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Supervised and Unsupervised Speaker Adaptation in
the NIST 2005 Speaker Recognition Evaluation

Eric G. Hansen, Raymond E. Slyh, Timothy R. Anderson

Air Force Research Laboratory, Human Effectiveness Directorate, Wright-Patterson AFB OH, USA

Abstract ditional training burden on users and no time-consuming,
manual search by system developers.

Starting in 2004, the annual NIST Speaker Recognition One way that has been proposed for obtaining ad-
Evaluation (SRE) has added an optional unsupervised ditional training data for speaker models is to use data
speaker adaptation track where test files are processed from on-line test cases that score highly against the re-
sequentially and one may update the target model. In spective claimant models [1-8]. This unsupervised adap-
this paper, various model adaptation techniques are im- tation procedure has received considerable attention for
plemented using a supervised (ideal) adaptation scheme, text-dependent applications [1-6] and for applications in
Once the best performing model adaptation method is which the number of impostor trials is considerably lower
found, unsupervised adaptation experiments are run us- than the number of true claimant trials [4-6].
ing a threshold to determine when to update the tar- Two notable studies [7, 8] have considered scenar-
get model. Three NIST training conditions, l0sec4w, ios derived from NIST SRE1 databases, which involve
Iconv4w, and 8conv4w, all with the 1conv4w test con- text-independent verification with a large ratio (approxi-
dition are used for experiments with the NIST 2005 SRE. mately 10:1) of impostor tests to true claimant tests. In
MinDCF values for the three training conditions are re- both [7,8], the NIST 2002 SRE database was used to syn-
duced from 0.0708 to 0.0277 for 10sec4w, from 0.0385 thetically create the adaptation testing paradigm, and both
to 0.0199 for lconv4w, and from 0.0264 to 0.0176 for efforts showed a benefit from using unsupervised adapta-
8conv4w using the supervised adaptation compared to the tion. Since 2004, NIST has provided test control files to
baseline. For the unsupervised adaptation, minDCF val- allow for the possibility of running systems in an unsu-
ues were reduced to 0.0590, 0.0302, and 0.0210 for the pervised adaptation mode in the annual SRE without the
respective training conditions. need for synthetically-generated test control files. In ad-

dition to using the 2002 database, [8] also used the 2004
1. Introduction database, but no improvement was found from using un-

supervised adaptation with the 2004 data. One possible
It is well known that the performance of speaker recog- explanation for the disparity between the use of the 2002
nition systems tends to improve when larger amounts of and 2004 databases is that the 2002 (limited-data, one-
training data are used to build speaker models. On the speaker detection) database used only cellular telephone
other hand, obtaining these larger amounts of training data and involved only English speech, whereas the 2004
data can be problematic for many applications. In ap- database used data from both cellular and landline tele-
plications where users enroll in the system (such as in phones and involved some non-English speech. As the
telephone banking), the users generally do not like hav- work in [8] used the 2002 data for setting some of the pa-
ing to give large amounts of training data. In applications rameters of the system, this might have contributed to the
where someone (other than a user) has to select some data lack of improvement seen with the 2004 data.
to build a speaker model, finding appropriate segments to The work reported here is similar in spirit to the
use as additional training data can be a time-consuming, work of [7, 8] in that we consider unsupervised adapta-
tedious process, especially for speakers that do not ap- tion in the NIST SRE context; however, we consider the
pear very often. For these reasons and others having to NIST 2005 SRE database for testing and use the 2004
do with robustness to intersession variability and voice database for setting some of the system parameters. The
aging [1,2], it is appealing to be able to automatically up- 2005 database is similar to the 2004 database with a
date/adapt speaker models as more training data are ob- mix of telephone handset and channel types and some
tained, and it is especially desirable to be able to auto- non-English speech, although the amount of non-English
matically obtain the additional training data with no ad- speech appears to be less in the 2005 database than in the

