
INFUSE: A TDMA BASED DATA DISSEMINATION PROTOCOL FOR SENSOR NETWORKS

Sandeep S. Kulkarni and Mahesh Arumugam

Computer Science and Engineering

Michigan State University, East Lansing, MI 48824

Email: {sandeep,arumugam}@cse.msu.edu

ABSTRACT

Reliable dissemination of bulk data is one of the important prob-
lems in sensor networks. For example, programming or upgrad-
ing the software in sensors at run-time requires reliable dissem-
ination of a new program across the network. In this paper, we
present Infuse, a reliable data dissemination protocol based on
TDMA based medium access layer. Although TDMA guaran-
tees collision-freedom, unexpected channel errors (e.g., message
corruption, varying signal strengths, etc) can cause random mes-
sage losses. To deal with this problem, we consider two recovery
schemes that use implicit acknowledgments. We also present a
scheme to reduce the number of message receptions further. With
this approach, sensors typically do not receive a given message
multiple times. We also demonstrate that our algorithms can han-
dle failure of sensors.
Keywords: data dissemination, network programming, time divi-
sion multiple access, implicit acknowledgments, sensor networks

1. INTRODUCTION
Reliable data dissemination is one of the important problems in
wireless networks, particularly in multihop sensor networks. For
example, in sensor networks, reprogramming the network is often
necessary since the sensors are deployed in large numbers and in
hostile environments. Further, the requirements of a typical sensor
network application (e.g., A Line in the Sand (LITeS) [1], habitat
monitoring [2]) evolve over time and, hence, reprogramming the
sensors after deployment is required. Towards this end, reliable
dissemination of bulk data (i.e., the new program) is necessary.
Challenges in reliable data dissemination. One of the impor-
tant challenges in data dissemination is reliable message commu-
nication. If a sensor simultaneously receives two or more messages
then they collide and all the messages become incomprehensible.
Also, it is often difficult to determine whether a given message was
received successfully by all its intended receivers. This is due to
the hidden terminal effect, where a given message may collide at
one sensor and be correctly received at another sensor.

To provide reliable message communication, different medium
access control (MAC) protocols are proposed. Collision-
avoidance protocols like carrier-sense multiple access (CSMA)
try to avoid collisions by sensing the medium before transmit-
ting a message over the radio. If the medium is busy, it backs-
off and tries to access the medium at a later time. How-
ever, CSMA offers only probabilistic guarantees about mes-
sage communication. Most of the existing solutions for mul-
tihop data dissemination (especially for network programming)
use CSMA protocol (e.g., [3]) and, hence, rely on mechanisms
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such as acknowledgments/negative-acknowledgments, advertise-
ment/request schemes, and/or error correcting codes. Existing
multihop reprogramming solutions based on CSMA protocol in-
clude Deluge [4], multihop over-the-air programming (MOAP)
[5], and multihop network reprogramming (MNP) [6].

Collision-free MAC protocols like time division multiple access
(TDMA) ensure that collisions do not occur during message com-
munication. TDMA provides deterministic guarantees about mes-
sage communication and, hence, it is desirable for reliable dissem-
ination of bulk data in sensor networks. TDMA assigns communi-
cation slots to each sensor and ensures that simultaneous transmis-
sions by two or more sensors will not result in collisions. Other
collision-free MAC protocols include frequency division multiple
access (FDMA) and code division multiple access (CDMA). With
FDMA, sensors snoop different frequencies repeatedly to receive
messages sent by the neighboring sensors. FDMA is often used
with TDMA where each sensor knows when to listen to a particu-
lar frequency. CDMA requires special hardware for encoding and
decoding messages. In order to retrieve individual messages dur-
ing message communication, codes used in the network should be
orthogonal to each other. Hence, CDMA is not typically desirable
for resource poor sensor networks.

In this paper, we propose Infuse,1 a TDMA based reliable data
dissemination protocol for sensor networks. Infuse can be used
with any TDMA based MAC protocol (e.g., [7, 8]). Although
TDMA guarantees collision-freedom during message communi-
cation, messages can be lost due to changing link characteris-
tics (e.g., message corruption, environmental effects on signal
strengths). In order to deal with such errors, Infuse uses implicit
acknowledgments (received by listening to the transmissions of the
successors of a sensor) to recover from lost messages.
Contributions of the paper. We focus on the problem of reliable
data dissemination in sensor networks. The main contributions of
the paper are as follows:

• In an ideal scenario, we present a TDMA based reliable data
dissemination protocol called Infuse. Infuse disseminates
data in the TDMA slots assigned to each sensor. Thus, In-
fuse takes advantage of the reliability offered by the TDMA
in providing a dissemination service. Further, we compute
the analytical estimate for dissemination latency and show
that simulation results closely follow analytical results.

• In presence of channel errors (e.g., message corruption, vary-
ing signal strengths, etc), random message losses occur in the
network. To overcome this problem, we consider two recov-
ery algorithms based on the sliding window protocols [9],
modified to use implicit acknowledgments.

