

WHITE PAPER

Applying

Rule Markup Language

in the Military Space Domain

September 2003

Suzette Stoutenburg

©2003 The MITRE Corporation

Air Force Center
Colorado Springs, Colorado

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
SEP 2003 2. REPORT TYPE

3. DATES COVERED
 00-09-2003 to 00-09-2003

4. TITLE AND SUBTITLE
Applying Rule Markup Language in the Military Space Domain

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
MITRE Corporation,Air Force Center,1155 Academy Park
Loop,Colorado Springs,CO,80910

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

19

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Applying Rule Markup Language in the Military Space Domain
September 2003

The MITRE Corporation 2

Contents

1. Introduction .. 3
1.1. Background ... 3
1.2. Why explore Rule Markup Languages? .. 3
1.3. What is RuleML? .. 4
1.4. Acknowledgements ... 4

2. Approach .. 6
2.1. Introduction ... 6
2.2. Goals ... 6
2.3. Methodology ... 6
2.3. Rule Domain.. 7
2.4. Inference Engines .. 8
2.5. Demonstration ... 8
2.6. Tools.. 8

3. Results .. 9
3.1. Introduction ... 9
3.2. Iteration 1 Element Set Message Classification Rules ... 9
3.3. Iteration 2 Space Message Releasability Rules .. 9
3.4. Iteration 3 Modified Releasability Rules.. 10
3.5. Iteration 4 Releasability Rules with modified Releasability variable....................................... 10
3.6. Summary of Findings .. 12
3.7. Solution Options.. 12

4. Conclusions .. 15
5. Recommendations .. 16
6. References .. 18
7. Acronyms ... 19

Applying Rule Markup Language in the Military Space Domain
September 2003

The MITRE Corporation 3

1. Introduction

1.1. Background

Commercial companies and government organizations have embraced a web based approach to
meeting critical business and mission requirements. The new Strategic Technical Plan drafted by the
Air Force Electronic Systems Center (ESC) states that “the objective future is one in which systems are
made interoperable by adoption of network centric, web-enabling and open architecture technology.”1

To realize this future vision, it is imperative that exploration of
emerging technology continue, with the goal of determining the value
and applicability of each new advance to critical government
missions. To that end, the Strategic and Nuclear Deterrence
Command and Control System Program Office within ESC
established the Web Way Ahead effort in 2000. This is a multi-year
effort to support research and experimentation with new advances in
technology to evolve existing mission systems toward interoperability
and network centric processing. The focus to date has been on
applications of eXtensible Markup Language (XML)2 and web-based
security.

As part of the 2003 Web Way Ahead effort, a study was
commissioned to investigate Rule Markup Language (RuleML)3 to
determine its applicability to interoperability in the military space
domain. The purpose of this paper is to document the results of this
study.

1.2. Why explore Rule Markup Languages?

Rules are fundamental to everyday problems and are especially important in applications that are web-
based. Rules specify how a business is run, decisions are made, information is shared, and defense
maneuvers are deployed. As XML is embraced as the international standard for web-based data
exchange, the need for XML-based rules is becoming increasingly important. A standard for XML-
based rules is needed to realize the concept of a Semantic Web4, and will most likely be an essential
component of the future World Wide Web, as shown in the Semantic Web diagram by Tim Berners-
Lee, provided in Figure 15. Therefore, understanding how XML-based rules may be applied to help
realize the vision for web-based data exchange across the military enterprise is crucial.

Additionally, there is significant business value to be gained by implementing rules. Isolating rules
from application code allows changing of rules without software modifications, providing
organizations the agility to adapt to changing mission needs. Application code can be reused across
different rule domains, and rules can be reused across different application domains. The efficiencies
and flexibility to be gained through the use of rules make the Rule Markup Language technology worth
further investigation.

1 Air Force Electronic System Center, 2001 Strategic Technical Plan
2 XML Home Page, http://www.w3.org/XML/
3 Rule Markup Language Home Page, http://www.dfki.uni-kl.de/ruleml/
4 Semantic Web Home Page, http://www.w3.org/2001/sw/
5 Semantic Web on XML, Tim Berners-Lee, XML 2000, http://www.w3.org/2000/Talks/1206-xml2k-
tbl/slide10-0.html

“The objective
future is one in

which systems are
made

interoperable by
adoption of

network centric,
web-enabling and
open architecture

technology.”

 - ESC, 2001

Applying Rule Markup Language in the Military Space Domain
September 2003

The MITRE Corporation 4

Figure 1
Rules in the Context of the Semantic Web

1.3.What is RuleML?
RuleML is an XML-based markup language that is intended to support rule exchange and
interoperation across disparate domains. RuleML allows rules to be expressed as modular components
in a declarative way, and uses distinct, standard XML tags to define a rule base, composed of facts and
rules.