2004 database.
Opinions, interpretations, and conclusions are those of the authors
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With an on-line, unsupervised method of model adap- where both sides of the conversation are given as sepa-
tation, two important issues to address are determining rate channels in the speech files, but only one side (i.e.,
when and how to update models. The work reported here channel) is used for the training or the testing. The length
focuses on the latter question of how to update models, of time for each condition is the approximate amount of
In particular, we focus on various techniques for adapting speech given to either build an initial model or to evaluate
speaker models in a standard speaker recognition system a model. The I conv4w and 8conv4w conditions use one
using mel-frequency cepstral coefficients (MFCCs) and and eight conversation sides, respectively, where a con-
Gaussian mixture models (GMMs) [13]. Previous work versation is five minutes long and should result in nomi-
in [7, 8] used a standard adaptation method for GMMs nally 2-2.5 minutes of speech for each speaker assuming
involving trying a number of different settings for a rel- roughly equal turn taking. However, we have found that a
evance factor; however, we show that setting the adap- number of conversation sides yield significantly less than
tation factor based on the ratio of the number of speech two minutes of speech; hence, our proposed adaptation
frames in the test file to the sum of the number of speech- method is based on numbers of speech frames as opposed
frames in the test file and the number used to build the to nominal amounts of speech as was considered in [1].
current model, and setting a floor and ceiling on this ra- For these adaptation experiments, an index file is supplied
tio, yields more performance improvement on the three by NIST which is processed sequentially, and for each
training conditions investigated than adapting based on a model-test file pair, the model could be updated with the
relevance factor. Without the floor and ceiling operations, test file for future trials.
the proposed adaptation method would be similar to that
used in [3]. 2.2. Performance Measures

With regard to the problem of determining when to NIST compares system performance in two major ways.
update a model, much of the previous work has used a First, NIST uses a detection cost function, CD, defined as
speaker-independent threshold, which does not have to a weighted sum of miss and false alarm probabilities:
be the same as that used for the decision threshold (e.g.,
see [4,5,7,8]). Our work also uses a speaker-independent CD = CMPMITPT + CFAPFAINT(1 - PT),

threshold for determining when to adapt a model, and we where CMy is the cost of a miss (chosen by NIST as 10),
set it equal to the decision threshold that we determined CFA is the cost of a false alarm (chosen by NIST as 1),
from the NIST 2004 database. Notable work that has PT is the a priori probability of a target (chosen by NIST
considered other methods besides speaker-independent as 0.01), PMIT is the probability of a miss given a tar-
thresholds includes [6, 7, 10]. get trial, and PFAINT is the probability of a false alarm

This paper is organized as follows. The next sec- given a non-target trial. PMST and PFAINT are a function
tion discusses the experimental setup, including the NIST of system performance and the chosen detection thresh-
2005 SRE database and the performance measures to be old. For a given system, chosen costs, and apriori target
considered. Section 3 describes the baseline system and probability, there is a threshold that yields a minimum
the various model adaptation methods investigated. Sec- value of CD; we refer to this minimum value of CD as
tion 4 discusses the experimental results of using the dif- the minDCF value. Second, NIST uses plots of PMIT

ferent adaptation methods in supervised adaptation and of versus PFAINT, called Detection Error Trade-off (DET)
applying the best model adaptation scheme for the unsu- plots [12], to show how system performance varies for a
pervised adaptation task. Finally, Section 5 presents the wide range of operating points. In addition to these two
discussion and conclusions, presentations of performance, we will also use the equal

error rate (EER), the value of PMIT (or PFAINT) when

2. Experimental Setup PMIT ý PFAINT"

2.1. Database 3. Baseline System and Adaptation

All experiments were run on the NIST 2005 SRE [11] Methods
database using conversational speech collected over tele- This section describes the MFCC/GMM system and dis-
phone channels. Under the NIST 2005 SRE framework, cusses four methods for adapting the target models with
five training conditions and four testing conditions were test data.
outlined resulting in 20 different conditions to evalu-
ate. Experiments run for this paper focused on three
of these conditions which were the: 10-second train-
ing (I 0sec4w), one-conversation training (I conv4w), and The baseline system was based on Version 2.1 of the MIT
eight-conversation training (8conv4w) conditions, with Lincoln Laboratory (MIT-LL) MFCC/GMM system [13]
the testing condition held constant at one-conversation with M = 2048 mixtures per model and diagonal co-
(lconv4w). The "4w" designates the four-wire case, variance matrices for each mixture. Nineteen MFCCs