1infuse v.; to cause to be permeated with something (as a principle or quality) that
alters usually for the better. http://www.m-w.com/.
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• We show that the active radio time during dissemination is
significantly lesser than the dissemination latency. We also
present an optimization to reduce the active radio time fur-
ther. With this approach, a sensor typically receives new cap-
sules from only one sensor.

• We study the performance of Infuse using simulations. We
verify that the data is propagated in a pipeline. Also, we show
that Infuse does not have the behavior expressed in Deluge
[4], where sensors along the edge of the network receive the
data first before the diagonal.

Organization of the paper. In Section 2, we present the network
model and state the assumptions made in this paper. In Section 3,
we present the data dissemination protocol. Then, in Section 4, we
discuss the properties of the protocol. Subsequently, in Section 5,
we present the simulation results. In Section 6, we discuss some
of the questions raised by this work and compare Infuse with other
solutions for data dissemination. Finally, in Section 7, we make
the concluding remarks and discuss the future work.

2. PRELIMINARIES
In this section, we present the network model and identify the as-
sumptions made in this paper.
Base station. We assume that there exists a base station in the
network that is responsible for communicating with the outside
world. Also, the base station is responsible for sending commands
and new tasks (for example, new program) to the network.
Network model. We assume that the sensors are deployed in a
geometric topology. With help of localization service (e.g., [10]),
each sensor determines its location in the field. Also, each sen-
sor determines the location of the sensors within its neighborhood
using this service. Further, each sensor classifies the sensors in
its neighborhood as either their predecessors or their successors.
During the dissemination process, initially, sensors listen to all the
sensors in their neighborhood. Given two neighbors j and k, if k

forwards a majority of packets before j then j marks k as a pre-
decessor and k marks j as its successor. Once the predecessors
and successors of j are determined, j can choose to listen to one
or more of its predecessors and zero or more of its successors. Pe-
riodically, each sensor re-classifies its active neighbors as prede-
cessors or successors. This allows a sensor to deal with the failure
of some of its neighbors. Specifically, the sensor can now utilize
other paths to the base station while dealing with the failure.
TDMA slot assignment. We assume that once the network is
deployed, the base station assigns the slots to each sensor. TDMA
slots are either pre-computed or determined dynamically by a sta-
bilizing [11] slot assignment algorithm that ensures that correct
slots are assigned in spite of transient errors such as clock drift.
Examples of such protocols include [7,8]. Further, we assume that
each sensor gets a fair share of the bandwidth. One way to achieve
this is to ensure that between every two slots assigned to a sensor,
at least one slot is assigned to its successors.

3. INFUSE: DATA DISSEMINATION PROTOCOL

In this section, we present Infuse, a reliable data dissemination
protocol for sensor networks. First, in Section 3.1, we present In-
fuse in the context of an ideal environment with no channel errors.
Next, in Section 3.2, we show how Infuse deals with unexpected
channel errors. In Section 3.3, we discuss an algorithm for reduc-
ing the active radio time during data dissemination.

3.1. Data Dissemination in Ideal Scenario
In this section, we present the dissemination algorithm for the
ideal scenario where no messages are corrupted due to varying

link properties. The base station starts the dissemination process
by broadcasting a start-download message. Whenever a sensor
receives a start-download message, it prepares for data dissemina-
tion and download. The data is split into fixed size packets called
capsules. The start-download message also includes the ID of the
new data sequence and the number of capsules. The sensor then
sets up the necessary pointers to the flash in order to store the cap-
sules in their appropriate address. Finally, the sensor enqueues the
start-download message in its TDMA queue.

Once the base station sends the start-download message, it
sends the capsules in its subsequent TDMA slots, one capsule in
each slot. Whenever a sensor receives a capsule, say, cl, it stores cl

in the flash and it enqueues cl in the TDMA queue. If cl is the last
capsule, it signals the application that the download is complete.

3.2. Dealing with Channel Errors
Channel errors occur in a typical sensor network due to back-
ground noise and varying properties of communication links. Al-
though TDMA protocols proposed in [7, 8] guarantee collision-
freedom, channel errors can cause random message losses. While
dealing with these problems, the padding added to a message
should be minimized since the payload size of a message is often
limited (e.g., 29 bytes in MICA motes [12]). Further, the pream-
ble added to a message in the lower layers of communication stack
is very high (e.g., 20 bytes in MICA motes). Hence, unnecessary
message communication (in terms of explicit acknowledgments)
needs to be avoided.

In the dissemination algorithm presented in Section 3.1, when-
ever the successors of a sensor (say, j) forward the data capsule
(say, c), j gets an implicit acknowledgment for c. We use this in-
formation to recover from lost capsules. We compare two recovery
algorithms based on the sliding window protocols [9]. The recov-
ery algorithms use implicit acknowledgments for data dissemina-
tion unlike the explicit acknowledgments required for the tradi-
tional sliding window protocols. The first algorithm, Go-back-
N (cf. Section 3.2.1), does not add any padding to a message.
The second algorithm, selective retransmission (cf. Section 3.2.2),
adds 2b bits to a message, where 2b is the size of the window.