Rules expressed in RuleML are not intended for direct execution; instead, they can be translated to any
inference engine language, such as Java Expert System Shell (Jess)6, Agent Building and Learning
Environment (ABLE) Rule Language (ARL) 7, LISP, or Prolog. Therefore, RuleML is independent of
the inference engine used to implement an application, and in fact, is designed to allow exchange of
rules between different engines.

The Rule Markup Initiative8 was a result of the Pacific Rim International Conference on Artificial
Intelligence 2000. A team of researchers and practitioners came together and took initial steps toward
defining a standard Rule Markup Language based on XML that supports forward and backward
chaining as well as inferential, transformational and trigger/reaction oriented tasks.

For more information on the history and details of RuleML, see the RuleML Home Page9.

1.4. Acknowledgements

This study would not have been possible without the continuing support and vision of Mr. Michael
Caracillo, Integration Director of the Strategic Command and Control System Program Office within
ESC and Mr. John Shottes, MITRE Executive Program Manager of the Web Way Ahead effort. The
RuleML investigation was completed under the outstanding direction of Dr. Nancy Reed and Ms.

6 Java Expert System Shell (Jess), Sandia National Laboratories, http://herzberg.ca.sandia.gov/jess/
7 Agent Building and Learning Environment (ABLE), IBM alphaworks,
http://www.alphaworks.ibm.com/tech/able
8 Rule Markup Initiative, http://www.dfki.uni-kl.de/ruleml/
9 Rule Markup Language Home Page, http://www.dfki.uni-kl.de/ruleml/

From Tim Berners-Lee XML 2000 Semantic Web talk.
Available at: http://www.w3.org/2000/Talks/1206-xml2k-tbl/
From Tim Berners-Lee XML 2000 Semantic Web talk.
Available at: http://www.w3.org/2000/Talks/1206-xml2k-tbl/

Applying Rule Markup Language in the Military Space Domain
September 2003

The MITRE Corporation 5

Mary Pulvermacher of the MITRE Corporation. Domain expertise and insight was provided by Mr.
John Wilson, and outstanding support in the area of eXtensible Stylesheet Language Transform
(XSLT) development was provided by Ms. Karen Fox, both of MITRE.

Mr. Said Tabet10 and Mr. Harold Boley11, the founders of RuleML, were very supportive and provided
guidance on the validity of options to resolve interoperability issues. An XSLT to transform RuleML
to Jess12 was developed by Mr. Tabet, and was made available for our use on the RuleML Home Page.
For more information on the work of Mr. Tabet and Mr. Boley, see their personal websites. Example
RuleML files provided on the RuleML Home Page were very useful in this study as well.

10 Mr. Said Tabet Home Page, http://home.comcast.net/~stabet/
11 Mr. Harold Boley Home Page, http://www.dfki.uni-kl.de/~boley/
12 RuleML to Jess XSLT, http://www.dfki.uni-kl.de/ruleml/jess/RuleMLTransform.xsl

Applying Rule Markup Language in the Military Space Domain
September 2003

The MITRE Corporation 6

2. Approach
2.1. Introduction

The purpose of this section is to document the approach taken in the study. The goals and
methodology are described, along with the rule domain, inference engines and selected tools.

2.2. Goals

The goals of the Applying RuleML in the Military Space Domain task are as follows.
• Investigate RuleML technology.
• Determine if RuleML supports interoperability.
• Determine if RuleML will be useful in the military space domain.

The high level plan is shown in Figure 2.

Figure 2
High Level Plan for RuleML Study

2.3. Methodology

The first step in the study was to research what RuleML is and how it is being used today. We studied
the RuleML website, including the definition and design of the language. We reviewed examples and
experimented with developing rules in RuleML. The result of this investigation was a RuleML White
Paper that was delivered as part of this project in May 2003.

The next step was to define an approach that would determine if and how RuleML supports
interoperability. To accomplish that, the following steps were identified.

• Identify a set of rules to capture.
• Define the rules in RuleML.
• Select inference engines and languages in which to execute the rules.
• Transform the rules in RuleML to one inference engine language using XSLT.
• Transform the rules in RuleML to a second inference engine language using XSLT.
• Execute the rules against a set of RuleML facts.
• Compare the results to see if the rules in each inference engine result in the same conclusions.
• Automate the process in a demonstration, complete with Rule Distribution objects and web page

access to view rules and results. The demonstration is described in more detail later in this
section.

The architecture of the overall approach is depicted in Figure 3.

