
Energy-Efficient, Utility Accrual Scheduling under
Resource Constraints for Mobile Embedded Systems

Haisang Wu?, Binoy Ravindran?, E. Douglas Jensen†, and Peng Li?

?ECE Dept., Virginia Tech
Blacksburg, VA 24061, USA

{hswu02,binoy,peli2}@vt.edu

†The MITRE Corporation
Bedford, MA 01730, USA

jensen@mitre.org

ABSTRACT

We present an energy-efficient, utility accrual, real-time

scheduling algorithm called the Resource-constrained Energy-

Efficient Utility Accrual Algorithm (or ReUA). ReUA con-

siders an application model where activities are subject

to time/utility function (TUF) time constraints, resource

dependencies including mutual exclusion constraints, and

statistical performance requirements including activity (time-

liness) utility bounds that are probabilistically satisfied.

Further, ReUA targets mobile embedded systems where

system-level energy consumption is also a major concern.

For such a model, we consider the scheduling objectives

of (1) satisfying the statistical performance requirements;

and (2) maximizing the system-level energy efficiency. At

the same time, resource dependencies must be respected.

Since the problem is NP-hard, ReUA makes resource

allocations using statistical properties of application cy-

cle demands and heuristically computes schedules with a

polynomial-time cost. We analytically establish several

timeliness and non-timeliness properties of the algorithm.

Further, our simulation experiments illustrate the algo-

rithm’s effectiveness.

1. INTRODUCTION

Energy consumption has become one of the primary

concerns in electronic system design due to the recent

.

popularity of portable devices and the environmental con-

cerns related to desktops and servers. For mobile and

portable embedded systems, minimizing energy consump-

tion results in longer battery life. But intelligent devices

usually need powerful processors, which consume more en-

ergy than those in simpler devices, thus reducing battery

life. This fundamental tradeoff between performance and

battery life is critically important and has been addressed

in the past [16,29].

Saving energy without substantially affecting applica-

tion performance is crucial for embedded real-time sys-

tems that are mobile and battery-powered, because most

real-time applications running on energy-limited systems

inherently impose temporal constraints on the sojourn

time [5].

Dynamic voltage scaling (DVS) is a common mecha-

nism studied in the past to save CPU energy [5, 12, 14,

15, 25, 30, 31, 37]. DVS addresses the trade-off between

performance and battery life by taking into account two

important characteristics of most current computer sys-

tems: (1) For CMOS-based processors, the maximum

clock frequency scales almost linearly with the power sup-

ply voltage, and the energy consumed per cycle is propor-

tional to the square of the voltage [7]; and (2) the peak

computing rate needed is much higher than the average

throughput that must be sustained. A lower frequency

(i.e., speed) hence enables a lower voltage and yields a

quadratic energy reduction, at the expense of roughly lin-
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Figure 1: Example Time Constraints Specified Using Time/Utility Functions

early increased sojourn time [13].

Most of the past efforts on energy-efficient real-time

scheduling focus on the deadline time constraint and deadline-

based timeliness optimality criteria such as meeting all or

some percentage of deadlines [5, 13, 31, 36]. Further, past

efforts focus on resource-independent activities i.e., activ-

ities that do not access shared resources, which are sub-

ject to mutual exclusion constraints. For the optimality

criterion of meeting all deadlines, past DVS schemes fo-

cus on minimizing energy consumption of the CPU, while

meeting the deadlines of all (independent) activities.

1.1 Soft Timeliness Optimality

In this paper, we focus on dynamic, adaptive, embed-

ded real-time control systems at any level(s) of an enterprize—

e.g., devices in the defense domain such as multi-mode

phased array radars [2] and battle management [1]. Such

embedded systems include“soft”time constraints (besides

hard) in the sense that completing an activity at any time

will result in some (positive or negative) utility to the sys-

tem, and that utility depends on the activity’s completion

time. Moreover, they often desire a soft timeliness opti-

mality criterion such as completing all time-constrained

activities as close as possible to their optimal completion

times—so as to yield maximal collective utility—is the

objective.

Jensen’s time/utility functions [20] (or TUFs) allow the

semantics of soft time constraints to be precisely speci-

fied. A TUF, which is a generalization of the deadline

constraint, specifies the utility to the system resulting

from the completion of an activity as a function of its

completion time. Figure 1 shows examples of time con-

straints specified using TUFs. Figures 1(a), 1(b), and 1(c)

show time constraints of two large-scale, dynamic, em-

bedded real-time applications specified using TUFs. The

applications include: (1) the AWACS (Airborne WArning

and Control System) surveillance mode tracker system [9]

built by The MITRE Corporation and The Open Group

(TOG); and (2) a coastal air defense system [28] built by

General Dynamics (GD) and Carnegie Mellon University

(CMU).

Figure 1(a) shows the TUF of the track association ac-

tivity of the AWACS; Figures 1(b) and 1(c) show TUFs

of three activities of the coastal air defense system called

plot correlation, track maintenance, and missile control.

Note that Figure 1(c) shows how the TUF of the missile

control activity dynamically changes as the guided inter-

ceptor missile approaches its target.

The classical deadline constraint is a binary-valued down-

ward “step” shaped TUF. This is shown in Figure 1(d).

When timing constraints are expressed with TUFs, the

scheduling optimality criteria are based on maximizing ac-

crued utility from those activities—e.g., maximizing the

sum, or the expected sum, of the activities’ attained utili-

ties. Such criteria are called Utility Accrual (or UA) crite-

ria, and sequencing (scheduling, dispatching) algorithms

that consider UA criteria are called UA sequencing algo-

rithms. In general, other factors may also be included in

the optimality criteria, such as resource dependencies and

precedence constraints. Several UA scheduling algorithms

are presented in the literature [8, 10,21,22,24,35].

1.2 System-Level Energy Consumption

2004 ACM International Conference on Embedded Software



Most of the past work on energy-efficient real-time schedul-

ing using DVS only considers the energy consumed by the

CPU. However, the battery life of a system is determined

by the system’s energy consumption, not just the energy

consumption of the CPU. Therefore, energy consumption

models used in past efforts are not accurate for prolonging

the battery life.

Based on the experimental observations that some com-

ponents in computer systems consume constant energy

and some consume energy only scalable to frequency (i.e.,

voltage), Martin proposed a system-level energy consump-

tion model in [26,27]. In this model, the system-level en-

ergy consumption per cycle does not scale quadratically

to the CPU frequency. Instead, a polynomial is used to

represent the relation. We further elaborate on this en-

ergy model in Section 2.6.

1.3 Contributions and Paper Outline

As mentioned previously, almost all of the past efforts

on energy-efficient real-time scheduling consider deadline-

based timeliness optimality criteria.1 Further, to the best

of our knowledge, no past effort (on energy-efficient real-

time scheduling) considers activities that share resources,

which are subject to mutual exclusion constraints. Re-

source dependencies are important for very many em-

bedded systems, as many such systems use shared re-

sources and simultaneously access them for application

progress [19].

UA scheduling under resource dependencies have been

studied in the past [10,22]. But energy-efficient UA schedul-

ing has not been studied. Further, all past UA schedul-

ing algorithms maximize the collective utility attained by

all activities. They provide no assurance on individual

timeliness behavior such as a lower bound on individual

activity utility that is probabilistically satisfied.

As mentioned previously, most of the past efforts on

1The only exception is the PA-BTA algorithm [38]. How-

ever, PA-BTA is restricted to independent activities.

energy-efficient real-time scheduling only consider the CPU’s

energy consumption and do not consider the system’s en-

ergy consumption. The PA-BTA algorithm [38] considers

system-level energy consumption, but it is restricted to

independent activities and provides no assurances — in-

dividual or collective — on timeliness behavior.

