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Abstract

One protocol (called the primary protocol) is indepen-
dent of other protocols (jointly called the secondary proto-
col) if the question whether the primary protocol achieves a
security goal never depends on whether the secondary pro-
tocol is in use.

In this paper, we use multiprotocol strand spaces ([27],
cf. [28]) to prove that two cryptographic protocols are in-
dependent if they use encryption in non-overlapping ways.
This theorem (Proposition 7.2) applies even if the protocols
share public key certificates and secret key “tickets.”

We use the method of [8, 7] to study penetrator paths,
namely sequences of penetrator actions connecting regular
nodes (message transmissions or receptions) in the two pro-
tocols. Of special interest are inbound linking paths, which
lead from a message transmission in the secondary proto-
col to a message reception in the primary protocol. We
show that bundles can be modified to remove all inbound
linking paths, if encryption does not overlap in the two pro-
tocols. The resulting bundle does not depend on any activity
of the secondary protocol. We illustrate this method using
the Neuman-Stubblebine protocol as an example [21, 27].

1 Introduction

Whether a cryptographic protocol achieves a security
goal depends on what cannot happen. To authenticate a reg-
ular principal engaging in a protocol run, we must observe
a pattern of messages that can only be constructed by that
principal in that run, regardless of how the penetrator com-
bines his own actions with those of principals engaging in
other runs [5]. When several cryptographic protocols are
combined, the penetrator has new opportunities to obtain
the messages which ought to authenticate principals to their
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peers. Indeed, because protocol mixing has shown itself to
be a significant cause of protocol failure, and makes proto-
col analysis more difficult [2, 6, 12, 19, 27, 29], it has been
identified [20] as a key problem in applying formal methods
to cryptographic protocols.

Moreover, in practice, different protocols using cryptog-
raphy are usually combined. A key distribution protocol
is useful only if the session key it delivers is used for en-
cryption. That later use may involve constructing messages
similar to messages used in the key distribution protocol it-
self. Does this make replay attacks possible? Does the use
of a key undermine the guarantees provided by the protocol
distributing that key?

There are other reasons why protocol mixture is preva-
lent. Many recent protocols have large numbers of different
options, and therefore have large numbers of different sub-
protocols [18, 9, 4, 19]. Each of these protocols may be easy
to analyze on its own. But the same principal is required to
be able to engage in any sub-protocol. Can the penetrator
manipulate this willingness for his own purposes?

When protocols are mixed together, and we want to ap-
praise whether the security of one is affected by the others,
we will refer to the protocol under study as the primary pro-
tocol. We will refer to the others as secondary protocols.

Common sense suggests a rule of thumb when protocols
are to be mixed together. This rule is that if the primary pro-
tocol uses a particular form of encrypted message as a test to
authenticate a peer [7], then the secondary protocols should
not construct a message of that form. The sets of encrypted
messages that the different protocols handle should be dis-
joint. One way to arrange for this is to give each protocol
some distinguishing value, such as a number; that number
may then be included as part of each plaintext before enci-
pherment. Then no principal can mistake a value as belong-
ing to the wrong protocol. Another way to achieve disjoint
encryption is to ensure that different protocols never use the
same key, although this may be expensive or difficult to ar-
range.

Although the Abadi-Needham paper on prudent engi-
neering practice for cryptographic protocols [1] does not
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discuss mixing different protocols, this rule—to try to
achieve disjoint encryption—is in the same spirit as those
it proposes.

In this paper we will prove that, properly formalized, it
suffices. If two protocols have disjoint encryption, then the
first protocol is independent of the second. By this we mean
that if the first protocol achieves a security goal (whether an
authentication goal or a secrecy goal [28]) when the proto-
col is executed in isolation, then it still achieves the same
security goal when executed in combination with the sec-
ond protocol. One of the advantages of our approach is that
the result works for all secrecy and authentication goals;
in this it continues a trend visible from several recent pa-
pers [16, 11, 26, 25, 10].

Section 2 introduces some background, summarizing the
basic ideas and notation of strand spaces (with more detail
in Appendix A and [28]). Section 3 introduces some notions
not used in [28]; multiprotocol strand spaces were intro-
duced in [27], and new components are emphasized in [7].

Section 4 studies paths through bundles, and introduces
two special forms for bundles, in which the penetrator
avoids roundabout activities; additional detail and proofs
may be found in [8]. In the remainder of the paper we
study bundles of these special forms in multiprotocol strand
spaces, focusing on the relation between events in the pri-
mary protocol and events in the secondary protocol. Sec-
tion 5 considers the private values that the primary protocol
assumes will not be guessed. Section 6 defines our technical
notion of disjoint encryption and Section 7 proves the proto-
col independence theorem, of which we give an application
in Section 8.

2 Strand Spaces

Terms A is the set of messages that can be sent between
principals. We call elements of A terms. A is freely gen-
erated from two disjoint sets, T (representing texts such as
nonces or names) and K (representing keys) by means of
concatenation and encryption. The concatenation of terms
g and h is denoted g h, and the encryption of h using key K
is denoted fjhjgK . (See Appendix A.1.)