MAY 03

Project
Initiation

MAY 03

Project
Initiation

JUN 03

RuleML
White Paper

JUN 03

RuleML
White Paper

JUL 03

RuleML supporting
multiple inference

engines

JUL 03

RuleML supporting
multiple inference

engines

AUG 03

Prototype
complete

AUG 03

Prototype
complete

SEP 03

Demonstration
Final Report

SEP 03

Demonstration
Final Report

Applying Rule Markup Language in the Military Space Domain
September 2003

The MITRE Corporation 7

Figure 3
RuleML Interoperability Study Architecture

2.3. Rule Domain

To determine the types of rules to capture, we met with domain experts in the space surveillance arena.
The goal was to pick simple rules at first to see if interoperability could be demonstrated without the
complication of rule complexity. If successful, we would attempt to capture more complex rules and
test the results. We also wanted to keep the demonstration unclassified.

We selected a small set of rules that define how to classify Satellite Element Set messages. These
messages are used by the United States Air Force to share information on orbital parameters of all
trackable objects that are orbiting the earth. During the course of our research, we found that RuleML
could not support the specification of these rules. The details of this finding are covered in section 3.2.
We then selected a different set of rules that determine the releasability of Satellite Element Set
messages. These are slightly different than determining the classification and are described in more
detail in section 3.3.

The rules to classify and determine releasability of Element Set messages are in the form of inference
rules, in which a premise is tested, and if true, facts specified in the conclusion become part of the fact
base. Inference rules are also referred to as deduction rules or derivation rules. An excellent
description of rule types can be found in the following presentation by Mr. Tabet and Mr. Boley:
http://www.dfki.uni-kl.de/ruleml/ruleml-krdtd/sld001.htm.

RuleML
Rule
Base

Web ClientWeb Client

RuleML
Distribution Object

Manage rules
Trigger distribution

View results

Web ClientWeb Client

Jess Rule
Engine

ABLE Rule
Engine

Rule
BaseRule

Base

XML
Object
(Fact)

XML
Object
(Fact)

ResultResult
ResultResult

ARE THEY THE SAME?

Domain 2Domain 1

Web ClientWeb Client
View results

XSLT XSLT

Re sult
(Rule Firing)

Re sult
(Rule Firing)

Applying Rule Markup Language in the Military Space Domain
September 2003

The MITRE Corporation 8

2.4. Inference Engines

The first inference engine selected was the Sandia Laboratories developed Java Expert System Shell
(Jess) which uses the CLIPS13 language. Jess was selected because we were already familiar with it
and it easily integrates with Java. CLIPS is a LISP-like language that employs symbolic reasoning in a
forward or backward chaining approach.

Next, we wanted to select an inference engine that was very different from Jess. That excluded
symbolic reasoning languages, such as Prolog and LISP, since these languages are very similar in
structure to CLIPS. We decided on the Agent Building and Learning Environment (ABLE) developed
by IBM Alphaworks. ABLE is a framework for developing software agents, employing a Java-like
language, Rules Editor and Machine Learning component. ABLE also supports XML through its
ABLE Rule Markup Language (ARML).

If it could be shown that rules captured and distributed in RuleML execute uniformly in two very
different inference engines, we believed its support of interoperability would be firmly established. If
this was not found to be the case, then we planned to explore solutions and/or propose enhancements to
achieve interoperability using RuleML.

2.5. Demonstration

To clearly demonstrate the results of the study, we developed a RuleML Interoperability
Demonstration. The demonstration is web-based, and allows the user to view RuleML files and trigger
the transformation of RuleML to Jess and ABLE languages. Built using Java Server Pages14 and Java
Beans15, the user can also specify facts dynamically and trigger the execution of rules in each engine.
The results from each engine can then be viewed side by side, so that the user can determine if Jess and
ABLE executed the RuleML specified rules in a uniform manner.

2.6. Tools

Tools used in this study include XML Spy16 for RuleML editing, validation and transformation. Xalan
version 2.517 was used as the transform engine, both through XML Spy and with direct calls from Java
beans and batch files.

To transform RuleML to Jess, we made use of an XSLT developed by Mr. Said Tabet18, which is
available on the RuleML Home Page. We created a new XSLT to transform RuleML to ABLE.

Initially, compilation and execution of the rules was accomplished by using the Jess and ABLE rule
engines directly. Later, we automated the process in the RuleML Interoperability Demonstration,
described above. Apache Tomcat19 was used as the web server in support of the demonstration.

RuleML version 0.820 was evaluated in this study.