In this paper, we consider the problem that intersects:

(1) UA scheduling under TUF time constraints, providing

assurances on timeliness behavior; (2) activity scheduling

respecting resource dependencies; and (3) CPU schedul-

ing for reduced system-level energy consumption.

We consider application activities that are subject to

TUF time constraints, resource dependencies including

mutual exclusion constraints, and statistical performance

requirements including lower bounds on individual activ-

ity utilities that are probabilistically satisfied. Further,

we consider a system-level energy consumption model.

We integrate run-time-based DVS [14, 25, 31] with UA

scheduling using a single system-level performance metric

called Utility and Energy Ratio (or UER). UER facilitates

optimization of timeliness objectives and energy efficiency

in a unified way.

Given the metric of UER, our scheduling objective is

two-fold: (1) satisfy the lower bounds on individual ac-

tivity utilities; and (2) maximize the system’s UER. This

problem has not been studied in the past and is NP-hard.

We present a polynomial-time, heuristic algorithm for

this problem called the Resource-constrained Energy-Efficient

Utility Accrual Algorithm (or ReUA). We analytically es-

tablish several timeliness and non-timeliness properties

of the algorithm including timeliness optimality during

under-loads, sufficiency on probabilistic satisfaction of time-

liness lower bounds, deadlock-freedom, and correctness.

We also evaluate ReUA’s performance through simula-

tion. Our simulation studies reveal that ReUA provides

statistical performance guarantees (as opposed to worst

case) on activity timeliness behavior. Further, the algo-

rithm improves system-level energy-efficiency.

Thus, the contribution of the paper is the ReUA algo-
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rithm. To the best of our knowledge, we are not aware of

any other efforts that solve the problem solved by ReUA.

The rest of the paper is organized as follows. In Sec-

tion 2, we outline our activity, resource, and timeliness

models, and state the UA scheduling criterion. We present

ReUA in Section 3. In Section 4, we establish the al-

gorithm’s timeliness and non-timeliness properties. Sec-

tion 5 discusses the simulation studies. Finally, we con-

clude the paper in Section 6.

2. MODELS AND OBJECTIVES

2.1 Tasks and Jobs

We consider the application to consists of a set of tasks,

denoted as T = {T1, T2, · · · , Tn}. Each task Ti has a

number of instances, and these instances may be released

either periodically or sporadically with a known minimal

inter-arrival time. The period or minimal inter-arrival

time of a task Ti is denoted as Pi.

An instance of a task is called a job, and we refer to

the jth job of task Ti, which is also the jth invocation of

Ti, as Ji,j . The basic scheduling entity that we consider

is the job abstraction. Thus, we use J to denote a job

without being task specific, as seen by the scheduler at

any scheduling event; Jk can be used to represent a job

in the job scheduling queue. Jobs can be preempted at

arbitrary times.

2.2 Resource Model

Jobs can access non-CPU resources, which in general,

are serially reusable. Examples include physical resources

(e.g., disks) and logical resources (e.g., critical sections

guarded by mutexes).

Similar to fixed-priority resource access protocols (e.g.,

priority inheritance, priority ceiling) [32] and that for

UA algorithms [10,22], we consider a single-unit resource

model. Thus, only a single instance of a resource is present

and a job must explicitly specify the resource that it wants

to access.

Resources can be shared and can be subject to mutual

exclusion constraints. Thus, only a single job can be ac-

cessing such resources at any given time.

A job may request multiple shared resources during

its lifetime. The requested time intervals for holding re-

sources may be nested, overlapped or disjoint. We assume

that a job explicitly releases all granted resources before

the end of its execution.

Jobs of different tasks can have precedence constraints.

For example, a job Jk can become eligible for execution

only after a job Jl has completed, because Jk may require

Jl’s results. As in [10, 22], we allow such precedences to

be programmed as resource dependencies.

2.3 Timeliness Model

A job’s time constraint is specified using a TUF. Fol-

lowing [18], a time constraint usually has a “scope”— a

segment of the job control flow that is associated with a

time constraint. We call such a scope a “scheduling seg-

ment.”

Different jobs of a task have the same TUF. Thus, we

use Ui (.) to denote task Ti’s TUF. The TUF of task Ti’s

jth job is denoted as Ui,j (.), which has the same shape as

Ui (.). Without being task specific, we use UJk to denote

the TUF of a job Jk; thus completion of the job Jk at a

time t will yield a utility UJk (t).

TUFs can be classified into unimodal and multimodal

functions. Unimodal TUFs are those for which any de-

crease in utility cannot be followed by an increase. Ex-

amples are shown in Figure 1. TUFs, which are not uni-

modal are multimodal. In this paper, we restrict our focus

to non-increasing, unimodal TUFs i.e., those unimodal

TUFs for which utility never increases as time advances.

Figures 1(a), 1(b), and 1(d) show examples. Later, we

justify this restriction in Section 2.4.

Each TUF Ui,j , i ∈ {1, · · · , n} has an initial time Ii,j

and a termination time Xi,j . Initial and termination

times are the earliest and the latest times for which the

TUF is defined, respectively. We assume that Ii,j is equal
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to the arrival time of job Ji,j , and Xi,j − Ii,j is equal to

the period or minimal inter-arrival time Pi of the task Ti.

If Ji,j ’s Xi,j is reached and execution of the correspond-

ing job has not been completed, an exception is raised.

Normally, this exception will cause Ji,j ’s abortion and

execution of exception handlers.

2.4 Statistical Timeliness Performance Re-
quirement

Each task needs to accrue some percentage of its maxi-

mum possible utility. The statistical performance require-

ment of a task Ti is denoted as {νi, ρi}, which implies

that task Ti should accrue at least νi percentage of its

maximum possible utility with the probability ρi. This is

also the requirement for each job of the task Ti. Thus, for

example, if {νi, ρi} = {0.7, 0.93}, then the task Ti needs

to accrue at least 70% of the maximum possible utility

with a probability no less than 93%. For step TUFs, ν

can only take the value 0 or 1.

This statistical performance requirement on the utility

of a task implies a corresponding requirement on the range

of task sojourn times. For non-increasing unimodal TUFs,

this range is decided only by an upper bound, while for

increasing unimodal TUFs, both a lower bound and an

upper bound are needed. In this paper, we care about the

upper bound. For this reason, we focus on non-increasing

TUFs.

2.5 Task Cycle Demands

UA scheduling and DVS are both dependent on the

prediction of task cycle demands. We estimate the statis-

tical properties (e.g., distribution, mean, variance) of the

demand rather than the worst-case demand for three rea-

sons: (1) Many embedded real-time applications exhibit

a large variation in their actual workload [9]. Thus, the

statistical estimation of the demand is much more sta-

ble and hence more predictable than that of the actual

workload; (2) worst-case workload information is usually

a very conservative prediction of the actual workload [5].

Such conservatism usually results in resource over-supply,

which exacerbates the power consumption problem; and

(3) allocating cycles based on the statistical estimation of

tasks’s demands can provide statistical performance guar-

antees. This is sufficient for the applications of interest

to us. In fact, stronger guarantees are generally infeasible

for dynamic, embedded real-time systems.

Let Yi be the random variable of a task Ti’s cycle de-

mand. Estimating the demand distribution of the task

involves two steps: (1) profiling its cycle usage and (2) de-

riving the probability distribution of the usage. Recently,

a number of measurement-based profiling mechanisms have

been proposed [4, 33, 39]. Profiling can be performed on-

line or off-line. Off-line profiling provides more accurate

estimation with the whole trace of CPU usage, but it is

not applicable to “live” applications.

We assume that the mean and variance of task cycle

demands are finite and determined through either online

or off-line profiling. We denote the expected workload

of a task Ti in variable voltage/speed settings, i.e., the

expected number of processor cycles required by a task Ti

as E(Yi), and the variance on the workload as V ar(Yi).

