hit rate and RT for hits, while response

withholding was measured with false positive rate (i.e. errors of

commission). All variables were analyzed with one-way

repeated measures anova. Posthoc follow-up tests were done

with Dunnett’s test corrections using the baseline scores as the

comparator. Hit RT data for six subjects was lost due to

technical errors, so n ¼ 32 for that analysis.

RESULTS

Figure 2 shows the results of the three outcome variables.

Each variable showed a significant effect of Time in the

omnibus anova (P < 0.001 with Greenhouse–Geisser correc-

tion). Hit rates were significantly different from baseline only

after two nights TSD (55.75 h). Hit RT was significantly

slower than baseline after both 31.75 and 55.75 h TSD. False

positive rates, on the other hand, were elevated during all TSD

testing sessions. Each of these variables returned to baseline

values after one night of recovery sleep. Hit RT and false

positive rates continued to decline after the second recovery

night, but this change was significant only for hit RT.

Table 1 Practice effects from a previous pilot study

Time 1 Time 2 Time 3 Time 4 Time 5

Hit rate 0.97 0.99 0.99 0.99 0.99

0.07 0.01 0.01 0.03 0.02

False + rate 0.14 0.10 0.09 0.09 0.10

0.08 0.08 0.08 0.07 0.07

Hit RT (ms) 602.18 614.30 622.75 589.54 589.08

50.46 84.42 98.14 62.08 49.76

Data for each variable are presented as mean (top) and standard

deviation (bottom).

Table 2 Version comparability from a

previous pilot study
Version 1 Version 2 Version 3 Version 4 Version 5 Version 6

Hit rate 0.98 0.99 0.99 0.99 0.99 0.99

0.08 0.01 0.01 0.03 0.01 0.02

False+ 0.08 0.12 0.14 0.12 0.09 0.09

0.07 0.08 0.07 0.09 0.07 0.06

Hit RT (ms) 584.25 607.98 601.47 603.39 610.16 615.21

76.23 52.42 56.09 57.35 69.35 100.93

Data for each variable are presented as mean (top) and standard deviation (bottom).
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Figure 2. Behavioral performance. Graphs show the five performance

measures (mean ± SE) across the six testing sessions. All outcome

measures showed a significant effect of time (P < 0.001). Significance

of follow-up analyzes are denoted as *P < 0.05 versus baseline;

**P < 0.01 versus baseline. All analyzes had n ¼ 38, expect Hit RT

which had n ¼ 32 (due to loss of RT data for six subjects).

Sleep deprivation and response inhibition 3

� 2006 European Sleep Research Society, J. Sleep Res., 15, 1–6



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

DISCUSSION

Here, we report the effects of two nights TSD and two nights

of recovery sleep on response inhibition as measured by a Go–

NoGo task. Given the simple nature of the task design, we

were able to more directly test the effects of TSD on the ability

to stop oneself from performing an automatic response than

many previous studies examining inhibition during TSD. We

found that throughout TSD, subjects showed an impaired

ability to withhold an automatic response. In contrast, hit

rates remained stable early in TSD and only showed significant

declines after the second night of TSD. This pattern suggests

that during most of TSD subjects could initiate a response

normally when appropriate (although somewhat slower than

usual), but the inability to withhold an inappropriate response

was impaired. Performance on all outcome variables returned

to baseline levels after a single night of recovery sleep.

The main goal of this report was to evaluate whether the

ability to withhold a response is impaired by TSD. As stated

above, these data suggest that is indeed the case. One possible

explanation for why subjects made more errors of commission

than errors of omission during TSD may be they sacrificed

accuracy in favor of speed. The emphasis on speed in the task

directions may have led subjects to emphasize this outcome

over the need to not respond during the NoGo stimuli.

However, the RT data does not support this hypothesis. Such

a focus on speed over accuracy should have favored intact RTs

during correct hits with TSD. However, as Fig. 2 shows, that is

not the case since RTs actually slowed during TSD.

The fact that both automatic responding and withholding a

response were impaired during TSD (albeit at different rates)

raises the possibility that both functions rely on the same

cognitive processes and/or brain regions. While it is clear that

the automatic responding component of this task requires

attention, it remains unclear whether withholding a response

also relies mainly on the attention system or an inhibitory

system independent of attention. Manly and colleagues,

through a series of experiments, argue that both task compo-

nents require endogenous attention (Manly et al., 1999).

Evidence for this includes the fact that subjects scoring high

on a measure of �absent mindedness�, but not those scoring

low, showed greater false positive rates when the task was

made longer or the proportion of NoGo stimuli was reduced

(both manipulations should increase attentional demands).

Additionally, they found that faster hit RTs were correlated

with increased false positives and suggested this means that

�inefficient� use of attention or an �inattentive approach to the

task� produces both speeding of responses and errors of

commission (Manly et al., 1999). However, given that there are

many different types of attention (e.g. sustained, selective,

spatial, divided, etc.) that each engage different brain regions

(Itti et al., 2005; Posner, 2004), possibly the two very different

behaviors of automatic responding and withholding a response

rely on distinct aspects of the attention system. Consistent with

this idea are the facts that (a) during TSD our subjects showed

a slowing of RT to Go stimuli along with an increase in false

positive responding; and (b) both variables showed reversals

after Recovery sleep. These relationships are opposite those of

Manly et al. If Manly et al.�s findings argue in favor of a single

attention process underlying both types of responding, our

data would have to be seen as arguing against that idea. Thus,

our data may suggest that TSD produces a dissociation

between the types of attention responsible for automatic

responding and response withholding that Manly et al.�s
manipulations did not.

Moreover, consistent with the notion that automatic

responding and withholding a response may rely on at least

slightly different cognitive processes is the fact that each seems

to activate different regions within the prefrontal cortex. The

vulnerability of the prefrontal cortex to TSD has long been

debated (Binks et al., 1999; Harrison and Horne, 1996; Horne,

1993; Wimmer et al., 1992). The prefrontal cortex, though, is

composed of many sub-regions, and it is likely those regions

respond somewhat differently to TSD. The region within the

prefrontal cortex most commonly implicated in response

withholding during neuroimaging and lesion studies is the

right ventral prefrontal cortex, typically within the inferior

frontal gyrus (Aron et al., 2004; Fassbender et al., 2004; Kelly

et al., 2004; Matthews et al., 2005). This suggests that

impaired response withholding during TSD may result from

impaired function of this specific region. Automatic respond-

ing, on the other hand, typically activates sustained attention

regions within the right dorsolateral prefrontal cortex (Culham

et al., 2001; Yamasaki et al., 2002). Impaired automatic

responding during TSD, then, may relate to impaired function

of this region, possibly due to an impaired ability to appro-

priately allocate cognitive resources to within the brain

(Drummond et al., 2005). Significant errors of omission were

not evidenced here until after two nights TSD. However, if a

more subtle deficit in resource allocation was present earlier in

TSD, that may have contributed to potential dysfunction

within the prefrontal region required for successful inhibition.

A caveat to this possible consequence of TSD is that some

tasks rely less on the prefrontal cortex after sufficient practice

(Beauchamp et al., 2003; Sayala et al., 2005). If that occurs for

response withholding, then the task may rely more heavily on

other brain systems, such the posterior portion of the attention

system.

The simplicity of the task design, while largely a strength,

did not allow us to evaluate all aspects of response withhold-

ing. Specifically, we only examined motor inhibition, as

opposed to speech inhibition. We also did not evaluate the

ability to stop a response that has already been initiated, as can

be done with the Stop Task (Brown and Braver, 2005;

Matthews et al., 2005). However, as described above, our

aim focused on the ability to withhold a motor response and

this Go–NoGo task allowed us to do that relatively free of

other cognitive demands. A second limitation is that we did

not use a pure measure of sustained attention (e.g. the PVT3 ) to

contrast with response withholding. However, given the

emphasis on speed, the Go stimuli here served as a reaction

time task for which we could assess both errors of omission

4 S. P. A. Drummond et al.
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and speed, the two most common measures used in sustained

attention analyzes. Another limitation of the study is the lack

of an explicit control group who received all study procedures

except TSD. While our pilot data provide information

regarding practice effects, this is an imperfect control. None-

theless, it is interesting to note that the practice effects in the

pilot study were in the opposite direction of the TSD effects

seen here, suggesting that the true TSD effects may be even

greater than what we report.

In summary, we utilized a Go–NoGo task to assess the

impact of two nights TSD and two nights of recovery sleep on

the ability to withhold a motor response. The design of our

cognitive task allowed us to study this outside the context of

more complex cognitive demands. We found that subjects

experienced significant impairment in response withholding

throughout all of TSD, while automatic responding was not

significant until after the second night of TSD. Both compo-

nents of the task returned to baseline levels after one night of

recovery sleep. These data suggest that individuals experience

difficulty in withholding an inappropriate response during

TSD, even when they are able to attend to incoming stimuli

and respond accurately to appropriate stimuli. Thus, opera-

tional settings might consider installing safeguards to prevent

mistakes and accidents from occurring as a result specifically

of impaired response withholding among sleep deprived

personnel.
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Abstract

Previous fMRI research has found altered brain response after total sleep deprivation (TSD), with TSD effects
moderated by task difficulty. Specific models of the impact of sleep deprivation and task difficulty on brain
response have yet to be developed. Differences in networks of fMRI measured brain response during verbal
encoding in sleep deprived and well-rested individuals were examined with structural equation modeling (SEM).
During fMRI scanning, 23 healthy volunteers memorized words either easy or difficult to recall, 12 (well-rested)
and 36 hours (sleep deprived) after awaking. A priori models that linked specified regions of interest were
evaluated, with the focus on the extent to which two left parietal regions interacted with the left inferior frontal
gyrus (Model 1) or with the right inferior frontal gyrus (Model 2). Task difficulty, not TSD, determined which
model fit the brain response data; Model 2 fit best for hard words before and after TSD, whereas Model 1 fit best
for easy words. TSD altered the patterns of interaction within each of the best fitting models: prefrontal interactions
with the left inferior parietal lobe were diminished and intra-parietal interactions increased. Sleep deprivation and
item difficulty produce different effects on brain networks involved in verbal learning. (JINS, 2006, 12, 1–7.)

Keywords: Echoplanar imaging, Magnetic Resonance Imaging, Brain mapping, Task performance, Verbal learning,
Adaptation, Physiological

INTRODUCTION

Increased fMRI brain response can be observed after total
sleep deprivation (TSD) (Drummond et al., 2000; Drum-
mond & Brown, 2001), especially when difficult items are
studied (Drummond et al., 2004; Drummond et al., 2005).
Previously, we argued that the interaction of sleep depriva-
tion with task difficulty supported the prediction of the com-
pensatory recruitment hypothesis, which states that task
demands influence the magnitude and location of altered
brain activation after TSD (Drummond et al., 2000; Drum-
mond & Brown, 2001). Specifically, more difficult ver-
sions of tasks elicited the increased activation after TSD,
relative to when subjects were well-rested (WR). These
increases manifested as significant activation in brain areas

not normally associated with performance of that task and
as increased magnitude of response in brain regions that are
typically responsible for task performance. In contrast, eas-
ier versions of the same tasks showed equivalent activation
while WR and after TSD. This conclusion depended on the
absence of within-region differences between the WR and
TSD conditions. The conclusion drawn from these various
studies is the brain will show an increased response to dif-
ficult task demands following TSD (relative to WR) but a
similar response to easy task demands. An alternative expla-
nation, though, to the idea that isolated brain regions will or
will not show increased activation with TSD is that sleep
deprivation might affect the interactions among brain regions
involved with task performance.

The studies cited earlier suggest an interaction between
sleep deprivation and task difficulty, but it is as yet unclear
what the unique contributions of these two factors are in
producing an increased fMRI response. Sleep deprivation
may make complex tasks more difficult to perform, as
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reflected in impaired performance on measures of mental
arithmetic, logical reasoning, sustained attention, and short-
term recognition memory after sleep deprivation (Rogers
et al., 2003). Moreover, increasing task complexity has been
found to increase fMRI response in well-rested individuals
(Drummond, et al., 2003). Thus sleep deprivation might be
associated with increased brain activation simply because
sleep deprivation makes a task more difficult. If this is the
case, it implies that the neural response to increasing diffi-
culty involves the same brain networks as those altered by
sleep deprivation.