3.2.1. Go-Back-N Based Recovery Algorithm
In this approach, each sensor maintains a window of 2b capsules,
where b is any integer. Specifically, each sensor maintains a win-
dow of capsules, cia +1, . . . , cia +2b, where cia is the highest
capsule for which j received an implicit acknowledgment from all
its successors. Now, to recover from lost capsules, j will forward
capsule cf only when its successors have forwarded at least cap-
sule cf − b. Otherwise, j will start retransmitting from cia +1.
This creates a back pressure in the network and, hence, the rate
of dissemination of new capsules is reduced during recovery. The
algorithm is shown in Figure 1.

sensor j:
highest acknowledged capsule =min(highest capsule

for which implicit acknowledgment is
received from successors of j);

next capsule++;
if next capsule > highest acknowledged capsule + b

next capsule = highest acknowledged capsule + 1;
enqueue next capsule in the TDMA queue;

Fig. 1. Implicit acknowledgments and Go-back-N algorithm

Dealing with failed sensors. In the presence of failed sensors,
neighboring sensors will not get implicit acknowledgments. To
deal with this problem, whenever a sensor fails to get an implicit



acknowledgment from its successors after a fixed number of re-
transmissions, it declares that neighbor as failed. Now, a sensor
will retransmit a capsule only when it does not receive an implicit
acknowledgment from its active neighbors.

3.2.2. Selective Retransmission Based Recovery Algorithm
In this section, we present our next approach to deal with channel
errors. Similar to the previous approach, each sensor maintains a
window of 2b capsules, where b is any integer. In this approach,
whenever a sensor (say, j) forwards capsule c to its successors, it
piggybacks acknowledgments for capsules c ± x, where 1≤x≤b.
The piggybacked acknowledgments are used by the predecessors
of j to determine the highest capsule for which acknowledgment is
not yet received (cunacked). To recover from lost capsules, j will
forward capsule cf only if cunacked > (cf −b). Otherwise, j will
retransmit cunacked. After retransmission, j will try to forward cf

in its next TDMA slot. In other words, j selectively retransmits to
recover from lost capsules. The intuition behind selective retrans-
mission is that even if a sensor misses a capsule transmitted by
one of its predecessors, it may still receive the capsule from other
predecessors or its successors. (This is due to the fact the sensors
may have more than one path to the base station.) Further, the
piggybacked acknowledgments update the predecessors about the
missing capsules at the successors. This also allows the predeces-
sors to listen infrequently to the implicit acknowledgment of suc-
cessors. Thus, selective retransmission based recovery can be used
to reduce the number of message transmissions and the amount of
active radio time. Further, the piggybacked acknowledgments re-
quire 2b bits and, hence, the padding added to a message is small.
The algorithm is shown in Figure 2.

sensor j:
min unacknowledged capsule =min(capsules for

which implicit acknowledgments are not
received by j from its successors);

next capsule = highest capsule forwarded + 1;
if(next capsule − b == min unacknowledged capsule)

next capsule = min unacknowledged capsule;
enqueue [next capsule, status flag for

next capsule ±x, 1 ≤ x ≤ b] in the TDMA queue;
highest capsule forwarded =

max(highest capsule forwarded, next capsule);

Fig. 2. Implicit acknowledgments and selective retransmission
Remark. In the presence of failed sensors, the modifications pro-
posed for Go-back-N algorithm (cf. Section 3.2.1) can be applied
for this approach as well.

3.3. Reducing Energy Further: Use of Preferred Predecessors
In the algorithms discussed so far, a sensor (say, j) listens in the
slots assigned to its predecessors and its successors. During data
dissemination, sensor j receives a given capsule from one or more
of its predecessors. Also, whenever j forwards a capsule (say, c),
one or more of its predecessors get implicit acknowledgment for
c. To reduce these duplicates, we introduce the notion of preferred
predecessors.

Specifically, in this approach, each sensor selects its preferred
predecessor independently. For example, a sensor may choose the
predecessor from which it receives the most number of new mes-
sages as its preferred predecessor. Now, whenever a sensor for-
wards a capsule, it includes its preferred predecessor in the mes-
sage. This can achieved by log(q+1) bits, where q is the number
of neighbors that a sensor has. Since the predecessors listen to
the transmissions of their successors (to deal with channel errors),
they learn about the sensors for whom they are the preferred pre-
decessors. Once the preferred predecessor information is known, a

sensor (say, k) will listen to the transmissions of a successor (say,
j) only if j’s preferred predecessor is k. Otherwise, k will not lis-
ten in the time slots assigned to j. Thus, during data dissemination,
the number of message receptions is reduced by allowing only the
preferred predecessors to recover lost capsules at their successors.

