The Diffie-Hellman Key-Agreement Scheme in the Strand-Space Model

Jonathan C. Herzog
The MITRE Corporation
jherzog@mitre.org

Abstract

{ M|} k- is the messaga/ encrypted with the symmet-
ric key K’,

The Diffie-Hellman key exchange scheme is a standard
component of cryptographic protocols. In this paper, we
propose a way in which protocols that use this computa-
tional primitive can be verified using formal methods. In
particular, we separate the computational aspects of such
an analysis from the formal aspects. First, we use Strand K’ is a symmetric key created by hashing the value
Space terminology to define a security condition that sum- g v,
marizes the security guarantees of Diffie-Hellman. Once
this property is assumed, the analysis of a protocol is a Informally, we note that the security of this protocol
purely formal enterprise. (We demonstrate the applicability must depend on the secrecy g/ and recall the widely-
and usefulness of this property by analyzing a sample pro-known Diffie-Hellman problem
tocol.) Furthermore, we show that this property is sound
in the computational setting by mapping formal attacks to
computational algorithms. We demonstrate that if there ex-
ists a formal attack that violates the formal security condi-

tion, then it maps to a computational algorithm that solves Ajthough the complexity of the Diffie-Hellman problem is
the Diffie-Hellman problem. Hence, if the Diffie-Hellman ¢ known, there exist groups over which it is widely be-

g is a generator for some large groGp

x, y are randomly chosen elements{df 2, ... |G|},
and

Given a group, a generatoy, g* andg? for
x,y picked randomly from{1,2,...|G|}, calcu-
late the valug/™¥.

problem is hard, the security condition holds globally. lieved to be unsolvable (even on average) by any efficient
algorithm.
However, the hardness of the Diffie-Hellman problem
1 Introduction does not guarantee the security of this protocol. What is

required is a proof, made using the assumptions and proof

Consider this simplified version of the TLS [5] protocol: techniques of some model. One such model would be that
of computational cryptographythe study of cryptography

1.0—85:C using the tools of complexity theory. A proof in this model

2.5 C:5 [would begin by assuming that there exists an adversary (i.e.,
Ks an efficient algorithm) that can break the security of the pro-

3.C— S:[¢"k, IT1 C S}k tocol. It would then show that if such an adversary exists,

there must also exist a second adversahat can either
forge a signature, break symmetric encryption, or solve the
Diffie-Hellman problem.

Since the formal definition of the Diffie-Hellman prob-

e Ty, T are fixed tags to distinguish the third message lem (given in Section 2) is complexity-theoretic in nature,
from the fourth, this model might be the most natural one to apply. Unfor-
tunately, natural models are not necessarily the easiest to
use. Although the computational model is sound and proofs

in that model are strong, it is difficult to work in. A sim-

*This work supported by the National Security Agency. Appears in pler and more intuitive framework is tH2olev-Yaomodel
Proceedings, 16th IEEE Computer Security Foundations WorkdE&E

CS Press, June 2003. Typically using the first adversary as a component.

4.8 — C: {T»C S]x

where

o [M]y s the messagé/ together with a signature
that can be verified using the public kég,

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
2003 2. REPORT TYPE 00-00-2003 to 00-00-2003
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

The DiffieeHellman K ey-Agreement Schemein the Strand-Space M odel 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

MITRE Corporation,202 Burlington Road,Bedford,M A,01730-1420 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’' S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THISPAGE 14
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

[6], which grew out of the formal methods community. In- any formal attack that violates the property results in a com-
stead of considering all possible adversaries (as in the preputational algorithm that solves Diffie-Hellman efficiently
vious case) this model typically considers only a restricted (Section 6.2). We finish with a discussion of related results
class. In particular, the adversaries of this model operate byand possible future work (Section 7).
choosing — non-deterministically and repeatedly — from a
small an_d e_xpllqtly enum.erated set of operations. A proof 2 The Diffie-Hellman Problem
of security in this model is generally a demonstration that
all combinations of those operations (together with the op-
erations performed by the honest participants) are ‘safe’. In the simplest form of the Diffie-Hellman scheme, ev-
We would prefer to use the Dolev-Yao model to perform €ryone is assumed to know a large cyclic grdipand a
analyses. It is simple to use, and can be automated. Everdeneratorg. If two entities A and B wish to agree on a
when used manually, powerful general theorems allow indi- Secret random value, then
vidual protocols to be proven secure in a quick and straight-
forward way. However, since the Diffie-Hellman problem
is computational in nature, it is not yet clear how to incor-
porate it into a formal approach.
In this paper we will propose one such incorporation. In
particular, we attempt to separate the formal aspects of a
protocol analysis from the computational ones. We do this The random value upon which they have agreeds

in two steps: which both can calculate:

e Achoosesarandomelement {1... |G|} and sends
to B the valueg®, and

e B chooses a random elemept< {1...|G|} and
sends ta4 the valueg?.

1. We propose a security property which reflects (inthe 4 4 can calculatg/™ from z andg¥ via (¢¥)" = g=¥
formal setting) the difficulty of the Diffie-Hellman and

problem. That is, we propose a condition which states
(informally) that if honest participants use a shared se- ¢ B can calculatg® from y andg® via (¢%)? = g*".
cret such ag™¥ only in certain ways, the adversary can
never learn it. This property is natural and simple. It Note that the scheme provides no authentication. Al-
applies to a large class of real-world protocols, and is though A can be sure that the secret valg®' is known
extremely useful in their analysis. (We demonstrate its only to A herself and the entity that generatgdA can-
use on the protocol that begins this paper.) Thus, oncenot tell who that entity is. Authentication and identification
this property is assumed, the analysis of the protocol is must be ensured by some other mechanism.
firmly in the domain of formal methods. The scheme is, however, assumed to progeerecyin
the sense that no agent other thamnd B is able to learn
2. However, we also show that this property can be justi- the valueg®. This the Diffie-Hellman problem, given in-
fied using the techniques of the computational model. formally in the introduction. Théiffie-Hellman assump-
To this end, we give a mapping from formal attacks tjon is that the Diffie-Hellman problem is intractable for
to computational algorithms. We show that any attack certain families of groups. More formalf/A group family
which violates the global property results in an effi- is a set of finite cyclic group§ = {G,} wherep ranges
cient algorithm that solves the Diffie-Hellman prob- oyer an infinite index set. The parameteencodes the
lem. Hence, if Diffie-Hellman is hard, then no for- group parameters. We assume that there exists an efficient
mal attack violates the property, and thus the property (polynomial-time) algorithm that, givemand two elements
holds globally. of G, outputs the sum of the elements. Aistance gen-
erator for G = {G,} is a randomized algorithrG which,
when given a natural number(represented in unary), runs
in time polynomial inp and outputgp, g) wherep is a ran-

The paper is structured as follows. We begin by dis-
cussing some background material on the Diffie-Hellman
problem (Section 2). We extend the Dolev-Yao model, as dom index andj is a generator fo?,. The parameter is
represented by the Strand Space method [12], to inCIUdeknown as thesecruity parameterit ispassumed that i, is
language appropriate to the Diffie-Hellman problem (Sec- a group generated G(17), then every element af gan
tion 3). We then introduce our security condition via an be represented with a number of bits polynomiabjﬁ\lote

mforrnal dlsc;u55|on '(Sectlor? 4). We dgmo'nstrate the appli- o+ for a giveny, IG(17) induces a distribution on the set
cability of this security condition by using it to analyze the of indices

protocol that begins this paper (Section 5). We then jus-
tify the property by giving a mapping from formal attacks
to computational algorithms (Section 6.1), and showing that 2Most of this exposition is taken from [4].