13 CLIPS Home Page, http://www.ghg.net/clips/CLIPS.html
14 Java Server Pages, http://java.sun.com/products/jsp/
15 Java Beans, http://java.sun.com/products/javabeans/
16 XML Spy Home Page, http:/www.xmlspy.com/
17 Xalan Home Page, http://xml.apache.org/xalan-j/
18 RuleML to Jess XSLT, http://www.dfki.uni-kl.de/ruleml/jess/RuleMLTransform.xsl
19 Apache Tomcat Home Page, http://jakarta.apache.org/tomcat/
20 RuleML 0.8 Schema, http://www.dfki.uni-kl.de/ruleml/inxsd0.8.html

Applying Rule Markup Language in the Military Space Domain
September 2003

The MITRE Corporation 9

3. Results
3.1. Introduction

Several iterations were necessary before a single RuleML file could be successfully executed in Jess
and ABLE. The purpose of this section is to describe the major iterations, including how the rules
were built, translated and interpreted by each engine.

3.2. Iteration 1 Element Set Message Classification Rules

Rules for classifying Element Set Messages were easily captured in RuleML. These rules primarily
involved checking the range of values of a field in the message. These rules were successfully
transformed to Jess, but did not fire correctly. We found that the “<” and “>” operators were treated as
symbols in Jess, not as mathematical operators.

Next, we looked for a way to successfully express comparison of values in Jess, before attempting to
capture the rules in RuleML. We built a set of rules using Jess test patterns. But, we were unable to
find a way to represent test patterns in RuleML. Using templates in Jess is a good way to represent
message data, but we abandoned that as well, once we determined that RuleML 0.8 did not support
Jess templates.

We were unable to find a solution in which comparison rules could be captured in RuleML and then
transformed and successfully executed in Jess. Therefore, we decided to change to a rule set that
would be easier to represent in a markup language that is declarative, supports symbolic reasoning, and
does not require mathematical operators. We selected a rule set that notionally specifies Space
Message Releasability rules to move information between multi-level security domains.

3.3. Iteration 2 Space Message Releasability Rules

Rules for classifying Space Message Releasability were simplified for use in this study, and were
easily captured in RuleML. Rules were structured around the following variables:
• Source of each Satellite Element Set (elset) message, captured in the source variable
• Destination of each elset message, captured in the destination variable
• Classification of each elset message, captured in the elsetMessage variable

Based on the value of each of these, the releasability of each message can be determined.

Therefore, the rules primarily involved checking values of variables. These rules were successfully
transformed to Jess, and executed properly.

Since we determined in iteration 1 that the contents of a message composed of fields could not be
captured easily in RuleML, we decided to change the use of the elsetMessage variable. In iteration 2,
the elsetMessage variable (marked with the RuleML tag <var>) was used to capture whether the
message was “classified” or “unclassified”. We assumed that a Java object would manipulate each
incoming message and send the information (fact) in the proper format to the inference engine. The
source variable was used to identify the source of the message as being “trusted” or “untrusted”. The
destination variable captured the security level of the domain to receive the message. Based on all
these variables, releasability of the message could be decided.

Applying Rule Markup Language in the Military Space Domain
September 2003

The MITRE Corporation 10

The releasability of the message was represented as an individual value (marked with RuleML tag
<ind>) that would be paired with the value true or false. Releasability was not represented as a
variable in this iteration, but instead more as a descriptor of the meaning of the fact. This approach to
designing the rules closely followed the example in the Discount Rule Base21, provided from the
RuleML Home Page.

Note also that initially, the elsetMessage and destination variables had some overlap in the potential
range of values, such as the value of “unclassified”. This resulted in undesired rule firings in which
rules about destinations fired on facts about elset messages, and rules about elset messages fired on
facts about destinations. Therefore, we found it necessary to include amplifying information around
each atom in the premise to avoid undesirable rule firings. So, the individual “message”
(<ind>message</ind>) was added in the rule premises with every occurrence of the elsetMessage
variable to indicate that it was a message. These <ind> tags added meaning to each premise, because
when translated to Jess, each would result in an additional atom that would need to be matched in the
symbolic reasoning engine. This successfully avoided the undesired rule firings observed early in
iteration 2.

Next, the new rule set was transformed to ABLE. However, we found that the resulting code would
not execute in ABLE because ABLE did not recognize the translated <ind> tags. We considered how
we might modify the XSLT, but postponed that approach, thinking we might be able (and perhaps
should) develop rules that don’t involve <ind> tags that are used as descriptors. The use of <ind> tags
as descriptors will only work in a symbolic reasoning engine. Therefore, we redesigned the RuleML
representation of the Releasability rules to avoid use of descriptor <ind> tags in iteration 3.