Note that, under a constant speed i.e., frequency f (given

in cycles per second), the expected execution time of a

task Ti is given by ei = E(Yi)
f

.

2.6 Energy Consumption Model

We consider Martin’s system level energy consumption

model that was derived from experimental observations

that some components of a computer consume constant

power, while others consume power that is scalable to ei-

ther voltage or frequency [26, 27, 36]. We use this model

to derive the energy consumption per cycle. This is sum-

marized as follows:

The CPU is assumed to be capable of executing tasks

at m clock frequencies. When the CPU operates at a

frequency f , the CPU’s dynamic power consumption, de-

noted as Pd, is given by Pd = Cef × V 2
dd × f , where Cef

is the effective switch capacitance and Vdd is the supply
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voltage. On the other hand, the clock frequency is al-

most linearly related to the supply voltage, since f =

k× (Vdd−Vt)
2

Vdd
, where k is constant and Vt is the threshold

voltage [40]. By approximation, f = a × Vdd, where a is

constant. Thus, Pd =
Cef

a2 × f3, which is equivalent to

Pd = S3×f3, where S3 is constant. In this case, both the

supply voltage and the clock frequency can be scaled.

Besides the CPU, there are also other system compo-

nents that consume energy. Given the dynamic power

consumption equation Pd = Cef × V 2
dd × f , power con-

sumption equations for all other system components can

be derived. Some components in the system must oper-

ate at a fixed voltage and thus their power can only scale

with frequency. Examples include main memory. In this

case, Cef × V 2
dd can be represented as another constant

such as S1, and the equation becomes Pd = S1×f . Other

components in the system consume constant power with

respect to the CPU clock frequency. Examples include

display devices. Thus, their power consumption can be

represented as S0, where S0 is constant.

Finally, for completeness in fitting the measured power

of a system to the cubic equation, another term is included

to represent the quadratic term i.e., Pd = S2×V 2
dd. Since

f is almost linearly related to Vdd, Pd is represented as

Pd = S2 × f2. While this term does not represent the

dynamic power consumption of CMOS, because it im-

plies that Vdd is being lowered without also lowering f ,

in practice, this term may appear because of variations

in DC-DC regulator efficiency across the range of output

power, CMOS leakage currents, and other second order

effects [26].

Summing the power consumption of all system com-

ponents together, a single equation for the system-level

power consumption can be obtained as: P = S3 × f3 +

S2×f2 +S1×f +S0, where f is the CPU clock frequency

and S0, S1, S2, and S3 are system parameters. The cor-

responding energy consumption of a task Ti is given by:

Ei = P × ei, where ei denotes Ti’s expected execution

time. Therefore, the expected energy consumption per

cycle is given by:

E(f) = S3 × f2 + S2 × f + S1 +
S0

f
(1)

2.7 Scheduling Criterion

Given the models previously described, we consider the

UER metric to integrate timeliness performance and en-

ergy consumption. The UER of a job measures the amount

of utility that can be accrued per unit energy consump-

tion by executing the job and the job(s) that it depends

upon (due to resource dependencies). A job also has a Lo-

cal UER (LoUER), which is defined as the UER that the

job can potentially accrue by itself at the current time, if

it were to continue its execution.

We define the system-level UER as the ratio of the total

accrued utilities and total consumed energy of the system

i.e., UER =
∑n

i=1 Ui∑n
i=1 Ei

.

Thus, the ReUA algorithm that we present considers

a two-fold scheduling criterion: (1) assure that each task

Ti accrues the specified percentage νi of its maximum

possible utility with at least the specified probability ρi;

and (2) maximize the system-level UER, which implies

the system’s “energy efficiency.”

This problem isNP-hard because it subsumes the prob-

lem of scheduling dependent tasks with step-shaped TUFs,

which has been shown to be NP-hard in [10]. Further, it

has not been previously studied.

3. THE REUA ALGORITHM

3.1 Determining Task Critical Time

To assure that tasks accrue their desired utility per-

centage and maximize the energy efficiency, ReUA needs

to provide predictable CPU scheduling and speed scaling.

Let si,j be the sojourn time of the jth job of task Ti.

Then, we have Pr (Ui(si,j) ≥ νi × Umax
i ) ≥ ρi. By

the assumption of non-increasing TUFs, it is sufficient

to have Pr(si,j ≤ Di) ≥ ρi, where Di is the upper

bound on the sojourn time of task Ti. Di is calculated

as Di = U−1
i (νi × Umax

i ), where U−1
i (x) denotes the in-
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verse function of TUF Ui (·). If there are more than one

points on the time axis that correspond to νi × Umax
i ,

we choose the latest point. By doing so, we can poten-

tially reduce the CPU bandwidth demand of a task. We

call Di “critical time” hereafter. Thus, Ti is probabilisti-

cally guaranteed to accrue at least the utility percentage

νi = Ui(Di)
/
Umax

i , with probability ρi.

Note that the period or minimum inter-arrival time Pi

and critical time Di of the task Ti have the following

relations: (1) Pi = Di for a binary-valued, downward step

TUF; and (2) Pi ≥ Di, for other non-increasing TUFs.

3.2 Statistical Estimation of Demand

ReUA’s next step is to decide the number of cycles that

must be allocated to each task. To provide statistical

timeliness guarantees while maximizing energy efficiency,

ReUA allocates cycles based on the statistical require-

ments and demand of each task. Knowing the mean and

variance of task Ti’s demand Yi, by a one-tailed version

of the Chebyshev’s inequality, when y ≥ E(Yi), we have:

Pr[Yi < y] ≥ (y − E(Yi))
2

V ar(Yi) + (y − E(Yi))2
(2)

From a probabilistic point of view, Equation 2 is the

direct result of the cumulative distribution function of the

task Ti’s cycle demands i.e., Fi(y) = Pr[Yi ≤ y]. Now,

let ρi be the statistical performance requirement of Ti i.e.,

each job Ji,j of task Ti must accrue νi percentage of utility

with a probability ρi. To satisfy this requirement, we

assume ρi = (Ci−E(Yi))
2

V ar(Yi)+(Ci−E(Yi))2
and obtain Ci = E(Yi)+√

ρi×V ar(Yi)
1−ρi

.

Thus, the scheduler allocates Ci cycles to each job Ji,j ,

so that the probability that job Ji,j requires no more than

the allocated Ci cycles is at least ρi i.e., Pr[Yi < Ci] ≥ ρi.

3.3 UA Scheduling with DVS

The parameter Ci determines how long (in number of

cycles) to execute each task. We now discuss the other

scheduling dimensions—how fast (i.e., CPU speed scal-

ing) and when to execute each task.

The intuitive idea is to assign a uniform speed to ex-

ecute all tasks until the task set changes. Assume that

there are n tasks and each task is allocated Ci cycles

within its Di. The aggregate CPU demand of the concur-

rent tasks is:

n∑
i=1

Ci

Di
(3)

cycles per second (MHz). To meet this aggregate demand,

the CPU only needs to run at speed
∑n

i=1
Ci
Di

. Equation 3

thus gives the static, optimal CPU speed to minimize the

total energy while meeting all the Di under the tradi-

tional energy consumption model, assuming that each task

presents its worst-case workload to the processor at every

instance [5].

However, the cycle demands of tasks often vary greatly.

In particular, a task may, and often does, complete a job

before using up its allocated cycles. Such early completion

often results in CPU idle time, thereby wasting energy. To

save this energy, we need to dynamically adjust the CPU

speed.

In general, there are two dynamic speed scaling ap-

proaches, namely the conservative approach and the ag-

gressive approach. The conservative approach assumes

that a job will use its allocated cycles, and starts a job

with at above static optimal speed and then decelerates

when the job completes early. On the other hand, the

aggressive approach assumes that a job will use fewer cy-

cles than allocated, and starts a job at a lower speed and

then accelerates as the job progresses. The aggressive ap-

proach is adopted in [38] because it saves more energy for

jobs that complete early, and most jobs in its studied ap-

plication use fewer cycles than allocated. Similar results

are also shown in [5] and [31].