Definition 1 The computational Diffie-Hellman assump-
tion is that no adversary can maintain a polynomial chance
of producingg®? from randomly chosen® and g¥ asn in-
creases:

to represent the Diffie-Hellman operation. We denote the
range ofDH by Dpy. In the literature and in practice, the
notationg® may be used as both a computational and for-
mal variable, and/*¥ used instead of the admittedly cum-
bersomeDH(d;, d3). In contexts where the model is clear,
this overloading of notation presents no difficulty. In this
work, however, we are interested in the exact relationship
between the formal and computational models. Hence, we
distinguish between the two by using the notatibn ds
andDH(dy, ds) for the formal model, and the notatigs,

g¥ andg®¥ for the computational model.

Also, one of our ultimate goals is to enable the analysis
of protocols like TLS, SSH, and the one at the beginning
of this paper. These protocols use signatures and hashing,
requiring us to add these two operations to the Strand Space
algebrad Signing a term is not assumed to hide the message
in any fashion. Hashing a term is assumed to result in a key
appropriate for symmetric encryption. We will assume that
keys for symmetric encryption, signature generation, and
signature verification are mutually disjoint, and that sym-

The lefle-H_eIIm_an problem and its appl_lcat|ons have metric encryption keys created through hashing are disjoint
been well-studied in the world of computational cryptog- from those created directly

raphy. It ha_ls even gained acceptance_in applieql cryptog- Lastly, we will later require that each element of the
raphy, and is used for key-agreement in such W'deSpreadStrand Space algebra have a unique encoding into bit-
protocols as SSH [13] and TLS [5]. Note, however, that the strings. Many encryption and signature schemes, how-

?[[fifler;HteI:maP a:s.;u?iﬁ:;on |srijsrt]a';em?ntir?hborutnttrlle asn%mp'ever, are inherently probabilistic. An encryption might have
olic nature of probabilities, a ence IS innerently compu- many different bit-string representations, and the one cho-

e o s o520 epens o h andom i sed (e ocrypion o
incorporated into the formal setting E}ess.' To represent this, we will add an additional type of
' atomic term called aandomnesg¢R). The formal encryp-

tion operator will continue to be injective, but now take ran-

domness as an additional operator. We will also allow ran-

domness to be in the plaintext of encryptions, filling the role
Rather than consider all formal protocol analysis meth- of nonces in protocol$.

ods, we will focus upon the Strand Space method. The To combine and formalize these modifications:

standard model is described in [11, 12]; here, we focus)

on the extensions necessary to examine the Diffie-HellmanDé&finition 2. The set of termsd is (now) assumed to be

scheme. The extensions fall into two broad categories: ex-Teely generated from four disjoint sets:

tensions to the algebra and extensions to the adversary.

3G.V PPT algorithmsA. Ve > 0. V sufficiently largen
Pr[(p,g) < IG(1");

xay — {1527)|Gp‘}a

q* — A(p,9,9%,9") :

g =g]

(The notation V sufficiently large” is equivalent to
Ine.¥n > . The notationPr[A; B : C] is equivalent
to Pr[C|A, B] where A and B are experiments run in se-
guence. The notatiom < D means ther is drawn from
the distributionD. If D is a probabilistic algorithm,then

x is drawn from the distribution created by running that al-
gorithm with random ‘coin flips’. IfD is a set, then the
uniform distribution is assumed.)

3 Strand Spaces

e 7 C A, which contains predictable texts,

3.1 Extensions to the Algebra e R C A, which contains unpredictable random values,

We will extend and modify the algebra of previous strand * k< A, which contains keys, and
space work in three ways.

First, we add an additional typP for Diffie-Hellman
exchanges. We will usé,, ds...as elements dP, and we
assume there exists an operation

e D C A, which contains Diffie-Hellman values.
The set of key<) is divided into three disjoint sets:

e signature keysi(s;,),

DH:DxD — D

3As opposed to thdecisionalDiffie-Hellman assumption, which is the
much stronger assumption that it is hard to distinguish the Diffie-Hellman
valueg®¥ from a random group elemept. For the rest of this paper, the
“Diffie-Hellman problem” refers to the computational version.

4Meaning one that has access to a tape of random bits.

¢ verification keys/Cv.,), and

5We will not consider asymmetric encryption in this work, though we
hope that it is clear how to incorporate it.

Spreviously, we defined nonces to be a particular sub-type of t&3ts (
Now, due to their special use in encryptions, we will distinguish nonces
and texts.

e keys for symmetric encryptiofCg,,). Note that it is not necessarily the case that {|M[}%.
While we assume that no one can produce an encryption
without knowing the plaintext and key, we cannot make this
e hash : A — Kg,mn, representing hashing into keys. Same assumption about the randomness used in the encryp-

We will denote the range diash by K1, tion process.

Similarly to origination, we can define the first time that

e encr: Kgy, x AxR — A, which represents encryp- a value is used on a strand:

tion. We denote the range ehcr by £.

Compound terms are built by five operations:

Definition 5 A termt ariseson a noden iff n is an entry
e sig: Ksiy x A xR — A, which represents signing a point to the sef = {t' : t < ¢}.
message. We denote the rangsigfby S.

e join : A x A — A, which represents concatenation of 3-2 EXxtending the Adversary

terms.

The next step in the extension of Strand Spaces is to give

e DH: DxD — D, which represents the Diffie-Hellman additional powers to the adversary. The usual way this is

operation. (As mentioned previously, We denote the done in the formal methods approach is to give to the ad-

range ofDH by Dpy.) versary some small number of unavoidable operations and
to assume that the underlying cryptography ensures that no
other operations are available. This is, in fact, the approach
we will take with regard to the new signature and hashing
operations. Regardless of the actual algorithms, the adver-
sary can always:

We will now write encr(K, M, r) as{|M|}}. We will also
write sig(K, M, r) as[M]}..