3.4. Iteration 3 Modified Releasability Rules

The Space Message Releasability rules were modified in iteration 3 to be simpler. The clarifying
<ind> tags were removed, and to avoid undesirable rule firings, the range of values for the
elsetMessage and destination variables were changed to be exclusive. Releasability was no longer
represented as a descriptor (<ind>) to the elsetMessage variable; instead releasability was used as the
name of the variable that would represent the value of “true” or “false”, indicating the results of the
rule firings.

These rules were transformed to ABLE and successfully executed.

Iteration 3 rules were transformed to Jess, but did not work properly in Jess. Instead, execution of the
transformed rules caused an exception to be thrown. Upon inspection of the Jess rules, it was clear that
the variable releasability, as represented in the rules, had no prior value or binding in the premise.
Therefore, when the rule fires, there is no value that can inferred.

Note that straightforward assignment of values to variables is possible in Jess using binding. However,
we found that RuleML does not support binding of variables.

3.5. Iteration 4 Releasability Rules with modified Releasability variable

In iteration 4, the Space Message Releasability rules were modified so that the releasability variable
was represented with an <ind> tag. As expected, transformed Jess rules executed properly but
transformed ABLE rules did not.

The fundamental interoperability problem found here is in the use of variables between reasoning
engines. In CLIPS and other symbolic reasoning languages, variables are placeholders that take on
different values that are then pattern matched against facts. The variable name is replaced with its
value during pattern matching, and is not used to reference the value after matching. In ABLE,
variables are Java-like, and can only be referenced by name. This problem is depicted in Figure 4.

21 Discount Rule Base in RuleML, http://www.dfki.uni-kl.de/ruleml/exa/0.8/discount.ruleml

Applying Rule Markup Language in the Military Space Domain
September 2003

The MITRE Corporation 11

Figure 4
Fundamental Interoperability Problem

We modified the ABLE XSLT to translate <ind> tagged atoms to variables in ABLE. This did work
for our rule set, and allowed the RuleML generated in Iteration 4 to work in both Jess and ABLE.
However, we showed that this does not work in general. We downloaded the Discount Rule Base from
the RuleML Home Page and found that ABLE did not translate properly, since the use of the <ind>
tagged atoms as descriptors only work in symbolic reasoning engines.

A summary of all iterations along with findings is provided in Table 1.

(defrule UnclassTrusted
(trusted ?source)
(U ?elsetMessage)
=>
(assert
(true releasability)))

JESS ABLE

<imp>
<_rlab><ind>UnclassTrusted</ind></_rlab>
<_head>

<atom><_opr><rel>true</rel></_opr>
<ind>releasability</ind>

</atom>
</_head>
<_body>

<and>
<atom><_opr><rel>trusted</rel></_opr>

<var>source</var>
</atom>
<atom><_opr><rel>U</rel></_opr>

<var>elsetMessage</var>
</atom>
</and>

</_body>
</imp>

<imp>
<_rlab><ind>UnclassTrusted</ind></_rlab>
<_head>

<atom><_opr><rel>true</rel></_opr>
<var>releasability</var>

</atom>
</_head>
<_body>

<and>
<atom><_opr><rel>trusted</rel></_opr>

<var>source</var>
</atom>
<atom><_opr><rel>U</rel></_opr>

<var>elsetMessage</var>
</atom>
</and>

</_body>
</imp>

RULEML

What is the true meaning of
<var> vs. <ind> ?

Will it work universally?

(defrule UnclassTrusted
(trusted ?source)
(U ?elsetMessage)
=>

(assert
(true ?releasability)))

(defrule UnclassTrusted
(trusted ?source)
(U ?elsetMessage)
=>

(assert
(true ?releasability)))

JESS

Won’t execute in ABLE

ABLE

UnclassTrusted:
if ((source == "trusted") && (elsetMessage == "U"))
then releasability = "true";

UnclassTrusted:
if ((source == "trusted") && (elsetMessage == "U"))
then releasability = "true";

Jess crashes since releasability
has no value

Iteration 4 Iteration 3

Applying Rule Markup Language in the Military Space Domain
September 2003

The MITRE Corporation 12

Table 1
Summary of Iterations and Results

3.6. Summary of Findings

The following points summarize our key findings.

 RuleML supports symbolic reasoning engines very well.
 RuleML treats mathematical operators like symbols, making mathematical operations difficult.

We were unable to express rules using “>” or “<“ operators in RuleML that execute properly in
the inference engines.

 Getting one RuleML file to execute in multiple languages is difficult, due to differences in
fundamental processing between symbolic reasoning and Java-like languages.

o The use of variables and “individual” values in RuleML can result in non-uniform
execution of rules.