We consider the energy consumed by the system in-

stead of that by just the processor and seek to maximize

energy efficiency UER. Equation 1 indicates that there is

an optimal value (not necessarily the lower one) for clock

frequency that minimizes Ei for a task Ti.
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We assume that the processor can be operated at m

frequencies {f1, f2, · · · , fm

∣∣f1 < · · · < fm}. ReUA first

decides the optimal frequency for each task Ti that maxi-

mizes the task’s local UER. At each scheduling event, for

all the n′ jobs {J1, J2, · · · , Jn′} currently in the schedul-

ing queue, ReUA sorts them based on their UER under

the highest frequency fm, in a non-increasing order. The

algorithm then inserts the jobs into a tentative schedule

in the order of their critical times (earliest critical time

first), while respecting their resource dependencies.

We define the system load (Load) as

Load =
1

fm

n∑
i=1

Ci

Pi
(4)

and define the critical time-based load (Cload) as

Cload =
1

fm

n∑
i=1

Ci

Di
(5)

For downward step TUFs, Cload = Load.

If the system is overloaded, it is possible that the queue

{J1, J2, · · · , Jn′}, whose queue load (Qload) is defined as

1
fm

∑n′
k=1(CJk

/
Jk.X), is also overloaded. Note that Jk.X

refers to the termination time of Jk. Thus, upon inserting

a job, ReUA performs feasibility check and ensures the

feasibility of the tentative schedule; that is, the predicted

completion time of each job in the tentative schedule never

exceeds its termination time.

To calculate a CPU frequency for the currently selected

job i.e., the one at the head of the tentative schedule, we

adopt a stochastic DVS technique similar to the Look-

Ahead EDF (LaEDF) technique discussed in [31]. The

calculated value is compared with the job’s local optimal

frequency, and the higher one is selected as the CPU fre-

quency. This process is elaborated in Section 3.4.

Intuitively, during overloads it is very possible for the

DVS technique to select the highest frequency fm for the

execution of the processor, since the aggregate CPU de-

mand defined in Equation 3 is higher than fm. Therefore,

during overloads, with the constant energy consumption

at frequency fm, to maximize the collective utility per

unit energy as our objective, we need to maximize the

collective utility. This is exactly why we sort the jobs

based on their UERs and perform the feasibility check.

Such heuristics are explained in detail in the next section.

3.4 Procedural Description

3.4.1 Overview

The scheduling events of ReUA include the arrival and

completion of a job, a resource request, a resource release,

and the expiration of a time constraint such as the arrival

of the termination time of a TUF. To describe ReUA, we

define the following variables and auxiliary functions:

• T is the task set. Da
i is task Ti’s current invocation’s

absolute critical time; Cr
i denotes its remaining compu-

tation cycles for the current job.

• Jr is the current unscheduled job set; σ is the ordered

schedule. Jk ∈ Tr is a job; Jk.Dep is its dependency list.

• Jk.D is job Jk’s critical time; Jk.X is its termination

time; Jk.C is its remaining cycle.

• T (Jk) returns the corresponding task of job Jk. Thus,

if i = T (Jk), then Jk.C = Cr
i , and Jk.D = Da

i .

• Function Owner(R) denotes the jobs that are currently

holding resource R; reqRes(T) returns the resource re-

quested by T .

• headOf(σ) returns the first job in σ; sortByUER(σ)

sorts σ by each job’s UER. selectFreq(x) returns the

lowest frequency fi ∈ {f1, f2, · · · , fm

∣∣f1 < · · · < fm},
such that x ≤ fi.

• Insert(T,σ,I) inserts T in the ordered list σ at the

position indicated by index I; if there are already entries

in σ at the index I, T is inserted before them. After

insertion, the index of T in σ is I.

• Remove(T,σ,I) removes T from ordered list σ at the

position indicated by index I; if T is not present at the

position I in σ, the function takes no action.

• lookup(T,σ) returns the index value associated with

the first occurrence of T in the ordered list σ.

• feasible(σ) returns a boolean value indicating sched-

ule σ’s feasibility. For a schedule σ to be feasible, the
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predicted completion time of each job in σ must never

exceed its termination time. The predicated completion

time is calculated under the highest frequency fm.

A description of ReUA at a high level of abstraction is

shown in Algorithm 1. In line 3 of Algorithm 1, the pro-

cedure offlineComputing(), as shown in Algorithm 2,

calculates Di and Ci for each task. The procedure also

computes the optimal frequency fo
Ti

for each task Ti that

maximizes the task LoUER. LoUER is defined as Ui(t +

Ci
f

)
/

(Ci × E(f)), where E(f) is derived using Equation 1.

This calculation is performed at t = 0.

Algorithm 1: ReUA: High Level Description

1: input : T = {T1, · · · , Tn}, Jr = {J1, · · · , Jn′}
2: output : selected job Jexe and frequency fexe

3: offlineComputing (T);
4: Initialization: t := tcur, σ := ∅;
5: switch triggering event do
6: case task release(Ti) Cr

i = Ci;
7: case task completion(Ti) Cr

i = 0;
8: otherwise Update Cr

i ;

9: for ∀Jk ∈ Jr do
10: if !feasible( Jk) then
11: abort(Jk);

else
12: Jk.Dep := buildDep(Jk);

13: for ∀Jk ∈ Jr do
14: Jk.UER:=calculateUER(Jk, t);

15: σtmp :=sortByUER(Jr);
16: for ∀Jk ∈ σtmp from head to tail do
17: if Jk.UER > 0 then
18: σ := insertByECF(σ, Jk);

19: else break;

20: Jexe:=headOf(σ);
21: fexe:=decideFreq(T, Jexe, t);
22: return Jexe and fexe;

When ReUA is invoked at time tcur, the algorithm first

updates each task’s remaining cycle (the switch starting

from line 5). The algorithm then checks the feasibility of

the jobs. If the earliest predicted completion time of a job

is later than its termination time, it can be safely aborted

(line 11). Otherwise, ReUA builds the dependency list for

the job (line 12).

The UER of each job is computed by procedure cal-

culateUER(), and the jobs are then sorted by their UERs

(line 14 and 15). In each step of the for loop from line 16

to 19, the job with the largest UER and its dependencies

Algorithm 2: offlineComputing()

1: input: Task set T; output: Di, Ci, fo
Ti

;

2: Di = U−1
i (νi × Umax

i );

3: Ci = E(Yi) +
√

ρi×V ar(Yi)
1−ρi

;

4: Decide fo
Ti

, such that Ui(
Ci
fo

Ti

)
/ (

Ci × E(fo
Ti

)
)

=

max(Ui(
Ci
fj

)/ (Ci × E(fj))), ∀j ∈ {1, 2, · · · , m};

are inserted into σ, if it can produce a positive UER. The

output schedule σ is then sorted by the jobs’ critical times

by the procedure insertByECF().

Finally, ReUA analyzes the demands of the task set and

applies DVS to decide the CPU frequency fexe (line 21).

The selected job Jexe, which is at the head of σ, is exe-

cuted at the frequency fexe (line 20–22).

3.4.2 Resource and Deadlock Handling

Before ReUA can compute job partial schedules, the

dependency chain of each job must be determined. Algo-

rithm 3 shows this procedure.

Algorithm 3: buildDep()

1: input: Job Jk; output: Jk.Dep ;
2: Initialization : Jk.Dep := Jk; Prev := Jk;
3: while reqRes(Prev) 6= ∅∧

Owner( reqRes(Prev) ) 6= ∅ do
4: Jk.Dep :=Owner(reqRes(Prev) ) ·Jk.Dep;
5: Prev := Owner(reqRes(Prev) );

Algorithm 3 follows the chain of resource request/ownership.