To use the machinery of the Strand Space model, we
must define the subterm relation. The subterm relation
in previous Strand Space work, denoted denoted what

could be learned from a message. Thatls,C N iff M e Make any predictable text,

could be derived fromV through repeated separations and

decryptions: e Make fresh random values, which we represent by al-
lowing it to produce whatever it wants from a distin-

Definition 3 We say thatM is a subtermof N, written guished seR 44, C R,

M T N, if:

e Sign any value it knows with any signature key it
e M =N,or knows,

o if N= N'N" thenM C N'or M C N”, e Extract the “plaintext” from a signed message, and

o it N = {N}j, thenM C N, e Hash any values it knows.

H _ nr !
o if N = [N']k. thenM C N'. Similarly, there are operations that the adversary will al-

In particular, it is assumed that symmetric encryption would Ways be able to apply to Diffie-Hellman values:

?t[rej\\fal the key used to encrypt, 5oz {|M[}; unless e The adversary can always generate new Diffie-

Hellman values. Hence, we distinguish the Bet C
D and allow the adversary to generate any value in that
set. (We assume th@tp andDp g are disjoint.)

In this work, we use a new operatior, to mean not
only what could be learned from a term but also what must
be used in its creation. To distinguish this new relation from

Definition 4 We say thatV/ is aningredientof NV, written group operation efficiently, and hence can perform ex-

M < N.if ponentiation.
e M — N.or Should we assume that these are the only operations avail-
able to the adversary? The answer to this question depends
e if N =hash (N’) € Kpqsn, thenM < N, on whether one wishes to prove security or find flaws. If one

_ wishes to find flaws, it makes sense to assume a limited ad-
o it N =DH(dy,dz), thenM = dy or M = dy, versary (albeit one that might have more powers than listed
o if N = {N'[}%, thenM < N’ or M < K, above). Any flaw available to such an adversary will remain

“Indeed, in a deterministic encryption scheme the ciphertext is com-

. r
o if N = [N/]K’ thenM < N'or M = K. pletely independent of the random “input.”

available to the unlimited one, and limiting the adversary’s f. Computation of a functiorf:

powers can make it easier to automate a flaw-finding tech- (—=My, =My, —Ms,...,—M,,+d), where
nique. (This is the approach taken, for example, in [10].) d, = f(My, M>,...M,) and f is computable in
In this paper, however, we wish to focus on proofs of se- probabilistic polynomial time.

curity. Hence, we wish to avoid any assumptions regarding o .

the powers of the adversary that we cannot justify. For this Although the other strands represent efficient operations,

reason, we will give the adversary the power to perform any ey are not subsumed by tifiestrands. Thef-strands only

efficient calculation. In keeping with the Dolev-Yao model, Produce Diffie-Hellman values, while the other strands (ex-

we assume that the underlying encryption scheme is strong-€Pt theF strand) produce terms of other types.

enough to enforce the limited ability of the adversary to pro-

duce and manipulate ciphertexts and hashes. (Recent workd Derivation of the Security Property

[2, 1, 8, 9] has begun to justify these assumptions in terms of

computational complexity.) However, the only assumption ity the preliminaries out of the way, we are now pre-

we can make about the underlying Diffie-Hellman group is pared to incorporate the Diffie-Hellman assumption into

that the Diffie-Hellman problem is hard. Hence, the adver- sirand Spaces. In particular, we will define a global con-

sary has the power to make general computations that resulyjiion over all bundles which represents the security guar-

in 'Di'ffie-HeIIman values, so long as those computations are gtees provided by the Diffie-Hellman assumption. In this

efficient section, we present an informal derivation of this condition.
(A more formal consideration can be found in Section 6.)

Definition 6 A function f is computable in probabilis- We derive our global property via the following steps:

tic polynomial timeif there exists a probabilistic turing

machine M so that for some polynomiaj, for all in- e We propose a formal adversary “goal” which repre-
put z, M(x) terminates in time polynomial ifz| and sents the act of solving the Diffie-Hellman problem.
Pr[M(z) = f(2)] = Jia-

e We argue that any attack the formal adversary can
We give to the adversary a strand for every probabilis- launch that accomplishes the goal without the help of
tic polynomial time-computable function from messages to honest participants will translate to an algorithm that
group elements. The efficiency of a given function will de- solves the Diffie-Hellman problem. As a result, if the

pend upon the exact mapping from messages to bit-strings; ~ Diffie-Hellman problemiis hard, then the formal adver-
we assume that the encoding has been fixed and that the ~ sary can never accomplish this goal on its own.
adversary has access to every function that remains proba-

bilistic polynomial time-calculable e We then consider the assistance that honest partici-

pants might give to the formal adversary. We provide a

Definition 7 A adversary strani$ one of the following: pair of simple and natural syntactic restrictions on hon-
est participants, and show they ensure that the honest

M. Text messagei+t) wheret € T participants do not help the adversary achieve its goal.

R. Fresh randomness+r) wherer € R 44 We finish with the global property: if all honest partici-

pants obey the two restrictions, then the adversary can never

C. Concatenation{—g, —h, +gh) achieve the goal.
S. Separation into componenté:—g h, g, +h)] In particular, the “goal” of our informal discussion will
e
K. Key: (+K) whereK € Kp. ,
yi) P Form a bundle wheré;, d, arise only on regu-

E. Encryption: (—K, —h, —r, +{h[}%), where lar strands an®H(d;, d) arises on a adversary

K € Ksym node.
D. Decryption:(—K, —{|h[}%, +h), whereK € Kgym Intuitively, this goal corresponds to the situation where

o . and y are chosen by honest participants and kept secret.
o. Signing: (=K, —h, —r + [h]}), whereK € Kg;, They communicate only® and ¢¥, and the adversary is

. . . L oar somehow able to calculatg?.
X. Extraction of plaintext from signatures: [l , +h). Suppose that there is a bundle where the adversary is able
H. Hashing: (—g, +hash (g)) to accomplish this goal witho_ut the help of honest partici-
pants. Without loss of generality, assume that the bundle ac-

F. Fresh Diffie-Hellman value{+d) whered € Dp complishes this goal with only two regular strands:d;)

and (+ds). All other strands in the bundle are adversary 1. Regular participants never calculat&y unless they
strands. Each adversary strand represents one calculation, know eitherz ory, and

and each such calculation can be performed efficiently. The
termsd,, d2, andDH(d;, dz) represent the distributions of
g*, g¥, and g®¥ respectively (for randomly chosenand

y). Thus, the bundle represents an algorithm that takes inyjgre formally:

g* andg¥ at the two regular nodes and outpyt¥ at the

node containindH(d;, d»). By composing these calcula- Definition 8 A protocol is conservativewith regard to
tions represented by the strands in the order given by theDiffie-Hellman if, whenever a ter@H(d,, d;) arises on a
structure of the bundle, one forms an algorithm that solvesregular node, eithetl,, or d, arises only on regular nodes.

