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1. Introduction

When analyzing cryptographic protocols, one often finds that there is really only
one thing that can happen in a run of the protocol, or at worst a small number of
different things. For instance, every execution of the familiar Needham-Schroeder-
Lowe protocol [6, 5] consists of a matching pair consisting of a run of the initiator
and one of the responder; no other interaction is possible. We call such a collection
of local executions by honest principals a shape. In this paper, we use the strand
space theory [4] to develop a framework for explaining observations such as this
one, that most protocols allow very few shapes, and frequently only one.

We view protocol analysis as a process of assembling different instances of the
roles of the protocol. Perhaps one starts with a single execution of a single role.
This execution provides the “point of view” of the analysis: Suppose the initiator
has sent and received the following messages; what other principals must have had
runs? Having started with a single run, one would like to add instances of the roles
of the protocol, suitably instantiated, to explore what explanations are possible
for the experience of the original principal. If in this process there are very rarely
essentially different choices to make, then there will be very few shapes to be found
at the leaves of the exploration.

In carrying out this program, we have taken an algebraic view. We define a notion
of homomorphism, and the exploration consists of applying homomorphisms of a
special kind we call augmentations. The algebraic framework has turned out to be
highly suggestive for the development of our theory.

2. Background

A set A contains the messages (“terms”) to be exchanged. They are freely
generated from atoms of several disjoint types (including names, other texts, nonces,
and keys) by concatenation and encryption, in which the second argument is a key.
A substitution is a type-respecting function on atoms which differs from the identity
only for a finite number of arguments; we regard this finite set of arguments as the
domain of the substitution. Applying a substitution α to a term t, with result
t · α, is defined as expected. A strand is a sequence of message transmissions and
receptions, and we refer to the ith event on s as s ↓ i. Message transmission has
positive sign, and reception has a negative sign. Application is lifted to strands
pointwise, and it is lifted to sets of terms pointwise. See Appendix A for additional
definitions.

2.1. Protocols. We start by defining how we regard a protocol.

Definition 2.1 (Protocol). A protocol Π consists of (1) a finite set of strands called
the roles of Π; (2) for each role r ∈ Π, two sets of atoms ur, nr giving origination
data for r; and (3) a number of key function symbols, and for each role r a set
of 0 or more key constraints, i.e. equations involving these function symbols and
atoms occurring in r. The regular strands of Π, written ΣΠ, are all strands s of
the form s = r · α for some role r ∈ Π.

A bundle over Π is a bundle (Definition A.2) in which (1) every strand is either a
penetrator strand (Definition A.4) or a regular strand in ΣΠ; (2a) when B contains
nodes of s = r · α, then for a ∈ ur · α, a originates at most once in B; (2b) when
B contains nodes of s = r · α, then for a ∈ nr · α, a does not originate in B; and
(3) the key function symbols may be interpreted by injective functions with disjoint
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Figure 1. The Yahalom Protocol

range, such that for each regular strand s = r · α, each key constraint for r is true
under α.

Origination data ur, nr is used to indicate parameters of a role that all par-
ticipants in the protocol can expect to be uniquely originating or non-originating
(respectively for ur and nr). For instance, if a protocol has a key server role r,
generating a session key K, all participants in the protocol can assume that a given
session key will be generated at most once, as can be recorded by putting ur = {K}.
If a protocol has a certification authority role r, all participants in the protocol can
assume that the principal C active in that role has an uncompromised signing key
K−1

C , as can be recorded by putting nr = {K−1
C }. For roles not specially trusted in

the protocol, typically ur = nr = ∅.
The key function symbols are used to represent the relations between parameters

representing principals and parameters representing their keys. For instance, “the
public encryption key of” relates a principal A to the key that should be used to
encrypt data for safe delivery to A, and “the long term shared key of” may relate
a pair of principals A,B to a key they use to agree on session keys. The condition
that an interpretation satisfies all the constraints means that in a bundle for Π,
there is a compatible choice of values for these keys, across all regular strands.

2.2. An Example: The Yahalom Protocol. The Yahalom protocol [1] is a
protocol that assumes that principals share long-term symmetric keys with a key
server. The key server constructs fresh session keys which it distributes to principals
on request. The protocol execution appears in Figure 1. Observe here that the term
{|A ˆ K|}KB

is sent by the server S to the initiator A, who does not possess KB ,
but merely retransmits it for the responder B. We choose to regard this as merely
an indirect way for S to cause this term eventually to reach B. We therefore regard
the protocol as taking the form shown in Figure 2. Many protocols involve message
components that are forwarded in this way, and clearly we can always revise them
as we have just done in this case to transmit the component separately, as justified
in [4, Section 5.1.3].

The revised Yahalom protocol contains three roles, namely the initiator, the
responder, and the server. The behavior of the initiator consists of a transmission
followed by a reception and another transmission:

+A ˆNa, −{|B ˆK ˆNa ˆNb|}K′ , +{|Nb|}K
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The responder’s behavior starts with a message reception, followed by a transmis-
sion and two receptions:

−A ˆNa, +B ˆ {|A ˆNa ˆNb|}K′ , −{|A ˆK|}K′ , −{|Nb|}K

Finally, the server receives one message and then transmits two:

−B ˆ {|A ˆNa ˆNb|}K′′ , +{|B ˆK ˆNa ˆNb|}K′ , +{|A ˆK|}K′′

A principal interacting with the server trusts the server to maintain a valid, well-
protected key with each other principal it would like to interact with. Thus, when
we add a server strand, we will need to assume that the long term keys of both
principals are uncompromised; hence nS = {K ′,K ′′} for the server role S. The
origination data nr specifying non-origination for the other roles is empty. More-
over, the key server is trusted always to generate fresh session keys, so that for the
server role S, uS = {K}.

The only key function symbol, “the long term server key of,” we may write key(P )
as a function of a principal P . By contrast, K ′,K ′′ are ordinary variables. The
constraint on the initiator role is key(A) = K ′; the constraint on the responder role
is key(B) = K ′; the server role has two constraints key(A) = K ′ and key(B) = K ′′.

2.3. Occurrences and Sets. We view each term as an abstract syntax tree, in
which atoms are leaves and internal nodes are either concatenations g ˆ h, where
g and h label the child nodes, or else encryptions {|t|}K , where t and K label the
child nodes. A branch through the tree traverses a key child if the branch traverses
an encryption {|t|}K and then traverses the second child (the key) labeled K.

An occurrence of t0 in t is a branch within the tree for t that ends at a node
labeled t0 without traversing a key child. A use of K in t (for encryption) is a
branch within the tree for t that ends at a node labeled K and that has traversed
a key child. We say that t0 is a subterm of t (written t0 < t; see Definition A.1,
Clause 2) if there is an occurrence of t0 within t. When S is a set of terms, t0
occurs only within S in t if, in the abstract syntax tree of t, every occurrence of t0
traverses a node labeled with some t1 ∈ S (properly) before reaching t0. Term t0
occurs outside S in t if t0 < t but t0 does not occur only within S in t.

Definition 2.2. If S is a set of terms, then S · α−1 = {t : t · α ∈ S}.