A term t is a subterm of another term t
0, written t @ t

0,
if starting with t we can reach t0 by repeatedly concatenat-
ing with arbitrary terms and encrypting with arbitrary keys.
Hence, K 6@ fjtjgK , except in case K @ t. The subterms of
t are the values that are uttered when t is sent; in fjtjgK , K
is not uttered but used. (See Definition A.2.)

Strand Spaces, Origination, and Bundles A strand is a
sequence of message transmissions and receptions, where
transmission of a term t is represented as +t and reception
of term t is represented as �t. A strand element is called

a node. If s is a strand, hs; ii is the ith node on s. The rela-
tion n) n

0 holds between nodes n and n0 if n = hs; ii and
n
0 = hs; i + 1i. Hence, n )+

n
0 [respectively, n )�

n
0]

means that n = hs; ii and n
0 = hs; ji for some j > i [re-

spectively, for some j � i]. The relation n! n
0 represents

inter-strand communication; it means that term(n1) = +t

and node term(n2) = �t.

A strand space � is a set of strands. The two relations
) and ! jointly impose a graph structure on the nodes of
�. The vertices of this graph are the nodes, and the edges
are the union of ) and !.

We say that a term t originates at a node n = hs; ii if
the sign of n is positive; t @ term(n); and t 6@ term(hs; i0i)

for every i0 < i. Thus, n represents a message transmission
that includes t, and it is the first node in s including t. If
a value originates on only one node in the strand space, we
call it uniquely originating; uniquely originating values are
desirable as nonces and session keys.

A bundle is a causally well-founded collection of nodes
and arrows of both kinds. In a bundle, when a strand re-
ceives a message m, there is a unique node transmitting m
from which the message was immediately received. By con-
trast, when a strand transmits a message m, many strands
(or none) may immediately receive m. Given any bundle C,
there is a natural partial ordering on the nodes of C, which
we refer to as �C, according to which n1 �C n2 if there is a
path from n1 to n2 using zero or more arrows of either kind.
This relation expresses the fact that n1 causally contributes
to n2 occurring in C. (See Definitions A.5, A.7.)

Regular Strands and Penetrator Strands A strand rep-
resents the local view of a participant in a run of a protocol.
For a legitimate participant, it represents the messages that
participant would send or receive as part of one particular
run of his side of the protocol. We call a strand represent-
ing a legitimate participant a regular strand. For the pen-
etrator, the strand represents an atomic deduction. More
complex actions can be formed by connecting several pene-
trator strands. While regular principals are represented only
by what they say and hear, the behavior of the penetrator is
represented more explicitly, because the values he deduces
are treated as if they had been said publicly.

We partition penetrator strands according to the opera-
tions they exemplify. E-strands encrypt when given a key
and a plaintext; D-strands decrypt when given a decryption
key and matching ciphertext; C-strands and S-strands con-
catenate and separate terms, respectively; K-strands emit
keys from a set of known keys; and M-strands emit known
atomic texts or guesses. (See Definition A.9.)
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3 New Components and Multiprotocol
Strand Spaces

When a node transmits or receives a concatenated mes-
sage, the penetrator—using C-strands and S-strands—has
full power over how the parts are concatenated together.
Thus, the important units for protocol correctness are what
we call the components (Definition A.2). Components are
either atomic values or encryptions. A term t0 is a compo-
nent of t if t0 @ t, t0 is not a concatenated term, and every
t1 6= t0 such that t0 @ t1 @ t is a concatenated term. For
instance, the three components of the concatenated term

B fjNaK fjKNbjgKB jgKA Na

are B, fjNaK fjKNbjgKB jgKA , and Na.
A term t is new at n = hs; ii if t is a component of

term(n), but t is not a component of node hs; ji for ev-
ery j < i (Definition A.2). A component is new even if
it has occurred earlier as a nested subterm of some larger
component � � � fj � � � t � � � jgK � � � . We say t is a component
of n if t is a component of term(n). When a component
occurs new on a regular node, then the principal executing
that strand has done some cryptographic work to produce
the new component. The idea of emphasizing components
and the regular nodes at which they occur new is due to
Song [24].

To represent multiple protocols [27], we select some reg-
ular strands as being runs of the primary protocol; we call
these strands primary strands.

Definition 3.1 A multiprotocol strand space is a strand
space (�; tr) together with a distinguished subset of the
regular strands �1 � � n P� called the set of primary
strands.

�2 denotes the set of all other regular strands, called sec-
ondary strands. A node is primary or secondary if the strand
it lies on is. From the point of view of a particular analy-
sis, the secondary strands represent runs of other protocols,
different from the primary one under analysis.

Two bundles are equivalent if they have the same pri-
mary nodes.

Definition 3.2 Two bundles C; C
0 in the multiprotocol

strand space (�; tr ;�1) are equivalent if and only if, for
every node n 2 �1, n 2 C iff n 2 C0.

A set � of bundles is invariant under bundle equivalences
if for all equivalent bundles C and C0, C 2 �) C

0
2 �.

Agreement and non-injective agreement properties [15, 28,
30] are invariant under bundle equivalences in this sense.
For instance, a non-injective agreement property, expressed
in our framework, asserts that whenever a bundle contains
nodes of a protocol strand (for instance, a responder strand),

then it also contains matching nodes of another strand (for
instance, an initiator strand using the same data values).
As such, it always concerns what primary nodes must be
present in bundles. Penetrator activity or secondary nodes
may or may not be present.