Other findings include the following.

 RuleML 0.8 does not support NOT.
 RuleML 0.8 does not support templates.
 RuleML does not use XML attributes widely, while ABLE Rule Markup Language relies heavily

on attributes.
 ABLE requires that variables are declared up front, while RuleML has no concept of variable

declaration.
 RuleML does not support binding of variables or retracting facts inside a rule premise.

We also found that building rules that fire properly is tricky in any inference engine. Rules must be
designed so that data can be captured as facts that trigger the firing of appropriate rules. In the absence
of robust tools, developers with expertise in rule design and development will be required to develop
viable rule bases.

3.7. Solution Options

One option to resolve the interoperability problem between Jess and ABLE would be to modify the
RuleML to ABLE XSLT to translate <ind> tagged items to variables in ABLE. This did result in
interoperable rule sets in some cases, but did not work universally, as observed in Iteration 4 results.

Another possible solution would be to add tags to RuleML that allow specification of the different uses
of <ind> and <var>. For example, <ind> can be used in two different ways: as a descriptor in a

Worked in Jess, not in ABLE.

Worked in Jess and ABLE for this rule set.

Tested with additional rule sets from web site, but they did not
transform properly in ABLE. True interoperability was violated.

Changed releasability back to <ind>.

Re-evaluated the meaning of <ind>.
Modified ABLE XSLT to translate <ind> to
variables.

Iteration 4

Worked in ABLE but not in Jess.

Concept of variables are fundamentally different in Jess (pattern-
matching) vs. ABLE (Java-like)

Removed semantic <ind> tags and
changed range of values for each variable
to be distinct.

Treated “releasability” like a variable, using
<var> tag.

Iteration 3

Sharing range of values across Jess variables can lead to rule
misfires.

Worked in Jess, but not in ABLE.
<ind> tags were not easily translated to ABLE.

Rules for releasability of Element Set
messages.

Added <ind> tags to capture semantics
around variables.

Iteration 2

RuleML treats mathematical operators like symbols, making
mathematical operations difficult.
Decided to change to a rule set that better fits symbolic reasoning.

Rules to classify Element Set messages in
RuleML.

Iteration 1

FindingRule SetIteration

Worked in Jess, not in ABLE.

Worked in Jess and ABLE for this rule set.

Tested with additional rule sets from web site, but they did not
transform properly in ABLE. True interoperability was violated.

Changed releasability back to <ind>.

Re-evaluated the meaning of <ind>.
Modified ABLE XSLT to translate <ind> to
variables.

Iteration 4

Worked in ABLE but not in Jess.

Concept of variables are fundamentally different in Jess (pattern-
matching) vs. ABLE (Java-like)

Removed semantic <ind> tags and
changed range of values for each variable
to be distinct.

Treated “releasability” like a variable, using
<var> tag.

Iteration 3

Sharing range of values across Jess variables can lead to rule
misfires.

Worked in Jess, but not in ABLE.
<ind> tags were not easily translated to ABLE.

Rules for releasability of Element Set
messages.

Added <ind> tags to capture semantics
around variables.

Iteration 2

RuleML treats mathematical operators like symbols, making
mathematical operations difficult.
Decided to change to a rule set that better fits symbolic reasoning.

Rules to classify Element Set messages in
RuleML.

Iteration 1

FindingRule SetIteration

Applying Rule Markup Language in the Military Space Domain
September 2003

The MITRE Corporation 13

premise or as a literal value that holds a value of a variable. Here is an example of using <ind> tags as
a descriptor, taken from RuleML developed as part of this study.

 <atom>
 <_opr><rel>true</rel></_opr>
 <ind>releasability</ind>
 <var>elsetMessage</var>
 </atom>

Here is example RuleML, showing how <ind> can be used to contain a literal value that represents the
value of a variable. This example is taken from the RuleML Home Page.

 <atom>
 <_opr><rel>discount</rel></_opr>
 <var>customer</var>
 <var>product</var>
 <ind>"5.0 percent"</ind>
 </atom>

Perhaps these two uses should be distinguished with different tags or different attributes, then
translated accordingly to the destination language. This approach warrants further investigation.

Rules could be designed so that the use of <ind> and <var> is not an issue, such as what was done in
Iteration 4. This is not ideal, but will probably be necessary to some extent if Java-like inference
engines are to be supported by RuleML. Robust tools could be developed to hide the design details of
RuleML and enforce standards for rule design. A novice rule developer could use a GUI to specify
rules in a simple way, then the design of the actual marked up rules could be created behind the scenes
such that no confusion occurs between symbolic reasoning and Java-like inference engines. If these
approaches are not found to be viable, it may be necessary to accept that RuleML, in its current state,
supports symbolic reasoning engines only.