Observe that (S · α−1) · α = S, while S ⊂ (S · α) · α−1.
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Proposition 2.3. Suppose a occurs only within S in t, and suppose that whenever
b · α = a · α, then b occurs only within (S · α) · α−1 in t. Then a · α occurs only
within S · α in t · α.

In particular, when b does not occur in t, then the conclusion holds.

Proposition 2.4. If a occurs outside S · α−1 in t, then a · α occurs outside S in
t · α.

2.4. Unification. In this paper a substitution is a mapping which associates atoms
to atoms of the same type. In this context unification is much simpler. A unifier
for terms t, s is a substitution α such that s · α = t · α. A most general unifier
(MGU) for s, t is a unifier α such that for any unifier α′ there is a substitution β
such that α′ = β ◦α. β is uniquely determined on the range of α. If a unifier exists,
so does a most general one.

If t is a term, the tree(t) is the parse tree of t in which each leaf node a is replaced
with with its type. Terms t, s are unifiable iff tree(t) = tree(s). Hence:

Proposition 2.5. Terms t, t′ are unifiable iff for every α, t·α and t′·α are unifiable.

This fact is clearly not true for unification in general, where a substitution may
replace a variable with a compound term.

Definition 2.6. A substitution α is a representation choice for a finite set S of
atoms if α is idempotent and α is the identity outside S. It is a pure renaming
from S0 to S1 if it is a bijection from S1 to S1.

Proposition 2.7. If α0 is a representation choice for S and α1 is a representation
choice for S ·α0, then α1 ◦α0 is a representation choice for S. Pure renamings are
closed under composition.

Every substitution α can be written in the form α1 ◦ α0 where α0 is a represen-
tation choice on S, α1 is a pure renaming from S ·α0 to S ·α, and S = {a : a ·α 6=
a ∨ ∃b . b 6= a ∧ b · α = a}.

When β = α′◦α we say that β coarsens α and α refines β. “Refines” is a preorder;
it becomes a partial order if we identify substitutions differing by a renaming.

3. Skeletons

A skeleton is essentially the regular part of a bundle, annotated with a set of
values assumed to originate uniquely and a set of values assumed non-originating.

Definition 3.1 (Skeleton). When R is a set of strands, h : R → N is a height
function for R when s ∈ R implies h(s) ≤ length(s).

A quintuple A = (R, h,�, non, unique) is a pre-skeleton if (1) h is a height func-
tion for R; and (2) � is a weak partial ordering on pairs (s, i) where s ∈ R and
1 ≤ i ≤ h(s) that is compatible with the strand order.1

The nodes of A are the pairs n = (s, i) where s ∈ R and 1 ≤ i ≤ h(s). We write
s ↓ i for the node n = (s, i). An atom a occurs in A if it occurs in term(n) for some
n ∈ A. K is used in A if {|t|}K < term(n) or {|t|}K−1 < term(n) for some n ∈ A.
A mentions a if either a occurs in it or a is used in it. We indicate components of
A by subscripting, writing e.g. �A.

1“Compatible with the strand order” means (s, i) � (s, j) when s ∈ R and 1 ≤ i ≤ j ≤ h(s).
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A is a skeleton if in addition (3) unique is a set of atoms, where a ∈ unique
implies a occurs in (R, h), and moreover a originates on at most one n in (R, h);
and (4) non is a set of keys such that K ∈ non implies K does not occur in (R, h)
but K is used in (R, h).

A bundle B realizes a skeleton A if (1) the regular nodes of B are precisely the
nodes of A; (2) whenever n0, n1 are nodes of A, n0 �B n1 if and only if n0 �A n1;
(3) if a ∈ unique, then a is uniquely originating in B; and (4) if a ∈ non, then a is
non-originating in B. A is realizable if there exists a bundle B that realizes it.

If B is a bundle, then skeleton(B) is the skeleton A containing the regular nodes
of B, ordered as in B, where uniqueA is the set of values that originate uniquely
and on a regular node of B, and nonA is the set of keys K such that K originates
nowhere in B but K is used on a regular node of B.

Proposition 3.2. If B is a bundle, then B realizes skeleton(B).

3.1. Homomorphisms. A substitution, if it is injective on atoms occurring in
A, is simply a renaming. If it maps two atoms x, y to the same value, then it
may disrupt the origination properties of the skeleton. For instance, if x ∈ nonA
and y originates somewhere, then the substitution cannot succeed. If x ∈ uniqueA
but y also has a point of origination, then the substitution succeeds and yields a
skeleton as result only if y’s point of origination can be identified with x’s. The
terms at these nodes must unify. If the strands that these nodes lie on have other
parameters, then the identification cascades, causing other identifications also. In
defining homomorphisms, we use a function φ to summarize the effect of any node
identifications.

Definition 3.3 (Homomorphism). Let A0 and A1 be pre-skeletons. Let φ be a
function from the nodes of A0 to nodes of A1. We say that substitutions α, α′

agree on the domain of φ if a · α = a · α′ for every a mentioned in A0. We write
[φ, α] to refer to the set of pairs with first component φ and second component any
substitution α′ that agrees with α on the domain of φ.
H = [φ, α] is a homomorphism from A0 to A1 if:
(1) term(φ(n)) = term(n) · α for all n ∈ A0; moreover whenever n ⇒ n′ and

n′ ∈ A0, φ(n) ⇒ φ(n′).
(2) If n �A0 m, then φ(n) �A1 φ(m).
(3) uniqueA0

· α ⊂ uniqueA1
.

(4) nonA0 · α ⊂ nonA1 .
We write H : A0 7→ A1 to indicate that H is a homomorphism from A0 to A1.

The equality condition for H = H ′ is intended to ensure that homomorphisms
are not sensitive to the behavior of the substitution on atoms that play no role in
the source pre-skeleton.

Definition 3.4 (Degeneracy). A substitution α is degenerate for A if there are
distinct atoms a, b and a strand s where (1) a ∈ uniqueA originates at s ↓ i in A,
(2) b occurs on s ↓ j for j ≤ i, and (3) a · α = b · α.
H = [φ, α] : A0 7→ A is degenerate if α is degenerate for A0.

Degeneracy is of course preserved by coarsening:

Proposition 3.5. If α is degenerate for A then so is α′ ◦ α for any substitution
α′. If H is degenerate, then so is H ′ ◦H.



Version of: August 31, 2004 7

Proposition 3.6. If α is injective and H = [φ, α] is a homomorphism, then H is
a non-degenerate homomorphism.

When α is a substitution and A is a pre-skeleton, A � α is the pre-skeleton A1

such that
(1) RA1 = RA · α, and hA1(s · α) = hA(s);
(2) s · α ↓ i ≺A1 s

′ · α ↓ j iff s ↓ i ≺A s
′ ↓ j;

(3) uniqueA1
= uniqueA · α; and

(4) nonA1 = nonA · α.
A� α may fail to be a skeleton, even when A is a skeleton, in two ways:

(1) elements of nonA�α may have points of origination, or
(2) elements of uniqueA�α may have multiple points of origination.

When elements of nonA�α have points of origination, no extension of α can repair
this. However, multiple points of origination can sometimes be identified. We
consider next how to factor the strands, while possibly coarsening α, to identify
these points of origination.