Secrecy properties may also be expressed in a form
that is invariant under bundle equivalences. We say (tem-
porarily) that a value t is uncompromised in C if for ev-
ery C0 equivalent to C, there is no node n 2 C0 such that
term(n) = t. In this form, a value is uncompromised if the
penetrator cannot extract it in explicit form without further
cooperation of primary strands. When stated in this form,
the assertion that a value is uncompromised is invariant un-
der bundle equivalences.

4 Paths, Normal Bundles, Efficient Bundles

We will now introduce the paths through bundles, and
examine some special forms of bundle, such that every bun-
dle is equivalent (in our sense) to a bundle in each of these
special forms. [8] contains the proofs that we omit here.
The notation m 7�! n means:

� either m! n, or else

� m)
+
n with term(m) negative and term(n) positive.

A path p through C is any finite sequence of nodes and edges
n1 7�! n2 7�! � � � 7�! nk. We refer to the ith node of the
path p as pi. The length of p is jpj, and we write `(p) to
mean pjpj, i.e. the last node in p.

Clearly, p1 �C `(p) whenever there is such a path p with
zero or more arrows. The converse is not true. For instance,
if m and n lie on the same strand with m )+

n and m

is positive or n is negative, then we do not have m 7�! n.
Unless there happens to be some other path from m to n,
we have m �C n without any path from m to n.

Proposition 4.1 Let C be a bundle andm �C n. Then there
is a path p where m)

�
p1 and `(p))�

n.

PROOF. If m and n lie on the same strand, then there is the
path p with jpj = 1 and p1 = m. So assume (inductively)
that the proposition holds for all n0 � n. Because m � n,
there is a sequence of arrows ! and ) from m to n. If the
last arrow is n0 ) n, then (inductively) there is a path p

0

with m)
�
p
0
1 and `(p))�

n
0, so that `(p))+

n.
Suppose that the last arrow is n0 ! n. If `(p0) is neg-

ative, we may adjoin the two arrows `(p0) )+
n
0
! n.

Suppose next that `(p0) is positive. If `(p0) = n
0, we

may adjoin the arrow n
0
! n to obtain the desired p. If

m )
�
`(p0), then we may take p = n

0
! n. Otherwise,

p
0 is of the form � � � ! n

00 )+
`(p0), so we may take

p = � � � ! n
00 )+

n
0 ! n. �
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Proposition 4.2 Suppose that C is a bundle and N is a set
of nodes. Let G be the graph such that

1. m 2 G if m 2 C and m �C n for some n 2 N ;

2. m1 ! m2 if m1;m2 2 G and m1 ! m2 in C;

3. m1 ) m2 if m1;m2 2 G and m1 ) m2 in C.

Then G is a bundle, called C j N . Moreover, if C\�1 � N ,
C j N is equivalent to C.

PROOF. Clearly G is finite and acyclic, as it is a subgraph of
C. Suppose that n2 2 G; we want to show that Clause 1 in
the definition of bundle holds. Because C is a bundle, there
is a unique n1 in C such that n1 ! n2 in C; by Clause 1
n1 2 G; by Clause 2, n1 ! n2 in G.

Suppose next that n2 2 G and n1 ) n2. Then n1 2

G by Clause 1, because n1 �C n2. By Clause 3, the )
relation holds between them in G also. So Clause 2 in the
definition of bundle holds.

Suppose that C \ �1 � N . Since we always have n �C

n, C \�1 � G. Since every node in G is in C, we may infer
that G \ �1 � C \ �1, so that C and C j N have the same
primary nodes. �

From Propositions 4.1 and 4.2 it follows that if C has no path
leading from a secondary node to a primary node, then the
secondary nodes are irrelevant, because C j �1 is equivalent
to C but has no secondary nodes. We call such a path an in-
bound linking path. Conversely, if p1 2 �1 and `(p) 2 �2,
then p is an outbound linking path. We have thus taken the
point of view of the primary protocol, because the results of
this paper are not symmetrical between the two protocols.

Unless otherwise indicated, we henceforth assume all
paths begin on a positive node, and end on a negative node.
Given a path p, one)+ edge immediately precedes another
)+ edge in p if they are separated in p by a single ! edge.

Definition 4.3 A path p is a penetrator path if pi is a pene-
trator node whenever i 6= 1 or jpj.

A )+-edge on a penetrator strand is constructive if it
lies on an E or C strand. It is destructive if it lies on a D or
S strand.

Any other penetrator node lies on a K or M node, and is
called an initial node. By analogy with Prawitz’s notion of
normal derivation [23], we define:

Definition 4.4 A bundle C is normal if, for any penetrator
path of C, every destructive edge precedes every construc-
tive edge.

In [8] we show a result akin to one in [3]:

Proposition 4.5 (Penetrator Normal Form Lemma) For
any bundle C there exists an equivalent normal bundle C0.

D E

�
K

�1

! � �
K

! �

Æ
fjhjgK

- �

�

w
w

Æ
h
- �

�

w
w

�

�

w
w

h
! �

�

w
w

fjhjgK
!