These assumptions cannot be tested using standard uni-
variate models of functional brain analysis (Frackowiak, et.
al, 1997) and require an understanding of how different
brain areas interact to perform the task (Luria, 1966; McIn-
tosh, 1998, 2004). By examining networks of activation
instead of isolated regions of interest (ROI)s, a more com-
plete account of the impact of TSD and task difficulty on
brain function can be formulated. In this study, we use struc-
tural equation modeling (SEM) to examine how networks
of fMRI brain response during a verbal encoding task differ
as a function of TSD and task difficulty. SEM is a well
documented and verified technique that allows for such a
priori model specification along with measures of overall
model fit (Kline, 2005; Loehlin, 2004).

To test whether the brain regions interact differently or
merely respond differently in isolation following sleep depri-
vation, and to investigate the impact of task difficulty, we
developed two contrasting networks of brain activity dur-
ing verbal learning.

As a model of WR performance during verbal learning,
we hypothesized a network of activation where the left infe-
rior frontal gyrus (LIFG) mediates the left superior parietal
lobe (LSPL) and the left inferior parietal lobe (LIPL) as
illustrated by Model 1 in Figure 1. In contrast, if the right
prefrontal area becomes more active in the verbal learning
network during TSD, as shown in previous studies, then it
should play a more prominent role in influencing the two
left parietal areas, as shown by Model 2 in Figure 1. The
structural equation models, which represent these net-
works, were designed to be recursive in order to ensure

greater model stability and parsimony, and thus bidirec-
tional connections were not introduced. In addition to being
consistent with previous imaging findings in sleep depriva-
tion (Drummond et al., 2000; Drummond & Brown, 2001;
Drummond et al., 2005), these models are consistent with
cognitive neuroscience theories (Cabeza & Nyberg, 2000;
Clark & Wagner, 2003; Smith & Jonides, 1998). In partic-
ular, in well-rested states, the IFG is associated with mon-
itoring and control, whereas the parietal areas are associated
with phonological processing and short-term memory store
(Cabeza & Nyberg, 2000; Clark & Wagner, 2003; Smith &
Jonides, 1998). Moreover, TSD often produces increased
activation in the bilateral parietal lobes and inferior frontal
gyri, with the parietal regions being associated with better
recall performance (Drummond et al., 2000). As mentioned
earlier, increased brain response in the inferior frontal and
parietal cortices during TSD has been found to be greatest
when memorizing difficult words (Drummond et al., 2005).

Contrasting a priori networks of brain response allowed
us to test several hypotheses: (1) TSD will coherently alter
the pattern of regional co-activation rather than produce a
less coherent pattern. If TSD results in less coherent pat-
terns of activation (because only single regions are affected
and0or TSD reduces the interactivity of these regions), then
we would expect poorer model fits with TSD in comparison
with the WR condition, regardless of the underlying model;
(2) TSD will increase the moderating impact of some brain
areas, while lessening the importance of other areas. In
particular, the RIFG will modulate parietal lobe activity
only after TSD, whereas the modulatory effects of the LIFG
will decrease with TSD; (3) Given the role of task difficulty
in previous research, it is hypothesized that the effects of
task difficulty will be to accentuate the differences pro-
duced by TSD (Drummond et al., 2005). Specifically, the
pattern observed in hypothesis 2 should produce a better fit
after TSD when individuals encoded hard words compared
with easy words.

METHODS

Participants

Twenty-three individuals participated in this study (11F;
age5 24.26 4.8 years; education515.261.5 years). The
study was approved by the local Institutional Review Board
(the UCSD Human Research Protection Program), and it
was completed in accordance with the guidelines of the
Helsinki Declaration. All subjects provided written informed
consent. Subjects were medically healthy, free of current
and past psychiatric disorders, had no family history of
mood or psychotic disorders, did not use nicotine in any
amount, and were no more than moderate caffeine users
(,400 mg0day). Polysomnography was used to rule out
sleep disorders. Subjects reported habitually sleeping 7 to
9 hours per night between the hours of 22:00 and 08:00.

Fig. 1. A priori models testing the effects of sleep deprivation.
LIFG: left inferior frontal gyrus, RIFG: right inferior frontal gyrus,
LIPL: left inferior parietal lobe, LSPL: left superior parietal lobe.
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Experimental Periods

After two nights of sleeping in the laboratory on their habit-
ual schedule, subjects were studied with functional mag-
netic resonance imaging (fMRI) twice, both at the same
time of day: once 12 hours after waking from a normal
night of sleep in the laboratory and once after 36 hours of
no sleep (i.e., TSD). During each fMRI scan, subjects per-
formed a verbal encoding task. Whereas a fixed order of
scan session raises the possibility of order effects in the
data, we have evaluated this possibility in the past and have
found no evidence for such in this task (Drummond et al.,
2000; Drummond et al., 2005).

Experimental Task

Stimuli were presented visually on a screen at the foot of
the MRI bed that subjects viewed through a mirror fitted to
the head coil. The alternating block design task consisted of
two visually identical parts. During the entire task, subjects
saw nouns presented one at a time, each for 4s followed by
1s of a fixation asterisk. For the baseline blocks, subjects
were instructed to press a button on a hand held button box
(Current Designs, Philadelphia) to indicate whether the word
was printed in all capital or all lowercase letters. They were
instructed to not memorize these words. Subjects were
instructed to actively memorize the words presented during
the memorization blocks, and they knew they would be
tested on these words afterwards. After completion of the
entire scanning session, subjects were given a free recall
and recognition memory test. Unknown to the subjects, half
of the memorization blocks contained words that are easy
to learn, based on recallability norms, and half contained
words that are hard to learn (Christian et al., 1978). A dif-
ferent word list was used for each administration (versions
balanced across sessions), with lists matched for recallabil-
ity, word length, concreteness, and imagery. Previous pilot
studies showed that the versions provided similar recall rates
in well-rested. A block design was selected for this study to
maintain consistency with previous studies. In addition,
because the goal was to detect overall differences between
groups in different conditions, a block design allowed max-
imum statistical power (Friston, 1999). However, because
of the use of this design, distinctions cannot be made between
words that were later successfully encoded and words that
were not. Thus, it is not clear to what extent changes in
brain response would be driven exclusively by the success-
ful encoding of words. An event related design would more
effectively address that issue (Chee, 2003).

fMRI Data Acquisition

Data were acquired with a GE 3T scanner. Functional images
consisted of 120 gradient echo. echoplanar, images (EPI)
(TR: 2.5s, TE: 35 ms, FOV: 250 mm, 64 3 64 matrix,
3.91 mm3 3.91 mm in-plane resolution) of 32 4 mm axial
slices covering the whole brain and measuring the blood

oxygenation level dependent (BOLD) signal. The EPI images
were aligned with high-resolution anatomical images
(FSPGR: 1 mm3 resolution). The task contained 6 memo-
rization and 7 baseline blocks. Each block started with direc-
tional prompts for 2.5 s and lasted a total of 22.5 s, and
contained four nouns. Three images collected at the begin-
ning of each run were omitted form the analysis. The entire
task lasted 300 s.

Data Analysis

fMRI data were processed with AFNI software (Cox, 1996).
After motion coregistration, individual time-course BOLD
signal data were fit to a design matrix using the general
linear model (GLM). Parameters estimated from the design
matrix represented the constant, linear drift, 6 motion cor-
rection parameters, and two reference functions. The refer-
ence functions were representations of the task design
(baseline vs. easy words and baseline vs. hard words) con-
volved with an idealized hemodynamic response function
(Ward, 2002). The fit of the design matrix to the EPI time
series produced an amplitude value for each reference func-
tion. The amplitude represented the mean difference in local
scanner units between the learning and baseline conditions
over the time series weighted by the hemodynamic response
function. Data sets were then smoothed with a Gaussian
filter of 4.0 mm full-width-half-maximum and transformed
to standard atlas coordinates (Talairach & Tournoux, 1988).
We used a 3-step procedure to identify the relevant activa-
tions for analysis. In the first step, we defined a set of
hypothesis-driven search regions (Eyler-Zorrilla et al., 2003)
based on the areas we expected to be critical for task per-
formance either well-rested or following sleep deprivation.
These search regions are based on our previous reports and
were identical to those used in a recent manuscript we pub-
lished with this task (Drummond et al., 2005). In the sec-
ond step, we identified significant clusters of activation at
the group level for each of the two difficulty types within
these search regions. Clusters of activation were identified
as areas containing at least 9 contiguous voxels (576 mm3 )
from areas activated at the p � .05 level from the group
analyses. This value produced a False Detection Rate of .05
against the population of detected clusters of any size. These
clusters became the relevant functional ROIs used to extract
data from each individual subject. Finally, we identified the
peak activation within the significant clusters of each ROI
for each individual. It is this peak value that subsequently
went into the SEM analysis. This process produced a peak
value within each of the specified search regions for each
individual in each of the 4 conditions: (1) WR Easy: encod-
ing easy words while WR, (2) WR Hard: encoding hard
words while WR, (3) TSD Easy: encoding easy words after
TSD, and (4) TSD Hard: encoding hard words after TSD.

Covariation matrices were calculated from the peak val-
ues and were used as the target data for structural equation
models. Mx software was used to perform the structural
equation modeling (Neale, 2003). We assessed model fit
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with the Root Mean Square Error of Approximation
(RMSEA) measure, as well as Akaike’s Information Crite-
rion (AIC) (Browne & Cudeck, 1993). RMSEA does not
assume a centralized chi-square distribution and neither AIC
nor RMSEA assume the presence of a perfect fitting “true”
model. RMSEA indicates overall model fit given the vari-
ability in the data, the parsimony of the model, and the
number of subjects. It ranges from 0.0 to 1.0, with values
below .05 indicating an excellent model fit and ..1 indi-
cating a poor model fit (Browne & Cudeck, 1993). AIC
places more value on parsimony and is one of the most
commonly used fit statistics in the SEM literature. Smaller
values indicate better fits, although the primary interpreta-
tion of the AIC index is through model comparison as
opposed to absolute values (Burnham & Anderson, 1998).

RESULTS

A General Linear Model analysis of the number of words
recalled with sleep status and word difficulty as within sub-
ject factors demonstrated a significant effect for both sleep
status, F(1,22) 5 6.24, p 5 .02, and word difficulty,
F(1,22) 5 90.35, p , .01, but not an interaction of sleep
status and word difficulty, F(1,22)5 .017, p5 .897. After
TSD, participants recalled fewer total words compared to
when they were well-rested (mean difference52.26 words).
For word difficulty, three fewer hard words were recalled
than easy words, regardless of the sleep condition (mean
difference WR5 3.0 words, and TSD5 2.91 words).

Correlations of individual peak values in each of the a
priori ROIs revealed significant correlations after TSD
between the left inferior frontal gyrus while encoding easy
words and recall of easy words (r5 .425, p5 .049), as well
as between the right inferior frontal gyrus while encoding
hard words and total words recalled (r 5 .456, p 5 .029).
An analysis of the peak values obtained from each individ-
ual for each of the a priori ROIs revealed that the majority
of these values were significantly correlated across sub-
jects, indicating that good model fits would explain a mean-
ingful amount of variance. The correlations ranged from
.164 to .746 with 23 out of 36 correlations significant with
p , .05 (18 were significant with p , .01).

Table 1 shows the results of fitting each covariance matrix
to the two models tested, presented separately for easy and
hard items. Model 1 fits the easy word condition better than
Model 2 for both WR and TSD, whereas Model 2 fits the
Hard word condition better than Model 1 for both WR and
TSD.