For convenience, the input job Jk is also included in its

own dependency list. Each job Jl other than Jk in the

dependency list has a successor job that needs a resource

which is currently held by Jl. Algorithm 3 stops either

because a predecessor job does not need any resource or

the requested resource is free. Note that “¦” denotes an

append operation. Thus, the dependency list starts with

Jk ’s farthest predecessor and ends with Jk.

To handle deadlocks, we consider a deadlock detec-

tion and resolution strategy, instead of a deadlock pre-

vention or avoidance strategy. Our rationale for this is

that deadlock prevention or avoidance strategies normally

pose extra requirements—e.g., resources must always be

requested in ascending order of their identifiers.
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Further, restricted resource access operations that can

prevent or avoid deadlocks, as done in many resource ac-

cess protocols, are not appropriate for the class of em-

bedded real-time systems that we focus on. For example,

the Priority Ceiling protocol [32] assumes that the highest

priority of jobs accessing a resource is known. Likewise,

the Stack Resource policy [6] assumes preemptive “levels”

of threads a priori. Such assumptions are too restrictive

for the class of systems that we focus on (due to their

dynamic nature).

Recall that we are assuming a single-unit resource re-

quest model. For such a model, the presence of a cycle

in the resource graph is the necessary and sufficient con-

dition for a deadlock to occur. Thus, the complexity of

detecting a deadlock can be mitigated by a straightfor-

ward cycle-detection algorithm.

Algorithm 4: Deadlock Detection and Resolution

1: input: Requesting job Jk, tcur;
/* deadlock detection */;

2: Deadlock := false;
3: Jl := Owner(reqRes( Jk) );
4: while Jl 6= ∅ do
5: Jl.LoUER := UJl(tcur + Jl.C

fm
)
/
(Jl.C×E(fm));

6: if Jl = Jk then
7: Deadlock := true;
8: break;

else
9: Jl := Owner(reqRes( Jl) );

/* deadlock resolution if any */;
10: if Deadlock = true then
11: abort(The job Jm with the minimal LoUER

in the cycle);

The deadlock detection and resolution algorithm (Al-

gorithm 4) is invoked by the scheduler whenever a job

requests a resource. Initially, there is no deadlock in the

system. By induction, it can be shown that a deadlock

can occur if and only if the edge that arises in the re-

source graph due to the new resource request lies on a

cycle. Thus, it is sufficient to check if the new edge re-

sulting from the job’s resource request produces a cycle

in the resource graph.

To resolve the deadlock, some job needs to be aborted.

If a job Jl were to be aborted, then its timeliness utility

is lost, but energy is still consumed. To minimize such

loss, we compute the LoUER of each job at tcur at the

frequency fm. ReUA aborts the job with the minimal

LoUER in the cycle to resolve a deadlock.

3.4.3 Manipulating Partial Schedules

The calculateUER() algorithm (Algorithm 5) accepts

a job Jk (with its dependency list) and the current time

tcur. On completion, the algorithm determines UER for

Jk, by assuming that jobs in Jk.Dep are executed from

the current position (at time tcur) in the schedule, while

following the dependencies.

Algorithm 5: calculateUER()

1: input: Jk, tcur; output: Jk.UER;
2: Initialization : Cc := 0, E := 0, U := 0;
3: for ∀Jl ∈ Jk.Dep, from head to tail do
4: Cc := Cc + Jl.C;
5: U := U + UJl(tcur + Cc

fm
);

6: E := E(fm)× Cc;
7: Jk.UER := U

/
E;

8: return Jk.UER;

To compute Jk’s UER at time tcur, ReUA considers

each job Jl that is in Jk’s dependency chain, which needs

to be completed before executing Jk. The total compu-

tation cycles that will be executed upon completing Jk is

counted using the variable Cc of line 4. With the known

expected computation cycles of each task, we can derive

the expected completion time and expected energy con-

sumption under fm for each task, and thus get their ac-

crued utility to calculate UER for Jk.

Thus, the total execution time (under fm) of the job

Jk and its dependents consists of two parts: (1) the time

needed to execute the jobs holding the resources that are

needed to execute Jk; and (2) the remaining execution

time of Jk itself. According to the process of buildDep(),

all the relative jobs are included in Jk.Dep.

Note that we are calculating each job’s UER assuming

that the jobs are executed at the current position in the

schedule. This would not be true in the output sched-

ule σ, and thus affects the accuracy of UERs calculated.

But with the non-increasing shape of each job’s TUF,

we are calculating the highest possible UER of each job
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by assuming that it is executed at the current position.

Intuitively, this would benefit the final UER, since in-

sertByECF() always takes the job with the highest UER

at each insertion on σ. Also, the UER calculated for the

scheduled job, which is at the head of the feasible sched-

ule, is always accurate.

The details of insertByECF() in line 18 of Algorithm 1

are shown in Algorithm 6. insertByECF() updates the

tentative schedule σ by attempting to insert each job,

along with all of its dependencies, to σ. The updated

schedule σ is an ordered list of jobs, where each job is

placed according to the critical time it should meet.

Algorithm 6: insertByECF()

1: input : Jk and an ordered job list σ

2: output : the updated list σ

3: if Jk /∈ σ then
4: copy σ into σtent: σtent :=σ;
5: Insert(Jk, σtent, Jk.D);
6: CuCT = Jk.D;
7: for ∀Jl ∈ {Jk.Dep− Jk} from tail to head do
8: if Jl ∈ σtent then
9: CT=lookup(Jl, σtent);

10: if CT < CuCT then continue;
11: else Remove(Jl, σtent, CT);

12: CuCT :=min(CuCT, Jl.D);
13: Insert(Jl, σtent, CuCT);

14: if feasible(σtent) then
15: σ := σtent;

16: return σ;

Note that the time constraint that a job should meet

is not necessarily the job critical time. In fact, the index

value of each job in σ is the actual time constraint that

the job must meet.

A job may need to meet an earlier critical time in order

to enable another job to meet its time constraint. When-

ever a job is considered for insertion in σ, it is scheduled

to meet its own critical time. However, all of the jobs

in its dependency list must execute before it can execute,

and therefore, must precede it in the schedule. The index

values of the dependencies can be changed with Insert()

in line 13 of Algorithm 6.

The variable CuCT is used to keep track of this infor-

mation. Initially, it is set to be the critical time of job Jk,

which is tentatively added to the schedule (line 6, Algo-

rithm 6). Thereafter, any job in Jk.Dep with a later time

constraint than CuCT is required to meet CuCT . If, how-

ever, a job has a tighter critical time than CuCT , then it

is scheduled to meet the tighter critical time, and CuCT

is advanced to that time since all jobs left in Jk.Dep must

complete by then (lines 12–13, Algorithm 6). Finally, if

this insertion produces a feasible schedule, then the jobs

are included in the schedule; otherwise, not (lines 14–15).

It is worth noting that insertByECF() sorts jobs in the

non-decreasing critical time order if possible, but its sub-

procedure feasible() checks the feasibility of σtent based

on each job’s termination time. This is because a jobs’

critical time is smaller or equal to its termination time.

So even if a job cannot complete before its critical time, it

may still accrue some utility, as long as it finishes before

its termination time. Thus, we need to prevent “over-

killing” in feasible(). The effectiveness of such preven-

tion is further illustrated in Section 5.3.

3.4.4 Deciding the Processor Frequency

ReUA adopts a stochastic DVS technique similar to

LaEDF [31], as shown in Algorithm 7.