Figure 1. Entering a D or E strand through a
key edge

4.1 Rising and Falling Paths

Normal bundles are more predictable than bundles in
general because the penetrator never builds up values just to
take them apart again. In particular, certain penetrator paths
in a normal bundle have a natural relation to the structure of
the terms that they manipulate.

Definition 4.6 A penetrator path is falling if for all adja-
cent nodes n 7�! n

0 on the path term(n0) @ term(n). It
is rising if for all adjacent nodes n 7�! n

0 on the path
term(n) @ term(n0).

A path containing only destructive edges may not be falling,
since a destructive path may traverse a decryption strand
entering through the key transmission edge (Figure 1). Call
the edge labeled K�1 in Figure 1 a D-key edge. The other
incoming edge into a D strand is a D-cyphertext edge.

Paths entering an encryption strand through the key
transmission edge (Figure 1) are symmetrical. We refer to
a E-key edge and an E-plaintext edge. In this case we have
a stronger conclusion, because a constructive p can traverse
an E-key edge only once, along the edge p1 ! p2, and only
if term(p1) 2 K. After that we have a compound term, not
an atomic key.

Proposition 4.7 A destructive path that enters decryption
strands only through D-cyphertext edges is falling.

A constructive path that enters encryption strands only
through E-plaintext edges is rising, and this is the case for
any constructive p such that term(p1) 62 K.

By examining the destructive strands, and using induction,
we may infer:

Proposition 4.8 Suppose that p is a falling penetrator path,
and term(pi) = t where t is simple. Then for some j with
1 � j � i, t @ term(pj) and term(pj) is a component of
p1.

4



Destructive Constructive

�

�

�

w
w

h
! �

�

�

w
w

Figure 2. Internal Bridge

4.2 Transformation Paths

Definition 4.9 A transformation path is a path for which
each node pi is labelled by a component Li of pi in such a
way that Li = Li+1 unless pi )+

pi+1 and Li+1 is new
on the strand of pi+1.

In the following result [8, Proposition 3.18], the path p may
terminate on a positive node.

Proposition 4.10 Suppose that � is a strand space, and C
a bundle in �. If m 2 C, a @ t and t is a component of
m, then there exists a transformation path (p;L) through C
such that

1. a originates on p1, while `(p) = m and Ljpj = t,

2. a @ Lj for all j = 1 to jpj, and

3. p never traverses the key node of an E-strand or D-
strand.

Moreover, Lj�1 @ Lj = term(pj) if pj is a positive E-
node, and Lj @ Lj�1 = term(pj�1) if pj is a positive
D-node, while Lj = Lj�1 if pj is a positive C-node or S-
node.

4.3 Bridges

All destructive edges precede constructive edges in a
normal penetrator path. The edge that separates the destruc-
tive portion of a path from the constructive portion is of spe-
cial interest. We call it a bridge.

Definition 4.11 A bridge in a bundle C is a message trans-
mission edge m ! n embedded in a subgraph of one the
types shown in Figures 3–2.

If m ! n is a bridge, then its bridge term is term(m),
which equals term(n).

A bridge is simple iff its bridge term is simple, that is, is
not of the form g h.

Any edge between regular nodes is an external bridge. The
source m of a bridge m ! n is never on a constructive
penetrator strand, and the target n is never on a destructive
penetrator strand.

Regular Constructive

Æ
h

! �

�

�

w
w

Figure 3. Entry Bridge

Destructive Regular

�

�

�

w
w

h
! Æ

Figure 4. Exit Bridge

Proposition 4.12 Suppose that C is a normal bundle, and
p is any penetrator path in C. Then p traverses exactly one
bridge. Any destructive edge along p precedes the bridge of
p, and any constructive edge on p follows the bridge of p.

Any bundle C can be replaced by an equivalent bundle
C
0 in which all bridges are simple; moreover if C is normal

so is C0.

By this proposition, there is a function pbt(�) from paths to
terms that is well-defined on every penetrator path in normal
bundles. Given a penetrator path p, pbt(p) is the path bridge
term of p, which is the bridge term of the (unique) bridge
on p. We may assume that pbt(p) is always simple, which
is to say either an atomic value or an encryption.

A bundle with simple bridges is a kind of worst case sce-
nario, because the penetrator separates and re-concatenates
every message between regular nodes. However, much of
Section 7 is simpler with the assumption of simple bridges.

Proposition 4.13 Suppose C be a normal bundle with sim-
ple bridges. If (p;L) is a transformation path in C where p
is a penetrator path which starts at a bridge, then there is
smallest index � such that term(p�) = Li = Ljpj whenever
� � i � jpj. Moreover, if L is not constant then p� is the
positive node of an E-strand.

Thus if p starts at a bridge, there is always an index �
such that term(p�) = Ljpj.

Similarly, if (p;L) is a transformation path in C where p
is a penetrator path which ends at a bridge, then either L is

Regular Regular

Æ
h

! Æ

Figure 5. External Bridge
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constant or there is a smallest index � such that L� 6= L1.
p� is the positive node of a D-strand and term(p��1) =

L��1.
Thus if p ends at a bridge, there is always an index �

such that term(p�) = L1.