An examination of the relative strengths of the model
connections within each item difficulty condition illustrates
that TSD influences the pattern of interactions within the
network. Because Model 1 and Model 2 share the same
number of free parameters, comparisons can be made
between strengths of connections within the best model fit
for each condition. Examining the impact of removing spe-
cific connections and re-running the structural equation

analyses evaluates the importance of that connection for
overall model fit (Loehlin, 1998). Because the RMSEA is
scaled to a standardized range of model fit, and all of the
best fitting models start with values of 0.00, the change in
RMSEA (delta RMSEA) was used to compare each con-
nection’s contribution to the model’s ability to fit the data.
Fig. 2 illustrates the impact of removing each connection
on RMSEA for each of the best fitting models within task
difficulty. As Figure 2 illustrates, there is a decrease in the
relative importance of the connection between the left and
right IFG after TSD and a concomitant increase in the impor-
tance of the connection from LSPL to LIPL for both easy
and hard items. Additionally, the prominence of the inter-
action between the IFG (left or right) and the inferior pari-
etal lobe is diminished after TSD, regardless of item
difficulty. Finally, the right IFG connection with LSPL
becomes more prominent after TSD for the hard word model.
These findings underscore the conclusion that TSD pro-
duces a modulation of connectivity within the network that
best fits the WR condition. This modulation occurs when
no difference in activation between WR and TSD occur, as
in the Easy condition, as well as when TSD alters the mag-
nitude of activation, as in the hard condition.

In order to rule out the possibility that the influence of
the RIFG is caused by an indirect effect of the right supe-
rior and inferior parietal lobes (which were not included in
either a priori model), right inferior and superior lobes were
identified and peak voxel values were calculated using the
same procedures as for the other ROIs. Exploration of var-
ious combinations of models (by starting with a fully con-
nected model and trimming connections if their removal
did not increase the error in model fit) revealed that even
with the presence of the right parietal areas, the RIFG main-
tained its importance as a feedback source for the left pari-
etal areas when hard words were learned.

Table 1. Xxxxxxx xxxxxx xxxxx

Item
difficulty Model x2 p RMSEA AIC

Well Rested

Easy 1 0.604 0.739 0.000 –3.396
Easy 2 10.254 0.006 0.433 6.254
Hard 1 6.198 0.045 0.309 2.198
Hard 2 0.166 0.921 0.000 –3.834

Sleep Deprived

Easy 1 0.090 0.956 0.000 –3.910
Easy 2 4.592 0.101 0.243 0.592
Hard 1 8.394 0.015 0.381 4.394
Hard 2 0.110 0.946 0.000 23.890

Note. RMSEA5 root mean square error of approximation; AIC5Akaike
Information Criterion. RMSEA values ,.05 indicate an excellent model
fit, while smaller AIC values indicate a better model fit (Browne &
Cudeck, 1993; Burnham & Anderson, 1998).

?1?
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DISCUSSION

Model fit statistics confirmed that TSD coherently altered
network connections rather than producing a less coherent
network, confirming hypothesis 1. Compatible with hypoth-

esis 2, TSD reduced the importance of inferior frontal to
left inferior parietal links in accounting for the covariation
among network nodes, whereas it increased the importance
of the left superior parietal to left inferior parietal connec-
tion. Hypothesis 3 was not confirmed. Difficulty level did

Fig. 2. The reorganization of interactions after sleep deprivation
Panel A: Impact of removing the named connection on the Best Model’s Fit
Panel B: Summary of Sleep Deprivation’s Impact on Model Connections. Dashed lines indicate decreased strength
following total sleep deprivation, solid lines indicate increased strength.
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not generally potentiate the impact of TSD on the network
of connections. Rather, the impact of TSD on network con-
nections differed for easy and hard words, because learning
networks differed depending on difficulty level. In partic-
ular, variation in item difficulty determined whether pari-
etal areas interacted more with the LIFG or the RIFG while
WR. Although the impact of TSD on network connections
differed by difficulty level, some similar effects of TSD
were seen for easy and hard words. Regardless of difficulty,
interhemispheric interaction between the LIFG and RIFG
decreased after TSD, and intrahemispheric communication
between the LIPL and LSPL increased. Whereas it is not
clear if this shift in the pattern of activation may be indic-
ative of a compensatory response to TSD, it demonstrates a
coherent change in the pattern of activation in response to
TSD. It may also help explain why we previously found the
left parietal cortex to be critical for task performance after
TSD (Drummond et al., 2000; Drummond et al., 2005). The
shift in RIFG interactions from LIPL to LSPL after TSD
may indicate a change in encoding strategy, because the
LSPL is less integrative than the LIPL (Cabeza & Nyberg,
2000). The SEM results are also consistent with the recall
data, which indicated a large effect of word difficulty (asso-
ciated with a different model fit) and a lesser effect of sleep
status on the total number of words recalled (associated
with changes in interactions within a good fitting model).

The results described earlier show that TSD and item
difficulty differentially influence brain networks involved
in verbal learning, at least for the small network of areas
selected for analysis. TSD altered the strength of the con-
nections within the best fitting models without altering the
overall model fit. Item difficulty appears critical in deter-
mining the intrinsic connectivity of the involved networks.
TSD appears to modulate the connectivity strength among
established network connections, rather than establish new
connections to previously uninvolved regions. The study
findings support the view that TSD does not elicit activa-
tion in new brain areas, so much as it produces a modula-
tion of connectivity within networks used when WR.
According to this view, prior studies have found activations
in “new” brain regions by altering the strength of connec-
tions within the network, thus, activating nodes that are
latent when individuals are well rested. More broadly, these
results shed an alternative light on imaging studies that inter-
pret an increased fMRI response as a recruitment of new
brain areas. Such interpretations are common in the study
of addiction, aging, Alzheimer Disease, and schizophrenia
(e.g., Bondi et al., 2005; Cabeza et al., 2002; Davidson &
Heinrichs, 2003; Tapert, et al., 2004)

This richer account of changes in brain function with
TSD is only possible through use of theoretically deter-
mined functional connectivity analysis with a priori ROIs
and contrasting network connections. Moreover, theoreti-
cally based a priori models do not capitalize as much on
chance as do the exploratory model trimming approaches
that are often used in the SEM literature (Horwitz et al.,
1999; Horwitz, 2003; Horwitz et al., 2005; MacCallum,

1986). However, the models tested in this study are greatly
simplified. Because of concerns about power and noise
within the data, the smallest possible number of ROIs and
connections were chosen based on previous research that
contrasted WR and TSD brain response. In future studies
we plan to use a larger number of participants, and gradu-
ally develop a more comprehensive model of encoding,
including hippocampal and lateral temporal areas. The cur-
rent study serves as a starting point to test more compre-
hensively developed a priori models in the future.
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ABSTRACT 

Recent evidence suggests that nearly 25% of U.S. adults (47 million) suffer from 
some level of sleep deprivation.  The impact of this sleep deprivation on the U.S. 
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but they also do not display the tendency to over-weight new information in forming 
beliefs.  Because the altered decision process still maintains decision accuracy, it suggests 
that increased accident and error rates attributed to reduced sleep in modern society may 
result more from a decline in auxiliary functions (e.g., slowed reaction time, reduced 
motor skills), rather than the inability to process new information. 
 
 
 
JEL Key Words:  Bayes Rule, Uncertainty, Information, Experiments, Sleep. 
JEL Codes:  D81, D83, C91 
 
*The authors wish to thank the U.S. National Academy of Sciences and the Japanese 
Society for the Promotion of Sciences for sponsoring the Japanese-American Beckman 
Frontiers of Science Symposium, which led to this research collaboration.  Helpful 
comments were provided by Rob Oxoby, participants at the Economic Science 
Association meetings, and seminar participants at Appalachian State University.  The 
authors are particularly grateful to Henry J. Orff and Benjamin S. McKenna for their 
work on experiment administration and data management. This study was funded in part 
by the US Department of the Army award #DAMD17-02-1-0201 and NIH M01 
RR00827.  The US Army Medical Research Acquisition Activity is the awarding and 
administering acquisition office. The content herein does not necessarily reflect the 
position or policy of the Government, and no official endorsement should be inferred. 



 A large volume of evidence suggests that individuals in industrialized nations are 

becoming increasingly sleep-deprived.  According to a recent poll conducted by the 

National Sleep Foundation, the average American adult slept less than 7 hours per night 

in 2005.  The nightly average was 7.5 hours in 1975 and 9 hours per night in 1910.  This 

trend towards less and less sleep has significant implications given the known effects of 

sleep deprivation:  decreased motor and cognitive performance, reduced vigilance and 

reaction time, worsened mood, and reduced ability to think flexibly (Pilcher and Huffcutt, 

1996; Harrison and Horne, 1999; Harrison and Horne, 2000).  Indeed, even 7 hours of 

sleep per night leads to significantly diminished cognitive performance relative to 8 or 9 

hours (Van Dongen, et al, 2003; Belenky, et al., 2003).  Nearly 50 million Americans, 

close to 25% of all adults, are estimated to suffer from some level of sleep deprivation.  

Sixty percent of adults surveyed reported driving while drowsy, while 37% reported 

falling asleep or nodding off at some point while driving.1  Estimates of the cost of lost 

U.S. worker productivity caused by sleep deprivation vary, but a conservative estimate—

based on a 4% reduction in productivity for sleep-deprived working adults—is over $40 

billion dollars annually (Stoller, 1997).  

Many occupations promote a culture of sleep deprivation, whether it be the use of 

shift work in factories or hospitals, or the need to alter sleep schedules to monitor real-

time foreign financial market activity.  Certain professions that give rise to more 

significant sleep deprivation as a matter of routine—emergency personnel, medical 

residents, military personnel, long-haul truck drivers—are also those where impaired 

functioning can put lives at risk.  A study of long-haul truck drivers in Canada and the 

U.S. (Mitler, et al. 1997) found that they averaged only about 5 hours of sleep per night.  
                                                 
1 This data is reported by the National Sleep Foundation, and can be accessed at www.sleepfoundation.org.  
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A recent study of first- and second-year medical residency students found that two-thirds 

reported sleeping an average of six or less hours per night (Baldwin, et al. 2004).  A 

smaller fraction (20%) averaged five hours of sleep a night, and such residents were more 

likely to report, among other things, having made significant medical errors.  Weinger 

and Ancoli-Israel (2002) concluded that sleep deprivation significantly impairs doctors’ 

performance, thereby impacting patient safety, in part due to poor decisions made by 

sleep deprived physicians.  Also, sleep deprivation has been considered at least partially 

responsible for several major historical disasters, including the Space Shuttle Challenger 

explosion, the Exxon Valdez oil spill, and the Chernobyl Nuclear plant explosion (Coren, 

1996).  In sum, the impact of sleep deprivation on society as a whole, while difficult to 

measure precisely, is massive.   

 This paper reports results from a laboratory study that examines the information 

processing abilities of subjects in a well-rested versus an experimentally sleep-deprived 

state.  Much of the existing sleep deprivation research examines subject performance on 

sustained attention, mathematical and/or verbal tasks, such as simple reaction time tasks, 

arithmetic processing, grammatical reasoning, or verbal learning.  Examinations of 

flexible thinking, strategy updating, and risk assessment are relatively new to sleep 

research (see references in Harrison and Horne, 2000).  There is some evidence that 

complex or interesting tasks may be less likely to show deficits under total sleep 

deprivation (e.g., Horne, 1988), but this remains a controversial proposition (Harrison 

and Horne, 1999; Pilcher and Huffcutt, 1992; Wimmer, et al, 1992).    