3.2. Collapsing pre-Skeletons. If A is a pre-skeleton s and s′ are strands of A,
then we write s � s′ if there is an a ∈ uniqueA which originates on both s and s′.
If n, n′ are nodes of A we write n � n′, if there are strands s, s′ and an integer i
such that n = s ↓ i, n′ = s′ ↓ i, and s � s′. The relation � on nodes or on strands
may fail to be transitive. For instance, if s0 and s1 both have points of origination
for a ∈ unique, while s1 and s2 both have points of origination for b ∈ unique, then
s0 � s1 and s1 � s2 without necessarily s0 � s2.

If A is a pre-skeleton such that no a ∈ nonA is originating and s � s′ implies
s = s′, then A is a skeleton. The following fact will be used later:

Proposition 3.7. If A is a pre-skeleton, A1 a skeleton and H = [φ, α] : A → A1 a
non-degenerate homomorphism. If n � n′ then φ(n) = φ(n′).

In the next proposition we try to identify pre-skeletons which aside from failure
of unique origination are nearly skeletons in the sense that the violating strands
are essentially duplicates of each other.

Proposition 3.8. Suppose A is a pre-skeleton with the following properties:
(1) No element of nonA is originating in A.
(2) If s, s′ are strands of A such that s � s′ then for i ≤ min(h(s), h(s′)),

term(s ↓ i) = term(s′ ↓ i) with matching direction.

In particular, � is an equivalence relation on strands and nodes.
(3) If n1 � m1 � n2 � · · · � mk−1 � n1, then n1 �m1 � n2 · · ·mk−1 � n1.

Then we can collapse A into a skeleton A� by identifying nodes n, n′ such that n�n′.
The partial order �A� is defined by m �A� m

′ there are nodes n, n′ in A such that
n �A n′, m is the �-equivalence class of n and m′ is the �-equivalence class of n′.
The identification mapping φ : A → A� is such that (φ, id) is a non-degenerate
homomorphism.

Proof. By Proposition 3.6, it is non-degenerate if it is a homomorphism at all. The
only fact which needs to be checked for this is that A� is a partial order, but this
is immediate from (3). �
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A pre-skeleton A is a pseudo-skeleton iff the conditions of Proposition 3.8 hold.

Definition 3.9 (Substitution acting on a skeleton). If A is a skeleton and α is a
substitution such that A�α is a pseudo-skeleton, then we define A ·α to be (A�α)�;
otherwise it is undefined.

3.3. Structure of Homomorphisms between Skeletons.

Proposition 3.10. Suppose A is a pre-skeleton, B a skeleton and H = [φ, α] : A →
B a homomorphism. Then A� α is a pseudo-skeleton and H is the composition

(1) A [id,α]−→ A� α
[φ,id]−→ B

Moreover, [φ, id] factors through the canonical map A � α −→ (A � α)�. If H is
non-degenerate, then so is [id, α].

Proof. The factorization given by (1) is trivial. We show A�α is a pseudo-skeleton.
Suppose s, s′ are strands of A� α such that s � s′. Since B is a skeleton

(2) term(s · α ↓ i) = term(s′ · α ↓ i) with matching direction.

Now we need to show, using the � relation within A�α, that for nodes n1,m1, n2, · · · ,mk−1

in A if n1 � m1 � n2 � · · · � mk−1 � n1, then n1 �m1 � n2 · · ·mk−1 � n1. Now by
Proposition 3.7, φ(ni+1) = φ(mi) for 1 ≤ i ≤ k − 1 and so by acyclicity of B,

φ(n1) = φ(m1) = φ(n2) = · · · = φ(mk−1)

It follows that the offsets of n1,m1, n2, · · · ,mk−1 are all the same and so therefore,
ni �mi for 1 ≤ i ≤ k − 1. This fulfills the conditions for being a pseudo-skeleton.
The factorization follows by definition of quotient.

If [id, α] is degenerate, then by Proposition 3.5, so is H.
�

3.4. Primitive pre-Skeletons. Consider a general pre-skeleton A. We would like
to know whether there is a substitution β such that A� β is a pseudo-skeleton.

Though unification applies to sets of term pairs, it is convenenient to extend this
idea to sets of strand pairs. If A is a skeleton and s, s′ are strands of A then a
unifier for s, s′ is a susbtitution α such that for i ≤ min(h(s), h(s′)),

(3) term(s · α ↓ i) = term(s′ · α ↓ i) with matching direction.

Definition 3.11. A pre-skeleton A is primitive iff for all strands s, s′ of A such
that s � s′ then either

(1) s, s′ are not unifiable;
(2) For i ≤ min(h(s), h(s′)),

term(s ↓ i) = term(s′ ↓ i) with matching direction.

If A is a pre-skeleton 4(A) is the set of all pairs (s, s′) of strands in A such that
s � s′ and s, s′ are unifiable. We also write s ∼ s′ if Clause 2 holds for them, and
s ∼ αs′ if Clause 2 holds for s · α and s′ · α.

Theorem 3.12. Let A be a pre-skeleton. Then there is a substitution α such that
(1) A� α is a primitive pre-skeleton
(2) α is universal with respect to this property, that is for every substitution α′

such that A�α′ is primitive then there is a substitution γ such that α′ = γ◦α
and γ is uniquely determined on the atoms mentioned in 4(A� α).
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Proof. The proof of existence of this fact requires some lemmas.

Lemma 3.13. Suppose that A is a pre-skeleton. Then there is a sequence of sub-
stitutions {β`}`∈N with the following properties: If A0 = A and Ai = Ai−1 � βi for
i ∈ N, then for all i ∈ N, βi is a MGU for 4(Ai). Moreover, if k exceeds 1 plus the
number of strands in A, βk is a renaming, in fact the identity.

Proof. Since a unifiable finite set of strand pairs has a MGU, the existence of the
sequence {β`}`∈N follows immediately by induction. As to the bound on k, note
that for any set X and sequence of partitions P1,P2, · · · ,Pk of X where Pi+1 is
a strict coarsening of Pi, then k ≤ cardX. Applying this fact to the equivalence
relations ∼α`

on the strands of A, where α` = β` ◦ β`−1 ◦ · · · ◦ β1, it follows that
the equivalence relations ∼α`

are identical for ` > cardX. Therefore β`+1 is a pure
renaming on the atoms of A` for ` > cardX. �

Lemma 3.14. Suppose A is a pre-skeleton, γ is such that A � γ is primitive. If
β is a MGU for 4(A) then there is a substitution γ′ such that γ = γ′ ◦ β. γ′ is
uniquely determined on the atoms mentioned in 4(A� β).

Proof. Since A�γ is primitive, by direct application of the definitions, for any pair
of strands s, s′ of A, such that (s · γ) � (s′ · γ) either (1) for all i ≤ min(h(s), h(s′)),

(4) term(s · γ ↓ i) = term(s′ · γ ↓ i) with matching direction.

or (2) s · γ, s′ · γ are not unifiable. It follows that for any pair of strands s, s′ of
A, such that s � s′ and s · γ, s′ · γ are unifiable then for all i ≤ min(h(s), h(s′)),
Formula (4) holds. Since for any pair of strands s, s′, s · γ, s′ · γ are unifiable iff
s, s′ are unifiable, it follows γ unifies 4(A). Since by hypothesis, β is a MGU for
4(A), the existence of γ′ follows as well as its uniqueness on the atoms mentioned
in 4(A� β). �

Now we return to the proof of Theorem 3.12. Referring to the notation of
Lemma 3.13, if ` exceeds 1 plus the number of strands of A, then A` is a prim-
itive skeleton and α` = β` ◦ β`−1 ◦ · · · ◦ β1 satisfies the universality condition of
Theorem 3.12. This completes the proof of the Theorem. �

Corollary 3.15. Suppose A is a pre-skeleton such that A� δ is a pseudo-skeleton
for some δ. Then there is a substitution α such that A�α is a pseudo-skeleton and
which is universal with respect to this property, that is for any α′ such that A� α′

is a pseudo-skeleton, there is a substitution γ such that α′ = γ ◦α and α is uniquely
determined on the atoms mentioned in A� α.