the Diffie-Hellman problem. Hence, if the Diffie-Heliman It would be possible to insist on a stronger connection be-
problem is hard, then there exists no bundle that achieves P 9

, tween strands on whick*¥ arise and the strands on which
the above goal without the use of regular strands. = andaV arise. but it is Not NECESSary for oUr DUMDOSES
What about bundles thako use regular strands? These g g_ ' y purp '
) ; o Also:
may prove to be problematic. There is no restriction on the
form of regular strands, after all, and so there is no prohibi- Definition 9 We say that a protocol isilentwith respect to
tion against the strand (for example): Diffie-Hellman if no element dP, ;7 originates on a regu-

(=dy, —ds, f(DH(dy, d2))) lar node.

where f is some easily invertible permutation on the un- Here, we do mean “originate” and.not “arise”. The defi-
derlying group. AlthoughDH(d;, d>) does not originate ~ Nition allows elements OD,_DI_{ to arise on regul_ar nodes
on this regular strand, the strand allows it to originate on SO long as they do not originate there. That is, a proto-

a adversary strand (namely, the strand that represents th&°! iS silent with respect to Diffie-Hellman if, whenevgt
computation off—1). arises, is it as an ingredient of a symmetric key.

If regular strands can be of arbitrary form then it is pos- ~ BOth of these properties are purely syntactic, and easy
sible for them to release secrets in several ways. More im-{0 Verify. Together, they ensure simulatability (as we will
portantly, they can represent the computation of intractableShow in Section 6.2.) Thus, as long as regular strands meet
functions. There is no reason to assume that the Diffie- these two properties, the adversary has no noticeable chance

Hellman problem remains hard if the adversary has acces®f a@chieving the original goal. We formalize this in a global
to secrets or oracles that perform inefficient calculations. PFOPErty:

Hence, it may be possible for the adversary to achieve the
goal of solving Diffie-Hellman if it is assisted by (unre-

Str%egar?:gjs: &?;tgllffplimf it is necessary to restrict our 1<SPeCt 0 Diffie-Hellman. #,, d, € D arise only on regu-
Y, y lar strands in3, thenDH(d,,, d;) never originates iri.

attention to those regular strands that do not provide assis-
tance to the adversary. Intuitively, an honest participantis e demonstrate the utility of this condition by analyzing
simulatablé [7] if any message the adversary receives from o protocol that began this paper.

that participant is indistinguishable from one that the ad-
versary could generate itsélfHence, a simulatable honest .
participant is one that gives no assistance to the adversary.5 An Example Analysis

any help it could give would be already available.] o o
Thus, what is required is a natural and useful class of ~ First, we re-visit some useful definitions and results from

simulatable regular strands. There are many classes fronPrevious Strand Space papers, and update them for the ex-
which to choose; we choose ours based on such protocoldéended algebra and adversary of Definitions 2 and 7.

as TLS [5], SSH [13], and the one at the beginning of this
paper. These protocols share two natural conditions:

2. Regular participants never actually sg, but only
use it as a source of key material.

Definition 10 (Security Property DH) Suppose thal is
a bundle over a protocol both silent and conservative with

Definition 11 A setl C A is honestf all adversary entry
points to/ are onM, R, K, F, or f strands.

8 Simulatability” here means something different than that intended by
“bisimulation”. Definition 12 Letk C K, Then ak-ideal of A is a set

9Two probability distributionsD; and Dy are indistinguishable if (in-
formally) the output distribution of an efficient (probabilistic polynomial- I c Asuchthatforallh e I,g e A, K €k, reR,and

time) algorithmA does not noticeably depend on whether the input was K, e ,CSig:

drawn fromD; or D2. Thus, an honest strand is simulatable if the adver-

sary can produce a distribution indistinguishable from that of the honest ® gh € I andhg e I,
participant’s output, but does so without any of the honest participant’s

secrets or internal state. o {hl}% €I, and

° [h];(g el.

We will denote the smallesi-ideal that containsS as
I [S].

Theorem 1 Suppose that C A andk C Kg,n are such
that

o (Ksym UKhasn) € S UE,

e SNE=0,

e SNS =1,

e ifghe S, thenge Sorh € S,

e if hash(h) € S, thenh € S,
ThenIy [S] is honest.

Proof sketch: A case analysis on the types of adversary
strands shows that entry points £p[S] cannot be on any
adversary strand but those allowed by Definition 11. (A
fuller example of an analagous proof is that of Theorem
6.111in[12].) |

Theorem 2 If K € Ksgyn is never the term of a node in
B, then for anyh € A the term{|h[}’; must originate on a
regular strand.

Proof: Suppose that{|h[}}, originates on a adversary

for somery, r9, r3, 74 € R, Where
K’ = hash (DH(d17 dg))

Definition 14 LetSv[C, S, d;, ds] be C1[C, S, d;, d2] with
all the signs reversed.

First we prove that authentication from server to client
is assured. That is, we show that if a client terminates its
execution of the protocol successfully (the bundle has an
entireC1[C, S, d1, ds] strand) then the server finishes a cor-
responding run of the protocol (the bundle has contains an
entiresv[C, S, d;, do] strand):

Theorem 5 Let 5 be a bundle containing the strands of
Definitions 7, 13 and 14. Suppose that d, ¢ Dp and
uniquely arise, thatk,, K’ ¢ Kp, and that the Diffie-
Hellman problem is hard. Then B8 contains some strand
in C1[C, S, dy, ds] of height 4,8 must also contain some
strand inSv[C, S, d1, d2] of height 4.

Proof: Since K, ¢ Kp and no member oK g;, origi-
nate on regular strandg, must originate on a regular strand
(Theorem 4). Hence, botfy andds uniquely arise on reg-
ular strands. Since the protocol of Definitions 13 and 14 is
both silent and conservativBH(1d;, d2) never originates

in B (Theorem 9). Sincé” = hash (DH(d,d2)) & Kp,

strand. By examining the forms of adversary strands, we K’ is never the term of a node i, and so{/7> C' S|},

see that the only strand on which it can originate i a

must originate on a regular strand (Theorem 2). By inspec-

strand. But in that case, there is a previous node on thattion, it must be node 4 &v[C, S, di, da].

Theorem 3 If K € Kjqsn 1S never the term of a node in
B, then for anyh € A the term{|h[}’; must originate on a
regular strand.

strand withK as its term, a contradiction.

Theorem 4 If K, € Kg, is never the term of a node in
B, then for anyh € A the term[h] must originate on a
regular strand.

Proof: The same as that of Theorem 2.