PROOF. New components of penetrator strands occur only
on D-strands or E-strands. Since p is a penetrator path,
Li+1 6= Li if and only if pi+1 is the positive node of an
E-strand or the positive node of a D-strand. If pi+1 is the
positive node of a E-strand, then term(pi+1) is an encrypted
term and therefore term(pi+1) has only one component.
Therefore, term(pi+1) = Li+1. If pi+1 is the positive node
of a D-strand, then pi is an encrypted term so that similarly
term(pi) = Li.

Notice that if L is constant and pi is a bridge node, the
simple bridges assumption implies term(pi) consists of a
single component. Clearly, L1 = Ljpj = Li = term(pi). �

4.4 Efficient Bundles

Definition 4.14 A bundle is efficient if and only if, for every
node m and negative node n if every component of n is a
component of m, then there is no regular node m0 such that
m � m

0 � n.

We call a bundle of this kind efficient because the penetrator
does the most with what he can get from the node m, rather
than making use of additional, unnecessary regular nodes
such as m0. In [8] we prove:

Proposition 4.15 Any bundle C is equivalent to an efficient
bundle C0. Moreover, C0 may be chosen to be normal and to
have simple bridges.

Proposition 4.16 Suppose C is a normal efficient bundle
with simple bridges and (p;L) (p0;L0) are transformation
paths in C. Assume p is a penetrator path which starts at a
bridge, p0 is a penetrator path which ends at a bridge and
there is some regular node m such that `(p) � m � p

0
1.

Then for all i with 1 � i � jpj and j with 1 � i � jp0j,
Li 6= L0j .

PROOF. By considering the transformation path (p;L) re-
stricted to the integer interval [1 : : : i] and the transforma-
tion path (p0;L0) restricted to the integer interval [j : : : jp0j]
we may assume without loss of generality that i = jpj and
j = 1.

By Proposition 4.13, there are indices �, � such that
term(p�) = Ljpj and term(p0�) = L01. In particular,
p� � m � p

0
� and term(p�), term(p0�) both have single

components. Therefore, by bundle efficiency, term(p�) 6=

term(p0�). In particular, L01 6= Ljpj. �

5 Public Values and Full Spaces

For what values does privacy matter? Which values
should the penetrator be assumed not to know initially, and
not to be lucky enough to guess?

By a security goal, we mean a theorem about authenti-
cation or secrecy [28, Section 8.2]. A security goal is typi-
cally a universally quantified implication, concerning every
strand space � of a particular kind, every bundle C in �, and
every choice of additional parameters that determine partic-
ular principals, keys, and data values. The implication takes
the form:

if C contains primary nodes matching certain templates,
and some conditions hold on the parameters,

then some additional nodes must exist in C (in the case of
an authentication goal), or must not exist in C (in the
case of an secrecy goal).

The conditions on the parameters frequently stipulate that a
value should be unknown to the penetrator, or that it should
be chosen unpredictably. When a value is subject to an as-
sumption of this kind, let us call that value a privacy value
for the security goal. We will also call a set of nodes that
instantiate the primary node templates in the antecedent for
a choice of values for the parameters a core node set for the
security goal. The security goal is “talking about” strand
spaces and bundles including the core node set, in which
the conditions on the parameters hold true.

Examination of a variety of security goals [28, 27, 7]
for different protocols suggests that there are two types of
assumptions about privacy values:

1. Assumptions about long term keys, which are used for
encryption in a protocol, but never uttered as a subterm
of any message;

2. Assumptions about values originating uniquely on
some primary strand of the protocol.

We will call the values involved long term privacy values
and fresh privacy values respectively.

Suppose that we are considering a particular security
goal, and have selected a core node set. Many different
strand spaces will contain these nodes, for instance if they
differ only in their penetrator strands, especially penetrator
M-strands and K-strands, which are the strands that deter-
mine whether a privacy value is given to the penetrator. So
long as we do not add strands that falsify a privacy assump-
tion for some parameter used in the given core node set,
we may freely add M-strands and K-strands to a space �.
Adding strands that do not falsify privacy assumptions can-
not convert a space �, to which some security goal applies,
into a space �0 in which the assumptions of that goal are not
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met. If a privacy assumption is already false in �0, then no
penetrator strands we add can make a difference to it.

Moreover, a privacy assumption is false whenever a pri-
vacy value originates on a secondary strand of �. Hence,
adding an M-strand or K-strand for this value cannot falsify
any privacy assumption that is satisfied in �. We regard a
space � as full when all of these harmless M-strands and
K-strands are present in �:

Definition 5.1 A strand space � is full if every atomic
value a 2 T[K that originates on any secondary strand in
� also originates on some M-strand or K-strand in �.

An atomic value a 2 T [ K is private in � if a never
originates on a secondary or penetrator strand in �. Oth-
erwise, it is public. A concatenated value g h is public if g
and h are. An encrypted value fjhjgK is public if h and K
are.

Observe that if � is full, then t is public if and only if there
is a bundle C consisting only of penetrator strands and con-
taining a node with term t.