Our present focus on Bayesian updating as a particular decision model is meant to 

examine the fundamentals of how information is processed by decision-makers.  We 
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examine differences in subjects’ propensity to incorporate new information as they 

update prior probabilities to form posterior (subjective) probability estimates.  A Bayes 

rule experiment is administered to subjects both well-rested and after 22-25 hours 

(µ=22.72, σ=.60) of total sleep deprivation (TSD).  For comparison to existing economics 

research, we utilize the Bayes rule experiment presented in Grether (1980).  His results 

indicate that subjects tend to overweight new evidence relative to prior odds when 

forming subjective beliefs.  The result, further confirmed in Grether (1992), is largely due 

to subjects’ tendencies to utilize a ‘representativeness’ heuristic in cases where new 

sample information looks representative of one population versus another (see, e.g., 

Kahneman and Tversky, 1972).2   

The results from our pooled sample (well-rested and sleep-deprived data) are 

quite similar to those in Grether (1980)—subjects tend to weight new evidence more 

heavily than the prior odds, which is contrary to the Bayes rule prediction.  Notably, our 

data are consistent with a structural break in the decision model used by subjects 

following TSD, and the estimated decision model used after TSD is more consistent with 

the use of Bayes rule than the estimated well-rested decision model.  This result may 

indicate that Bayesian updating is part of a basic decision process that remains intact 

when other processes become impaired due to sleep deprivation.  Interestingly, the 

outcome measure we analyze reveals no significant difference in final-choice accuracy 

whether well-rested or following TSD.  This indicates that similar decision accuracy is 

reached by means of distinct decision processes, and neither process is more effective 

than the other.  There is, however, some evidence that decision model error terms have 
                                                 
2 Grether (1992) indicates that the representativeness heuristic is used when available, and it is available a 
high proportion of the time in his earlier (1980) design.  When not available as often in the (1992) 
experimental design, overweighting of new evidence is not borne out as a more general result. 
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higher variance in the TSD subsample, which implies somewhat less consistent behavior 

under TSD.   

Because information updating is a fundamental component of decision making 

under uncertainty, this unique examination of Bayesian updating following sleep 

deprivation is relevant to a large variety of behavioral applications.  Our results are also 

important because they indicate that not all types of decision-making are necessarily 

impaired following acute TSD.  The empirical data on increased accidents/errors due to 

sleep deprivation may ultimately result from impaired functioning in areas other than 

one’s ability to process new information. 

 

2.  Background 

An examination of Bayesian updating under sleep deprivation contributes 

significantly to both the literatures in economics and sleep.  Sleep research indirectly 

points towards failed information assimilation under sleep deprivation (e.g., increased 

hesitance and reduced focus among sleep-deprived junior doctors in Goldman et al, 

1972).  However, direct evidence on decision making under uncertainty and information 

updating is needed, and Harrison and Horne (2000) recognize the lack of sleep 

deprivation research on specific decision models.  Bayes rule is a fundamental decision 

model of belief revision and decision-making under uncertainty, and it has application to 

a variety of contexts.  The relevance of this research to economists stems from our desire 

to understand decision-making behavior, and the evidence indicates that a good portion 

of decision-makers are, in their typical state, sleep-deprived to some degree.  So, any 

identified differences in behavioral responses relevant to economic decision-making 
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models highlight the significance of an individual’s sleep-deprived state in behavioral 

analysis.  Such differences also identify a previously uncontrolled confound in 

experimental data sets (for example, student subject experiments during exam periods 

may include relatively more sleep-deprived subjects).   

Only a small amount of economics research has examined sleep.  Biddle and 

Hammermesh (1990) incorporate labor productivity effects of sleep in a theoretical 

model of the allocation of time.  Their empirical results from a variety of sources lead 

them to conclude that increased labor market time reduces sleep, as opposed to leisure 

activities.  Their estimates from a system of demand equations indicate that higher wages 

reduce sleep—more so for men than women.  This is consistent with the aggregate 

evidence on sleep reduction in many industrialized countries, and it implies that sleep 

deprivation will be an inevitable byproduct of wage growth in a society.   

Kamstra et al. (2000) examine the effects of daylight saving time changes on 

financial market returns.  Interestingly, stock market returns drop both after losing an 

hour (Spring) and gaining an hour (Fall) of sleep.  Reduced performance even after 

gaining an hour of sleep can be attributed to what sleep researchers call ‘desynchrony’, or 

being out-of-sync with one’s internal (biological) circadian rhythm.  Somewhat relatedly, 

Saunders (1993) concludes that mood swings due to weather fluctuations have a 

significant impact on stock prices.  Because sleep deprivation has been found to worsen 

mood even more than cognitive or motor performance (Pilcher and Huffcutt, 1996), some 

of the effects of sleep deprivation in our economy may be difficult to measure.  As a 

whole, sleep is largely unexplored by economists, and we believe that this paper is a 
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significant first step towards understanding the effects of sleep reduction on fundamental 

decision-making processes. 

Sleep deprivation can be either partial or total, where total sleep-deprivation 

implies no sleep at all during a given day(s) (i.e., one or more 24 hour periods).  Intuition 

might suggest that total sleep deprivation impairs functioning more than partial sleep 

deprivation.  If this were true then one might not feel as concerned about the average 

partially sleep deprived adult—a college student studying all night for an exam would be 

the exception.  However, existing research indicates that there are just as many reasons to 

be concerned about the effects of partial sleep deprivation. Van Dongen et al. (2003) 

found that chronic partial sleep deprivation of 4 or 6 hours per night for as few as six 

consecutive nights resulted in significant deficits on cognitive performance.  In fact, the 

deficits were equivalent to those from up to two nights of total sleep deprivation 

experienced by a separate treatment group.  In other words, chronic partial sleep 

deprivation can cause performance deficits equivalent to those from 1-2 nights of zero 

sleep.  And yet, partially sleep deprived subjects did not (subjectively) report feeling as 

sleepy as TSD subjects.  Pilcher and Huffcutt (1996) also find that the average partial 

sleep deprivation study included in their meta-analysis reported evidence of significant 

performance and mood effects, and they note that these partial sleep deprivation effects 

have perhaps been underestimated in some narrative reviews of the sleep literature.3

Even when sleep deprivation might not affect some behavioral outcome measures, 

there is still much to understand about how underlying decision processes might be 

                                                 
3 In this paper, we focus on the effects of TSD on information processing, which are relatively understudied 
compared to cognitive tasks of various sorts.  There is another family of effects of sleep deprivation, which 
includes decreased glucose metabolism, increased risk of obesity, and decreased release of growth 
hormone, among others.  
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altered.  Drummond et al. (2000) is an intriguing study that shows how versatile the brain 

can be under adversity.  In their study, recognition memory on a verbal learning task 

showed no significant change as a result of a TSD treatment, though there was evidence 

that additional brain regions became activated following sleep deprivation.  The subjects’ 

parietal lobes, especially in the left hemisphere, came ‘on-line’ after total sleep 

deprivation.  Because the parietal lobes are related to performance, their activation after 

TSD compensated for any decreased performance resulting from deficits in other brain 

regions.  Others have reported similar increases in brain activation and resultant intact 

performance during TSD on a variety of tasks (Drummond et al., 2001, 2004, 2005; 

Portas et al, 1998; Chee and Choo, 2004).  Hsu et al., (2005) examine decision-making 

under uncertainty in a neuoeconomics experiment, and they suggest a multi-regional 

neural system for evaluating uncertainty.     

For the present paper we only examine behavioral outcomes (not neural 

outcomes).  The evidence we find in support of distinct decision-weights across sleep-

states may, however, be a clue indicating neural activation differences in information-

updating environments.  For example, the ventrolateral prefrontal cortex has been 

implicated in the neural process of integrating new contingencies (Paulus, et al, 2004).  

Our finding that subjects decrease the decision weight placed on new evidence following 

TSD might indicate decreased activation of the ventrolateral prefrontal cortex.  Studies of 

the Bayes rule decision task we use are absent in the neuro-imaging literature, but 

research on other tasks suggests that compensatory activation may occur in the parietal 

lobes following TSD, thus allowing performance to maintain intact (e.g., Drummond et 

al., 2000, 2001).  Together, these results indicate that our understanding of decision-
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making under sleep deprivation is incomplete at best, and more exploration is needed 

even in cases where individuals apparently retain functional ability.  An analysis of our 

behavioral data following TSD is an important first step in this direction. 

 

3)  The Experiments 

 As noted, the experiments replicate the Grether (1980) design for a hand-run 

Bayes rule decision task, which we administer to one or two subjects at a time.  Two 

bingo cages are each filled with six colored balls:  Cage A is filled with four green and 

two red balls, and Cage B is filled with three red and three green balls.   Six draws, with 

replacement, are to be made from one of the cages.  Each subject was informed of a 

‘prior’ probability of using Cage A in terms of a die roll.  For example, a 1/3 prior odds 

of Cage A was implemented by informing the subject that Cage A would be used if the 

die roll was 1-2 (3-6 implied use of Cage B).  Subjects did not see the actual die roll, but 

its result tells the experimenter from which Cage to make the six draws from behind an 

opaque divider.  The subject was shown each draw from the bingo cage, and after six 

draws was asked to indicate whether the balls were drawn from Cage A or B.  A correct 

cage response resulted in payment of $12, whereas an incorrect response paid $2.   

The procedure—choose the cage, draw a sample of six balls, subject indicates 

cage used—was repeated six times, and subjects were informed that only one of these 

times would count for payment as determined by a random draw at the end of the 

experiment.  The design was balanced across prior A odds of 1/3, 1/2, and 2/3.4  This 

creates a reasonably high proportion of samples, on average, that yield three or four green 

balls out of six, which are samples ‘representative’ of Cage B or A, respectively.  This 
                                                 
4 One implementation accidentally utilized one instance each of the prior odds of 1/6 and 5/6. 
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allows for an examination of subjects’ propensity to utilize a ‘representativeness’ 

heuristic, or rule-of-thumb, decision process in making their cage decision.  Note that 

because compensation is higher when correctly indicating the cage, it is incentive 

compatible to indicate Cage A only if subjects perceive the (posterior) probability of 

Cage A to be greater than 50%.   

 If subjects use Bayes rule in their cage choice, they will form a posterior 

probability that Cage A is used from the particular sample of green/red balls drawn--

( ) ( )
( ) ( )B Cage | ballsgreen  #PA Cage | ballsgreen  #P

A Cage | ballsgreen  #Pballsgreen  # |A Cage
BA

A

PP
PP

⋅+⋅
⋅

= , 

where Pi is the prior odds of the cage i being used.  That is, the new sample information is 

used to update the prior probability of Cage A.  Table 1 shows the Bayesian updated 

posterior odds of Cage A in this Grether (1980) design.  If subjects use a 

representativeness heuristic to make their choice of which cage is used, then a sample 

draw of three or four green balls out of six will induce a choice of Cage B or A, 

respectively, simply because the sample drawn looks like the population of one of the 

cages.  One can see from Table 1 that the use of the representativeness heuristic can lead 

to an incorrect cage choice.  For example, the posterior probabilities indicate that Cage A 

is more likely when PA=2/3 and three green balls are drawn, but this sample looks like 

the Cage B population.  Similarly, when PA=1/3 and four green balls are drawn, Bayesian 

updating would lead one to indicate that Cage B was used—the posterior probability of 

Cage A is less than 1/2.  The design is balanced so that, on average, the proportion of 

representative samples should not bias accuracy in favor of (or against) Bayesian choices. 
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 A total of 24 subjects were administered the Bayes rules experiment.5  These 

subjects participated in a total sleep deprivation study, which involved 6 consecutive 

nights and days in the Laboratory for Sleep and Chronobiology at the University of 

California-San Diego.  Subjects were compensated several hundred dollars for the entire 

stay at the lab, but it was made clear to the subjects that these experiments afforded the 

opportunity to earn additional payments that were unrelated to their fixed compensation.  

Lab staff generally indicated that the subjects were more engaged in these Bayes rule 

experiments than in other cognitive task experiments in which they participated during 

their lab stay, and so the extra compensation appeared salient to the subjects.  Subjects 

were tested on various cognitive dimensions during their entire lab stay, with testing 

occurring approximately every two hours.  This basic Bayes rule experiment was 

performed twice by each subject (so, they had the opportunity to earn $12 twice); once in 

a well-rested state, and once after 22-24 hours of total sleep deprivation.  Each 

administration of the Bayes rule experiment lasted approximately thirty minutes.   