Algorithm 7: DecideFreq()

1: input: T, Jexe, tcur; output: fexe ;
2: Initialization : Ti.Dep := Ti; PrevT := Ti;
3: Util := C1/D1 + · · ·+ Cn/Dn;
4: s := 0;
5: for i = 1 to n, Ti ∈ {T1, · · · , Tn

∣∣Da
1 ≥ · · · ≥ Da

n}
do

6: /* reverse EDF order of tasks */;
7: Util := Util − Ci/Di;
8: x :=max(0, Cr

i − (fm − Util)× (Da
i −Da

n));

9: Util :=

{
1, if Da

i −Da
n = 0

Util +
Cr

i −x

Da
i −Da

n
, otherwise ;

10: s := s + x;

11: f :=min(fm, s/(Da
n − tcur));

12: fexe:=selectFreq (f);
13: fexe:=max(fexe, fo

T (Jexe));

ReUA keeps track of the remaining computation cycles

Cr
i , as updated from line 5 to line 8 of Algorithm 1. Unlike

LaEDF, ReUA uses the aggregate CPU demand shown

in Equation 3 during the process of DVS. From line 3

to line 11, the algorithm considers the interval until the

next task critical time and tries to“push”as much work as
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possible beyond the critical time. The algorithm considers

the tasks in the latest-critical-time-first order in line 5.

x is the minimum number of cycles that the task must

execute before the closest critical time, Da
n, in order for

it to complete by its own critical time (line 8), assum-

ing worst-case aggregate CPU demand Util by tasks with

earlier critical times. The aggregate demand Util is ad-

justed to reflect the actual demand of the task for the

time after Da
n (line 9). s is simply the sum of the x values

calculated for all of the tasks, and therefore reflects the

minimum number of cycles that must be executed by Da
n

in order for all tasks to meet their critical times (line 10).

In line 11, the operating CPU frequency is set just fast

enough to execute s cycles over this interval.

Thus, decideFreq() capitalizes on early task comple-

tion by deferring work for future tasks in favor of scaling

the current task. In addition, in line 9, we consider the

case that jobs of different tasks have the same absolute

critical times, which sometimes occurs, especially during

overloads. Also, it is possible that during overloads, the

required frequency may be higher than fm and select-

Freq() would fail to return a value. In line 11, we solve

this by setting the upper limit of the required frequency

to be fm.

Finally, in line 13, the result of selectFreq() is com-

pared with T (Jexe)’s optimal frequency decided in of-

flineComputing(). The higher frequency is selected to

preserve the statistical performance guarantee and maxi-

mize system-level UER.

4. PROPERTIES OF REUA

4.1 Non-Timeliness Properties

We now discuss ReUA’s non-timeliness properties in-

cluding deadlock-freedom, correctness, and mutual exclu-

sion.

ReUA respects resource dependencies by ensuring that

the job selected for execution can execute immediately.

Thus, no job is ever selected for normal execution if it is

resource-dependent on some other job.

Theorem 1. ReUA ensures deadlock-freedom.

Proof A cycle in the resource graph is the sufficient

and necessary condition for a deadlock in the single-unit

resource request model. ReUA does not allow such a cycle

by deadlock detection and resolution; so it is deadlock

free. 2

Lemma 2. In insertByECF()’s output, all the depen-
dents of a job must execute before it can execute, and
therefore, must precede it in the schedule.

Proof insertByECF() seeks to maintain an output queue

ordered by jobs’ critical times, while respecting resource

dependencies. Consider job Jk and its dependent Jl. If

Jl.D is earlier than Jk.D, then Jl will be inserted before

Jk in the schedule. If Jl.D is later than Jk.D, Jl.D is

advanced to be Jk.D with the operation with CuCT . Ac-

cording to the definition of insert(), after advancing the

critical time, Jl will be inserted before Jk. 2

Theorem 3. When a job Jk that requests a resource R
is selected for execution by ReUA, Jk’s requested resource
R will be free. We call this ReUA’s correctness property.

Proof From Lemma 2, the output schedule σ is correct.

Thus, ReUA is correct. 2

Thus, if a resource is not available for a job Jk’s request,

jobs holding the resource will become Jk’s predecessors.

We present ReUA’s mutual exclusion property by a corol-

lary.

Corollary 4. ReUA satisfies mutual exclusion con-
straints in resource operations.

4.2 Timeliness Properties

We consider timeliness properties under no resource de-

pendencies, where ReUA can be compared with a num-

ber of well-known algorithms. Specifically, we consider

the following two conditions: (1) a set of independent pe-

riodic tasks, where each task has a single computational

thread with a downward step TUF (such as the one shown

in Figure 1(d)); and (2) there are sufficient processor cy-

cles for meeting all task termination times—i.e., there is

no overload.
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Theorem 5. Under conditions (1) and (2), a schedule
produced by EDF [17] is also produced by ReUA, yielding
equal total utilities. Not coincidentally, this is simply a
termination-time ordered schedule.

Proof We prove this by examining Algorithms 1 and 6.

For a job J without dependencies, J.Dep only contains J

itself. For periodic tasks with step TUFs, a task’s crit-

ical time is the same as its termination time. During

non-overload situations, σ from line 18 of Algorithm 1 is

termination-time ordered.

The TUF termination time that we consider is analo-

gous to a deadline in [17]. As proved in [17,23], a deadline-

ordered schedule is optimal (with respect to meeting all

deadlines) when there are no overloads. Thus, σ yields

the same total utility as EDF. 2

Some important corollaries about ReUA’s timeliness

behavior during non-overload situations can be deduced

from EDF’s optimality [11].

Corollary 6. Under conditions (1) and (2), ReUA
always meets all task termination-times.

Corollary 7. Under conditions (1) and (2), ReUA
yields the minimum possible maximum lateness.

ReUA also provides statistical performance guarantees

under possible conditions. With condition (1), the utility

requirement of a task can only take ν = 0 or ν = 1.

From Corollary 6, we can derive the properties of ReUA

on performance guarantees.

Theorem 8. Under conditions (1) and (2), ReUA meets
all statistical performance requirements.

Proof From Corollary 6, under conditions (1) and (2),

ReUA can meet all task termination-times. This ensures

that νi = 1 can be satisfied for each task. Based on the

results of Equation 2, at least ρi demanded processor cy-

cles of task Ti are less than the allocated cycles. From

Corollary 6, all the allocated cycles can be completed be-

fore their termination times. Thus, for task Ti, ReUA can

meet at least ρi termination times; i.e., ReUA accrues νi

utility with a probability at least ρi. 2

From Theorem 8, we can derive its counterpart for non-

increasing TUFs with the definitions of Equations 4 and 5.

Theorem 9. For a set of independent periodic tasks,
where each task has a single computational thread with a
non-increasing TUF, Cload <= 1 is the sufficient condi-
tion for ReUA to meet all statistical performance require-
ments.

Proof With νi and ρi of task Ti, ReUA converts the

performance guarantee problem to the problem of meeting

critical times. If Cload <= 1, according to the result of

Theorem 8, the assertion holds. 2

Note that Theorem 9 only states that Cload <= 1 is

the sufficient condition. Actually, it is not the necessary

condition. We illustrate this with an example in Section 5.

5. EXPERIMENTAL RESULTS

In order to experimentally evaluate the performance

of ReUA, we developed a simulator for the operation of

hardware capable of DVS, and performed extensive simu-

lations. We first present the simulation methodology, and

then discuss the results.

5.1 Simulation Methodology

Our simulator is written with the simulation tool OM-

NET++ [34], which provides a discrete event simulation

environment. The simulator takes as input a task set,

specified with the period or minimum inter-arrival time

(abbreviated as P/I.A.), and real-time requirements. The

tasks’ time constraints i.e., TUFs and the means/variances

of the cycle demands are also specified as the input. The

tasks contained in a task set G are selected from Table 1.

The table also summarizes these tasks’ input parameters.