Finally, we hope to investigate whether an ontology could be implemented along with RuleML rule
bases to clarify any differences in translation to inference languages.

The proposed solutions to the interoperability problems observed are provided in Table 2.

Applying Rule Markup Language in the Military Space Domain
September 2003

The MITRE Corporation 14

Table 2
Summary of Solution Options

Overall rating: PromisingWould allow RuleML to remain
independent of inference engine.

Under investigation.Investigate use of ontology to eliminate
confusion.

Overall rating: Not ideal, but again,
potentially realistic.

Limited interoperability of RuleML.
Can symbolic reasoning engines
perform under high load?

Needs further evaluation and
collaboration with RuleML founders.

Acknowledge that RuleML supports
symbolic reasoning languages and not
Java-like languages.

Overall rating: Not ideal, but probably
necessary if RuleML will support Java-
like inference engines.

Rule development should not be
limited by the inference engine
language.

Under investigation.Write rules carefully so that the <ind> and
<var> interpretation is not an issue.

Needs further evaluation and
collaboration with RuleML founders.

Needs further evaluation and
collaboration with RuleML founders.

This was successfully demonstrated
in Iteration 4.

However, this did not work in
general, as other RuleML rule
bases downloaded from the internet
would not execute properly.

Result

Overall rating: PromisingAllows one specification of rules,
with details hidden.

Could violate the declarative nature
of RuleML.

Hide RuleML details with GUI tools; tools
manage necessary differences in RuleML
to fit domain, depending on rule engine.

Overall rating: TBDCould violate the declarative nature
of RuleML.

Add tags to be able to interpret <ind> vs.
<var> properly; distinguish between
multiple uses of <ind> using specific tags.

While writing custom XSLTs will be
required for each inference engine
type, writing custom XSLTs within the
same language domain should be
avoided.

Overall rating: POOR

Could lead to different
interpretation of rules.

May not solve the problem in
general.

Develop custom XSLTs for each
inference engine domain.

ConclusionAdvantages/
Disadvantages

Solution

Overall rating: PromisingWould allow RuleML to remain
independent of inference engine.

Under investigation.Investigate use of ontology to eliminate
confusion.

Overall rating: Not ideal, but again,
potentially realistic.

Limited interoperability of RuleML.
Can symbolic reasoning engines
perform under high load?

Needs further evaluation and
collaboration with RuleML founders.

Acknowledge that RuleML supports
symbolic reasoning languages and not
Java-like languages.

Overall rating: Not ideal, but probably
necessary if RuleML will support Java-
like inference engines.

Rule development should not be
limited by the inference engine
language.

Under investigation.Write rules carefully so that the <ind> and
<var> interpretation is not an issue.

Needs further evaluation and
collaboration with RuleML founders.

Needs further evaluation and
collaboration with RuleML founders.

This was successfully demonstrated
in Iteration 4.

However, this did not work in
general, as other RuleML rule
bases downloaded from the internet
would not execute properly.

Result

Overall rating: PromisingAllows one specification of rules,
with details hidden.

Could violate the declarative nature
of RuleML.

Hide RuleML details with GUI tools; tools
manage necessary differences in RuleML
to fit domain, depending on rule engine.

Overall rating: TBDCould violate the declarative nature
of RuleML.

Add tags to be able to interpret <ind> vs.
<var> properly; distinguish between
multiple uses of <ind> using specific tags.

While writing custom XSLTs will be
required for each inference engine
type, writing custom XSLTs within the
same language domain should be
avoided.

Overall rating: POOR

Could lead to different
interpretation of rules.

May not solve the problem in
general.

Develop custom XSLTs for each
inference engine domain.

ConclusionAdvantages/
Disadvantages

Solution

Applying Rule Markup Language in the Military Space Domain
September 2003

The MITRE Corporation 15

4. Conclusions

We fully support the notion of capturing and sharing rules in an XML-based language. In general, we
found RuleML to be an excellent start at defining a standard for which to specify XML-based rules.
RuleML clearly supports symbolic reasoning engines very well. It is important to remember that this
standard is in its infancy, and extensions and a new version are under development.

Building rules that fire properly is not a simple task in any inference engine. Rules must be designed
so that data can be captured as facts that result in the triggering of appropriate rules. There is a need to
develop robust tools to support the design and implementation of domain rules. Ideally, these tools
should hide the details of the rule base implementation as much as possible, especially if wide use of
an XML-based rule language is to become a reality.