Screening criteria for this study only allowed subjects who were right-handed, 

healthy, and considered ‘normal’ sleepers—those who had a consistent sleep-wake 

schedules that included 7-9 hours in bed each night.  Subjects are indirectly monitored for 

one week prior to reporting to the sleep lab by keeping a sleep journal and wearing an 

actigraph.6  Because we motivated the relevance of this research by indicating how 

                                                 
5 Though the sample size is small, multiple subject trials create a panel of N=144 well-rested and N=144 
TSD observations.  A small number of total subjects is quite common in sleep-deprivation studies, because 
of the screening criteria, the requirement that subjects stay in the sleep lab several days, and the total 
compensation per subject for a TSD experiment (often several hundred dollars per subject). 
6 The actigraph measures wrist movement as a proxy of gross motor activity. This movement, in turn, is 
used to determine sleep and wake. These data verify that subjects are engaged in normal sleep patterns 
prior to their lab stay and are not partially sleep deprived at the beginning of the experiment.  The complete 
list of experimental inclusion/exclusion criteria is fairly standard for sleep deprivation research, and they 
are available on request. 
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common it is to not be a normal sleeper, one may question the external validity of using 

only normal sleepers.  As experimentalists, however, we face the usual trade-off of 

internal control versus external validity in conducting a sleep deprivation study.  Only by 

using otherwise normal sleepers can we be confident of having removed other confounds 

that may limit our ability to attribute treatment affects to sleep deprivation itself.  During 

sleep deprivation, subjects were not allowed any sleep, not allowed stimulants of any 

sort, and they were under constant supervision by lab staff to ensure no sleep during this 

time.  Figure 1 describes the basic timeline of the subjects’ lab stay relative to their 

participation in these decision experiments. 

 In a more recent paper, Grether (1992) notes that there are limits to what can be 

gleaned from the data using his simpler 1980 design.  Because the design favors 

generating samples that are representative of Cage A or B, we are somewhat limited in 

our ability to generalize towards instances in which new information is not necessarily 

representative.  On the other hand, we chose the more simple design in order to present 

subjects the most straightforward decision task that involved prior and new-sample 

information.  As stated above, this design also provides an efficient evaluation of the use 

of a representative heuristic compared to a Bayes rule in subjects’ decision making. The 

dichotomous choice of Cage A or B does not allow us to infer strength of belief (i.e., 55% 

versus 95% certain that the balls came from Cage A), as does Grether (1992) in a 

modified design.  However, given the known debilitating effects of sleep deprivation on 

vigilance, we felt this was a reasonable trade-off in design choice in order to be more 

assured that subjects understood the decision task, even after total sleep deprivation. 
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 The particular placement of our Bayes rule task during the subjects’ lab stay 

implies that all subjects complete their second Bayes rule decision task in their sleep 

deprived state.7  As such, one might be concerned that subject learning may be generating 

some of the data.  To explore this possibility, the Bayes rule experiment was also 

administered to an additional twelve control subjects (N=144 total observations).  These 

control subjects performed the Bayes rule decision task twice, at the same 22-24 hour 

interval, but the control subjects were well-rested in both instances.  Decision model 

estimates for these control subjects (see Appendix) find no significant difference in the 

weight placed on the evidence during the second Bayes rule experiment—contrary to the 

main finding in the TSD data.  

In other words, we find no evidence that the differences in decision-making we 

report in the next section are due to subject learning across the two administrations of the 

experiment.  In addition, subject learning would imply that choice accuracy should be 

higher the second Bayes rule experiment, but it is not.  Or, learning might imply that a 

particular empirical model should better fit the data as choices converge to a particular set 

of model parameters—Grether (1980) finds this among experienced subjects, for 

example.  Our results also show that this is not the case.  We are therefore confident in 

attributing the second trial effects to the sleep deprivation treatment. 

 

4) Results 

                                                 
7 Due to an un-planned deviation from the sleep lab protocol for these experiments, one subject was 
administered the Bayes rule task under the TSD treatment first, in which case the coding of the TSD 
dummy variable distinguishes this one subject from the others.  Ideally, the ordering of the TSD and well-
rested administration would be counter-balanced but, as described above, the surrounding evidence does 
not indicate that subject learning is generating the TSD treatment effects. 
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 Our subjects ranged from 18 and 39 years of age (µ=23.83, σ=5.37), and each 

gave voluntary consent for the total sleep deprivation study.  Because each Bayes rule 

experiment involves 6 trials of the cage choice task, the total number of observations 

generated by our 24 subjects is N=288 (N=144 in the well-rested state and N=144 in the 

sleep deprived state).  The econometric estimations reported in this section account for 

the potential non-independence of decisions of a given subject across different trials as a 

subject-specific random effect, but our results are robust to error-term specification. 

Table 1 shows the posterior probabilities of Cage A, which imply posterior odds 

of either Cage A or B being more likely.  For example, the posterior probability of Cage 

A of .584 indicates a posterior odds of Cage A of approximately 1.40:1.  Certain prior 

odds and sample draws imply a relatively easier choice for the subject in the sense that 

the posterior odds of the more likely cage are quite high (e.g., if PA=1/3 and only one 

green ball is drawn, the posterior odds of the more likely cage (Cage B in this case) are 

about 11:1.  The bold cells in Table 1 highlight the sample possibilities for Cage A that 

lead to the most difficult choices among all possibilities.  These highlighted cells 

represent all instances when posterior odds of the more likely choice are about 1.40:1 

(some in favor of Cage A, some in favor of Cage B).  Grether (1980) initially restricts 

attention to this subsample of data in order to compare choices of equal difficulty that 

include cases where the representativeness heuristic favors the right choice, cases where 

it favors the wrong choice, and cases where it provides no direction on cage choice. 

Table 2 shows the summary data for this subsample of cases of relatively difficult 

subject choices.  Interestingly, a breakdown of the TSD versus well-rested data indicates 

that, after TSD, subjects get a significantly higher proportion of responses correct when 
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the representativeness heuristic favors the Bayesian updated cage choice (p=.10).  When 

well-rested, a higher proportion of difficult choices are correct when representativeness is 

not available or at odds with the Bayesian updated choice, although these differences are 

not significant.8  This subset of the data also shows evidence consistent with some of the 

sleep deprivation literature, which has found that performance (i.e., accuracy) does not 

necessarily decline under TSD when the task is interesting and/or financially motivated 

(see Harrison and Horne, 2000).  However, a simple look at the percentage of correct 

choices in Table 2 examines only a subsample of less than half of the total data.  

Furthermore, a model of the posterior probability estimates is necessary in order to 

identify any general difference in the decision model used by the subjects.  Such a 

difference is implied if subjects apply compensatory effort following TSD.   

A more complete analysis of subject choice is shown in Table 3.  Here, following 

Grether (1980) for comparison, we estimate the following decision model: 
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is the prior odds ratio for Cage A.  The 

dichotomous variable Yit is observed equal to 1 if ≥0, and so we estimate (1) using a 

random effects probit estimation.  Grether (1980) estimates logit results for this model, 

and does not account for subject-specific random effects, and so our econometric 

*
itY

                                                 
8 We use a binomial test of the null hypothesis that the proportion of correct choices in TSD subsample is 
equal to the proportion of correct choices in the WR subsample.  We avoid testing this hypothesis in case 
C, when the representativeness heuristic is unavailable, due to extremely low number of cases (N=2) in the 
WR data. 
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specifications are similar but not identical.  A Bayes rule hypothesis amounts to testing 

jointly whether α=0, β1=β2>0, while the representativeness heuristic would be supported 

if β1>β2≥0.  In other words, a Bayesian subject will weight the evidence and the prior 

odds equally, while a subject who uses the representativeness heuristic would place more 

weight on the evidence than the prior odds of cage A.  The basic findings of Grether 

(1980), who estimates a version of (1) as a logit model, support the representativeness 

heuristic hypothesis.  That is, β1>β2≥0 for most of his subject groups, indicating that 

subjects overweight the evidence (i.e., the likelihood ratio) relative to the prior odds.   

 Table 3 shows our random effects probit estimation of model (1) for our subjects, 

though our results are robust to estimation of a fixed effects model as well.9  A test for 

structural change is performed on the data to test whether or not the same model 

parameters (α, β1, and β2) apply to the well-rested and TSD data.  Using the likelihood 

ratio test on the restricted model of pooled data and the unrestricted models of the 

separate TSD=1 and TSD=0 subsamples, we reject the null hypothesis that a single set of 

model parameters applies to both sets of data (the chi-squared statistic=13.36—

significant at the p=.01 level for the test of three restrictions).  Thus, the results indicate a 

structural change in the parameter estimates following TSD, and so we next turn our 

focus to the model estimates for the separate well-rested and sleep-deprived subsamples.  

As noted earlier, results from additional control subjects do not support the hypothesis 

                                                 
9 For comparison to Grether’s (1980) logit estimations, we also perform a logit estimation of the model 
similar to (1) above, but without the random effects error-term specification.  The pooled results that 
Grether reports for his financially motivated subjects yield the estimated model  
Yit= -.11+2.25*lnLR(A)it+1.82*PA/(1-PA)it, where α, β1, and β2 are statistically significant.  In estimating the 
same logit model for our pooled data, the results are Yit= .04+2.26*lnLR(A)it+1.95*PA/(1-PA)it, with β1 and 
β2 being statistically significant (p=.00).  So, our results are quite comparable to those reported in Grether 
(1980), and logit estimations of any of the models in this section are consistent with the results we find in 
the probit estimations that we report.  The results we find are also similar for a fixed effects specification 
(logit and/or fixed effects estimation results available from the authors on request). 
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that the differences in the well-rested and TSD data are due to subject learning.  The 

supporting evidence from these control subjects is given in detail in the Appendix. 

 One difference that stands out in Table 3 is that well-rested subjects place more 

weight on the evidence than the prior odds.  This difference is statistically significant 

using the chi-squared test for the restriction that β1 = β2 (p=.06).  When subjects are well-

rested, the estimated decision model replicates a key result from Grether (1980) using the 

same basic experimental design.  When sleep-deprived, however, there is no significant 

difference in the weight the subjects place on the prior odds versus the sample evidence 

(p=.91).  Sleep deprivation reduces the weight the decision-maker places on the evidence 

relative to the prior odds.  Ironically, the decision model under sleep deprivation is 

consistent with the Bayes rule hypothesis, because sleep deprivation apparently 

eliminates the overweighting that well-rested subjects tend to place on the evidence.  In 

all cases, the models do a reasonably good job of predicting the Cage A and Cage B 

choices of the subjects, correctly predicting their choice between 83% and 85% of the 

time.10

 In additional to the coefficient estimates, the estimated marginal effects are shown 

in Table 3 for interpretability.  Consider the marginal effect on the log odds term, 
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ln .  With our particular experimental parameterization, this term increases by 

about one when comparing PA=1/3 to PA=2/3.  So, the marginal effects of .54 and .34 for 
                                                 
10 An alternative model that Grether (1980) estimates includes dummy terms for samples that are 
representative of either Cage A or B.  Our key results appear to hold under this alternative empirical model, 
although the model failed to converge properly for the well-rested subsample of data.  Nevertheless, 
relative to the pooled data, the TSD sample estimates for weight placed on the prior odds and the evidence 
are both less that those estimated for the pooled data, and significant in both cases.  Some evidence for use 
of the representativeness heuristic is found more specifically in this alternative estimation, though it is only 
significant for the case when the sample looks like Cage B—subject are then significantly less likely to 
choose Cage A. 
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the well-rested and TSD data, respectively, imply that this increase in prior odds makes 

subjects 54 percentage points more likely to choose Cage A when well-rested, but only 

34 percentage points more likely to choose Cage A when sleep-deprived.  This difference 

between marginal effects on the log odds terms may not be statistically significant, 

however.  Consider an alternative formulation for the pooled data set with a dummy 

variable for TSD=1, along with interaction terms 
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We estimate this random effects probit specification to allow a more direct parameter 

estimate comparisons.  The results are: 

 

Parameter α β1 β2 β3 β4 β5

Marginal effect .07 .91 .58 -.09 -.56 -.24 
p-value (two-tailed test) .64 .00*** .00*** .61 .00*** .23 

 

These estimates are consistent with Table 3 results in showing that the tendency to 

significantly overweight the evidence (β1 >β2) is mitigated when the subject is sleep 

deprived (β4 < 0).  The coefficient on β5 < 0 is in the direction indicating that sleep 

deprivation significantly reduces the weight one places on the prior odds, but the estimate 

is not statistically significant.11

                                                 
11 For a similarly estimated logit model, β5 significance is at p=.12.  We also examine the relative difficulty 
of the different choices subjects would make, as proxied by the Bayesian posterior-odds of the more likely 
choice—higher odds represent an easier choice.  As expected, we find that more difficult choices reduce 
the likelihood that subjects pick the correct cage.  However, the TSD treatment does not significantly affect 
subject choice-accuracy, neither in general—noted earlier—nor for varying difficulty levels of choice, 
relative to when subjects are well-rested.  These results are available from the authors on request. 
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The marginal effect on the evidence, lnLR(A), term in Table 3 represents the 

marginal change to the probability of choosing cage A for a one-unit change in the log-

likelihood ratio for Cage A.  For our design, a sample of two green and four red balls, for 

example, generates a likelihood ratio of -1.05, while a sample of three green and three red 

balls generates lnLR(A)= -.353, which is an increase in lnLR(A) of about .70.  The 

estimated marginal effect for well-rested subjects implies that this change in lnLR(A) 

from drawing one additional green ball would make subjects 57 percentage points more 

likely to choose Cage A.  For sleep-deprived subjects the comparative marginal effect is 

only about 25 percentage points.  Of course, this does not take into account the fact that 

’representative’ samples may affect decisions independent of their effect on the 

likelihood ratio, but it is clear that these effects are behaviorally, as well as statistically, 

significant.  The different sample draws in our experiment created a range of likelihood 

ratios from lnLRA(A)= -2.50 for the case where six red balls were drawn, to lnLRA(A)= 

1.73 for the case where six green balls were drawn, though the extreme draws were rare. 