Table 1: Experimental Tasks

Task Jobs P/I.A. TUF

T1 130 21 step, height = 10
T2 124 22 step, height = 80
T3 137 20 step, height = 10
T4 109 25 step, height = 80

T5 130 21

{
−0.025t2 + 10, 0 ≤ t ≤ 20

0, otherwise

T6 124 22

{ −4x + 80, 0 ≤ t ≤ 20
0, otherwise

T7 137 25

{
−0.01x2 − 0.15x + 10, 0 ≤ t ≤ 25

0, otherwise

T8 124 21

{ −0.5x + 10, 0 ≤ t ≤ 20
0, otherwise

T9 124 20 the same as T8’s
T10 124 25 the same as T8’s
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Figure 2: Normalized UER vs. Load with Step TUFs under Various Energy Model Settings

We change the tasks’ cycle demands to change the sys-

tem load (Load) as defined in Equation 4. For each de-

mand Yi, we keep V ar(Yi) ≈ E(Yi), and generate normally-

distributed cycle demands.

The energy consumption per cycle at a particular fre-

quency is calculated using Equation 1. In practice, the S3,

S2, S1, and S0 terms depend on the power management

state of the system and its subsystems. For example, if

a laptop has its display on, the S0 term will be large rel-

ative to the others. But if the display has been turned

off, the S0 term will be much smaller. Different types of

systems will also have different relative values for the S

terms. The S3 term is probably a much larger fraction of

the total power in a PDA than it is in a laptop [26,27,36].

We use experimental settings that are similar to that in

Martin’s PhD thesis [26], but de-normalize the terms. For

comparison, the experiments are carried out under three

energy model settings, as shown in Table 2. Note that E1

is the same as the traditional energy model, which only

considers the energy consumed by the processor.

Table 2: Energy Model Settings

Energy Model S3 S2 S1 S0

E1 1.0 0 0 0

E2 0.75 0 0 0.25f3
m

E3 0.5 0 0 0.5f3
m

Other parameters that are supplied to the simulator in-

clude the processor specification. We consider a processor

that supports seven different frequencies including {360,

550, 640, 730, 820, 910, 1000 MHz}. These frequencies

reflect the setting that is available on a platform incor-

porating an AMD k6 processor with AMD’s PowerNow!

mechanism [3].

In addition to ReUA, we implemented the following

schemes for comparison: BaseEDF, LaEDF, StaticEDF,

and LaEDF-NA.

BaseEDF is the EDF scheduler without any DVS sup-

port and uses the highest frequency. LaEDF is the Look-

ahead RT-DVS for EDF scheduler in [31]. StaticEDF uses

the constant speed given by Equation 3 and a “ceiling” up

to the lowest suitable frequency in {f1, f2, · · · , fm}. Stat-

icEDF switches to the lowest frequency whenever there

is no ready task. Combining the static schemes in [5]

and [31], StaticEDF is the static optimal solution to the

DVS problem for the periodic task model with step TUFs

under the available frequency set. The previous three

schemes abort infeasible tasks during overloads. Thus,

LaEDF-NA is LaEDF with no abortion.

LaEDF, LaEDF-NA, and StaticEDF perform DVS on

periodic tasks with known worst-case workload, which is

unavailable in our application model. Thus, we use the

minimum inter-arrival time and cycles allocated by ReUA

as their inputs.

5.2 Impact of Energy Models

In our first set of simulation experiments, we determine

the effects of our new energy model. We consider the task

set G1 = {T1, T2, T3, T4}, and apply different schemes on

G1 under different energy settings. We consider down-

ward step TUFs, since all the other algorithms compared

can only deal with deadlines. Each task Ti has the statis-
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Figure 3: Normalized Energy and AUR vs. Load with Step TUFs under Energy Setting E2

tical performance requirement of νi = 1 and ρi = 0.96.

Figure 2 shows the UER for all the DVS schemes nor-

malized to the BaseEDF under energy model settings E1,

E2, and E3, as Load varies from 0.2 to 1.8. We observe

that under all three energy settings, ReUA performs the

best among all strategies under all loads, and especially

during overloads. We also observe that LaEDF-NA yields

almost zero UER during overloads.

As the figure shows, during overloads, the normalized

UERs produced by LaEDF, StaticEDF, and BaseEDF

converge to 1. This is because, all three algorithms select

the highest frequency by DVS calculation during over-

loads, and bear no difference in scheduling. As the term

S0 in the energy model increases, ReUA adjusts the se-

lected frequency to accrue more UER. This effect is more

pronounced under E3, when LaEDF, LaEDF-NA, and

StaticEDF perform worse than BaseEDF, while ReUA

still outperforms BaseEDF during all loads.

We speculate that, the UER gap between ReUA and the

other schemes is because, during overloads, ReUA saves

more energy and accrues higher utility. Our speculation

is verified in Figure 3, which shows the accrued utility

and energy consumption normalized to BaseEDF, under

energy model setting E2.

From Figure 3(a), we observe that during under-loaded

situations, all schemes accrue the same (optimal) util-

ity because of EDF’s optimality [11] during such situa-

tions. But during overload situations, LaEDF-NA suffers

domino effects and accrues almost no utility [24]. On

the other hand, ReUA seeks to schedule jobs with higher

UERs, and thus accrues remarkably higher utility than

the others.

In Figure 3(b), during under-loads, we observe that

ReUA saves more energy than the other schemes. Fur-

ther, this portion of the curves is nearly symmetric to

the corresponding portion of Figure 2(b). The energy

consumption of LaEDF-NA increases linearly with Load,

because it performs no abortion and executes every job

that arrives.

Since no strategies except ReUA consider the system-

level energy consumption, we only use the energy model

E1 in our further simulation experiments.

5.3 Performance Guarantee

To evaluate the statistical performance guarantees pro-

vided by ReUA, we first consider the task set G1 with

the performance requirement of {(νi = 1, ρi = 0.96), i =

1, · · · , 4}.
Figure 4 shows the accrued utility ratio (AUR) and

critical-time meet ratio (DMR) of each task under increas-

ing Load. AUR is the ratio of accrued aggregate utility

to the maximum possible utility, and DMR is the ratio

of the jobs meeting their critical times to the total job

releases of a task. For a task with a downward step TUF,

its AUR and DMR are identical; so we show them in one

plot.

As Figure 4(a) shows, with ReUA during under-loads,

all tasks accrue 100% AUR and DMR, except task T1,
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Figure 4: AUR and DMR vs. Load of G1 under E1

whose AUR and DMR is 99.23% at Load = 0.3. Thus,

ReUA delivers the statistical performance guarantee of

being able to accrue 100% of task maximum utility with

a probability at least 96% for all tasks. This also validates

Theorem 8.
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Figure 5: AUR and DMR vs. Cload of G2 under E1

Comparing the results during overloads in Figure 4(a)

and 4(b), we observe that ReUA still achieves near 100%

AUR/DMR of task T2 and T4, but achieves less AUR/DMR

of T1 and T3. One the other hand, LaEDF decreases the

AUR/DMR of T2 and T4 more than the other two. This is

because, T2 and T4 have TUFs with higher “heights” and

thus higher utility; so ReUA accrues more system-wide

utility by completing these tasks before their termination

times. Schemes based on EDF cannot make such schedul-

ing decisions—T2 and T4 are not favored by LaEDF since

they have longer critical times than T1 and T3. We show

the comparison of utility accrual for various schemes in

Section 5.4.

Besides G1, we also consider the task set G2 = {T3, T5, T6, T7}
that contains linear-shaped and parabolic-shaped TUFs

(with non-increasing portion) as well as step TUFs. The

performance requirements of G2 are {(ν3 = 1.0, ρ3 =

0.80), (ν5 = 0.55, ρ5 = 0.80), (ν6 = 0.5, ρ6 = 0.80), (ν7 =

0.55, ρ7 = 0.80)}.
Figure 5 shows the AUR and DMR of each task in G2

with Cload varying from 0.7 to 2.0. System Load also

changes with Cload, and the corresponding values are

shown in Table 3.