Proof: Suppose thath]; originates on a adversary

Now we show the corresponding theorem: that if the
server finished a run of the protocol (the bundle has con-
tains an entireSv[C, S, d;, do] strand) then the client must
have finished almost all of a corresponding run (the bun-
dle has almost an enti®[C, S, d;, d2] strand). We cannot
guarantee that the client finishes the run since the server has
no way of knowing that the last message of the protocol
actually arrives:

Theorem 6 Let 5 be a bundle containing the strands of
Definitions 7, 13, and 13. Suppose thiat d; ¢ Dp and

strand. By examining the forms of adversary strands, we seeuniquely arise, thatk., K’ ¢ Kp, and that the Diffie-

that the only strand on which it can originate is &trand.

Hellman problem is hard. Then 8 contains some strand

Butin that case, there is a previous node on that strand within Sv[C, S, d1, d2] of height 4,8 must also contain some

K, as its term, a contradiction.

strand inC1[C, S, d1, d2] of height 3.

Now that we have general theorems, we can apply these

to the protocol from the beginning of the paper:

Definition 13 Let C1[C, S, d;, d>] be the set of strands of
the form:

(+ C

S [di]g, s

[da] i, T2 C S[H3
Tz C SEy

Proof: SinceK. ¢ Kp and no member oK g;, origi-
nate on regular strandg; must originate on a regular strand
(Theorem 4). Hence, botfy andds uniquely arise on reg-
ular strands. Since the protocol of Definitions 13 and 14 is
both silent and conservativBH(1d;, d2) never originates

in B (Theorem 9). Sincé’” = hash (DH(d,d2)) & Kp,

K’ is never the term of a node i, and so{|T; C S|}}2,
must originate on a regular strand (Theorem 2). By inspec-
tion, it must be node 3 &f1[C, S, d;, ds].

As can be seen, the global property of Definition 10leads e
to very short and simple proofs for a natural class of pro-
tocols. In the next section, we give the promised formal
justification of this property.

6 Diffie-Hellman in Strand Spaces, Formally

The main idea behind our justification is that there is a
natural conversion from attacks in the formal setting (bun-
dles, in particular) to computational algorithms. We give ®
this conversion in this section, and show that if the bun-
dle violates the global property then the resulting algorithm ®
solves the Diffie-Hellman problem.

This is not enough, however. To violate the Diffie-
Hellman assumption, we need an algorithm that both solves
the Diffie-Hellman problem and isfficient Since our con-
version makes no assumptions about the forms of regular
strands, there are no guarantees about the complexity of the
resulting algorithm. In the next section, we show that if the
regular strands are silent and conservative, then the result-
ing algorithm will be efficient. (Or rather, a slight variant
of the resulting algorithm thaimulateghe regular strands
will be efficient.)

6.1 Relating Bundles and Computational Algo-
rithms

A word about how the mapping from bundles to algo-
rithms will proceed: the resulting algorithm will calculate
(and store in a table) a value for each node in the bundle by
recursing on both the structure of the bundle and the struc- o
ture of each term. The recursion along the bundle structure
is relatively straightforward: early nodes are calculated be-
fore later ones. The recursion along message structure, on
the other hand, presents an interesting issue: how should the
algorithm build values for compound messages from those
for atomic ones?

The algorithm will use, as black boxes, computational
algorithms for encryption, signing, and hashing. (These al-
gorithms are defined in Appendix A.) The mapping itself
assumes no properties about these sub-algorithms, meaning
we are free to choose these sub-algorithms arbitrarily. How-
ever, this freedom is short-lived: for efficiency conditions,
we will later (Section 6.2) need to assume that one of these
algorithms meets a standard definition of security.

Given a formal bundldé3, we will map it onto an algo-
rithm Az in the following way:

Definition 15 Let (Ge,E,D) be an encryption scheme,
(Gs,S,V) be a signature scheme, arf@,, H) be a hash
scheme. LeB be a bundle overd. ThenAg(17) is the
following algorithm:

First, a tableT is created to map elements dfto bit-
strings. We assume that this mapping to be consistent
over the entire bundle. For example, every instance of
K € K that occurs inB is intended to “represent” the
same bit-string throughout the strand. At the beginning
of the execution, this table is empty.

A group G,
Hellman.

— 1IG(1") is generated for Diffie-

A hash functiorh < G (1) is generated for hashing.

Each node in the bundle is then replaced with a bit-
string value, starting with minimal nodes and working
forward. That is, a node is replaced with a bit-string
valuew,, only after everyn’ <z n. The exact manner
in which a bit-string is chosen forn depends on the
sign ofn and the type of strand on which it lies:

Suppose that is a positive node-d;, € D and it lies
upon anf strand. Then:

— fis a PPT-computable function, and

— By inductive hypothesis, values, vs, ...v5_1
have already been chosen for the nodeg,,
—ds, ...—di_1 previous on the strand.

The value v, for +d; is chosen by running
Ms({v1,v2,...v5—1)) and returning the output. Ad-
ditionally, this value is stored fod, in the tableT if
no value ford;, is already present there.

If n is a positive node+-M and it lies upon any kind
of strand other than ary strand, then there are two
cases:

— If there exists a bit-stringn in the tableT” as the
value forM, thenm is the value returned.

— If M is not in the tabl€eT, it generates a value
v for M. The valuev is then stored inl" and
returned. The value is generated by recursing
on the structure of\/:

x If M is an atomic message, then the value
v is chosen in some appropriate way. For
keys (which are not irfCy,s,) the appro-
priate key generation algorithm is run. For
randomness, random strings of lengin)
are chosen uniformly froni0, 1} (The
polynomial@ here is the same as that in Ap-
pendix A.) Diffie-Hellman values (i@ \
Dpp) are created by choosing a random el-
ementr — {1,...|Gp|} and calculatingg®.
Texts are converted into bit-strings in some

arbitrary way° The value is put into the ta-
ble T" as the value for\/ and returned. (In
the case of signature keys, both the signing
and verfication keys are stored i)

x If M = hash(M’) then the algorithm re-
cursively gets a valuen’ for M’. It then
setsv = Ge(17,h(m’)). (Note that we are
now considerings, to be a deterministic al-
gorithm of two inputs, and using the output
of the hash as the second, random, input.)

x If M = M; M,, then the algorithm recur-
sively gets valuesn; for M; and msy for
Ms. Itreturnsv = (mq,mq).

« If M = {M'}E or [M']%, then the al-
gorithm recursively gets values’ for M’,
r for R and k for K. It then calculates
v =E(m/,rk)orv=S(m' k'r), respec-
tively.

x If M = DH(d,,ds) then the algorithm re-
cursively gets valueg® for d, andg¥ for ds.
It calculatesv = g*¥. (Again, we note that
calculating g™ from g* and g¥ may not be
efficiently computable, but delay discussion
of this issue until the next section.)

e If n is a negative node- M (on a strands) then there
exists in the bundle a nodeM so that+M — —M.
By assumption, a value’ has already be assigned to
the node+M, which means that a value has been
assigned taV/ in T'. We accept for —M also.