 These differences in the parameter estimates for the decision models when 

comparing subjects well-rested versus sleep-deprived are significant given that they 

indicate that TSD causes subjects to place a decreased decision-weight on new evidence 

and on prior odds.  The estimated effect is significant in the case of the likelihood ratio 

(i.e., the evidence), and the effect is robust to model specification (compare sub-sample 

estimates in Table 3 with estimates of model (2)).  We also estimate that TSD reduces the 

decision-weight that subjects place on the prior odds, though the effect is not as large in 

magnitude and did not reach statistical significance.   
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It is intriguing, however, that the accuracy of the subjects’ choices is no worse 

when sleep-deprived than when well-rested, on average.  For all N=144 observations of 

both well-rested and TSD data, subjects indicated the correct cage 67-68% of the time.12  

Our model estimates indicate that less weight is placed on both prior odds and new 

information following TSD.  To the extent that weighting both sources of information 

increases accuracy, TSD should therefore reduce choice accuracy.  However, TSD also 

eliminates the significant overweighting of the new information, and this should increase 

choice accuracy.  By removing a tendency to perhaps over-think the problem, TSD 

appears to provide the necessary compensation for its own harmful decision effects.   

For our control subjects, we find that choice accuracy drops for the second 

administration of the task (75% to 56% accuracy).  This is consistent with the hypothesis 

that the maintained choice accuracy following TSD results from compensatory effort of 

some sort.  Research on sleep deprivation has found that the underlying cognitive process 

may be quite different even though task performance is unaffected (Drummond et al., 

2000).  The different parameter estimates of our decision model are likely an important 

first clue to the type of cognitive process change that results from TSD. 

An examination of the residuals from estimating (1) indicate that the TSD sample 

yields somewhat higher-variance residuals, though the difference is not statistically 

significant (two-sample F-test for variance, p=.20).  This may suggest that choices 

following TSD are not as convergent upon the decision model in (1) as when well-rested.  

Though our residuals-variance result is statistically insignificant, it is similar to Grether’s 

                                                 
12 Choices and accuracy are not consistent with random decisions.  In the well-rested subsample, the actual 
Cage A frequency is 54.2%, and subjects chose Cage A 52.8% of the time (actual accuracy was 68.1%).  In 
the TSD subsample, Cage A frequency was 43.8%, and Cage A choice occurred 46.5% of the time (67.4% 
accuracy).   
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(1980) finding of less consistent behavior for inexperienced subjects.  Our lack of 

significance may be due to our limited sample size, but the result is consistent with 

results in the sleep literature that indicate increased variability and statistical variance 

under TSD. 

It is also worth noting that our result of unaffected choice accuracy in the Bayes 

rule experiment following sleep deprivation only implies that subjects are equally 

accurate in assessing the likelihood of being in state A versus state B.  This does not 

imply that a TSD subject is as adept at dealing with any further ramifications of being in 

one state versus the other.  This latter consideration will also be a function of TSD effects 

on factors like vigilance and reaction time.  Furthermore, because the Bayes rule 

experiment does not allow subjects to sort themselves out of the uncertain choice 

environment, it is important to complement these research findings with an examination 

of preferences for risk.  Such an examination is the topic of some of our related research. 

 

5.  Conclusions 

 The topic of sleep deprivation is virtually unexplored in research on economic 

decision models.  Because of the evidence indicating that, as a society, we are more sleep 

deprived at present than in any previous generation, the implications this has on decision-

making under uncertainty across many environments are worth exploring.  Not only is the 

impact of sleep-deprivation significant to an economy (e.g., lost worker productivity), but 

any adverse effects of sleep-deprivation take on increased significance in certain 

susceptible labor markets when one considers the public health/safety ramifications (e.g., 

medical residency, long-haul truck driving, the military).  Because recent sleep research 
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indicates that performance of selected tasks may be just as affected under chronic partial 

sleep deprivation as under total sleep deprivation (Van Dongen et al., 2003), the effects 

of sleep deprivation on decision-making are not likely to be limited to only the short-term 

totally sleep deprived individual.    

 This paper examines the effects of sleep deprivation on a particular type of 

decision-making that is of interest to decision scientists, in general, and is unexplored by 

sleep researchers.  We administer a Bayes rule decision experiment to subjects in 

experimentally controlled well-rested and sleep-deprived states.  Because the general 

population does not exactly fit either of these experimentally induced states, the results 

can be viewed as indicative of the decision processes of a given individual when 

approaching either the well-rested or TSD state.  This decision experiment provides a 

fundamental look at how subjects process and filter information in uncertain choice 

environments.  That is, a Bayesian subject is assumed to update a prior belief with new 

information on a situation in order to form a posterior belief of event occurrence.  So, the 

experiment examines a basic decision model that may serve as a building block for many 

more complicated decision environments.   

 We find that that, following sleep deprivation, subjects no longer overweight new 

information in forming subjective probability estimates13, which ironically makes their 

behavior more consistent with Bayes rule than when subjects are well-rested.  There is 

also some indication that, following TSD, subjects reduce the decision weight placed on 

prior odds (i.e., prior information), although this is somewhat less conclusive.  In terms of 

the experimental outcome measure, we find that choice accuracy is statistically 

                                                 
13 Grether (1980) finds this overweighting of the evidence among a typical sample of student subjects in his 
design that we replicate. 
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equivalent when well-rested versus sleep-deprived.  Together, these results indicate that 

sleep deprivation may reduce the natural tendency to over-think the problem, thus 

mitigating the negative decision effects that one might typically associate with sleep 

deprivation.   

For the experimental economist, these results indicate that there may be an 

important confound in laboratory data for certain types of experiments.  For example, 

neuro-economists who compete with other neuro-scientists for the use of scanning 

equipment may conduct experiments at abnormally late evening hours when subjects 

would be especially tired.  Another example is if experiments are conducted during exam 

week, when student subjects might be function on less sleep than normal.14  Sleep 

deprivation may be an unidentified confound in the behavioral (and neural) data 

generated in such circumstances. 

Our results may suggest that Bayes rule is a fundamental decision process that 

remains intact under adverse conditions.  The result is also significant in today’s modern 

sleep-deprived society.  Though there is ample documentation of the detrimental effects 

of TSD on cognitive and motor skills, and certain decision tasks, the present results 

(showing intact decision performance through an adapted decision model) suggest that 

not all decision-making is negatively affected by TSD.  This is an important finding 

because it suggests that increased accident and error rates attributed to sleep deprivation 

may have more to do with auxiliary function impairment (e.g., reduced vigilance, 

reaction times, or short-term memory) than the ability to process new information.  

                                                 
14 If students, on average, are more sleep deprived than the general population as survey data suggests, then 
the data from any experiments using student subjects will contain sleep deprivation related confounds. 
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Our experiment involves an unavoidable risky decision environment.  Some of 

our related research shows evidence that sleep-deprived subjects are less risk-averse for 

gambles over monetary gains.  As such, further research is needed to examine potentially 

interesting secondary effects of sleep deprivation.  Namely, a TSD individual may be less 

likely to avoid a risky decision environment, when the opportunity to sort oneself out of 

the decision exists.  Sleep deprivation may therefore lead individuals to choose more 

risky decision environments, on average.  Though we find error rates to be unaffected by 

TSD, the cost of each error may be higher in a riskier scenario.  This has interesting 

implications for, among others, military personnel choosing to engage or not engage in a 

riskier outcome scenario, or a physician choosing between two courses of surgical action.   

Because we find that subject decision accuracy in the Bayes rule experiment is 

unaffected by TSD, the finding of significant differences in estimated decision models for 

subjects whether well-rested or sleep-deprived merits further exploration.  Such results 

are likely an important first step towards understanding how the brain processes 

information and how it reacts to adversity.  Some emerging neuroeconomics research 

suggests that certain brain regions form a neural system for evaluating uncertain decision 

environments (Hsu et al, 2005).  Other neuroimaging studies support the hypothesis of 

compensatory brain activation (e.g., Drummond et al., 2000, 2001, 2004, 2005; Portas et 

al, 1998; Chee and Choo, 2004).15  Our findings may be an initial indication of 

compensatory neural activity following TSD that we intend to explore further.

                                                 
15 The hypothesis of compensatory activation following TSD is supported not only by existing sleep 
research, but also by our finding that choice accuracy in our well-rested control subjects is actually lower 
during the second administration of the experiment, though subjects are still well-rested. 
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Table 1:  Posterior probabilities of Cage A 
                                                  Number of Green Balls Drawn 

Prior probability of 
Cage A 

 
0 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

2/3 .149 .260 .413 .584 .737 .849 .918 
1/2 .081 .149 .260 .413 .584 .737 .849 
1/3 .042 .081 .149 .260 .413 .584 .737 

Table replicated from Grether (1980) Table 1.  Bold cells represent approximately equal 
posterior odds of the more likely Cage (i.e., choices of approximately equal difficulty for 
subjects) 
 

 

 

 

 

 

Table 2   
Proportion correct by sample type when posterior odds are approximately 1.40:1 

(subsample of data:  Nwell-rested=60, NTSD=62) 
 Well-rested Sleep Deprived (TSD) 
 Aa Bb Cc Aa Bb Cc

 .52 (N=27) .58 (N=31) 1.00 (N=2) .67 (N=24) .52 (N=25) .46 (N=13) 
  

Weighted average=.57 
 

Weighted average=.57 
a.  Representativeness heuristic favors Bayesian updated cage choice 
b.  Representativeness heuristic does not favor the Bayesian updated cage choice 
c.  Representativeness heuristic not available. 
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  Table 3:  Probit estimates of  model *
itY

(random effects specification.  p-values given in parenthesis) 
 

 Pooled (N=288) Well-rested (N=144) Sleep-deprived (N=144) 
 

Variable 
 

Coeff. 
marg. 
effect 

 
Coeff. 

marg. 
effect 

 
Coeff. 

marg. 
effect 

 
Constant 

.03 
(.83) 

 

.01 
(.83) 

.13 
(.42) 

.05 
(.42) 

-.08 
(.68) 

-.03 
(.68) 

 
lnLR(A) 

1.27 
(.00)*** 

.48 
(.00)***

2.20 
(.00)*** 

.81 
(.00)*** 

1.01 
(.00)*** 

.36 
(.00)*** 
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1.10 

(.00)*** 

 
.42 

(.00)***

 
1.46 

(.00)*** 

 
.54 

(.00)*** 

 
.97 

(.00)*** 

 
.34 

(.00)*** 

% correctly 
predicted 

 
84.38% 

 
85.42% 

 
83.33% 
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FIGURE 1 
A week in the sleep lab:  time-line 

 

 

 

Sat Sun Thurs Tues Mon Wed 

Actigraph 
monitored 

lab arrival 

Sleep Sleep Sleep Sleep No 
Sleep 

go home 
(recovered) 

decision 
experiments 
(well-rested) 

decision 
experiments 
(TSD of 22-24 

hours) 

Fri 

No 
Sleep 

Note:  Some subjects stayed in the lab one less day and participated in a one-
night TSD study.  Our examination of TSD effects after one night of TSD allows 
us to combined subjects from different sleep studies, whether or not they 
participated in a one or two night TSD lab stay. 