were computed in the bandwidth of 300-3138 Hz ev- where wm is the mixture weight for the mth mixture and
ery 10 msec. RASTA filtering [14] was applied to the bm(xt) is the mth uni-modal Gaussian mixture evaluated
MFCCs and deltas were then calculated. Only frames la- at 5ýt. Let nm (X) be the probabilistic count of the vectors
beled as speech by a speech activity detector were used, of X aligned with the mth prior mixture, then
and these were further processed with the feature map-
ping method of [15] for channel compensation. The T
mapped features were then normalized to have zero mean nm(X) = Z Pr(m[Yt). (2)
and unit variance. For a test file, the set of mapped and t=1

normalized features, FT, were scored against an hypoth- Define Em(X) as
esized speaker's GMM, As, and a background GMM,
ABKG, using the "top-5" scoring method as outlined in 1 T

[13], and the system log-likelihood score was formed as E.a(X) - n(X) SPr(mIxt).t, (3)
t=1

A(FT, As) = log(p(FT[As)) - log(p(FTIABKG)).
then the adapted mean of the mth mixture, ft' is given

The system used a speech activity detector which e tr,

worked in three stages. The first stage utilized a two-
state speech/non-speech Hidden Markov Model (HMM) Ptm = (YiEm(X) + (1 - cm)pm, (4)

with MFCCs as the features. The second stage refined the where pm is the prior mean of the mth mixture and am
HMM output by applying an energy-based detector. The is the adaptation factor for the mth mixture. In adapt-
final stage post-processed the output by reclassifying as ing T-norm and initial target models from the background
non-speech any segments labeled as speech that were less model, am is typically defined as
than 20 msec in duration. The MFCC/HMM portion of
the SAD was built using HTK from Cambridge Univer- 1 n(X)
sity2 using 64 mixtures per state. The energy-based de- nm(X) + r'
tection was performed using the MIT-LL xtalk program where r is known as the relevance factor. Following the
from their MFCC/GMM speaker recognition system. work of [ 13], we set r = 16.

Gender-dependent T-norm [16] was applied to the
system log-likelihood scores (using 120 models for each
gender), with the exception that gender-independent T-
norm (with 240 models) was used in the 10sec4w train- This subsection describes four methods that were inves-
ing conditions. For the 1 Osec4w- 1 Osec4w training/testing tigated for on-line adaptation of target models in the ex-
condition, T-norm models were built from 30 seconds of periments to be discussed in Section 4. In all cases, only
data. For the other training conditions, T-norm models mixture means were adapted using the same procedure as
were built using approximately two minutes of data. outlined in Equations 1-4 for adaptation from the back-

The background model data consisted of approxi- ground model. The difference was in the form of the
mately 16 hours of speech from a variety of sources, adaptation factor, am.
including the NIST 2001-2003 evaluations (for carbon
button land line data, electret microphone land line data, 3.2.1. Adaptation Factor I
and digital cellular data) and the OGI National Cellular The first adaptation factor considered was the same one
model data were balanced for gender and the four previ- used to adapt the initial target models from the back-ously mentioned channel types, and these channels were ground model-namely, Equation 5. The relevance fac-tor was chosen to be fixed at 16 as was done in adapt-the ones used in the feature mapping. The T-norm model ing initial models from the background model. Setting a
data came from NIST 200 1-2003 evaluation data. fixed relevance factor follows the adaptation process used

Initial target and T-norm models were built by adapt- in [7, 8]. Note that this adaptation factor only depends
ing from the background model using MAP adaptation on the relevance factor and the probabilistic count of the
to adapt only the mixture means from those of the back- vecthesreligne fach mnd th is countionvectors aligned with each mixture. Thus, this adaptation
ground model [ 13]. Let X = {,. . ,XT} be a set of factor can rapidly shift a mixture's mean even if a large
T feature vectors to be used in adapting a model, then
the probabilistic alignment of the tth vector into the Mth number of vectors have gone into determining the mix-

prior mixture component is given by ture's prior mean.

wmbm,(t) 3.2.2. Adaptation Factor 2

) = )Let the number of speech frames in a test file to be used
2 Available at: http://htk.eng.cam.ac.uk/ for adaptation be TT and let the total number of speech
3