We believe that a set of standards for rule design should be developed and published along with the
RuleML documentation. Tools to support RuleML development should enforce the standards.

RuleML will have to be extended in some way to allow for use of mathematical operators since this is
a clear need in any commercial or government application. This could be accomplished with new
RuleML tags. RuleML 0.8 does not support NOT, which will also be needed in the future. During
collaboration with the RuleML founders, Mr. Said Tabet and Mr. Harold Boley, we found that much of
this work is already underway. There is also an extension to RuleML, called Object Oriented
RuleML22, which does support message templates.

There are features of certain languages that are not supported by RuleML, such as the binding of
variables in the rule premise which is widely used in Jess. According to the founders, this omission is
by design, since they want to preserve the declarative nature of RuleML. We don’t see this as a
weakness, but it will require programmers with expertise in a given language to think differently when
designing and implementing rules in RuleML.

The biggest challenge we identified is that the use of variables and “individual” values in RuleML can
result in non-uniform execution of rules. This problem is due to the fact that variables can be
fundamentally different between some inference engines, and that <ind> tagged atoms can be used in
different ways. We plan to continue our collaboration with the RuleML founders to develop solutions
to this problem.

22 Object Oriented RuleML, http://www.dfki.uni-kl.de/ruleml/indoo/

Applying Rule Markup Language in the Military Space Domain
September 2003

The MITRE Corporation 16

5. Recommendations
We are seeking support for MITRE participation in the continuing work to develop a standard Rule
Markup Language. The solutions proposed in section 4 should be investigated further with the
RuleML founders so that modifications and extensions to RuleML can be defined.

It is clear that a robust set of tools will be needed to support
rule development in RuleML. Standard XSLTs will be needed
for use with each inference engine language. Establishing
tools and standards will be important as RuleML development
continues. MITRE support in the evaluation of these tools
could benefit the overall effort to standardize rule
development.

We also are seeking support for the following follow-on studies.

We would like to introduce a web service language, such as Water, as a
third domain in the study. We would test to see how rules are translated
from RuleML to Water and determine if there are any new issues
discovered with a language that is very different than Jess and the Java-
like ABLE.

We believe that more complex and other types of rules, such as Reaction Rules, should be
implemented and tested. This effort could uncover new issues not discovered with the simple
deduction rules used in this study. We would like to investigate other rule markup languages to see
if there are best practices that could be applied to RuleML.

The performance of rule engines will be very important in the
Semantic Web of the future. We recommend a performance study in
which a number of inference engines are evaluated to determine
which is the most viable under different conditions encountered in
the military domain. In particular, which engine performs best under
high load scenarios? Would the findings of such a study drive what
the canonical rule markup language should be?

We recommend that an ontology be developed to capture the differences
in the use of variables and other components of RuleML between
engines, as shown in Figure 5. We could then test to see if the ontology
can mitigate the interoperability problem discovered in this study. Also,
an ontology to describe the data between the tags should be developed in
conjunction with a RuleML rule base to simulate a Semantic Web in a
military domain. The lessons uncovered in such a study could be widely
applied to today’s military systems under development.

Apply additional
Semantic Web
technologies

Introduce a web
service language
as a third domain.

Continued collaboration
with RuleML Founders on

solutions and tools.

Applying Rule Markup Language in the Military Space Domain
September 2003

The MITRE Corporation 17

Figure 5
Applying Additional Semantic Web Technologies

RuleML
Rule
Base

RuleML
Distribution Object

ABLE Rule
Engine

JESS Rule
Engine

XSLT XSLT

Rule Ontology

Web Service
Rule Engine

Applying Rule Markup Language in the Military Space Domain
September 2003

The MITRE Corporation 18

6. References

1. RuleML Home Page
http://www.dfki.uni-kl.de/ruleml/

2. Object Oriented RuleML
http://www.dfki.uni-kl.de/ruleml/indoo/

3. Jess Home Page
http://herzberg.ca.sandia.gov/jess/

4. Agent Building and Learning Environment
http://www.alphaworks.ibm.com/tech/able

Applying Rule Markup Language in the Military Space Domain
September 2003

The MITRE Corporation 19

7. Acronyms

ABLE Agent Building and Learning Environment
API Application Programming Interface
ARML ABLE Rule Markup Language
Elset Element Set
ESC Electronic Systems Center
GSIX Guarded Sharing of Information using XML
GUI Graphical User Interface
Jess Java Expert System Shell
NS Namespace
PKI Primary Key Indicator
RDF Resource Description Framework
RuleML Rule Markup Language
URI Universal Resource Indicator
XML eXtensible Markup Language
XSLT eXtensible Stylesheet Language Transform

