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Ahtract: This study demonstrates that a much higher characteristic-tempemture can be 
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The driving force behind the quantum dot (QD) studies was the possibility of reducing the laser threshold 
since the density of states in QDs is ideally much narrower than the density of states in bulk and quantum- 
well semiconductors. Although the progress in QD Lasers has been significant, they still have not fuKilled 
their promise because present QD lasers still exhibit strong exponential dependence of their threshold upon 
temperature due to carrier recombination in the barrier layers that “clad the dots [l]. In this paper, we 
propose a new type of QD laser in which the direct-gap QDs are embedded in a semiconductor “matrix” 
material that has an indirect bandgap. We show that this technique reduces the dependence of threshold 
current on temperature. Specifically, we have studied InAs QDs in indirect AlxGal,As barriers with x = 
0.4. The choice of Alo4Ga,,6As barrier material with a lattice parameter almost equal to that of GaAs is 
made in anticipation of investigating similar InAs QDs in both GaAs and AlGaAs. Thereby, we can 
establish a fair comparison between QD lasers with direct GaAs barriers and those with indirect Ab4GaO6 
As barriers. In this paper, a signiftcant reduction in temperature dependence (a much higher “characteristic 
temperature”) is predicted for the QD lasers with indirect barriers. The reason is that a majority of the 
camers reside in the barrier at higher temperatures. The longer effective carrier lifetime due to the indirect 
nature of the bandgap reduces the demand on the pumping current for maintaining those carriers in the 
barrier, a region that serves as a reservoir for carrier population in QDs. 

The population dynamics is modeled with the theory of random population [2] based on the idea that 
carrier capture by the dots and recombination in the dots are essentially random processes. We further 
expand this theory to include the escape process that allows carriers to be thermally released from dots to 
their surrounding barrier before being recombined [3]. 
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Fig. 1 Population distribution at 300K between dots Nehand barrier Nb for InAs dots in 
barriers of (a) direct GaAs and (b) indirect AlGaAs. 
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Figure 1 shows the carrier distribution between the dots Net, and barrier Nb as a function of the 
pumping current density at T=300K for dots with an area density of 4 ~ 1 O ' ~ c m - ~  embedded in either direct 
or indirect barriers. It can be seen from Figs.l(a) and l(b) that carriers already starts to accumulate in the 
barrier before the dots are saturated. In order to maintain a steady-state distribution of carriers in the dots 
that is sufficient for threshold optical gain, it is necessary to maintain a certain level of carrier density in the 
barrier. As demonstrated in Fig. 1, the barrier of indirect bandgap requires less pumping current density to 
inject a given density of carriers. 

Based on the analysis of population distribution, we have calculated the optical gain for the ground- 
state radiative transitions with the assumption that for a typical QD ensemble, the inhomogeneous 
broadening of the transition linewidth induced by the dot-size variation is much larger than the 
homogeneous broadening. 
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Fig.2 Optical gain as a function of pumping current density at various temperatures for 
InAs dots in barriers of (a) direct GaAs and (b) indirect AlGaAs. 

The result of optical gain at the average transition photon energy is shown in Fig.2. The gain is 
calculated as a function of pumping current density for QDs with direct (Fig.2a) and indirect barriers 
(Fig.2b) for several tempeiatures ranging from 50K to 350K. It can be seen from Fig.2 that the optical gain 
increases with the pumping current density and reaches saturation value at approximately 12/cm. QD lasers 
with indirect barriers require less pumping current compared to those with direct barriers to reach the same 
level of optical gain. Comparing Figs.2(a) and 2(b), optical gain as a function of pumping current for QD 
lasers with indirect barriers shows rather insignificant temperature dependence, while that of direct barriers 
clearly indicates a strong temperature dependence. This conclusion is better illustrated with the assumption 
of a fixed value of optical gain that is required to compensate the typical losses (2 - 10/cm) found within 
QD laser cavities. Taking the value of threshold gain as gfi=8/cm, we have calculated the threshold current 
density Jth as a function of temperature. The result is shown in Fig.3 for QD lasers with direct and indirect 
barriers. Fig.3 reveals that QD lasers with indirect barriers require less pumping to reach Jth throughout the 
temperature range, and that Jth remains almost unchanged as the temperature increases. For QD lasers with 
direct barriers, even though their Jm can be low at "low" temperatures, J,,, increases sharply as the 
temperature increases. The rather significant difference in Jth between the two cases at higher temperature is 
the direct result of the lifetime difference between the two types of barriers where there is an inevitable 
carrier buildup at elevated temperature. We have fitted our data to the standard threshold-temperature 
expression: Jth=Joexp(T/To) where To is the characteristic temperature of the laser. For the temperatwe 
range of 50 - 350K, We obtain T0=305K for the direct barrier and T0=2857K for the indirect barrier. For 
the higher temperature range of 260 -350K, we obtain T0=153K for the direct banier and To = 1152K for 
the indirect barrier, an enormous improvement. The To value that we obtained for QDs in direct barrier at 
higher temperature is consistent with the 161K value measured over the same temperature range in the 
InAs QD laser with GaAs barrier [4]. 
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Fig.3 Pumping threshold current density as a function of temperature to maintain optical 
gain of Wcm for InAs dots in direct and indirect AlGaAs barriers. 
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