See: http://cslu.cse.ogi.edu/corpora/corpCurrent.html frames that have gone into making a model be TM. The



second adaptation factor considered was to set the adap- 4.1. Supervised Adaptation
tation factor for all of the mixtures to be: n, = TT/TM,
where if a > 1, then a is set to 0.75. This method works Figure 1 shows the results of using the four adaptation

well for training conditions that start with large amounts factors with supervised adaptation for the l0sec4w train-

of training data, thereby resulting in a smaller value of ing condition. Adaptation with factors 2 and 3 outper-

a and preserving the history. When the amount of data forms the baseline system in the low false alarm region,

initially used to train a model is small and the amount but shows considerably worse performance in the high

of new data is large, a swings toward its upward bound false alarm region. Adaptation with factors I and 4 per-

and heavily weights the new data. Such a large shift in forms better than the baseline system for false alarm rates

the means of the model can shift the model away from up to a little less than 40%. The best performance came

the background model and create problems for the fast from adaptation factor 4 which resulted in a minDCF of

"top-5" scoring method. 0.02772 compared to the baseline minDCF of 0.07079
and an EER of 13.4% compared to the baseline EER of
20.8%. This shows the large amount of improvement that

3.2.3. Adaptation Factor 3 might be gained if proper adaptation occurs.

Let TT and TM be defined as for the second adaptation Figure 2 shows the results of using the four adaptation

factor, then the third adaptation factor considered was to factors with supervised adaptation for the I conv4w train-

set the adaptation factor for all of the mixtures to be: a = ing condition. Adaptation factor 2 performs better than

TT/(TT, + TM). This ratio restricts a to be 0 < a < 1 the baseline for false alarm rates below 1%, while adap-

but it can still result in values of a close to one if the tation factor I outperforms the baseline for false alarm

amount of data used to build the initial model is small rates below 7%. Adaptation factors 3 and 4 show a per-

compared to the amount of new adaptation data. This formance increase across the entire visible region of the

adaptation factor has the same problems as mentioned in DET plot, with adaptation factor 4 performing the best.

the discussion of the prior adaptation factor. Performance The minDCF of using adaptation factor 4 is 0.0 199 com-

is good for conditions where the amount of new data is pared to the baseline minDCF of 0.0385, while the EER

less than or equal to the amount of data used to build the is reduced to 6.9% from the baseline EER of 10.7%.

initial model. Figure 3 shows the results of using the four adapta-
tion factors with supervised adaptation for the 8conv4w

3.2.4. Adaptation Factor 4 training condition. Adaptation factor 1 performs worse
than the baseline for a wide range of false alarm rates.

The final adaptation factor considered is the same as the Adaptation factors 2, 3, and 4 all yield similar perfor-

prior adaptation factor, but with two constraints: a ceiling mance, significantly outperforming the baseline system

of 0.5 and a floor of 0.1. This means that the new adap- over the entire visible region of the DET plot. The best

tation data will contribute at most half of the information performing method is adaptation factor 4, which reduces
the minDCF from the baseline of 0.0264 to 0.0 176 and

in shifting the new mixture means and will contribute at the EER from the baseline of 7.3% to 4.8%. The

least 1/10 of the information. When the number of speech

frames used to build the model is small compared to the constraint of the floor of 0.1 contributes to the extra gain

number of speech frames from the test file, this factor of adaptation 4 compared to the other methods by making

is almost always set to the ceiling of 0.5. On the other sure a minimal amount of adaptation occurs.

hand, even if the number of speech frames used in build-
ing a model is very large relative to the number of speech 4.2. Unsupervised Adaptation

frames in the test file, there will still be some adaptation Based on the fact that adaptation factor 4 performed the
of the model. The next section shows that this addition best for all of the supervised adaptation experiments, only
of the floor and ceiling constraints significantly improves this adaptation factor was used for unsupervised adapta-
the performance. tion. The threshold used to determine when to adapt a

model was chosen as the threshold for minDCF opera-

4. Experimental Results tion for the various conditions as found from the NIST
2004 SRE. For comparison purposes, Table 1 lists these