Definition 5.2 A bundle C is standard if

1. C is normal, efficient, and has simple bridges; and

2. If an atomic value a 2 T [ K originates on any sec-
ondary node in C, then a also originates on some pen-
etrator node na 2 C; if term(m) = �a, then na ! m.

Clause 2 is a way of stating that if some principal execut-
ing a secondary protocol is lucky enough to guess the value
a, then the penetrator may be that lucky, too, and we may
suppose that the penetrator supplies it to any consumer.

Proposition 5.3 If � is a full strand space and C is a bundle
in �, then there is a standard bundle C0 in � such that C0 is
equivalent to C.

PROOF. Clause 1 holds by Propositions 4.5, 4.12, and 4.15.
To establish Clause 2, observe that there are finitely

many secondary nodes in C. Only finitely many values
a 2 T [ K may originate at each, so the values originat-
ing on secondary nodes form a finite set S. Thus, we may
add finitely many M and K strands to C, originating each
a 2 S; these strands must exist in � because � is full. We
refer to the new penetrator node originating a 2 S as na. If
n 2 C is a negative node with term(n) = a 2 S, then there
is a uniquem such that m! n. We replace this arrow with
na ! n. Hence Clause 2 is satisfied in the resulting bundle.
�

6 Disjoint Encryption

The simplest way to state the disjoint encryption assump-
tion would be to require that the two protocols not use the
same ciphertext as a part of any message. That would mean
that if n1 2 �1 and n2 2 �2, and if fjhjgK @ term(n1),
then fjhjgK 6@ term(n2).

However, this simple version is unnecessarily restrictive.
The secondary protocol would be unable to accept public-
key certificates generated in the primary protocol, which is
intuitively harmless because the contents are public in any
case. The secondary protocol would also be unable to re-
use symmetric-key tickets such as those generated by the
Kerberos Key Distribution Center [13]. These are also in-
tuitively harmless, so long as the secondary protocol does
not extract private values from within them, or repackage
their private contents, potentially insecurely. Hence we al-
low these harmless exceptions to the requirement that no
encrypted term be used by both protocols.

Definition 6.1 (Disjoint Outbound Encryption) � has
disjoint outbound encryption if and only if the following al-
ways holds. Suppose given a positive node n1 2 �1 and
a negative n2 2 �2, and private a @ fjhjgK such that
fjhjgK @ term(n1) and fjhjgK @ term(n2).

Then there is no positive n02 such that n2 )+
n
0
2 and a

occurs in a new component of n02.

This definition has the important property that atomic val-
ues cannot “zigzag” back and forth from primary to sec-
ondary nodes, before being disclosed to the penetrator.

Proposition 6.2 (No Zigzags) Let � have disjoint out-
bound encryption, and let C be a standard bundle in �. Sup-
pose (p;L) is a transformation path such that term(`(p)) =

�a where a 2 K [ T, a @ Li for all 1 � i � jpj, and
pk 2 �2. Then pj 62 �1 for j < k.

In particular, a is not private.

PROOF. Argue by contradiction and suppose that pj 2 �1

with j < k. If we choose j to be the greatest such value, and
assume k chosen to be the least number > j such that pk 2
�2, then pj 7�! � � � 7�! pk is a penetrator path. Since C
is standard, pj 7�! � � � 7�! pk has a simple bridge p� �!
p�+1, so a @ term(p�) = L� . Since a = term(`(p)), by
efficiency, a 6= term(p�). Thus, a @ e = term(p�), where
e is an encrypted unit fjhjgK .

Let 
 > k be the smallest index such that L
 6= L
+1.
The node p
 cannot be a penetrator node, because then
L
 = term(p
) = pk�1, which contradicts Proposi-
tion 4.16. IfL
 2 �1, then there is a penetrator path leading
to it, again violating Proposition 4.16. Therefore, p
 2 �2.

Since p
+1 has a new component L
+1 with subterm a,
by outbound disjoint encryption, a is not private. By the
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definition of standard bundle (Definition 5.2, Clause 2), C
contains an M- or K-node na such that a = term(na), and
na ! `(p), contradicting our choice of p.

To infer that a is not private, use Proposition 4.10 to ob-
tain a transformation path (p;L) such that a originates at
p1, and apply the preceding. �

For inbound linking paths, we must also choose the excep-
tions to naı̈ve disjoint encryption. We stipulate that en-
crypted units fjhjgK may be exceptions if they are not in-
cluded in a new components of a secondary node, but are
emitted only in the same form in which they were received
by the secondary protocol previously. When a positive sec-
ondary node emits an exception, the component must have
been received previously on the same strand, and not newly
manufactured and potentially useful to the penetrator.

Definition 6.3 (Disjoint Encryption) � has disjoint in-
bound encryption if, for all negative n1 2 �1 and positive
n2 2 �2, and for all fjhjgK , if fjhjgK @ term(n1) and
fjhjgK @ term(n2), then fjhjgK 6@ t0, for any new compo-
nent t0 of n2.

� has disjoint encryption if it has both disjoint inbound
encryption and disjoint outbound encryption.

7 The Protocol Independence Theorem

Definition 7.1 �1 is independent of �2 if for every bundle
in �, there is a bundle C0 in � that is equivalent to C such
that C0 is disjoint from �2.