However, if the preferred predecessor of a sensor (say, j) failed,
j cannot recover from lost capsules. To deal with this problem,
other predecessors will listen to the transmissions of their succes-
sors occasionally. In other words, a sensor (say, k) will listen in
the time slots assigned to j with a small probability, if k is not
the preferred predecessor of j. This will allow the successors to
change their preferred predecessors and recover from lost capsules
and failure of preferred predecessors.
Remark. We note that the number of message communication
can be reduced even further as follows. If k is the preferred prede-
cessor of a sensor (say, j), k can choose to listen in the time slots
assigned to j with a certain probability. This will allow k to listen
to the transmissions of j occasionally. However, this is sufficient
to recover lost capsules at j, since k learns about the lost capsules
at j with the help of the implicit acknowledgments.

4. INFUSE: PROPERTIES
In this section, we discuss some of the properties of Infuse. First,
we discuss how the data capsules are sent in a pipeline and estimate
dissemination latency in an ideal network where no random link
errors occur. Next, we argue that our approach is energy-efficient.
Pipelining. In Infuse, whenever a sensor receives a capsule, it
stores the capsule in the flash at the appropriate address. Further, it
forwards the capsule in the next TDMA slot. Hence, the capsules
are forwarded in a pipeline fashion.

Now, we estimate the value for dissemination latency when no
channel errors occur. To broadcast data over a network with ctot

capsules, the estimate is ((ctot−1)+d)∗P amount of time, where d

is the diameter of the network and P is the period between succes-
sive TDMA slots. As a result of pipelining, the last ctot−1 capsules
can be forwarded within (ctot−1) ∗ P , since the base station will
send one capsule per period. The first capsule takes at most d ∗ P

amount of time to reach all the sensors in the network. For time
slot= 30 ms, interference range= 4, data with 1000 capsules can
be forwarded in a 10x10 network within 13.22 minutes.

We verify the pipelining property of Infuse using simulations in
Section 5.4. Specifically, we show that data capsules are forwarded
in a pipeline and this result contradicts the dynamic behavior pre-
sented in Deluge [4], where data capsules reach the edge of the
network first before reaching the sensors in the middle.
Energy-efficiency. With TDMA, a sensor remains in active mode
only in its TDMA slots (if it needs to send any capsule) and in the
TDMA slots of its neighbors. Hence, in the remaining slots, sen-
sors can save energy by turning their radio off and remaining in
idle mode. If P is the period between successive TDMA slots al-
lotted to a sensor, a sensor will have to be in active mode in its
slots and in the slots of its neighbors during each period P . Thus,
Infuse allows the sensors to save energy by turning their radio off
in the rest of the slots. Furthermore, the optimization proposed for
reducing message communication allows a sensor (say, j) to save
energy by turning the radio off in the slots allotted to its successors
for whom j is not the preferred predecessor. Message receptions
in Infuse is within 30% excess of the analytical estimate where
no channel errors occur. We compute this analytical estimate by
assuming that for each capsule, a sensor (1) transmits it once, (2)
receives it once from its predecessor, and (3) receives r implicit ac-
knowledgments, where r is the number of its successors. In case



of preferred predecessors, a sensor receives x, x ≤ r, implicit ac-
knowledgments per capsule, where x is the number of successors
for which the sensor is the preferred predecessor. Thus, Infuse
disseminates data in an energy-efficient manner.

5. INFUSE: RESULTS

We simulated Infuse in prowler [13], a probabilistic wireless net-
work simulator designed for MICA [12] based sensors. In our sim-
ulations, we use the communication model based on the TDMA
algorithm proposed in [7]. We assume that the sensors can com-
municate with high probability among their neighbors. Further-
more, we assume that the signal from a sensor may reach sensors
within distance 4 although the probability of successful communi-
cation is very low. The signal to noise ratio (SNR) of such a signal
may be high enough to interfere other communication. Based on
this discussion, sensors have the notion of communication range
and interference range. In [14, 15], it has been shown that the ra-
tio between interference range to effective communication range
is around 3.5. In our simulations, we assume the inter-sensor sep-
aration as 10 m, communication range as 10 m, and interference
range as 40 m.

Based on our experiments with MICA motes, we choose the
probability of successful message communication within the com-
munication range as 95%. In the absence of any interference,
the probability of successful communication is more than 98%.
Since we use TDMA for message communication, interference
from other sensors does not occur. However, random channel er-
rors can cause the reliability to go down. Hence, we choose 95%
as the link reliability. This value confirms the analysis in [14, 15].
The parameters used in our simulations are listed in Table 1.