The above algorithm converts each node of the buidle
into a bit-string. We now define what it means for it to have
performed the conversion correctly:

Definition 16 Let B be a bundle and.z be the algorithm
derived fromB as per Definition 15. Then an execution
of Ag is “correct” when, for everyf strand in the bundle
and every execution of, if My is run on(zy, za, ... zy,) it
outputsf(z1, xa, ... xy,).

Theorem 7 If B is a bundle, then

1

PrA computes properly >
[As(n) computes properly > pen)

for some polynomiaj.

Proof: If every execution of properly calculateg (for
everyf strand in the bundle) then the algorithm properly
executes. What are the odds that each executiofy @f)

1050 long as the mapping from formal texts to finite bit-strings is effi-

properly calculateg'(x)? By definition, the probability of
a successful calculation is polynomiallit]. During the ex-
ecution ofAz, My will only be executed on the encodings
of terms. Encodings of atomic terms are of length polyno-
mial in i by definition, or are generated by algorithms that
run in time polynomial iny. Furthermore, the encoding of
a compound term is generated by a polynomial time algo-
rithm running on the encodings of terms. Since the “depth”
(or structure) of a term is constant with respechtit must
be that all encodings of terms have length polynomiaj.in
Lastly, we assume that the random coinflips for each ex-
ecution ofM; are independent, and note that the number of
f strands in3 is constant with respect tp Hence, the odds
that all executions af; properly calculatg’ (and hence that
A executes properly) is the product of a constant number
of probabilities, all of which are larger than a polynomial in
7. Hence, the probability thatz executes properly is larger
than some polynomial in. |
We note that this result is independent of the choices
for encryption, signature, and hash algorithms. This is be-
cause the operations available to the adversary with regards
to these schemes are deterministic (once the random input
is fixed). The only probability comes in the form ¢f
strands, and each of those are assumed to be computable
in PPT time. Hence, any bundle can be computed with non-
negligible probability.

Theorem 8 Supposeis correctly executes, and I&tf be
the table at the end of the execution. For@ll d, € D, if
T(d1) = g* andT'(d2) = ¢¥, thenT'(DH(d1, ds)) = g*V.

Proof: Consider where in the bundle the value
DH(dy,ds) arise. |If it only arises on regular strands,
then it will be assigned the valug?. If it arises on anf
strand, then

DH(dy,ds) = f(My, M, ... M,)

where eachV/; is some message. It may be thdt = d;
for somed; € D, which may also arise on aff strand.
Hence, it may be that

DH(d1,d2) = f(Mi,.... f'(Ny, ...

and so on. But the tabl&’ may not contain the correct
evaluations off, /' and so on. The values ifi are cre-
ated by running the machinéd, My and so on. But if
the algorithm correctly executes then each run of the ma-
chine M correctly evaluateg, and the same fak/; and
so on. Hence, if every strand is calculated correctly, then
the value forDH(dy, ds2) in T will be evaluated correctly,
which gives it the value of™Y.

Hence, if a bundle useBH(d,,ds) at any point, then

Np).... M)

ciently computable and deterministic, it does not matter how the translation the @lgorithm can be used to solve the Diffie-Hellman prob-

is actually done.

lem. However, the algorithms may not be computable

in probabilistic polynomial time. The algorithm as de- a random function. Hence, if we assume that regular par-
scribed requires that the Diffie-Hellman problem be solved ticipants make keys from Diffie-Hellman values by hash-
for each ternDH(d;, d2) in the bundle that doesn't arise on ing them with a randomly-chosen hash operation, we can
an f-strand. That is, if the bundle contains an instance of simply choose random values instead. If this modification
DH(ds, d2) that arises on a regular strand, the resulting al- changes the output distribution of the resulting algorithm,
gorithm may be forced to solve Diffie-Hellman. In the next then the hash algorithm is not, in fact, pseudorandom. (The
section, we discuss a way around this difficulty. fact that the regular strands are silent is essential here, as we
will see later in the proof.)
6.2 Efficiency Concerns and Simulation
Theorem 9 Suppose that the protocdl is both silent and
Assume that there exists a bundle where the regumrco_nservative with respect to Diffie_-HeIIman. Suppose that
strands are silent and conservative and which violates se£XiSts & pseudorandom hash algoritf@s, H) and all func-
curity propertyDH. As shown in the previous section, this 110nS f with f-strands in3 are probabilistic polynomial

bundle maps to an algorithm that solves the Diffie-Hellman time-computable with respect &, H). If there exists a
problem. However, the algorithm may not be efficient. In bundleB over all which violates the formal Diffie-Hellman

particular, the algorithm assigns the valy®¥ to the for- Property DH, then the computational Diffie-Hellman as-
mal termDH(d1, d2) (When it also assigng® to d; andg¥ sumption is false.
to d;). This may require the algorithm to solve the Diffie- . . .
Hellman problem directly — an operation we are explicitly Proof.: By assumption)3 violates security propertp.
assuming to be inefficient. Then:
However, all adversary strandare efficiently com- e d, andd, arise only on regular strands B
putable; the algorithm would only need to solve Diffie-
Hellman when calculating the values on regular strands. e DH(d;,d>) never originates on a regular node, and
Furthermore, we now assume that all of the regular strands o _
are conservative, and hence Diffie-Hellman values are only ® DH(d1,d2) originates in5.
used on regular strands to make keys. Since we assume thq_te

making a key from a Diffie-Hellman value involves hashing Note that all origination points obH(d,, d,) are on ad-

It fl_rrsr:, Weri?nl :ste tih'?rfotavﬁ id ﬁn I'nferi?rsl'rgle cr:)tr)n puitr‘;]it'?rl' dversary strands, including. By inspection of the form of
€ centratidea s that ahash aigo canbe simuiate adversary strands, it must be that the terrmads in fact

]E)y atr_ano_lom fungﬂon.(;n pz.art|cu|ar, we assume that the haShDH(dl, do) itself. (If it containedDH(d;, d2) as a subterm,
unction Is pseudorandom. thenDH(d;, d2) must be a subterm of a previous node on
Definition 17 Let {R,} be a family of function families thatstrand, and would not be an origination point.)

t n be aminimal origination point ofDH(d;, ds) in B.

with the following two properties: Let B|,, be the set of all nodes i which are “before”
n. Thatis, let
1. Vr € R,, ris a function from{0, 1}" to {0, 139 Bl, = {n'|n’ <gn}
2. Vi € Parameter, Vs € {0,1}", vt € {0,1}9, We construct an adversary that breaks the compu-
tational Diffie-Hellman assumption in the following way:
Prir— R,:r(s)=1t] = 92—Q(n) A(p,g,9%,9Y) simulatesAp,, , with the following important
exceptions:

Then{, } is a random function family. 1. Instead of generating its own grodg, < IG(n), A

Definition 18 A hash function igpseudorandonif for all will use the group specified by its first inppiand use
PPT distinguishera, for all polynomialsg, and for all suf- its second inpuy as a generator.
ficiently largen: 2. Instead of the tabl&’ being empty at initialization, it

contains an entry mappingj to g* and an entry map-
)Pr {T — Ry 70(17) = 1} - ping ds to gv. ymapping {09 ymep
Pr [h — Gp(17) : RO (17) = 1} ’ < L 3. Whenag,, calculates a value fddH(d,, ds), it seems
a(m) to need to solve the Diffie-Hellman problem in order to
do so. However, we can avoid this calculation by con-
That is, a hash algorithm scheme is pseudo-random if a sidering the kinds of nodes which would causg, to
randomly-chosen hash operation is indistinguishable from calculate a value fdDH(d,, d,).