Proposition 7.2 (Protocol Independence) If � is full, and
has disjoint encryption, then �1 is independent of �2.

PROOF. By Proposition 5.3, we may assume that C is stan-
dard. We want to show that there are no inbound linking
paths in C.

Let p be an inbound linking path. Suppose first that p
traverses an atomic value a 2 T [ K. This may either be
the key edge into a D or E strand, or it may be the bridge of
p. In any case, let a be the first atomic value on p. If a is
public, then because C is standard (Definition 5.2), Clause 2
contradicts the assumption that p is an inbound linking path.
Therefore a would have to be private, but that contradicts
Proposition 6.2.

Suppose next that p never traverses an atomic value.
Then in particular it never traverses a key edge into a D
or E strand. Thus, the path bridge term pbt(p) @ term(p1)

and pbt(p) @ term(`(p)). Since pbt(p) is not atomic but
it is simple, it is of the form fjhjgK . Therefore, by disjoint
inbound encryption, it does not occur in a new component
of p1. If a @ t where t is a component of p1, then there is
m )

+
p1 such that t is a component of m. Since (Propo-

sition 4.8) there is a node pi such that term(pi) = t, the
relations m � p1 � pi contradict efficiency.

Therefore there is no inbound linking path p in any stan-
dard bundle C. It follows that there are no n1 2 C \ �1

and n2 2 C \ �2 such that n2 �C n1, because by Propo-
sition 4.1, there would be a path with n2 )�

p1 and
`(p) )

�
n1, and p would be an inbound linking path.

Hence, we may apply Proposition 4.2, letting N = �1. �

An easy consequence of this theorem show that if the pri-
mary and secondary protocols share no keys whatever, then
we have independence.

Corollary 7.3 Let � be full. For i = 1 and 2, let Ki be
the set of K such that K @ term(n) for any n 2 �i or
fjhjgK @ term(n) for any h and any n 2 �i.

If K1 \ K2 = ;, then �1 is independent of �2.

In realistic situations, if �1 and �2 involve the activity of
different principals, and the keys for the protocols are cho-
sen in an unpredictable way from a large set, then the keys
they use will never overlap. Therefore,�1 is independent of
�2. The same holds when the same principals may partici-
pate in both protocols, but they choose keys independently
for each protocol.

8 An Application of Protocol Independence

The familiar Neuman-Stubblebine protocol [21] will il-
lustrate the usefulness of the Protocol Independence The-
orem. It contains two sub-protocols. We will call the
first sub-protocol the authentication protocol and the sec-
ond sub-protocol the re-authentication protocol. In the au-
thentication sub-protocol, a key distribution center gener-
ates a session key for an initiator (a network client) and a re-
sponder (a network server); the message exchange is shown
in Figure 6. This session key is embedded in a re-usable
ticket of the form fjAK T jgKBS . In the re-authentication
sub-protocol, the key distribution center no longer needs to
be involved; the initiator presents the same ticket again to
the responder, as shown in Figure 7 on the left. We have
added a fictitious message B fjAK T jgKBS , which is sent
by a strand of the authentication protocol and received by
a strand of the re-authentication protocol. It represents a
portion of the client’s state in the implementation. Clearly,
representing this internal state as a visible message could
only add vulnerabilities not conceal them.

We regard the re-authentication protocol as the sec-
ondary protocol; the presence of the re-authentication pro-
tocol should not undermine any security guarantee offered
by the primary protocol. However, terms of the form
fjN jgK are constructed as new components on secondary
strands, and accepted on primary strands. Hence the corre-
sponding multiprotocol strand space does not have disjoint
inbound encryption. Indeed, the penetrator can use a ses-
sion of the re-authentication protocol to complete a respon-
der strand in a bundle with no initiator [27].
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Figure 7. Neuman-Stubblebine Part II, original
and modified

For this reason, we amend the re-authentication proto-
col to the form shown on the right of Figure 7 [27]. To
apply our independence theorem, we check that the corre-
sponding strand space � has disjoint encryption. But that
is trivial, because tickets fjAK T jgKBS are the only com-
mon encrypted subterms of primary and secondary nodes.
The outbound property holds because no private subterm of
a ticket is uttered in a new component of a secondary node.
The inbound property holds because no new component of
a secondary node contains a ticket.

Therefore, if � is a full strand space and C is a coun-
terexample to some security property, we may deform C

into an equivalent standard bundle C0, in which there are
no secondary nodes. C0 is still a counterexample, assuming
that the security property is invariant under bundle equiva-
lences, as authentication and secrecy properties are. Thus,
if the primary protocol fails to meet the security goal, that
is independent of the presence of the secondary protocol:
the corrected Neuman-Stubblebine re-authentication proto-
col is entirely guiltless in this affair.
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A Strands, Bundles, and the Penetrator

A.1 Terms

Assume given a set T of atomic texts and a set K of cryp-
tographic keys disjoint from T. K is equipped with a unary
inverse operator inv : K! K.

Definition A.1 A is the algebra freely generated from T

and K by the two binary operators encr : K � A ! A

and join : A� A! A.