The universal pseudo-skeleton A� α is unique up to renaming of variables.

Proof. Let α be a substitution which satisfies the conditions of Theorem 3.12. In
particular, A � α is primitive and there is a substitution δ′ such that δ = δ′ ◦ α.
Now if s, s′ are strand pairs in A� α such that s � s′, then (s · δ′) � (s′ · δ′). Since
by assumption A� δ is a pseudo-skeleton, for i ≤ min(h(s), h(s′)),

term(s · δ′ ↓ i) = term(s′ · δ′ ↓ i) with matching direction.

Thus s, s′ are unifiable. It follows that the primitive skeleton A � α is a pseudo-
skeleton.

The uniqueness properties follow immediately from the main theorem. �
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Definition 3.16. Pseudo(A) is the minimal pseudo-skeleton of A, which equals
A � α for the α introduced in Corollary 3.15. (A � α)� is the skeletal hull of A
denoted Hull(A).

Corollary 3.17. Suppose A is a pre-skeleton such that there is a homomorphism
H of A onto a skeleton. Then the skeletal hull of A is defined. If there is a non-
degenerate H, then the canonical map A 7→ (A� α)� is non-degenerate.

Proof. This is immediate from Corollary 3.15. �

3.5. Substructures, Liveness.

Definition 3.18 (Contraction). A homomorphism H = [φ, α] : A 7→ A′ is a con-
traction if there are distinct atoms a, b mentioned in A such that a · α = b · α.

Definition 3.19. [φ, α] is an embedding if φ and α are injective.
A0 is a substructure of A if there exists an embedding H : A0 7→ A.
A0 is a trivial substructure of A if there exists an embedding [φ, α] : A0 7→ A such

that φ is surjective. If there is a non-surjective embedding, then A0 is a non-trivial
substructure of A.

Since pre-skeletons have finitely many nodes, there cannot be both surjective
and non-surjective embeddings. Observe that we ignore renaming in defining sub-
structures.

Proposition 3.20. If B realizes A, then A is a trivial substructure of skeleton(B).

Proof. The regular nodes and ordering of A equal those of B, and hence those
of skeleton(B). Moreover, uniqueA ⊂ uniqueskeleton(B) and nonA ⊂ nonskeleton(B), al-
though the inclusions may be proper. �

We are interested in a skeleton A0 only if it leads to a realizable skeleton A.
Otherwise A0 is a dead end: it does not describe any part of a real bundle. We
formalize this intuition by homomorphisms, and say that A0 leads to B if for some
H and A, H : A0 7→ A and B realizes A. We say that A0 is live if it leads to some
bundle B.

4. Operations on pre-Skeletons

4.1. Joins. In this section we define the union and join of pre-skeletons A and B.
These pre-skeletons may intersect, but on the intersection they must be compatible
in the following sense:

(1) If a strand s of A has a node in B, then the entire strand s is in B.
(2) If a node n is in the intersection, term(n) does not depend on whether n is

considered a node of A or B.
(3) The order relations of A and B coincide on the intersection.

The union is denoted A ∪ B. In defining the join operation, we need to specify
the nodes of A ∪ B, the origination data uniqueA∪B and nonA∪B and a partial order
on the nodes of A ∪ B.

(1) nodes(A ∪ B) = nodes(A) ∪ nodes(B).
(2) uniqueA∪B = uniqueA ∪ uniqueB.
(3) nonA∪B = nonA ∪ nonB.
(4) The partial order on A ∪ B is the union of the partial orders of A and B.
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The union of partial orders is a partial order, assuming clause 3 in the compatibility
conditions above.

Definition 4.1. The skeletal hull of A∪B if it exists is the join of A and B, denoted
A ∨ B.

Proposition 4.2. Suppose A, B are pre-skeletons, C is a skeleton, H = [φ, α]
A → C and K = [ψ, β] : B → C are homomorphisms. Suppose that α and β coincide
on atoms in the intersection of their domains, and that φ and ψ coincide on nodes
in the intersection of their domains. Then there is a unique homomorphism

J : A ∪ B → C
which extends H, K. Moreover, A ∨ B is defined and J factors through A ∨ B. If
H,K are non-degenerate, then so is J .

Proof. By the assumption on the substitutions, α ∪ β is well-defined. J = (φ ∪
ψ, α∪ β) is clearly a homomorphism of skeletons. The fact that the skeletal hull of
A ∪ B is defined follows from Corollary 3.17. The fact that J factors through the
skeletal hull follows from the universal property. �

4.2. Order Refinement. Given a pre-skeleton A, we can consider partial orders
which are refinements of the partial order �A. If �∗ is such a partial order, let
A[�∗] be the pre-skeleton in which �∗ replaces �A.

Given a partial order � on a set I, a refinement of � can be obtained from a set
R ⊆ I × I, where (a, b) ∈ R implies a 6= b and considering the transitive closure
Tran(�∪R) =�∗ of (�∪R). Thus x �∗ y iff there is a finite sequence of pairs
{(ai, bi)}1≤i≤n of elements of R such that x � y or x � a1, bi � ai+1 and bn � y.
The resulting relation is a partial order iff there is no sequence {(ai, bi)}1≤i≤n with
n ≥ 2 such that bn � a1.

We state the previous fact in the following lemma:

Lemma 4.3. Suppose φ : (I,�I) → (J ,�J ) is a morphism between partially
ordered sets. If R ⊆ I×I, is such that φ(a) �J φ(b) but φ(a) 6= φ(b) for (a, b) ∈ R,
and �∗= Tran(�I ∪R). Then φ is also a morphism (I,�∗) → (J ,�J ).

Proposition 4.4. Suppose H = [φ, α] : A → B is a non-degenerate homomorphism
of pre-skeletons, R ⊆ nodes(A) × nodes(A) and �∗= Tran(�A ∪R). If φ(n) ≺B
φ(m) for every (n,m) ∈ R then H = [φ, α] : A[�∗] → B is also a non-degenerate
homomorphism of pre-skeletons.

Proof. The only structural change to A is its pre-order and the result follows from
the lemma. �

4.3. Augmentations. An augmentation to A is the result of joining a single role
instance to A, followed by an order refinement. We use the origination data of the
protocol (Definition 2.1) to determine the uniquely originating and non-originating
values of the result.

Definition 4.5. Let Π be a protocol, let r be a role of Π, and let α be a substitution.
The role skeleton of r under α up to height i, written {{r}}α,i, is the skeleton A
where: RA is the singleton of the strand s = r · α; hA(s) = i; s ↓ j �A s ↓ k iff
j ≤ k; nonA = (nr · α); and uniqueA = (ur · α).