10

e It could be anf strand, in which cask simulates
My asAg, would.

If could be a regular strand, in which case we
know thatDH(d,,d;) is not a subterm of the
node in question. (If it were, then it would have
originated there.) Let the node in question be
+M. Since it is an ingredient of the term but
not a subterm, we can see by examining the term
structure thaDH(d,,d,) < hash(N) < M.
Therefore, we only need to calculate a Diffie-
Hellman value as part of computing a hash. Since
the hash is pseudorandom, we employ a trick: in-
stead of calculating the hash, we return a random
value instead. That is, instead of calculatihg
normally, A chooses:’ — {0,1}%™_ It returns

n’ for hash(V), and storen’ in the tableT" as
the value forhash(NV). It does not calculate a
value for N or any of its ingredients (including
DH(d,, dy)) as part of the calculation of a value
for M.

When finished simulatings,, , the adversary selects
the valueg® calculated for the node, and returng;®
as its output.

What is the likelihood that the new algorithawill out-
put the correct value?

Let us revisit the original algorithmyg . We know from
Theorem 7 that for some polynomial

q(n)

Note that we can modifyiz, to take the group, the gen-
erator, and the values fai, andd, as inputs. In that case,
running the new algorithm on random inputs is exactly the
same as running it before the modifications:

Pr [Ag‘n(n) computes proper]yz

Pr[(p,g) < IG(1");

xayH{17277|G1)|}

Ag, (p,9, 9%, g¥) computes properly | > -

a(n)

We can also modifyAz|, to outputg®, where(g*) is the
value computed for node. Due to the definition of proper
computation:
Pr[(p,g) — IG(1");
z,y—{1,2,...,|Gpl};
9* < Ap), (P, 9:9%,9Y) :

9" =g > ooy

a(n)

That s, the original algorithmy, can calculate the Diffie-
Hellman valueg®? with some polynomial probability. But
we are runningd, notAgz . Will the new algorithm have

11

the same advantage? It is not clearuses random val-
ues for hashing, while the original algorithag,, calculates
the values by application of the hash algorithm. However,
suppose that the probability of success fowere negligi-
ble while the probability of success fasz, is non non-
negligible. That is, lef?]’ be the probability:

Pr[(p,g) < IG(1");
z,y —{1,2,...,|Gp|};
9* < Ag), (P, 9,97, 9Y) :
9" =g]

and P} be the probability:

Pr[(p,g) < IG(1");

z,y—{1,2,...,|Gpl};
g° < Alp,g,9%,9%) :
9 =g]
If P, is non-negligible and®, is negligible, then

1
q'(n)

Pl — P =[P = P)| >

Note that the only difference between the two experiments
is in how hashes are calculated./i, hashes are calculated

by actually calculating the pre-image of the hash, then tak-
ing the hash under a randomly chosen hash function. In the
second probability?), hashes are taken by returning ran-
dom values. If these probabilities are non-negligibly differ-
ent, then we can distinguish the hash scheme from a random
function family. Let the distinguisher be:

Dg() (7]) =

1. Choose randonip,g) < IG(1") andz,
y—A{L,2,...,|Gpl}.

. Simulater(p, g, g%, g¥) with one difference:
instead of calculating hash values by any
calculation, use the oraclg-). Note that
now the algorithmD knows the exponents
of ¢g* and ¢¥, and so knows the exponent
for every Diffie-Hellman value that arises
on a regular strand. Since the protocol is
conservative, whenevérneeds to calculate
a value forDH(d,,d;) it is the case that
eitherd, or d, arises on a regular strand.
Hence, wheneveb needs to perform the
Diffie-Hellman operation as part of the sim-
ulation, it knows one of the two relevant ex-
ponents and the calculation is easy.

. When the simulation returng, test to see
if g* = ¢®Y. (SinceD chosex andy, it can
perform this test.) If it does, return 1. Oth-
erwise returro.

In other words, this algorithm also creates a value for each We believe this represents a new step in the develop-
node inB|,,. However, since it knows the exponent for ev- ment of formal cryptographic analysis. In particular, we
ery Diffie-Hellman valued, it can calculate the value for believe this to be the first effort to use the computational

DH(d, d') efficiently. model to incorporate Diffie-Hellman into the formal model.
Since this distinguisher returns 1 with probabilfy if Previous work on protocols that use Diffie-Hellman [10]
g is a random function and with probabilifyy’ if g is a ran- have focused on finding attacks rather than proving secu-

domly chosen hash function, this can distinguish the hashrity. Hence, they have made simplifying assumptions on
from random. Since the hash family is pseudorandom, wethe powers of the adversary and the nature of possible at-
know this cannot be. tacks. (In particular, they assume that the only way to solve
Hence, the advantage of the original algorithg), and the Diffie-Hellman problem is to solve the corresponding
the advantage of the new algorithincannot differ by a Discrete Log problem — a simplifying assumption much
polynomial fraction. That is, for all polynomialg, for suf- like those made about encryption.) Our work is focused on
ficiently largen, proofs of security, and so we assume only what can be justi-
1 fied in terms of computational cryptography. Hence, proofs
T in our framework will be as strong as the Diffie-Hellman
¢ assumption. (Note, however, our work is not as widely ap-
Hence, for all polynomialg’, for sufficiently larger, plicable as that in [10]: we cannot yet consider common
1 1 group-keying protocols, for example.)
m 7 On the other hand, there ha_lve been many interesting_ pa-
pers that connect the formal (i. e. Dolev-Yao) model with
or by lettingq’ = 2q, the computational approach[1, 2, 3, 8, 9]. However, these
1 papers focus on long-standing simplifications and abstrac-
P> o——. tions Our work is novel in that it used the computational
2q(n)) o)
approach to derive and justifiewabstractions.
L We would like to see this work continue in two ways.
In other words, suppose that the hash function is pseudo-irst, we would like to see our security condition translated
random, and that the adversary strands are all polynomial-to settings other than Strand Spaces. Furthermore, we hope
time computable over the choices of hash, encryption, andthat the security condition can be used to analyze real-world
signature functions. Then if there exists a bundle over aprotocols, or even be used to help design new ones.
conservative, silent protocol that violates the security prop- Second, we would like to see if the assumptions of this
erty D’H in Definition 10, the computational Diffie-Hellman paper can be weakened. Our assumptions regarding the un-
assumption is false over the group family in question. Con- derlying cryptography are quite weak: only that the hashing
versely, if the Diffie-Hellman problem is hard over the is pseudorandom. However, this weakness on the cryptog-
group, then there can be no silent and conservative bundlgaphy is balanced by the strength of the formal assumptions