We write inv(K) as K
�1, encr(K;m) as fjmjgK , and

join(a; b) as a b. If K is a set of keys, K�1 denotes the set of
inverses of elements of K. Our assumption that A is freely
generated (see also [14, 17, 22]) stretches back to Dolev and
Yao [5]. Freeness is crucial for the results in this paper.

Definition A.2 The subterm relation @ is defined induc-
tively, as the smallest relation such that a @ a; a @ fjgjgK

if a @ g; and a @ g h if a @ g or a @ h.
If K � K, then t0 @K t if t is in the smallest set con-

taining t0 and closed under encryption with K 2 K and
concatenation with all terms t1.

The encryption-free terms form the smallest set S includ-
ing T and K and closed under concatenation. A term t is
simple if it is not of the form g h. t0 is a component of t if
t0 is simple and t0 @; t.
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By this definition, for K 2 K, we have K @ fjgjgK only if
K @ g already.

A.2 Strand Spaces

In a protocol, principals can either send or receive terms.
We represent transmission of a term as the occurrence of
that term with positive sign, and reception of a term as its
occurrence with negative sign.

Definition A.3 A signed term is a pair h�; ai with a 2 A

and � one of the symbols +;�. We will write a signed
term as +t or �t. (�A)� is the set of finite sequences of
signed terms. We will denote a typical element of (�A)� by
h h�1; a1i; : : : ; h�n; ani i.

A strand space over A is a set � together with a trace
mapping tr : �! (�A)�.

We will usually represent a strand space by its underlying
set of strands �. We often ignore the distinction between
signed terms and ordinary unsigned terms.

Definition A.4 Fix a strand space �.

1. A node is a pair hs; ii, with s 2 � and i an integer
satisying 1 � i � length(tr(s)). The set of nodes is
denoted by N . If n = hs; ii 2 N then index(n) =

i and strand(n) = s. Define term(n) to be (tr(s))i,
i.e. the ith signed term in the trace of s.

2. There is an edge n1 ! n2 iff term(n1) = +t and
term(n2) = �t for some t 2 A. When n1 = hs; ii and
n2 = hs; i + 1i, there is an edge n1 ) n2. We write
n
0 )+

n when n1 = hs; ii and n2 = hs; ji for some
j > i.

3. An unsigned term t0 originates on n 2 N iff
term(n) = +t, t0 @ t, and whenever n0 )+

n,
t0 6@ term(n0).

4. An unsigned term t is uniquely originating iff t origi-
nates on a unique n 2 N .

5. A component t1 of term(n1) is new at n1 if, for every
node n0 such that n0 )+

n1, t1 is not a component of
term(n0).

A.3 Bundles and Causal Precedence

A bundle is a finite subgraph of hN ; (! [ ))i, for
which we can regard the edges as expressing the causal de-
pendencies of the nodes.

Definition A.5 Suppose!C � !; suppose)C � ); and
suppose C = hNC ; (!C [ )C)i is a subgraph of hN ; (!

[ ))i. C is a bundle if NC and !C [ )C are finite, and:

1. If n2 2 NC and term(n2) is negative, then there is a
unique n1 such that n1 !C n2.

2. If n2 2 NC and n1 ) n2 then n1 )C n2.

3. C is acyclic.

When a strand receives a message t, there is a unique node
transmitting t from which the message was immediately re-
ceived. By contrast, when a strand transmits a message t,
many strands may immediately receive t.

Notational Convention A.6 If C = hNC ;!C [ )Ci is a
bundle, then n 2 C means n 2 NC . s 2 C means all of the
nodes of s are in NC .

Definition A.7 If S is a set of edges, i.e. S �! [ ), then
�S is the transitive closure of S, and �S is the reflexive,
transitive closure of S.

The relations �S and �S are each subsets of NS � NS ,
where NS is the set of nodes incident with any edge in S.

Proposition A.8 Suppose C is a bundle. Then �C is a par-
tial order, i.e. a reflexive, antisymmetric, transitive relation.
Every non-empty subset of the nodes in C has �C-minimal
members.

We regard �C as expressing causal precedence, because
n �S n

0 holds only when n’s occurrence causally con-
tributes to the occurrence of n0. When a bundle C is under-
stood, we will simply write �. Similarly, “minimal” will
mean �C-minimal.

A.4 Penetrator Strands

The actions available to the penetrator are relative to the
set of keys that the penetrator knows initially. We encode
this as the set of penetrator keys KP .

Definition A.9 A penetrator trace relative to KP is one of
the following:

Mt Text message: h+ti where t 2 T.

KK Key: h+Ki where K 2 KP .

Cg;h Concatenation: h�g; �h; +g hi

Sg;h Separation: h�g h; +g; +hi

Eh;K Encryption: h�K; �h; +fjhjgKi.

Dh;K Decryption: h�K�1
; �fjhjgK ; +hi.

P� is the set of all strands s 2 � such that tr(s) is a pene-
trator trace.

A strand s 2 � is a penetrator strand if it belongs to P�,
and a node is a penetrator node if the strand it lies on is a
penetrator strand. Otherwise it is a regular strand or node.
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We assume that all strand spaces have an adequate supply of
C, S, E, and D strands; by contrast, M and K strands vary,
thus modeling the set of values the penetrator may know or
be able to guess.
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