 26



REFERENCES 

 
Baldwin, DeWitt C. Jr., and Steven, R. Daugherty.  2004.  “Sleep deprivation and fatigue 

in residency training:  Results of a national survey of first- and second-year 
residents.”  Sleep, 27(2): 217-23. 

 
Biddle, Jeff E., and Daniel S. Hamermesh.  1990.  “Sleep and the allocation of time.”  

Journal of Political Economy, 98(5, part 1):  922-43. 
 
Chee, M. W., and W. C. Choo.  2004.  “Functional imaging of working memory after 24 

hr of total sleep deprivation.” Journal of Neuroscience, 24: 4560-4567. 
 
Coren, Stanley.  1996.  Sleep Thieves.  New York:  Free Press. 
 
Drummond, Sean P.A., Gregory G. Brown, J. Christian Gillin, John L. Stricker, Eric C. 

Wong, and Richard B. Buxton.  2000.  “Altered brain response to verbal learning 
following sleep deprivation.”  Nature, 403(Feb 10): 655-57. 

 
Drummond, Sean P.A., Gregory G. Brown, J. S. Salamat, and J. Christian Gillin.  2004. 

“Increasing task difficulty facilitates the cerebral compensatory response to total 
sleep deprivation.”  Sleep, 27: 445-451. 

 
Drummond, Sean P.A., M. J. Meloy, M. A. Yanagi, Henry J. Orff, and Gregory G. 

Brown.  2005.  “Compensatory recruitment after sleep deprivation and the 
relationship with performance.”  Psychiatry Research Neuroimaging. 

 
Drummond, Sean P. A., J. Christian Gillin, and Gregory G. Brown. 2001. “Increased 

cerebral response during a divided attention task following sleep deprivation.” 
Journal of Sleep Research, 10:  85-92. 

 
Goldman, L.T., McDonough, M.T., and G.P. Rosemond.  1972.  “Stresses affecting 

surgical performance and learning.”  Journal of Surgical Research, 12: 83-86. 
 
Grether, David M.  1980.  “Bayes Rule as a descriptive model:  The representativeness 

heuristic.”  Quarterly Journal of Economics, 95(3): 537-557. 
 
Grether, David M.  1992.  “Testing Bayes rule and the representativeness heuristic:  

Some experimental evidence.”  Journal of Economic Behavior and Organization, 
17: 31-57. 

 
Harrison, Yvonne, and James A. Horne.  2000.  “The impact of sleep deprivation on 

decision making:  A review.”  Journal of Experimental Psychology:  Applied, 
6(3): 236-49. 

 

 27



Harrison, Yvonne, and James A. Horne.  1999.  “One night of sleep loss impairs 
innovative thinking and flexible decision making.”  Organizational Behavior and 
Human Decision Processes, 78(2): 128-45. 

 
Horne, James A.  1988.  “Sleep deprivation and divergent thinking ability.”  Sleep, 11: 

528-36. 
 
Hsu, Ming, Meghana Bhatt, Ralph Adolphs, Daniel Tranel, Colin F. Camerer.  2005.  

“Neural Systems responding to degrees of uncertainty in human decision-
making.”  Science, 310 (Dec. 9):  1680-83. 

 
Kahneman, Daniel., and Amos Tversky. 1979.  “Prospect theory:  An analysis of decision 

under risk.”  Econometrica, 47(2): 263-91. 
 
Kahneman, Daniel., and Amos Tversky. 1972.  “Subjective probability:  A judgment of 

representativeness.”  Cognitive Psychology, 3: 430-54. 
 
Kamstra, Mark J., Lisa A. Kramer, and Maurice D. Levi.  2000.  “Losing Sleep at the 

Market:  The daylight saving anomaly.’  American Economic Review, 90(4): 
1005-11. 

 
Mitler, Merrill M., James C. Miller, Jeffrey J. Lipsitz, James K. Walsh, and C. Dennis 

Wylie.  1997.  “The sleep of long-haul truck drivers.”  New England Journal of 
Medicine, 337(11): 755-61. 

 
Paulus, M.P., J.S. Feinstein, S.F. Tapert, and T.T. Liu.  2004.  “Trend detection via 

temporal difference model predicts inferior prefrontal cortex activiation during 
acquisition of advantageous action selection.”  Neuroimage, 21(2):  733-43. 

 
Pilcher, June J. and Allen I. Huffcutt.  1996.  “Effects of sleep deprivation on 

performance:  A meta-analysis.”  Sleep, 19(4): 318-26. 
 
Portas, C. M., G. Rees, A. M. Howseman, O. Josephs, R. Turner, and C. D. Frith.  1998. 

“A specific role for the thalamus in mediating the interaction of attention and 
arousal in humans.”  Journal of Neuroscience, 18: 8979-8989. 

 
Saunders, Edward M., Jr.  1993.  “Stock prices and Wall Street weather.”  American 

Economic Review, 83(5): 1337-45. 
 
Stoller, M.K.  1997.  “The socio-economics of insomnia:  The materials and methods.”  

European Psychiatry, 12(Suppl 1): 41s-48s. 
 
Tversky, Amos., and Daniel Kahneman.  1991.  “Loss aversion in riskless choice:  A 

reference-dependent model.”  Quarterly Journal of Economics, 106(4): 1039-61. 
 

 28



Van Dongen, Hans P.A., Greg Maislin, Janet M. Mullington, and David F. Dinges.  2003.  
“The cumulative cost of additional wakefulness:  Dose-response effects on 
neurobehavioral functions and sleep physiology from chronic sleep restriction and 
total sleep deprivation.”  Sleep, 26(2): 117-26. 

 
Weinger, M.B., and S. Ancoli-Israel.  2002.  “Sleep deprivation and clinical 

performance.”  Journal of the American Medical Association, 287(8): 955-7. 
 
Wimmer, F., R. F. Hoffmann, R. A. Bonato, and A. R. Moffitt.  1992.  "The effects of 

sleep deprivation on divergent thinking and attention processes."  Journal of Sleep 
Research, 1: 223-230. 

 

 29



Appendix:  Control Subject Data 
 

The experimental protocol was administered to an additional twelve subjects, who 
were well-rested for both the first and second administration of the Bayes rule 
experiment—well-rested was verified using similar measures as for the sleep deprivation 
subjects, and average subject age was similar to non-control subjects (µ=24.12 years 
old, σ=4.278).  The results of estimation equation (1) from the text for the sample of 
N=144 Bayes rule decisions are shown in Table A1 below. 
 

Table A1:  Probit estimates of  model for 
CONTROL SUBJECTS 

*
itY

(random effects specification.  p-values 
given in parenthesis) 

  
Pooled (N=144) 

Variable Coeff. marg. effect 
Constant .02 (.88) .01 (.88) 
lnLR(A) 1.62 (.00)*** .63 (.00)** 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− A

A

P
P

1
ln  

 
1.47 (.00)*** 

 
.58 (.00)*** 

 
% correctly 

predicted 
 

85.41% 
 

As can be seen, results are similar to those from the main data set, except that the 
estimated weights on evidence and prior odds are somewhat higher.  Estimation up to an 
unknown scale parameter, however, prohibits a direct comparison across models.  A test 
for structural change in the data across the first- and second-administration fails to reject 
the null hypothesis that the same parameter estimates apply to both the subsamples of 
first- and second- administration of the experiment (the Likelihood Ratio statistic is 1.772 
compared with the 90% critical value of 6.25 for the Χ2 statistic for n=3 restrictions).  
This constrasts with the results from the well-rested and TSD subsamples of the main 
data.  Control subjects who are not sleep-deprived for the second administration of the 
task fail to display a significant difference in the estimated decision model across the two 
administrations of the task.  In other words, the differences found in the main data appear 
to be a result of the sleep deprivation treatment as opposed to learning from first to 
second administration of the experiment.   

These results are robust to alternative examinations of the control subject data as 
well.  For example, we might also estimate a model similar to (2) in the text.  That is, the 
pooled control-subject data is analyzed with dummy variables for second-administration 
of the experiment, with interaction terms that allow for the second-administration effects 
to potentially differ with respect to decision weights on evidence and prior odds.  Thus, 
we estimate   
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The results are 
  

Parameter α β1 β2 β3 β4 β5

Marginal effect -.004 .55 .60 -.30 .27 .01 
p-value (two-tailed test) .96 .00*** .00*** .30 .22 .97 

 
The only significant variables are the prior odds and the evidence (we fail to reject the 
null hypothesis that β1=β2, p=.75).  The second administration of the Bayes rule task does 
not significantly affect the likelihood of choosing Cage A.  The results are also 
unchanged if one considers a model of the entire pooled data set (main data and control 
subject data), with dummy variables for TSD, 2nd administration of the task for control 
subjects, and interaction terms.  The only significant variables remain the lnLR(A), 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− A

A

P
P

1
ln , and the interaction of TSD and lnLR(A).   

 In short, the data indicate that there are no significant differences in the control 
subjects’ decision model from one day to the next.  It is also noteworthy that the control 
subjects were correct in their cage choice 76% of the time during the first administration 
of the experiment, but only 61% of the time in the second administration.  Recall that the 
main data show maintained accuracy levels when comparing subjects well-rested versus 
sleep-deprived.  This evidence is in support of our conclusions that the sleep deprivation 
treatment, not learning, is generating the behavioral differences we estimate in the main 
text.  The data are also consistent with the hypothesis that there is compensatory effort 
engaged following sleep deprivation that helps maintain choice accuracy, though the 
mechanism involved cannot be fully explored in the current data. 
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RECOVERY OF BEHAVIORAL PERFORMANCE FOLLOWING 
64 HOURS OF TOTAL SLEEP DEPRIVATION 
Salamat JS,1 Chen T,1 McKenna BS,1,2 Orff HJ,1,2 Drummond S3,4 
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USA, (2) Joint Doctoral Program in Clinical Psychology, SDSD/UCSD, 
San Diego, CA, USA, (3) Psychology, VA San Diego Healthcare System, 
San Diego, CA, USA, (4) Department of Psychiatry, University of 
California, San Diego, San Diego, CA, USA 
Introduction : Individuals typically show some behavioral impairment 
during total sleep deprivation (TSD). Less clear is how long it takes to 
recover behavioral performance after a given length of TSD. We examined 
the effects of 64 continuous hours of TSD and recovery sleep on performance 
on three tasks. 
Methods : Forty healthy subjects (22M, age=24.0 ± 4.9yrs., edu=15.3 ± 
1.7yrs) were studied for five days in the lab and underwent five conditions: 
baseline sleep (BSL), two days and nights TSD (TSD1, TSD2), and 
two full nights of recovery sleep (REC1, REC2). An arithmetic working 
memory (Math) task, verbal learning task (VL), and the PVT were administered 
the same times each day at two (AM) and twelve (PM) hours post 
BSL wake-up time 
Results : Performance showed a main effect of condition on all tasks (all 
p<.001), deteriorating steadily from BSL through TSD. Only VL showed 
an interaction between time of day and condition, with impairment 
(words recalled) being greater for AM than PM testing during TSD. 
Performance on both Math (accuracy) and VL PM (but not AM) recovered 
to BSL levels during REC1 (p>.09). Both VL AM and PM recovered, 
and actually showed improvements over BSL, by REC2. In contrast, PVT 
performance (lapses and speed of slowest 10% responses) did not recover 
to BSL after either REC1 or REC2 (all p<.05). 
Conclusion : Time of day only affected VL performance, with AM testing 
showing more deterioration and slower recovery than PM testing. 
While complete recovery to BSL performance levels was seen on Math 
(after REC1) and VL (after REC2), PVT performance never returned to 
BSL, even after two full nights of recovery sleep. These results suggest 
performance on tasks measuring different cognitive domains recovers at 
significantly different rates following 64 hours TSD. 
Support (optional): 1. US Army DAMD17-02-1-0201 2. UCSD GCRC 
M01 RR00827 
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RISK TOLERANCE AND DECISION MAKING DURING TOTAL 
SLEEP DEPRIVATION 
Drummond SP,1,2,4 Dickinson DL,3 Orff HJ,4,5 McKenna BS4,5 