Suppose A′ = (A∨{{r}}α,i) is well-defined; let R ⊂ nodes(A′)×nodes(A′); and let
�∗= Tran(�A′ ∪R). H is an augmentation if it is the canonical H : A 7→ A′[�∗].
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If R is of the form {(n0,m0), (m1, n1)} where n0 �A n1 and m0 ⇒+ m1 on r ·α,
then we write A′[�∗] in the form

A ∨ {{r}}α,i
n0�m0⇒+m1�n1

.

If R is of the form {(m1, n1)} where n1 ∈ nodes(A) and m1 lies on r · α, then we
write A′[�∗] in the form

A ∨ {{r}}α,i
m1�n1

.

Proposition 4.6. Suppose A is a pre-skeleton, C is a skeleton, H : A 7→ C and
K : {{r}}α,i 7→ C are non-degenerate homomorphisms. Suppose also that the sub-
stitution components of H,K agree on the common part of their domains. Then
B = A ∨ {{r}}α,i is well-defined.

Let J0 be the canonical map J0 : A∪{{r}}α,i 7→ B and let J1 = [φ, β] extend H,K.
If R ⊂ nodes(B) × nodes(B) such that (n,m) ∈ R implies φ(n) ≺C φ(m), then
J1 = J3 ◦ J2, where J2 : B 7→ B[�∗] and �∗= Tran(�B ∪R).

Proof. Immediate from Propositions 4.2 and 4.4. �

Proposition 4.7. Suppose that A is a skeleton and B = A∨{{r}}α,i is well-defined,
where φA and φr are the canonical maps into B. Suppose φA and φr have disjoint
range, and let φ = φA ∪ φr. If m ∈ range(φr) and n ∈ range(φA), and �∗=
Tran(�B ∪{(m,n)}), then B[�∗] is a skeleton.

If n0 �A n1 and m0 �{{r}}α,i m1, and

�∗= Tran(�B ∪{(φ(n0), φ(m0)), (φ(m1), φ(n1))}),

then B[�∗] is a skeleton.

Proof. In both cases, observe that the transitive closure is acyclic. �

Proposition 4.8. If an augmentation H = [φ, α] : A 7→ A′ is a contraction, then
φ(RA) = RA′ , i.e. every strand in A′ is of the form φ(s) for some strand s in A.

Proof. Let A′ = A∨{{r}}α,i[�∗]. Since H is a contraction, then there are two atoms
a, b mentioned in A such that a · α = b · α. This occurs only if there are distinct
strands s, s′ such that s� s′. Since A is a skeleton, s, s′ cannot both be in A. Hence
one (say s) is in {{r}}α,i, and as this is a singleton, the other s′ is in A. Thus in
(A ∪ {{r}}α,i[�∗])�, we identify the strand s with some s′ already in A. �

When i, the height of s, is greater than hA(s′), then A′ has additional nodes on
this strand, even though it does not have any fully new strands. The converse of
this proposition is clearly false.

5. Safety

Fix some protocol Π for this section, so that a bundle means a bundle over Π
(Definition 2.1). In particular, we assume that any bundle satisfies the origination
data and key constraints for Π. An atom is safe in a skeleton A if its image is not
disclosed in any bundle reached from A. We regard a bundle B as reachable from A
if there is a homomorphism from A to skeleton(B), and moreover the homomorphism
is non-degenerate in the sense that it does not destroy points of unique origination.
!!!!
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Definition 5.1 (Safe Atoms). a ∈ Safe(A) just in case, for every non-degenerate
homomorphism H = [φ, α] and bundle B, if H : A 7→ skeleton(B), then there is no
n ∈ B such that term(n) = a · α.

In particular, when a = K is a key, K · α is not used in B for encryption or
decryption on any penetrator E or D strand (Appendix A, Definition A.4). By the
definition, safety is preserved under non-degenerate homomorphisms that preserve
liveness:

Proposition 5.2. If a ∈ Safe(A0) and the homomorphisms H : A0 7→ A1 is non-
degenerate, then a · αH ∈ Safe(A1).

We are interested in a skeleton only when a bundle is reachable from it, and
bundles always respect the origination data ur, nr of roles of the protocol (Defi-
nition 2.1). Hence, we may assume that skeletons do too (RA refers here to the
strands contained in the skeleton A as in Definition 3.1):

Proposition 5.3. Suppose that s = r ·α and s ∈ RA. Let non′ = nonA∪(nr ·α) and
unique′ = uniqueA∪(ur ·α); let A′ = (RA, hA,�A, non′, unique′); and let H0 : A 7→ A′

be the embedding of A into A′. Every homomorphism H : A 7→ skeleton(B) is of the
form H1 ◦H0. In particular, a ∈ Safe(A) if a ∈ Safe(A′).

5.1. Establishing Safety. In [4, Propositions 16, 17] we provided (essentially) a
recipe for proving by induction that particular atoms are safe, which we simplify
and extend here. Suppose that we have a skeleton A; we want to define inductively
a set of atoms that will be safe in A. For the base case, a ∈ nonA suffices. For the
induction step, suppose a ∈ uniqueA and consider regular strands s. If a < t0 < s ↓ i
and t0 originates at s ↓ i, then t0 may make a vulnerable, unless a is always wrapped
using a key whose inverse is already known to be safe. If every strand that originates
some t0 with a < t0 wraps it in a key with safe inverse, however, then a will be safe
at the next level. More formally:

Definition 5.4. Let unique, non, used be sets of atoms, let Σ be a set of regular
strands, and let h : Σ → N be a height function for Σ.

Suppose S is a set of atoms. Define Γ(S) to be the set of encrypted terms
{ {|t|}K : K−1 ∈ S }. Define ∆(unique, non, used,Σ, h)(S) to be the set of atoms a
such that either a ∈ non or else:

(1) a ∈ unique;
(2) a ∈ used; and
(3) for all s ∈ Σ and j such that j ≤ h(s) and s ↓ j is positive, if for all k < j,

a occurs only within Γ(S) in s ↓ k, then a occurs only within Γ(S) in s ↓ j.

Define Safe ind(A,Σ, h) to be the least fixed point of ∆(uniqueA, nonA, usedA,Σ, h),
where usedA is the set of a such that a originates on some n ∈ A.

If B be a bundle and A = skeleton(B), then Safe ind(B) = Safe ind(A,Σ, h),
where Σ = RA is the set of strands in A, and h = hA is its height function.

Proposition 5.5. If a ∈ Safe ind(B), then there is no n ∈ B such that term(n) = a.

Proof. As in [4, Proposition 17]. �

In inferring that values are safe in a skeleton A, we need only worry about regular
strands s that could appear in some bundle B such that H : A 7→ skeleton(B).
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Thus, we may assume that s respects the non-origination and unique origination
conditions of A, and uses keys in a way compatible with the key constraints of
regular strands already in A.