Table 1. Simulation parameters
Parameter Value
Network parameters:
Inter-sensor separation 10 m
Link reliability 95%
Communication range 10 m
Interference range 40 m
TDMA parameters:
Timeslot (time to transmit one message) 30 ms
Infuse parameters:
Capsule size 16 bytes
Maximum number of retransmissions 5
Probability of listening to successors
by their non-preferred predecessors 20%

Analytical estimates. The estimate for latency, message trans-
missions and receptions are calculated for a specific TDMA algo-
rithm [7]. The estimate for latency is ((ctot − 1) + d) ∗ Pb, where
ctot is the number of capsules, d is the diameter of the network,
and Pb is the TDMA period. For nxn grid network, d=2(n−1).
The estimate for number of message transmissions by a sensor is
equal to the number of capsules in the data sequence. And, the
estimate for number of message receptions is 1 reception from the
predecessor and 2 receptions for implicit acknowledgments from
south/east neighbors per capsule.
5.1. Go-Back-N Algorithm

In this section, we present the results for Go-back-N based al-
gorithm. Figure 3 shows the results for data dissemination with
1000 capsules. With window size=6, the dissemination latency is
close the analytical estimate (cf. Figure 3(a)). If a sensor (say, j)
missed a capsule, its predecessor (say, k) will retransmit the cap-
sule. Since j could still get the same capsule from its other pre-
decessors or its successors, unnecessary retransmissions are pre-
vented with window size = 6. Hence, the latency is close to the
analytical estimate. Since a sensor listens to only its neighbors, it

turns off its radio in the slots assigned to other sensors. Thus, the
active radio time of a sensor is significantly less than dissemination
latency. We note that the active radio time is crucial. Specifically,
the energy spent in idle listening is comparable to the energy spent
in transmissions/reception. Hence, it is important that the amount
of idle listening is reduced. For a 10x10 network, the active radio
time is 2.32 minutes where as the latency is 15.1 minutes for dis-
seminating data with 1000 capsules. In other words, our algorithm
improves the network lifetime by 5 times when compared to the
case where the radio is always on. With window size = 20, the
latency is more than that of window size = 6. This is due to the
fact that the recovery is too slow. Specifically, if a sensor misses
a capsule, predecessors go back and start retransmitting from the
missing capsule once again (although most of the retransmissions
are not required).

Similar observations can be made for number of message trans-
missions and receptions (cf. Figures 3(b-c)).

5.2. Selective Retransmission Algorithm

In this section, we present the results for selective retransmission
based algorithm. Figure 4 shows the simulation results for data
dissemination with 1000 capsules. The latency for dissemination
is close to the analytical estimate for window sizes of 6 and 20
(cf. Figure 4(a)). If a sensor (say, j) misses a capsule, its prede-
cessors selectively retransmit the lost capsule, unlike Go-back-N
algorithm, thereby reducing the number of retransmissions. Thus,
dissemination latency and active radio time are reduced in this re-
covery algorithm. For a 10x10 network, data with 1000 capsules
is disseminated within 13.99 minutes. The active radio time in this
case is 2.15 minutes.

And, message transmissions/receptions are within 10−25% ex-
cess of analytical estimate (cf. Figures 4(b-c)).

5.3. Preferred Predecessors

In this section, we compare the performance of Go-back-N and
selective retransmission based recovery algorithms with/without
preferred predecessors. Figure 5 shows the results for data dis-
semination with 1000 capsules. The window size used in these
simulations is 6. As we can observe from the figure, the dissem-
ination latency for selective retransmission based algorithm (SR)
and selective retransmission based algorithm with preferred pre-
decessors (SR-PP) perform better than the Go-back-N based algo-
rithm (GBN) and Go-back-N based algorithm with preferred pre-
decessors (GBN-PP) respectively (cf. Figure 5(a)). This is due
to the fact SR and SR-PP selectively retransmits lost capsules un-
like GBN and GBN-PP. Additionally, we observe that the latency
for SR-PP (respectively, GBN-PP) is more than SR (respectively,
GBN). This is due to the fact only the preferred predecessors are
now responsible for recovering lost capsules at their successors.
However, in SR and GBN, additional sources are available.

With respect to active radio time, GBN performs better than
GBN-PP for large networks. Since GBN-PP retransmits starting
from the lost capsule and only the preferred predecessors are re-
sponsible for recovering lost capsules, the probability of success-
fully retransmitting the entire window is reduced when compared
to GBN. Hence, the active radio time for GBN-PP is more than
that of GBN. By contrast, the active radio time for SR-PP is less
than that of SR. Again, this is due to selective retransmission of
lost capsules. Based on this result, we prefer SR and SR-PP com-
pared to GBN and GBN-PP. However, GBN and GBN-PP are easy
to implement and do not add any overhead to a message.
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Fig. 3. Simulation results for disseminating data with 1000 capsules using Go-back-N algorithm. (a) dissemination latency and active
radio time, (b) number of message transmissions, and (c) number of message receptions
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Fig. 4. Simulation results for disseminating data with 1000 capsules using selective retransmission algorithm. (a) dissemination latency
and active radio time, (b) number of message transmissions, and (c) number of message receptions
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Fig. 5. Simulation results with preferred predecessors for data with
1000 capsules. (a) dissemination latency and (b) active radio time

5.4. Pipelining and Dissemination Progress

In this section, we verify the pipelining property of Infuse and also
show that this result is different from the dynamic behavior dis-
cussed in Deluge [4]. Figure 6(a-b) shows the progress of data
dissemination (initiated by the base station at 〈0, 0〉) for a data
sequence consisting of 1000 capsules with Go-back-N algorithm.
The window size used in these simulations is 6. At 5% of time
taken to disseminate 1000 capsules, all sensors have received at
least the first 49 capsules and at most 50 capsules. Similarly, at
50% of the time, all sensors have received 502− 505 capsules.
Thus, the program capsules are transmitted in a pipeline, where
each sensor acts as a source and as a receiver simultaneously.