(1) Psychiatry, University of California San Diego, San Diego, CA, USA, 
(2) Psychology, Veterans Affairs San Diego Healthcare System, San 
Diego, CA, USA, (3) Economics, Appalachian State University, Boone, 
NC, USA, (4) SDSU/UCSD Joint Doctoral Program, San Diego, CA, 
USA, (5) Research, Veterans Affairs San Diego Heathcare System, San 
Diego, CA, USA 
Introduction : Sleep deprivation appears to impair decision making. 
However, many studies have used complex multimodal decision tasks. 
Thus, they cannot identify which aspect(s) of decision making is 
impaired. We examined the effects of one night sleep deprivation on risk 
tolerance in decision making. 
Methods : Subjects (n=20, 7F, age=23.1 ±4.6 edu=14.9 ±1.7) performed 
a lottery choice task both well-rested (WR) and after 22-23 hours total 
sleep deprivation (TSD). Subjects made a series of choices, each one 
between a safer and a riskier gamble involving either gains or losses of 
money (but never both) with known probabilities. At the end of the study, 
gambles were randomly played out and subjects were paid based on the 
outcomes. We analyzed the proportion of risky choices across the four 
conditions. 
Results : The proportion of riskier choices made (i.e., preference for risk) 
was: WR gains =.25, TSD gains =.41, WR losses =.81, TSD losses =.70. 
The 2x2 ANOVA (night vs gain/loss) showed a significant interaction 
[F(1,19)=9.35, p=.006]. Risk tolerance for gains increased with TSD, 
while risk tolerance for losses decreased. 
Conclusion : WR subjects responded as predicted by Prospect Theory. 
For gambles with known odds, they showed risk aversion for gains and 
risk seeking for losses. Following TSD, subjects became less risk averse 
for gains and less risk seeking for losses. These data suggest that, overall, 
individuals become less sensitive to risk with TSD. With TSD, subjects 
moved towards a risk-neutral position, meaning that risk may have played 
a smaller role in their decisions. Relative to their risk preferences when 
well-rested, during TSD, individuals become less conservative (take 
greater risk) when they stand to gain, but more conservative (take less 
risk) if they stand to lose. These data hold major implications for settings 
where safety and lives are at stake, as well as for fiscal settings. 
Support (optional): DAMD17-02-1-0201; National Academy of 
Sciences; UCSD GCRC M01 RR0082; ONR Stress Physiology Program 
Work Order N00014-04-AF-00002 
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CEREBRAL ACTIVATION DURING 60 HOURS TOTAL SLEEP 
DEPRIVATION: COMPENSATORY FAILURE ON THE SECOND 
NIGHT 
Drummond SP,1,2 Wetherell LA1,3 
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Diego, CA, USA, (3) Research, Veterans Affairs San Diego Healthcare 
System, San Diego, CA, USA 
Introduction :We have previously reported 36 hours total sleep deprivation 
(TSD) increases brain activation as measured with functional MRI 
(FMRI) during a verbal learning task. It remains unclear, though, for how 
many hours of TSD the brain can continue to compensate. Here, we 
examine this question by measuring brain activation with FMRI throughout 
60 hours TSD. We hypothesized the brain would show compensatory 
recruitment during the first TSD night, but be unable to compensate for a 
second night of TSD, thus showing decreased activation relative to baseline. 
Methods : 26 subjects (13F, age=26.6 ±5.4; edu=15.2 ±1.7) participated 
in a 6 night/day protocol, including two consecutive nights each of the 
following: baseline sleep, TSD, and recovery sleep. These analyses focus 
on a verbal learning task performed during FMRI 12 hours after waking 
from normal sleep (NORM), and at the same time of day after each TSD 
night (TSD1: 36hrs, TSD2: 60hrs). Due to our specific hypothesis, we 
analyzed the data for a negative quadratic trend: increased activation from 
NORM to TSD1 and decreased activation from TSD1 to TSD2. Whole 
brain alpha = .05. 
Results : Several brain regions showed the expected negative quadratic 
change across days, including: bilateral inferior frontal gyrus (left 
BA45/47, right BA44/45), left inferior (BA40/2) and superior (BA7) parietal 
lobes, bilateral temporal lobes (left BA39/22, right BA21, right 
BA22), and several motor-related regions. 
Conclusion : While the brain can recruit additional resources during task 
performance after one night TSD, a second TSD night appears to overwhelm 
the brain’s capacity to compensate. These data show there is a failure 
of the compensatory recruitment response during TSD2 in the same 
regions previously reported to show increased activation after one night 
TSD. These findings suggest a functional limit to the brain’s ability to 
compensate for TSD and hold implications for operational settings where 
TSD extends beyond 36 hours. 
Support (optional): US Army DAMD17-02-1-0201 UCSD GCRC M01 
RR00827 
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SLEEP DEPRIVATION AND BRAIN CONNECTIVITY: THE 
IMPACT OF SLEEP DEPRIVATION AND TASK DIFFICULTY 
ON NETWORKS OF FMRI BRAIN RESPONSE 
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Introduction : Previous research has found both increased & decreased 
regional brain responses after total sleep deprivation (TSD) and that task 
difficulty influences these changes. An alternative strategy is to consider 
not just discrete regional changes with TSD, but changes in how brain 
regions interact with one another. Here, we apply structural equation 
modeling (SEM) to functional MRI (FMRI) data in order to examine differences 
in networks of brain response during verbal encoding in sleep 
deprived and well-rested (WR) individuals. 
Methods : Normal controls (n=23, 10F, age=24.0 ±4.8yrs) memorized 
words either easy or hard to recall during FMRI after being well rested 
(WR) and after 36 hours without sleep (TSD). Based upon our previous 
work, regions of interest were defined prior to data analyses: left and right 
inferior frontal gyrus, (LIFG & RIFG) left inferior parietal lobe (LIPL) 
and left superior parietal lobe (LSPL). Using SEM, we evaluated two a 
priori models specifying different patterns of interactions among these 
regions. Model 1 specified a strong interaction between LIFG and the two 
parietal regions while Model 2 specified strong RIFG to parietal interactions 
Results : Task difficulty, not TSD, determined which model fit the data. 
For easy words, Model 1 produced excellent fits both nights, while Model 
2 best fit hard words. TSD, however, produced significant changes in the 
interactions among brain regions. For both easy and hard words, TSD 
reduced the strength of LIFG-RIFG and IFG-LIPL interactions and 
increased the strength of the LIPL-LSPL interaction. For hard words only, 
the RIFG-LSPL interaction became stronger with TSD. 
Conclusion : While TSD did not affect which model best fit the data, it 
did strikingly alter the patterns of interaction among brain regions during 
task performance: interhemispheric prefrontal interactions were diminished 
and intrahemispheric parietal interactions increased. These results 
demonstrate that examining the interactions among brain regions can 
reveal new findings and a more detailed picture of the effects of TSD on 
brain function. 
Support (optional): Mental Illness Research, Education, and Clinical 
Centers (MIRECC) Postdoctoral Fellowship in Advanced Psychology US 
Army DAMD17-02-1-0201 
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Introduction : Total sleep deprivation (TSD) alters the macroachitecture 
of sleep during recovery. Compared to baseline, sleep is more consolidated 
and homeostatic competition between slow wave and REM sleep 
results in significant changes in relative sleep stage distribution during 
recovery. Here we examined changes in sleep microarchitecture by comparing 
the spectral components of sleep on baseline and for two consecutive 
nights of recovery sleep following 64-hours of TSD. 
Methods : 30 subjects (24.3+/-4.7 yo, 15F) participated in this study. The 
protocol involved one night baseline sleep, 64hrs TSD and 2 nights recovery 
sleep (REC1, REC2). 14 spectral windows were evaluated: 0-.3hz, .3- 
.5hz, .5-2hz, 2-4hz, 4-7.5hz, 7.5-10hz, 10-12hz, 12-14hz, 14-16hz, 16- 
25hz, 25-35hz, 35-45hz, 45-100hz, 100+hz. Relative power for whole 
night NREM and REM sleep was calculated. Data analyses utilized 
repeated measures ANOVAs with planned contrasts. 
Results : For NREM sleep, significant main effects of power across 
nights (p<.05) were observed in all frequencies (0-25hz) with the exception 
of the 0-.3hz. Power in .3-.5hz was observed to decrease across the 
nights. Power in the .5-4hz range increased on REC1 and decreased in 
REC2. Power in the 4-25hz range decreased on REC1 and returned to 
baseline levels on REC2. No significant main effects were noted in frequencies 
>25hz. For REM sleep, significant main effects of night (p<.05) 
were noted for all frequencies except .3-.5hz, 12-14hz, and >45hz. In the 
slower frequencies (<7.5hz) power increased on REC1 and decreased on 
REC2, with the opposite pattern observed for frequencies between 7.5- 
45hz. 
Conclusion : These data provide information on changes in sleep 
microarchitecture that are associated with TSD. Delta changes in NREM 
sleep paralleled slow wave sleep changes previously reported during 
recovery sleep. Interestingly, theta changes in REM did not parallel 
REM% changes previously reported, although most high frequencies did. 
This suggests that REM rebound may be characterized by higher frequency 
activity than normal REM sleep. 
Support (optional): UCSD GCRC M01 RR00827 US Army DAMD17- 
02-1-0201 
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Introduction : Delta activity during sleep and Theta activity while awake 
increase proportionately with the homeostatic drive for sleep, and are 
understood to be markers for sleep propensity. There is no accepted EEG 
marker for REM propensity in humans, although REM Theta has been 
correlated with REM density (REMd) in animals. Alpha is thought to be 
negatively correlated with REM measures. Here we examined whether 
Power Spectral Analysis (PSA) of the EEG during REM could clarify 
whether Theta can serve as a marker of REM propensity or intensity. 
Methods : 30 subjects (age=24.3±4.7, 15F) participated in a 6 consecutive 
night study in the sleep lab: Screen (SCR), Baseline (BL), TSD 
(DEP1 & DEP2), and Recovery (REC1 & REC2). PSA and hierarchical 
regression were used to examine the relationship between relative power 
in three frequency bins [Theta (4-7.5Hz), Delta (.5-4Hz), and Alpha (7.5- 
10Hz)] during REM and two measures of REM propensity (REM% and 
REMd). 
Results : Theta accounted for a significant amount of the variance in 
REM% during BL, REC1 and REC2 (p<.002). While Alpha contributed 
to variance explained during REC1 (p<.01), Delta did not add to variance 
accounted for on any night. Spectral power in all 3 bands was much less 
related to REMd, with the only significant relationships being Theta for 
REC1 (p<.004) and Alpha for BL (p<.04). Alpha was not negatively correlated 
with REM measures. 
Conclusion : Theta power appears more related to REM% than to REMd. 
While Theta seems to be a reliable marker for the amount of REM sleep 
on a given night, it only accounted for about 34% of the variance. 
Furthermore, it did not index REMd well, nor the changes in REMd seen 
with TSD and Recovery. Theta power did not seem to be as good a marker 
for REM sleep as Delta power is for SWS. 
Support (optional): UCSD GCRC M01RR00827 US Army DAMD17- 
02-1-02-01 