This section presents the experimental results for both su- thresholds per training condition and per year. One can
pervised and unsupervised adaptation. The supervised see that the thresholds are similar between the 2004 and
adaptation results used the key for the NIST 2005 SRE 2005 data for the 10sec4w and Iconv4w training condi-
to determine when to update the models. The unsuper- tions, but for the 8conv4w training condition, the thresh-
vised adaptation results used detection thresholds found old is much lower for the 2005 data. Based on these val-
from the NIST 2004 SRE database to determine when to ues, we might expect to miss correct model updates for
update the models, the 8conv4w training condition by using the 2004 detec-



Training Condition 1 2004 2005 Training Baseline Adapted

10sec4w 2.69 2.73 Condition Unsupervised Supervised

lconv4w 2.78 2.64 [10sec4w 0.0708 0.0590 0.0277
8conv4w 5.76 4.64 lconv4w 0.0385 0.0302 0.0199

8conv4w 0.0264 0.0210 0.0176
Table 1: Threshold for minDCF operation for NIST 2004
and 2005 by training condition. The testing condition Table 2: MinDCF for the baseline, unsupervised adapta-
was lconv4w, tion, and supervised adaptation systems by training con-

dition. All testing conditions were lconv4w.

tion threshold as the threshold for determining when to Training Baseline Adapted
update a model in unsupervised adaptation. Condition Unsupervised Supervised

Figures 4-6 compare the baseline system perfor-
mance to the performance obtained with adaptation fac- 10sec4w 20.75% 26.66% 13.38%
tor 4 for both supervised and unsupervised adaptation for 1conv4w 10.73% 10.51% 6.85%
the three different training conditions. For all three train- 8conv4w 7.32% 5.84% 4.80%
ing conditions, the unsupervised adaptation improves the Table 3: Equal error ratesfor the baseline, unsupervisedperfor3:Eance inorthetslowrfalseasalarm regions.se
performance in the low false alarm regionsh adaptation, and supervised adaptation systems by train-

For the I10sec4w training condition shown in Figure 4, ing condition. All testing conditions were lconv4w.
one can clearly see the potential of what the adaptation
might provide if done properly. However, starting with
10 seconds of data to build initial models makes it diffi- missed model updates across all the training conditions.
cult to find the true matches during unsupervised adapta- As the length of the initial training data goes up, the false
tion. One other significant problem for this training con- alarm and miss rates on model adaptation decrease; how-
dition is using a fixed threshold for determining when to ever, for any given condition, further improvement in the
update a model. As can be seen in Table 1, as the train- unsupervised adaptation performance might be achieved
ing data increases, so generally does the minDCF thresh- by better adjusting the adaptation decision threshold.
old. In fact, it has been noted in [6, 9, 10] that as mod-
els are adapted, there tend to be shifts in both impostor 5. Discussion and Conclusions
and true claimant scores. A dynamic, speaker-dependent
threshold that takes into account the amount of data in the In this paper, various model adaptation techniques were
model being evaluated may be useful [6,9, 10]. implemented on the NIST 2005 SRE using a supervised

Figure 5 shows the results for the 1 conv4w training adaptation scheme. Setting the adaptation factor based on
condition. The unsupervised adaptation never performs the ratio of the number of speech frames in the test file to
worse than the the baseline and provides good improve- the sum of the number of speech frames in the test file and
ment over the baseline for false alarm rates less than 5%. the number used to build the current model, and setting a
Compared to the supervised adaptation, there is still room floor and ceiling on this ratio, yielded more performance
for improvement. improvement on the three training conditions investigated

Figure 6 shows the results for the 8conv4w training than adapting based on a fixed relevance factor. MinDCF
condition. Starting with eight conversations of training values for the three training conditions are reduced from
data, fewer mistakes are made when adapting models 0.0708 to 0.0277 for 10sec4w, from 0.0385 to 0.0199
with testing data, so the unsupervised adaptation system for lconv4w, and from 0.0264 to 0.0176 for 8conv4w
more closely approximates that of the supervised adapta- training conditions using the supervised adaptation com-
tion performance. pared to the baseline. Using the minDCF threshold de-

Tables 2 and 3 list the minDCF and EER, respec- rived from the NIST 2004 SRE, unsupervised adaptation
tively, for each training condition and for the baseline, was executed using this adaptation method and minDCF
unsupervised, and supervised adaptation experiments. In values were reduced to 0.0590 for 10sec4w, 0.0302 for
all cases, whether supervised or unsupervised adaptation, 1 conv4w, and 0.0210 for 8conv4w training conditions.
there is improvement in the minDCF area compared to A trend seen in previous research, [5-7,9] is a shift in
the baseline system. With respect to the EER, only the scores as models are adapted. These score shifts can neg-
1 Osec4w training condition fails to give an improvement atively affect performance as they increase the chance of
using unsupervised adaptation. model corruption as updating continues. Various score