Definition 5.6. A regular strand s = r · β is compatible with A if (1) for all
b ∈ nonA, b does not originate on s; (2) for all b ∈ uniqueA, if b originates on
any n ∈ A, then b does not originate on s; (3) the key constraints of s are jointly
satisfiable with those of A. C(A) = {s : s is compatible with A}.
C(A) is important because these are the only regular strands that need to be

added in building up bundles that A leads to:

Proposition 5.7. If H : (A ∨ {{r}}β,i) 7→ skeleton(B), then H = H2 ◦H1 where H1

is either H1 : (A ∨ {{r}}β,i) 7→ A · α or else H1 : (A ∨ {{r}}β,i) 7→ (A ∨ {{r}}γ,i) where
r · γ ∈ C(A).

Proposition 5.8. Σ ⊂ Σ′ implies Safe ind(A,Σ′, h) ⊂ Safe ind(A,Σ, (h|Σ)).

Proof. By the form of Clause 3 in Definition 5.4, if (3) holds for a larger Σ′, then
it holds a fortiori for a smaller Σ. That is, Σ ⊂ Σ′ implies

∆(unique, non, used,Σ′, h)(S) ⊂ ∆(unique, non, used,Σ, h)(S).

Since ∆(unique, non, used,Σ, h) is monotone and

S ⊂ ∆(unique, non, used,Σ, h)(S),

the inclusion is preserved under the least fixed point. �

Proposition 5.9. Safe ind(A,Σ, h) ⊂ Safe ind(A·α,Σ·α, h′)·α−1, where h′(s·α) =
h(s).

Proof. Let ∆ = ∆(unique, non, used,Σ, h) and

∆′ = ∆(unique · α, non · α, used · α,Σ · α, h′),
where h′ is the height function for Σ · α such that h′(s · α) = h(s) for s ∈ Σ.
∆(T · α−1) ⊂ ∆′(T ) · α. If T is a fixed point of ∆′, then T · α−1 is a fixed point of
∆. Thus, for T the least fixed point of ∆′, T is a fixed point of ∆, hence includes
the least fixed point of ∆. �

Proposition 5.10. Suppose that H : A 7→ skeleton(B) is non-degenerate, and
a ∈ Safe ind(A, C(A), h), where h is a height function for C(A). Then a · αH ∈
Safe ind(B), and in particular a ∈ Safe(A).

Proof. Follows from applications of Propositions 5.8–5.9. �

5.2. Safe Keys in Yahalom. We can now use the method described in Proposi-
tion 5.10 to infer that session keys are safe in the Yahalom protocol.

Proposition 5.11. If s ∈ Serv[A,B,KA,KB , Na, Nb,K] and hA(s) = 3, then
K ∈ Safe(A).

Proof. By Proposition 5.3, we may assume that KA,KB ∈ nonA and K ∈ uniqueA.
Suppose that s′ ∈ C(A) and K < t0 < term(s′ ↓ j), where t0 originates at s′ ↓ j.
Then by the definition of the Yahalom protocol, this must be the second or third
node on a server strand. Since K ∈ uniqueA, s′ = s. If j = 2, then K occurs
only within the singleton {|B ˆK ˆNa ˆNb|}KA

, and KA ∈ nonA. If j = 3, then
K occurs only within the singleton {|A ˆK|}KB

, and KB ∈ nonA. Thus, K ∈
Safe ind(A, C(A), h), and, by Proposition 5.10, K ∈ Safe(A). �
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5.3. Providing Protection for Atoms.

Definition 5.12 (Protection). S offers export protection for A if every t ∈ S is
of the form {|t0|}K where K−1 ∈ Safe(A). S offers import protection for A if every
t ∈ S is of the form {|t0|}K where K ∈ Safe(A).

Thus, S offers export protection for A if S ⊂ Γ(Safe(A)), where Γ is as in Defi-
nition 5.4. Protection is preserved under homomorphisms that preserve liveness:

Proposition 5.13. Suppose that H : A0 7→ A1, and H ′ : A1 7→ skeleton(B). If
S offers export (respectively, import) protection for A0, then S · αH offers export
(resp. import) protection for A1.

6. The Authentication Tests

The authentication tests tell us that certain regular nodes exist in bundles. The
statements here are stronger and simpler than previous versions [4, 2]. Again fix
some protocol Π, and consider only bundles over Π.

6.1. The Outgoing Authentication Test. Export protection means that a value
is used within an encrypted unit from which only regular participants can retrieve
contents (Definition 5.12).

Definition 6.1 (Outgoing Transformed and Transforming Edges). Regular nodes
n0, n1 ∈ A form an outgoing transformed edge for a, S,A if (1) S provides export
protection for A; (2) a ∈ uniqueA originates at n0 and occurs only within S in
term(n0); and (3) a occurs outside S in term(n1).

Strand s is an outgoing transforming edge for a, S from j to i if (1) s ↓ j is the
earliest occurrence of a on s; (2) s ↓ i is the earliest node on s on which a occurs
outside S; (3) s ↓ i is positive, and s ↓ j is negative unless a originates at s ↓ j.

Unless a originates on s ↓ j, from (3) it follows that i 6= j on an outgoing
transforming edge, so from (1) and (2) it follows that j < i and a occurs only
within S on s ↓ j.

Proposition 6.2 (Outgoing Authentication Test). If n0, n1 ∈ B form an outgoing
transformed edge for a, S, skeleton(B), then there exist s, j, i such that s ↓ i ∈ B and
s is an outgoing transforming edge for a, S from j to i.

Moreover, letting s ↓ j = m0 and s ↓ i = m1, n0 �B m0 ⇒+ m1 �B n1;
a < term(m0); and for all m �B m0, a occurs only within S in m.

Proof. Let T = {m ∈ B : a occurs outside S in term(m) and m �B n1}. T is non-
empty because n1 ∈ T . By Proposition A.3, T has �B-minimal members, so let m1

be minimal in T . We show first that if m1 is regular, then the proposition is true,
and next that m1 is in fact regular, because it cannot lie on a penetrator strand.

Assume m1 is regular: a does not originate at m1, because it originates uniquely
at n0 and m1 6= n0. Thus, there is m0 ⇒+ m1 such that a < term(m0), and we
may choose m0 to be the earliest such node. Let j, i be the indices of m0, m1 on
their common strand s. Condition (1) is thus satisfied, and condition (2) is satisfied
by the minimality of m1 in T . By [7, Lemma 2.8], m1 is positive. If m0 is positive,
then it is a point of origination for a, i.e. m0 = n0, so that condition (3) is also
true.

Does m1 lie on a penetrator strand: Since a originates uniquely at the regular
n0, m1 is not a M or K node. By the minimality of m1, it does not lie on a
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“constructive” E or C strand. Since S is a set of encryptions, minimality of m1

implies m1 does not lie on a S strand. However, if m1 is the third node of a D
strand, then the second node has term {|h|}K ∈ S and the first node contains K−1,
contradicting the assumption that S provides export protection for skeleton(B).

By [7, Lemma 2.9], n0 �B m0; by the definition of T , m1 �B n1; by the mini-
mality of m1 in T , m �B m0 ≺B m1 implies a occurs only with S in term(m). �

6.2. Outgoing Tests for the Yahalom Protocol. The Yahalom protocol as
described in Figure 2 may be proved correct—from B’s point of view—using the
outgoing test principle. Evidently the fresh value is Nb, which must be transformed
by a server strand to escape from B ˆ {|A ˆ Na ˆ Nb|}KB

. The server embeds it
within some term of the form {|B ˆK ˆNa ˆNb|}KA

, and an initiator strand will be
needed to allow it to escape from this form, and achieve the {|Nb|}K form in which
B finally receives it back. The subtlety comes in checking what we know about
which variables must match.