The dissemination progress shown in Figure 6(a-b) contradicts
the dynamic behavior presented in Deluge [4]. Specifically, in [4],
it has been shown that the data capsules reach the edge sensors in
the network first before reaching the middle of the network. This
dynamic behavior causes congestion (due to CSMA based MAC)
in the middle and, hence, number of message communication and
latency are increased. However, with Infuse (cf. Figure 6(a-b)),
we observe that all the sensors receive the data capsules at approxi-
mately the same time. And, Figure 6(c-d) shows the dissemination
progress with selective retransmission based recovery algorithm.
Again, this result shows that the dissemination latency along the

edges is similar to the latency along the diagonal.

5.5. Effect of Window Size

In this section, we discuss the effect of window size on the per-
formance of the recovery algorithms. In these simulations, data
consisting of 100 capsules are propagated across a 5x5 network.
Figure 7(a) shows the dissemination latency and active radio time
for Go-back-N based recovery algorithm. With window size= 2,
whenever a sensor (say, k) observes that its successor (say, j)
misses a capsule, it initiates recovery by retransmitting the cor-
responding capsule. However, j can still receive the capsule from
its predecessors or its successors, as j has multiple paths to the
base station. Hence, in this case, the recovery is initiated too
early. Therefore, the latency (as well as the active radio time)
is higher for window size = 2. For other values, predecessors
allow the successors to recover from lost capsules through other
neighbors. However, from Figure 7(a), we observe that as the win-
dow size increases, the latency also increases. This is due to the
fact if j misses a capsule, its predecessor k starts retransmitting
from the lost capsule, although most of the retransmissions are not
necessary. Thus, with Go-back-N, we observe that the window
size should be chosen such that recovery is neither initiated too
early nor too late. In Figure 7(a), we note that with window size
=4, 6, . . . , 12, the latency remains almost the same.

Figure 7(b) shows the effect of window size on selective re-
transmission based recovery algorithm. In this figure, we observe
that the window size do not significantly affect the dissemination
latency (and active radio time). This is due to the fact that the pre-
decessors selectively retransmit lost capsules, unlike Go-back-N
algorithm. Hence, the number of retransmissions and dissemina-
tion latency are reduced. We note that the dissemination latency
for window size = 2 is slightly higher than that of other values.
As discussed earlier in Go-back-N, in this case, if a sensor (say,
j) misses a capsule, its predecessor (say, k) retransmits the corre-
sponding capsule immediately, although j may receive the same
capsule through other neighbors.
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5.6. Effect of Failed Sensors
In this section, we discuss the performance of Infuse in presence of
failed sensors. In these simulations, data consisting of 1000 cap-
sules are propagated across the network. The window size used in
these simulations is 6. The failure rates used in these simulations
are 10% (respectively, 12%) and 20% on a 10x10 network (respec-
tively, 5x5 network). These values are based on the expected fail-
ure rate while deploying a sensor network (for example, in [16]).
Figure 8(a) shows the effect of failed sensors on Go-back-N al-
gorithm. We compare the dissemination latency with and with-
out failures. In a perfect grid topology, dissemination latency for
data with 1000 capsules on a 10x10 network is 15.1 minutes. In
presence of 10% failed sensors, only 4.91 additional minutes are
required to disseminate the data to the active sensors. Similarly,
the additional delay required for 20% failure rate is around 6.36
minutes. We observe the same effect on 5x5 network.
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Fig. 8. Effect of failed sensors on (a) Go-back-N and (b) selective
retransmission. * indicates bulk failure of 3 subgrids of size 3x3.

Additionally, we did a simulation with 27% failure rate on
10x10 network. In this simulation, 3 subgrids of size 3x3 are
randomly selected as the failed sensors. As we can observe from
Figure 8(a), only 1.35 additional minutes are required to dissemi-
nate the data in this case. The dissemination latency in this case is
significantly less than the latency in presence of 10% (and 20%)
failed sensors. In case of bulk failures, the sensors need to detect
the failure of the sensors along the edges only and, hence, the ad-
ditional delay required in dissemination is significantly less when
compared to random failures.

Figure 8(b) shows the results for selective retransmission based
recovery algorithm. The additional delay required for dissemina-
tion in presence of failed sensors is more when compared to Go-
back-N based recovery algorithm.
Remark. In these simulations, we assumed that the sensors fail
before the dissemination starts. Even if sensors fail during the
dissemination process, dissemination latency increases only by a
very small percentage. Specifically, the dissemination latency is
less than or equal to the latency in the case where the sensors have
failed up front + the time required to detect the failure of sensors
independently. The time required to detect the failure of sensors in
our simulations is approximately 0.3 minutes.