Table 4 lists statistics on model adaptation for the normalization schemes have been investigated to com-
different training conditions. Note the large number bat this problem [10], but with mixed results. While
of falsely updated (i.e., impostor-corrupted) models for score normalization was not the focus of this paper, re-
the 10sec4w training condition and the large number of sults from the 10sec4w training condition further illus-



10sec4w lconv4w 8conv4w [6] N. Mirghafori and L. Heck, "An adaptive speaker

Total trials 31,398 31,315 23,630 verification system with speaker dependent a priori

Correct updates 1,371 2,055 1,793 decision thresholds," in Proc. ofICSLP 2002, (Den-

Correct rejections 28,329 28,388 21,340 ver CO), September 2002.
False alarms 244 152 49Misses 1,454 720 448 [7] C. Barras, S. Meignier, and J. Gauvain, "Unsuper-

vised online adaptation for speaker verification over
Num. target models 642 635 497 the telephone," in Proc. of Speaker Odyssey 2004:

Table 4: Model adaptation information per training con- The Speaker and Language Recognition Workshop,

dition for the unsupervised adaptation experiments. (Toledo, Spain), May-June 2004.

[8] D. A. van Leeuwen, "Speaker adaptation in the

trate that score normalization would be useful. The most NIST speaker recognition evaluation 2004," in

gain to be realized with adaptation is in the short training Proc. of Interspeech 2005, (Lisbon, Portugal),

condition of 10sec4w; however this is precisely the case September 2005.

when it is more difficult initially to determine when to [9] A. Sankar and A. Kannon, "Automatic confidence
properly update the model. A very conservative thresh- score mapping for adapted speech recognition sys-
old may need to be set initially to control for false alarms tems," in Proc. ofICASSP 2002, (Orlando FL), May
in model adaptation. 2002.

Future work will investigate when to update the tar-
get models with the test data as there is still a perfor- [10] N. Mirghafori and M. H1bert, "Parameterization of
mance gap between supervised and unsupervised results. the score threshold for a text-dependent adaptive
This work will include investigating dynamic thresholds speaker verification system," in Proc. of ICASSP
or score normalization schemes to combat the score shifts 2004, (Montreal, Canada), May 2004.
that occur when updating the models. Also of interest is
to investigate adjustments to the adaptation factor, such as [11] NIST, The NIST Year 2005 Speaker

in [4, 5], which more aggressively update a model when Recognition Evaluation Plan, Ver-

a test file scores very highly against it. sion 6, 29 March 2005. (Available at:
http://www.nist.gov/speech/tests/spk/2005/sre-

6. References 05_evalplan-v6.pdf)
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Figure 1: NIST 2005 SRE l0sec4w training condition, Figure 3: NIST 2005 SRE 8conv4w training condition,
lconv4w testing condition, comparing four adaptation lconv4w testing condition, comparing four adaptation
methods on supervised adaptation experiments. Adapta- methods on supervised adaptation experiments. Factor
tion factors 2 and 3 perform much worse that adaptation 1 performed worse than the baseline, while the others re-
factors 1 and 4, with adaptation 4 performing the best. sulted in similar performance gains over the baseline.
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Figure 2: NIST 2005 SRE lconv4w training condition, Figure 4: NIST 2005 SRE l0sec4w training condition,
lconv4w testing condition, comparing four adaptation lconv4w testing condition, comparing the baseline sys-

methods on supervised adaptation experiments. In in- tem to supervised and unsupervised adaptation showing
creasing order offactor performance: 2, 1, 3, and 4. there is much to be gained if adaptation is done properly.
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Figure 5: NIST 2005 SRE lconv4w training condition, Figure 6: NIST 2005 SRE 8conv4w training condition,
lconv4w testing condition, comparing the baseline sys- lconv4w testing condition, comparing the baseline sys-
tem to supervised and unsupervised adaptation. tem to supervised and unsupervised adaptation.