Table 3: Cload and Load
Cload 0.7 0.8 0.9 1.0 1.1 1.2 1.3
Load 0.44 0.5 0.57 0.6 0.7 0.76 0.83

Cload 1.4 1.5 1.6 1.7 1.8 1.9 2.0
Load 0.89 0.95 1.01 1.06 1.13 1.2 1.26

We consider task T7 as an example to illustrate how

ReUA delivers statistical performance guarantees. As

shown in Figure 5, when Cload ≤ 1, task T7 is guar-

anteed to accrue at least ν7 = 55% of its maximum util-

ity with a probability no less than ρ7 = 80%. For ex-

ample, at Cload = 1, ReUA accrues AUR=86.97% and

DMR=100%, which implies that it can complete all the

demanded cycles of the task before their critical times.

2004 ACM International Conference on Embedded Software



0


0.4


0.8


1.2


1.6


2


1
 3
 5
 7
 9
PHR


N
o
r
m

a
li

z
e
d
 U

E
R




ReUA


LaEDF


(a) G3: Step TUFs

0


0.4


0.8


1.2


1.6


2


2.4


1
 3
 5
 7
 9
PHR


N
o
r
m

a
li

z
e
d
 U

E
R




ReUA


LaEDF


(b) G4: Linear TUFs

Figure 6: Normalized UER vs. PHR under E1

Furthermore, 86.97% of the task maximum utility can be

accrued at a probability 100%—much more than the per-

formance requirements.

But Cload ≤ 1 is not the necessary condition for de-

livering statistical performance guarantees. For example,

at Cload = 1.6 and Load = 1.02, task T7 can still accrue

AUR=71.21% and DMR=89.91%. This is because, for a

task with a non-step and non-increasing TUF, even if the

task misses its critical time, the task can complete before

its termination time and accrue some amount of utility,

which depends on the TUF shape. Therefore, these ex-

periments validate Theorem 9.

Another major pattern that can be observed from Fig-

ure 5 is that, as Cload and Load increases, task T3 with

a step TUF accrues more AUR and DMR than the other

tasks with non-step TUFs. This is because, T3’s full util-

ity can be accrued as long as it is completed before its

termination time, while completing other tasks just be-

fore their termination times may result in very low util-

ity. In addition, among tasks T5, T6, and T7 with non-step

TUFs, the one with the highest maximum utility i.e., T6,

is favored by ReUA to accrue more system-wide utility.

5.4 Effectiveness of Utility Accrual

From experiments of the previous sections, we observe

that ReUA mimics the behavior of EDF during under-

loaded situations. During overloads, all schemes tend to

select fm as the execution frequency by DVS, and thus

have the same energy consumption. Thus, the higher

UER produced by ReUA than the others is due to the

fact that ReUA seeks to accrue more utility during such

situations. In this section, we vary the TUF shape of each

task to demonstrate ReUA’s utility accrual capability.

We roughly define the ratio of the maximum and min-

imum heights of TUFs in a task set as peak height ratio

(or PHR). We consider two task sets G3 and G4 with

step TUFs and linear TUFs, respectively. G3 is the set

G3 = {T1, T2, T3, T4}, where the heights of U2 and U4 are

varied from 10 to 100. G4 is the set G4 = {T6, T8, T9, T10},
where the crossing points of the utility-axes and U6 and

U10 are varied from 10 to 100. In addition, the intersec-

tions with the t-axes of all TUFs in G4 are maintained at

t = 20. Thus, both G3 and G4 have PHRs varying from

1 to 10.

Figure 6(a) shows the UERs for ReUA and LaEDF

that are normalized to LaEDF under G3 with Load =

1.5. During overloads, LaEDF, StaticEDF, and BaseEDF

yield the same performance; so we only show LaEDF here.

We observe that, at PHR = 1, ReUA makes the same

scheduling decisions as LaEDF. But as PHR increases,

ReUA obtains higher system-level UER than LaEDF.

Figure 6(b) shows the normalized UERs for ReUA and

LaEDF under G4 with Load = 1.5 and Cload = 1.85.

We observe similar trends as that in Figure 6(a), but

with larger performance gap as PHR increases. The two

strategies’ different scheduling criteria result in different

performance even at PHR = 1.

Since not all critical times can be satisfied during over-
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Figure 7: Normalized UER with Resource Dependencies under E1

loads, ReUA considers the UER of each job and seeks

to schedule jobs with high UERs while maintaining the

critical time order of jobs at the same time. But LaEDF

simply schedules according to tasks’ critical times, and

conforms to the critical time order. In addition, during

overloads, ReUA tends to abort jobs with low UERs in

the feasibility check. This results in higher system-level

utility than that obtained by LaEDF, which always aborts

jobs with the largest critical time.

5.5 Results under Resource Dependency

To construct dependent task sets, we consider task sets

G1 and G2 and have each job randomly request and re-

lease resources from some available set of resources during

the job’s life cycle. The resource request and release times

are uniformly distributed within a job’s life cycle.

We conducted experiments on the task sets, which are

scheduled by ReUA under no resources, three shared re-

sources, and five shared resources. Figure 7(a) shows

UERs normalized to the case of G1 with no resources,

as Load varies from 0.2 to 1.8. Figure 7(a) shows the

same metric for G2, as Cload varies from 0.7 to 2.0.

From the figures, we observe that when Load or Cload

increases, the performance of ReUA on dependent task

sets decreases. Higher the number of shared resources,

the more performance decrease can be observed. This is

because, ReUA respects resource dependencies in schedul-

ing, which in the worst-case may cause jobs to be executed

in the reverse order of UERs or critical times. So with

dependent task sets, ReUA cannot provide performance

guarantees and suffers UER losses, especially during high

loads.

However, at very high Load or Cload and with five

shared resources, normalized UERs of ReUA on the inde-

pendent task sets are just better than those on dependent

task sets by no more than 10%. This is because, ReUA

aborts a task when its expected completion time is less

than its termination time. Thus, the job queue seen by

the ReUA scheduler at any scheduling event has a length

no more than the number of tasks. With our experimen-

tal settings, we have only limited performance loss in our

simulation, but we expect more performance drop with

larger task sets.

6. CONCLUSIONS, FUTURE WORK

This paper presents the design and evaluation of ReUA,

a resource-constrained, energy-efficient, utility-accrual real-

time scheduling algorithm for mobile embedded systems.

ReUA considers application activities that are subject to

TUF time constraints, resource dependencies, and system-

level energy consumption concerns.

The key underpinning of ReUA is the observation that

embedded real-time applications usually exhibit large vari-

ations in their actual cycle demands. This provides oppor-

tunities for providing statistical, timeliness performance

guarantees, while respecting resource dependencies, and

for improving system-level energy efficiency. To realize

this, the algorithm statistically allocates cycles to individ-
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ual application tasks and executes their allocated cycles at

different speeds with DVS. ReUA makes such stochastic

decisions based on the statistical properties of the task de-

mands. During overload situations, the algorithm heuris-

tically schedules tasks to maximize collective utility so as

to improve system-level energy efficiency.

We establish several timeliness and non-timeliness prop-

erties of the algorithm such as timeliness optimality dur-

ing under-loads, deadlock-freedom, correctness, and mu-

tual exclusion. Our simulation experiments illustrate that

ReUA provides statistical performance guarantees when

possible and improves system-level energy efficiency.

Several aspects of the work are interesting directions for

further research. One direction is to consider the multi-

unit resource request model [6]. Another direction is to

allow aperiodic tasks with unknown inter-arrival times.
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