We may start by assuming that a bundle B contains a responder strand sr of
height 4, which we assume to have the parameters named in Figure 2; KA,KB are
non-originating, and Nb is uniquely originating. We also assume Nb 6= Na. Thus,
sr ↓ 2 ⇒+ sr ↓ 4 is an outgoing transformed edge for a, various choices of set S,
and skeleton(B). As our first choice of S, we select

S1 = {{|B ˆK ′ ˆNa ˆNb|}KA
: K ′ is a key} ∪ {{|A ˆNa ˆNb|}KB

}.

This set provides export protection because we have assumed that the symmetric
keys KA,KB are non-originating. Since sr ↓ 4 contains Nb outside of S1, there is a
regular transforming edge that receives Nb only within S1 and emits Nb outside S1.
Taking cases on the roles of the protocol, this is an initiator strand si of B-height
3, with parameters A,B,Na, Nb,K

′ for some key K ′.
Moreover, the pair of nodes sr ↓ 2, si ↓ 3 is also a transformed edge, this time

for the set

S2 = {{|A ˆNa ˆNb|}KB
}.

Here we may infer (by cases) that there is a server strand ss of B-height 2, also
with parameters A,B,Na, Nb,K

′ for the same key K ′.
Since K ′ originates here in the forms {|B ˆ K ′ ˆ Na ˆ Nb|}KA

and {|A ˆK ′|}KB
,

with KA,KB are non-originating, and no role transforming a term containing a
key, K ′ is safe.

If K ′ 6= K, then we may apply the outgoing authentication test principle to the
set

S3 = {{|B ˆK ′ ˆNa ˆNb|}KA
} ∪ {{|A ˆNa ˆNb|}KB

} ∪ {{|Nb|}K′}.

Since, taking cases on the roles of the protocol, there is no transforming edge for
S3, we refute the assumption K ′ 6= K. That is, identifying K ′ = K is the only way
to explain how B is possible.

By two positive and one negative application of the outgoing authentication test
principle, we have proved the presence of initiator and server strands with the right
parameters. Observe that we considered S1 and S2 in reverse order, in the sense
that Nb reaches the strand introduced by S2 before it reaches the strand introduced
by S1.
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6.3. The Incoming Authentication Test. Import protection means that a value
is used within an encrypted unit that only a regular participant can create (Defi-
nition 5.12).

Proposition 6.3 (Incoming Test Principle). Suppose n1 ∈ B is negative, t <

term(n1), and the singleton set {t} offers import protection for skeleton(B). There
exists a regular m1 ≺ n1 such that t originates at m1. Moreover:

Solicited Incoming Test: If a < t originates uniquely on n0 6= m1, then
n0 � m0 ⇒+ m1 ≺ n1.

Proof. Let T = {m ∈ B : t < term(n1) and m �B n1}. T is nonempty because
n1 ∈ T , and thus contains a minimal node m1. By the definition of T , m1 �B n1.
Since {t} provides import protection for skeleton(B), t = {|h|}K where K is safe for
skeleton(B).

Node m1 does not lie on a penetrator strand: m1 does not lie on a M or K node
because t is not a subterm of an atom. No term originates on a “destructive” D or
S strand. Since t is an encryption, it does not originate on a C strand. If t = {|h|}K

originates on the positive (third) node of a E strand, then the first node has term
K, contradicting the safety of K.

If in addition a < t originates uniquely on n0 6= m1, then there is a m0 ⇒+ m1

with a < term(m0). By [7, Lemma 2.9], either m0 is itself the point of origination
n0 or else n0 ≺ m0, whence n0 � m0. �

For convenience, we refer to n1 (or (n0, n1) in the case of a solicited incoming
test) as an incoming transformed edge, and to m1 (or m0 ⇒+ m1 if solicited) as an
incoming transforming edge.

6.4. Incoming Tests for the Yahalom Protocol. The Yahalom protocol also
uses solicited incoming tests to provide the initiator with its guarantee. The fresh
value is Na, which must be transformed by a server strand to enter the form
{|B ˆ K ˆ Na ˆ Nb|}KA

. The server embeds it within some term of this form,
but a responder strand must previously have put Na in the form {|A ˆNa ˆNb|}KB

.
We may start by assuming that a bundle B contains an initiator strand si of

height 3, which we assume to have the parameters named in Figure 2; KA,KB

are non-originating, and Na is uniquely originating. Now we apply the solicited
incoming test to node n1 = si ↓ 2, term t = {|B ˆK ˆNa ˆNb|}KA

, atom a = Na,
and originating node n0 = si ↓ 1. The edge m0 ⇒+ m1 can now only lie on a server
strand ss with parameters A,B,Na, Nb,K.

We now apply the solicited incoming test to the server’s node n1 = ss ↓ 2, term
t = {|A ˆNa ˆNb|}KB

, still retaining a = Na and n0 = si ↓ 1. Taking cases on the
roles of the protocol, we infer that there is a responder strand of B-height at least
2, and parameters A,B,Na, Nb,K

′, where K ′ is undetermined.

7. The Authentication Tests and Homomorphisms

7.1. Outgoing Tests and Homomorphisms. We may regard the outgoing au-
thentication test as telling us how to extend a skeleton, in case it contains outgoing
transformed edges with no outgoing transforming edges. However we embed the
skeleton into a bundle, we will have to add a suitable transformed edge. We call this
process an augmentation. An augmentation adds a strand (or an initial sub-strand)
to supply a transforming edge for some existing transformed edge, as dictated by
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Proposition 6.2. An augmentation is a homomorphism embedding the skeleton into
a larger one.

In order to carry out this idea, though, we must resolve a fine point. If H =
[φ, α] : A0 7→ A1 and n0, n1 ∈ A0 form an outgoing transformed edge for a, S,A0,
one would like φ(n0), φ(n1) to form an outgoing transformed edge for a ·α, S ·α,A1.
Otherwise, the transforming edge we add to resolve it may turn out to be superflu-
ous. Likewise, ifm0,m1 form a transforming edge, we would like φ(m0), φ(m1) to do
so also. Otherwise, adding this edge did not permanently resolve the transformed
edge that it was meant to.

Proposition 7.1 (Outgoing preservation). Let H = [φ, α] : A 7→ A′ be non-
degenerate.

(1) Suppose that n0, n1 ∈ A form an outgoing transformed edge for a, S,A. If
a occurs outside (S · α) · α−1 in term(n1), then n0, n1 form an outgoing
transformed edge for a, (S · α) · α−1,A.

Hence φ(n0), φ(n1) form an outgoing transformed edge for a ·α, S ·α,A′.
(2) Suppose s is a transforming edge for a, S from j to i. If a occurs outside

(S ·α) ·α−1 in term(s ↓ i), then s is a transforming edge for a, (S ·α) ·α−1

from j to i.
Hence, φ(s) is a transforming edge for a · α, S · α from j to i.