5.7. Comparison: Go-Back-N and Selective Retransmission
In this section, we summarize the results of our simulations. First,
in Section 5.3, to our surprise, we observe that the use of preferred
predecessors does not improve the performance of the Go-back-
N based recovery algorithm. This is due to the fact that dupli-
cate sources are reduced in Go-back-N with preferred predeces-
sors. By contrast, we do not observe this behavior with selective
retransmission based recovery algorithm. Second, in Section 5.5,
we observed that the window size should be chosen carefully in
case of Go-back-N. Again, this parameter does not affect the per-
formance of selective retransmission algorithm. Third, in Section
5.6, contrary to the first two observations, we note that in presence
of failed sensors, with selective retransmission, the dissemination
latency increases considerably. With Go-back-N, the additional
time required for dissemination is in the order of 5−6 minutes on
10x10 network. Table 2 summarizes the results.

Table 2. Comparison of recovery algorithms
Go-back-N Selective

retransmission
Message none 2b bits, where
overhead 2b = window size

Pipelining uniform uniform
Preferred not useful reduces active
predecessors radio time

Window size affects latency; does not affect
choose carefully if window size >2

Failed sensors tolerates increases latency
random failures considerably

6. DISCUSSION AND RELATED WORK

In this section, we discuss some of the questions raised by this
work and the related work.

If the network has some long links, how does it affect/benefit the
dissemination process?

If a sensor has a long link, it can choose to listen to the slots
assigned to the corresponding sensor. Now, whenever the sensor
receives new capsules from this sensor, it can save the capsule in
the appropriate address and forward it, if possible, in its TDMA
slot. Although the dissemination latency may be reduced by lis-
tening to such long links, the active radio time of the sensor is



increased, thereby reducing the network lifetime. Moreover, the
dissemination process will not have the uniform pipelining prop-
erty (as shown in Figure 6) of Infuse.

How does the protocol perform for different values of the interfer-
ence range or network density?

In [14, 15], it has been shown that a signal from a sensor (say,
j) reaches a sensor within distance 10 m (called, connected re-
gion or the communication range) with high probability. And, the
sensors at distance 10 − 35 m (called, transitional region or the
interference range) receive the signal from j with a reduced prob-
ability. Based on this discussion, the ratio of the interference range
to communication range is around 3.5. If the network density in-
creases then this ratio increases since more number of sensors fall
in the transitional region. In the simulations, we assumed this ratio
to be 4. Figure 9 shows the performance of our protocol with other
values. Since the simulation results are close to the analytical es-
timates (cf. Sections 5.1 and 5.2), we consider only the analytical
estimates in this section.
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Fig. 9. Effect of interference range on (a) dissemination latency
and (b) active radio time. Note that the scale is different.

As the ratio increases, the dissemination latency also increases.
For a given interference range, the latency grows linearly with re-
spect to the data size. Moreover, the active radio time is approxi-
mately 20% of the latency. Hence, this approach improves the net-
work lifetime by 5 times when compared to the approach where
the radio is never turned off. For example, if the ratio of interfer-
ence range to communication range is 6, the latency required for
disseminating data consisting of 1000 capsules is equal to 25.42
minutes. And, the active radio time per sensor is 4.89 minutes.

If the application does not use a TDMA protocol, can we use Infuse
to disseminate data across the network?

Yes. Towards this end, whenever the base station requires to dis-
seminate data, first, it allows the sensors to determine their TDMA
slots (e.g., using [7, 8]). In case of SS-TDMA [7], the base station
initiates a diffusing computation that assigns time slots to all sen-
sors. This overhead is equal to the time required to disseminate
one capsule across the network. And, this value depends on the
interference range of the sensors. Figure 10 shows the time taken
to disseminate one capsule for different interference ranges.
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Fig. 10. TDMA setup time

From Figure 10, we observe that the time required to establish
the TDMA schedule is significantly small when compared to dis-
semination latency for different data sizes, as shown in Figure 9.
The TDMA setup time in this simulation is 0.052 minutes in a
10x10 network, where interference range= 4. For disseminating
data with 100 capsules, this overhead is less than 3.16% of the
actual dissemination latency (= 1.66 minutes) for Go-back-N al-
gorithm. Hence, the overhead involved in establishing a TDMA
schedule before the dissemination process does not affect the per-
formance of our protocol.

How does the sensors determine their predecessors and succes-
sors? If the sensors cannot classify their neighbors, how does it
affect the performance of Infuse?

As discussed in Section 2, given two neighbors j and k, if k

forwards majority of packets before j, j marks k as its predeces-
sor and k marks j as its successor. This allows a sensor to de-
termine its predecessors and successors during the dissemination
process. However, the sensors may not be able to classify their
neighbors if the network is not uniform or randomly deployed. In
this case, the sensors listen to all their neighbors during dissemi-
nation. Whenever a sensor misses a capsule, neighbors that have
the corresponding capsule try to recover the capsule using the al-
gorithms presented in Section 3.2. In this scenario, the sensors
cannot take advantage of the approach proposed in Section 3.3.