[P = Py| <

n
2 =

which violates the security conditidR’<{. (Definitions 8 and 9). Because these assumptions are so
strong, there are very likely secure protocols which cannot
7 Conclusion yet be proven secure in our framework. We would be in-
terested to see if these conditions could be weakened. Al-
The primary purpose of this work is two-fold: ternately, there may be other conditions which guarantee

the simulatability of the regular strands. If so, we would
be interested in seeing them, and would be particularly in-
terested in knowing if there are necessary and/or sufficient
2. To show how the computational model can be used toconditions for simulatability.

define and/or justify new security assumptions in the Lastly, we believe that the main technique of this paper

formal model. to be novel and highly applicable. We would very much
like to see it used to incorporate other primitives into formal
models.

1. To allow the Strand Space method to analyze protocols
that use the Diffie-Hellman key exchange, and

To this end, we have formalized a security condition that
summarizes — in a form appropriate for Strand Spaces —
the security provided by the Diffie-Hellman assumption. To) o
justify this condition, we provided a method for transform- A Computational Primitives

ing bundles into computational algorithms. Under reason-

able assumptions on the form of the protocol and the un- Here, we define the computational algorithms used in the
derlying cryptography, our condition can be violated only if mapping of Section 6. First, some helper sets:

the computation Diffie-Hellman assumption is false.

12

Definition 19 We use the following definitions:
e Parameter = N/
e Coins : Parameter — P({0,1}")
e String = {0,1}"

We defineCoins, the set of random strings to be a func-

Definition 22 A hash algorithmis a pair of algorithms
(Gn, H), where:

e Gy, : Parameter x Coins — HashFunctions generates
hash functions (and is randomized), and

e H : HashFunctions x String — String evaluates the
hash function.

tion of the security parameter because the number of coin-For every random string- € Coins(n), all strings s <
flips used by the cryptographic primitives grow with the se- {0,1}", H(Gn(1",7), s) will be a string of lengthQ)(n).

curity parameter. In general, we will assume that for all
n € Parameter,

Coins(n) = {0,1}9™
for some polynomiad).

Definition 20 An symmetric encryption scheme [7] is a
triple of algorithms(Ge, E, D):

e G, : Parameter x Coins — SymmetricKey is the (ran-
domized) key generation algorithm,

e E : Plaintext x Coins x SymmetricKey — Ciphertext
is the (randomized) encryption algorithm, and

e D : String x SymmetricKey — Plaintext U {} is
the decryption algorithm, which we assume retutns
whenever the input string is not a valid encryption un-
der the given key.

SymmetricKey, Plaintext and Ciphertext vary between en-
cryption algorithms and implicitly depend on the parameter.
It is required that for any message lengthPlaintext con-
tains either all messages of lengtlor none of them. Also,

it is required that for all» € Coins(n), all k£ generated by
Ge(17,7), and allm € Plaintext(n),

D(E(m,r, k), k) = m.

Definition 21 A digital signature schemis a triple of al-
gorithms: (Gs, S, V):

o G Parameter x Coins — SignatureKeys X
VerificationKeys is the (randomized) key generation
algorithm,

e S : String x Coins x SignatureKeys — Signatures is
the (randomized) signature algorithm, and

e V : String x Signatures x VerificationKeys — {0, 1}
is the verification algorithm

It is required that for allr € Coins(n), all (k, k') gener-
ated byG¢(1",), and allm € String(n),

V(m,S(m,r k), k') = 1.

13

We will write Gn(17) for the probability distribution in-
duced byG (17, r) wherer is chosen randomly (uniformly)
from Coins(n).

References

[1] Martin Abadi and Janiitjens. Formal eavesdropping
and its computational interpretatiohecture Notes in
Computer Scien¢215:82ff., 2001.

[2] Martin Abadi and Phillip Rogaway. Reconciling
two views of cryptography (the computational sound-
ness of formal encryption).Journal of Cryptology
15(2):103-127, 2002.

[3] Michael Backes, Birgit Pfitzmann, and
Michael Waidner. A universally compos-
able cryptographic library. Available at
http://eprint.iacr.org/2003/015/ ,
January 2003.

[4] Dan Boneh. The decision Diffie—Hellman problem. In
Proceedings of the Third Algorithmic Number Theory
Symposiumnumber 1423 in Lecture Notes in Com-
puter Science, pages 48-63. Springer—Verlag, 1998.

[5] T. Dierks and C. Allen. The TLS protocol. RFC 2246,
January 1999.

[6] Daniel Dolev and Andrew Yao. On the security of
public-key protocolslEEE Transactions on Informa-
tion Theory 29:198-208, 1983.

[7] Shafi Goldwasser and Mihir Bellare. Lec-
ture notes on cryptography. Avaliable at
http://www.cs.ucsd.edu/users/mihir/papers/gb.html,
August 1999.

[8] Joshua D. Guttman, F. Javier Thayer, and Lenore D.
Zuck. The faithfulness of abstract protocol analysis:
Message authenticationlournal of Computer Secu-
rity, 2003. Forthcoming.

[9] Jonathan Herzog. Computational soundness of formal
adversaries. Master’s thesis, Massachusetts Institute
of Technology, 2002.

[10]

[11]

[12]

[13]

Olivier Pereira and Jean-Jacques Quisquater. A secu-
rity analysis of the cliques protocols suites. 1dth
IEEE Computer Security Foundations Workshop —
CSFW’01 pages 73-81, Cape Breton, Canada, 11-13
June 2001. IEEE Computer Society Press.

F. Javier HAYER Fabrega, Jonathan C. Herzog, and
Joshua D. Guttman. Mixed strand spacesPioceed-

ings of the 12th IEEE Computer Security Foundations
Workshop|IEEE Computer Society Press, June 1999.

F. Javier HAYER Fabrega, Jonathan C. Herzog, and
Joshua D. Guttman. Strand spaces: Proving secu-
rity protocols correct.Journal of Computer Security
7(2/3):191-230, 1999.

T. Ylonen, T. Kivinen, and M. Saarinen. SSH transport
layer prototcol. Internet draft, November 1997. Also
named draft-ietf-secsh-transport-01.txt.

14