Indeed, if S is closed under identifications made by α, then a does occur outside
(S · α) · α−1 in the terms term(n1) and term(s ↓ i).
Definition 7.2. If n0, n1 form an outgoing transformed edge for a, S,A and s is an
outgoing transforming edge for a, S from j to i, and n0 �A s ↓ j ⇒+ s ↓ i �A n1,
then s is an outgoing solution for n0, n1 and a, S,A.

Definition 7.3. Suppose

A′ = A ∨ {{r}}α,i
n0�m0⇒+m1�n1

and H = [φ, β] : A 7→ A′ is the augmentation map.
H is an outgoing augmentation for n0, n1 and a, S,A if (1) n0, n1 ∈ A form

an outgoing transformed edge for a, S,A; (2) φ(r) is an outgoing solution for
φ(n0), φ(n1) and (a·β, S·β,A′); and (3) there is no outgoing solution for φ(n0), φ(n1)
and (a · β, S · β,A′) in the image of A under φ.

Fix some protocol Π. A contraction (Definition 3.18) is a homomorphism that
identifies distinct atoms.

Proposition 7.4 (Finite Outgoing Splitting). Suppose A contains an outgoing
transformed edge n0, n1 for a, S,A with no solution. There exist a finite number
of outgoing augmentations H1, . . . ,Hk such that every homomorphism H : A 7→
skeleton(B) begins with a contraction, or with one of the Hi with 1 ≤ i ≤ k.

Proof. Suppose a homomorphism H = [φ, α] is a contraction. Then it certainly
begins with a contraction. Otherwise, it identifies no values mentioned in A. In
this case, φ(n0), φ(n1) is an outgoing transformed edge for (a ·α, S ·α, skeleton(B)).
By Proposition 6.2, skeleton(B) contains an outgoing solution s′ for φ(n0), φ(n1)
and (a ·α, S ·α, skeleton(B)). This s′ is not the image of any s ∈ A, as s would then
be a solution in A. Thus, H begins with an outgoing augmentation.

To see that finiteness holds, there are only finitely many roles in Π, and s = r ·β
for one of these roles r. Only finitely many β need be considered, as β is determined
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by which atoms in r are identified with atoms mentioned in A, and which atoms in
r that are not mentioned in A are identified with each other. �

Indeed, for a large number of protocols, there is a single augmentation H1 that
suffices, and every non-contracting homomorphism mapping A to a realizable skele-
ton factors through H0. We recommended this as a protocol design criterion in [4,
Section 6.3] and incorporated it as part of a protocol design methodology in [3,
Section 8]. Some protocols violate this advice (or the corresponding advice for
incoming augmentations), and are known to be flawed [4].

7.2. Incoming Tests and Homomorphisms.

Definition 7.5. Suppose n1 ∈ A is negative, t < term(n1), and the singleton set
{t} offers import protection for A. In this case, we call n1 an incoming transformed
node. A strand s is an incoming solution for n1, t,A if t originates on s ↓ i ∈ A.

Definition 7.6. Suppose

A′ = A ∨ {{r}}α,i
m1�n1

and H = [φ, β] : A 7→ A′ is the augmentation map.
H is an incoming augmentation for n1, t,A if (1) s is an incoming solution for

n0, t,A; and (2) there is no incoming solution for φ(n1), t · β,A′ in the image of A
under φ.

Proposition 7.7 (Finite Incoming Splitting). Suppose A contains an incoming
transformed node n1 with no solution. There exist a finite number of incoming
augmentations H1, . . . ,Hk such that every homomorphism H : A 7→ skeleton(B)
begins with a contraction, or with one of the Hi with 1 ≤ i ≤ k.

8. Conclusion

There are evidently many additional questions one would like to ask in this frame-
work. For instance, can every realizable skeleton be found in a systematic way using
incoming and outgoing augmentations, and perhaps another kind of augmentation?
Is there a class of protocols for which the search process of augmenting necessar-
ily terminates? How can one implement the operations described here so that a
mechanical tool can enumerate the shapes of bundle permitted by a given bundle?
These questions will be considered in future work.
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Appendix A. Strand Spaces

Definition A.1. A directed term is a pair (σ, t) with t ∈ A and σ one of the
symbols +,−. We will write a directed term as +t or −t. (±A)∗ is the set of finite
sequences of directed terms. A strand space over A is a set Σ with a trace mapping
tr : Σ → (±A)∗. We assume that Σ is closed under substitution; i.e. if α is a
substitution and s ∈ Σ is a strand with trace 〈(σ1, t1), . . . , (σn, tn)〉 then there exists
s[α] ∈ Σ with trace 〈(σ1, t1[α]), . . . , (σn, tn[α])〉. Fix a strand space Σ:

(1) A node is a pair (s, i), with s ∈ Σ and i such that 1 ≤ i ≤ length(tr(s)).
The set of nodes is denoted by N . We also refer to (s, i) as s ↓ i.

(2) The subterm relation < is defined inductively, as the smallest transitive,
reflexive relation such that t < {|g|}K if t < g, and t < g ˆ h if t < g or
t < h. (Hence, K < {|g|}K only if K < g already.)

(3) Suppose I is a set of terms. The node n ∈ N is an entry point for I iff
term(n) = +t for some t ∈ I, and whenever n′ ⇒+ n, term(n′) 6∈ I.

(4) An term t originates on n ∈ N iff n is an entry point for I = {t′ : t < t′}.
(5) An term t is uniquely originating in S ⊂ N iff there is a unique n ∈ S such

that t originates on n, and non-originating if there is no such n ∈ S.

If a term t originates uniquely in a suitable set of nodes, then it can play the
role of a nonce or session key. If it is non-originating, it can serve as a long-
term secret, such as a shared symmetric key or a private asymmetric key. N
together with both sets of edges n1 → n2 (message transmission from positive to
negative node) and n1 ⇒ n2 (succession on the same strand) is a directed graph
〈N , (→ ∪ ⇒)〉. A bundle is a subgraph of 〈N , (→ ∪ ⇒)〉 for which the edges
express causal dependencies of the nodes.

Definition A.2. Suppose →B ⊂ →; suppose ⇒B ⊂ ⇒; and let B = 〈NB, (→B
∪ ⇒B)〉 be a finite acyclic subgraph of 〈N , (→ ∪ ⇒)〉. B is a bundle if:

(1) If n2 ∈ NB and term(n2) is negative, then there is a unique n1 such that
n1 →B n2.

(2) If n2 ∈ NB and n1 ⇒ n2 then n1 ⇒B n2.
A node n is in a bundle B = 〈NB,→B ∪ ⇒B〉, written n ∈ B, if n ∈ NB. The
B-height of a strand s is the largest i such that 〈s, i〉 ∈ B. If S is a set of edges,
i.e. S ⊂→ ∪ ⇒, then ≺S is the transitive closure of S, and �S is the reflexive,
transitive closure of S.

Proposition A.3. If B is a bundle, �B is a partial order. Every non-empty subset
of the nodes in B has �B-minimal members.

Definition A.4. A penetrator strand is one of the following:
Mt: 〈+t〉 where t ∈text KK : 〈+K〉
Cg,h: 〈−g, −h, +g ˆ h〉 Sg,h: 〈−g ˆ h, +g, +h〉
Eh,K : 〈−K, −h, +{|h|}K〉 Dh,K : 〈−K−1, −{|h|}K , +h〉.