What is the tradeoff in using preferred predecessors?
In Section 3.3, we proposed an optimization that allows the sen-

sors to reduce the number of message receptions during the dis-
semination process. With this optimization, the effective diameter
of the network may be increased, since a sensor listens only to its
preferred predecessor. However, as shown in Section 4, once the
first capsule is propagated across the network, the rest of the cap-
sules can be propagated in a pipeline fashion. As observed in Fig-
ure 5(a), the dissemination latency for data containing 1000 cap-
sules remains almost the same in 3x3, 5x5, and 10x10 networks.
Hence, even if the diameter of the network increase, the dissemi-
nation latency does not increase significantly (cf. Section 5.3 for
simulation results).

Can we use Infuse to disseminate data in large scale networks?
Yes. Towards this end, first, we note that the dissemination la-

tency does not increase significantly as the network diameter in-
creases (cf. Figure 5(a)). In applications such as [1, 16], where
1000’s of sensors are deployed in a large field, the network is typ-
ically partitioned into several sections. We can use Infuse to dis-
seminate data in each section independently and simultaneously.
Thus, the whole network can be updated with the new data in the
time it takes to disseminate the data across a single section.

Related work. Related work on data dissemination has been ad-
dressed for wired networks in [17] where reliable transmission of
multicast messages using multiple multicast channels is proposed.
One of the important concerns in data dissemination for mobile ad
hoc networks is the broadcast storm problem [18]. Specifically, in
dissemination using naive flooding based algorithms, a broadcast
storm is created where redundant broadcasts, contention, and colli-
sions occur. Infuse is not affected by the broadcast storm problem
since contention/collisions are managed by TDMA.

Negotiation-based protocols that transmit advertisements or
meta-data about the data sequence before initiating the actual dis-
semination are proposed for sensor networks (e.g., [19]). By con-
trast, with Infuse, negotiation using meta-data is not required.

Work related to transport protocols (e.g, [20, 21]) are also



used for bulk data dissemination. These protocols rely on nega-
tive acknowledgments for recovering from lost messages. How-
ever, Infuse does not use explicit acknowledgments/negative-
acknowledgments in order to recover from lost capsules. Addi-
tionally, Infuse takes advantage of the TDMA based MAC in pro-
viding a pipelined data dissemination service.

Network programming is a special case of reliable data dissem-
ination where code is transmitted to the network. As discussed
in Introduction, unlike Infuse, most network reprogramming algo-
rithms (e.g., [4–6]) use CSMA based MAC and, hence, rely on
other mechanisms for reliable dissemination.

7. CONCLUSION AND FUTURE WORK

In this paper, we presented Infuse, a reliable data dissemination
protocol for sensor networks. Infuse takes advantage of collision-
free communication offered by TDMA. Further, Infuse recovers
from random message losses caused by varying link properties and
message corruption. Towards this end, we considered two recov-
ery algorithms based on the sliding window protocols. The recov-
ery algorithms use implicit acknowledgments to recover from lost
messages unlike the explicit acknowledgments required for tradi-
tional sliding window protocols. The first algorithm, Go-back-N,
recovers from random message losses with no extra information
added to the payload of a message. With Go-back-N, we showed
that the window size should be chosen carefully. Additionally,
with the help of simulations, we observed that Go-back-N toler-
ates failure of sensors. The second algorithm, selective retrans-
missions, recovers from random message losses with 2b additional
bits added to the payload of a message, where 2b is the size of
the window. With selective retransmissions, we showed that win-
dow size does not significantly affect the protocol. In presence of
failed sensors, to our surprise, we observed that the dissemination
latency increases considerably.

In presence of no channel errors, we estimated the time required
for dissemination. Also, we showed that the data capsules are
transmitted in a pipeline and, hence, the latency for dissemina-
tion is reduced. We argued that Infuse disseminates data in an
energy-efficient manner. Specifically, we showed that the number
of message transmissions and receptions are reduced. Since Infuse
uses a TDMA based MAC protocol, sensors need to listen to the
radio only in the slots assigned to their neighbors. In the rest of the
slots, sensors can turn off their radio. Moreover, we proposed an
algorithm to reduce the number of messages further by using the
notion of preferred predecessors.

We have implemented Infuse in TinyOS [22] for MICA based
sensors [12]. We experimentally verified that Infuse reliably prop-
agates a data sequence consisting of 100 capsules on 3x3 and 5x5
networks. The latency, number of message transmissions and re-
ceptions are close to the analytical results discussed in this paper.

We are currently experimenting Infuse in large scale networks
(e.g., extreme scaling version of A Line in the Sand demonstra-
tion [16]). One possible scheme is to partition the network into
different sections and disseminate data independently. Another
interesting extension is to support dynamic adaptation in sensor
network applications.
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