How to prevent type-flaw guessing attacks on password protocdls

Sreekanth Malladi, Jim Alves-Foss
Center for Secure and Dependable Systems
University of Idaho
Moscow, ID - 83844
{msskanth,jimaf }@cs.uidaho.edu

Abstract 1.1 Type-Flaw Guessing Attacks
A message in a protocol is said to havéype-flawif it Consider the following protocol we discussed it [
was created with some intended type, but is later received)
and treated as a different type. tppe-flaw guessing attack Msg 1. A — B : {{1K i), (1K pr(m) e bpad

is an attack where a password is guessed and verified by Msg2.5 — A: {NB,{K2}x}pas
inducing type-flaws in a protocol. Msg3.4 — B : {NB}k,.

Heather et al. [HLS00] prove that attacks that use type- A type-flaw guessing attack is possible against this pro-
flaws can be prevented if honest agents tag messages witfPcol. During the on-line phase of the attack, the attacker
their intended types. However, their tagging scheme can notPerforms the following communication witd (we write
be used in a password protocol since it allows a guess to be! (z) when the attacker impersonates honest aggnt
d|rectly_ver|f|ed using the tags inside password (_ahcr){ptlons. MSg 1. A — I(B) : {k} iy LUk} oot b hpat

In this paper we prove that following a modification of Msg 2.1(B) — A : {{k} () {1k} pr(B) } & } pab
Heather et al.s scheme most type-flaw guessing attacks can Msg 3.4 — I(B) : {{k}”:] pr _ P
still be prevented. Ph(B)J {k}pi(a)

In message 2, attacker replays message 1 baek taus-
ing a type-flaw. A cannot detect this type-flaw and hence
responds by sending message 3.
1 Introduction Attack: The attacker goes off line and begins guessing
values forpab. Using a guess he decrypts message 1 with
. _ ... the guess, splits it, and takes the first pg#}(,. z)) out

Numerous protocols have been introduced to initialize of it. He can then decrypt message 3 with the this value to

security services for protocol users. One of the goals gptain it {k},x(5) again, thereby verifying the guess. This

There exists a class of protocols called password protocolsinto sending redundant information in messagé]3 [

that use user chosen passwords for authentication. If these Opserve that this attack is not possibledifcan detect

protocols are not designed well, they may be subject tohe type-flaw in message 2. Tagging messages 1 and 2 will

guessing attackE5LNSO3]; here an attacker can learn the enaple this detection, but can also enable the guessing attack
password by guessing it and verifying the guess using theynless we are careful.

messages in the protocol.

A message in a protocol is said to haveype-flawif 1.2 Tagging to Prevent Type Flaw Attacks
it was created with an intended type but is later received
and treated as a different type. For example, receiving a Heather et al. in [HLS00] proved that attacks involving
nonce and treating it as though it was an agent’s identity. A type-flaws can be prevented if all messages are tagged with
type-flaw guessing attadk an attack where a type flaw is their types. For example, in their scheme, a nancshould
induced in a protocol to enable a password guessing attackbe tagged agonce, na), an agent’s identity as,(agent, a)

and so on.

*We dedicate this paper to Late Professor Roger Needham. This work ~ HOWever, there is a problem with Heather et als solu-

was funded in part by DARPA under grant no. F30602—2-1-0178. tion. Consider the message:

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
2003 2. REPORT TYPE 00-00-2003 to 00-00-2003
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

How to prevent type-flaw guessing attacks on password protocols £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of |daho,Center for Secure and Dependable Systems,PO Box | REPORT NUMBER
441008,M oscow, | D,83844-1008

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 11
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Therefore, we prove that:
{na}passwd(a,b)l

An attacker can attempt a guessing attack by guessing
the passworgasswd(a, b). For example, if the user name
is “Arnold Schwarzenegger” terminator” wouldn't be a
bad guess fopasswd(a,b). If the attacker knowsia, he
can decryp{na} ,asswd(a,p) With “terminator” to see if
it matches thewa he knows. If so, that verifies the guess.
Otherwise, he can try using another guess.

Note that this attack is not feasible if the attacker does
not knowna initially. But consider the same message using
Heather et al.'s scheme of type-tagging:

Whenever there is a guessing attack on a proto-
col using our tagging scheme, there is an equiva-
lent guessing attack when all fields are correctly
tagged.

An off-line guessing attack is characterized by two factors:

e The protocol run (an attacker can actively participate
in the protocol run, inducing type-flaws, but doesn’t
use a guess);

e Attacker inferences from the set of messages in the

protocol run that enable him to verify a guess.
{nonce, na}passwd(a,b)

The attacker can decrypt with the guess and see if there Therefore, in order to prove our main claim, we need to
is the tag tonce” in it. If so, that would directly verify ~ prove two things:

the guess. He doesn't even need to knaw Therefore,

Heather et al.’s solution against type-flaw attacks cannot be 1. If an attacker participates in a protocol rrthat uses
used in password protocols. our tagging scheme, then an equivalent protocol run

C" can be visualized in which, every field is correctly

1.3 Tagging to Prevent Type-Flaw Guessing At- tagged;

tacks 2. If the attacker can verify a guess from the set of mes-

. sages irC', then he can also verify a guess frd@ifi.
We have run into a classic security problem: one security

solution, tagging to .prevent type-flaw attacks,.introduces a \We use the main result from [HLS00] for point 1 above.
new ch_)bIem, enablmgdof nonhtype-flslw gubessm%_atyacki. Our only modification to their model is the following: We
In_t IS paper, we address this problem by mo ifying the o hgjider all weak encryptions (terms encrypted with pass-
ta‘}‘g'”g scheme. We prove the_lt 'T we follow Heather et words) as if they were just another type of atomic ele-
al.'s scheme but avoid type-tags |nS|de_ terms encrypted Wlthments such asonce, agent etc. We associate a generic tag
passwords, most the type-flaw guessing attacks can still be‘Wenc,, for weak encryptions. We introduce their protocol
pre_l_/ﬁnted.l f h dified sch fail model and state their main result in section 3.
e only type-flaw that our modified scheme falls to For point 2 above, we use the definition for guessing at-

prevent is the following: a password encrypted term, say tacks from [?] and show that, whenever a guess is verifiable

{m1}passwaa,b) being received, expecting to be of the form ¢, C, then it is also verifiable fron®”. This is covered
{m2} passwd(a,py With m1 andm?2 having different types in section 4

(ideally). We will have more to say about this case in the

Conclusion.
3 Proof Part 1: Heather et al’s Protocol

2 Proof Strategy Model and Main Result

We introduce a modified version of Heather et al’'s tag- In this section we reiterate the model and main results of
ging scheme that prevents most type-flaw guessing attackdieather et al.'s [HLS00] tagging scheme in the context of
and does not add redundancy that enables normal guessingur modification.
attacks. We prove this claim following a model and proof
structure very similar to Heather et al. [HLSO00].

Our main aim is to prove the following:

3.1 Message Structure

Whenever there is a guessing attack on a protocol 3.1.1 Tags, Facts and Taggedfacts

using our tagging scheme, there is an equivalent
guessing attack when there are no type-flaws in
the protocol.

IHerenais a noncej{na},qsswd(a,b) FePresentsa encrypted with
passwd(a, b).

The main message element isagigedfact It is a combi-
nation of atag andfact, written as(tag, fact). The idea is
that the tag represents the “type” of the fact.

TaggedFact ::= Tag x Fact.

Message structures are divided into atoms, pairs and enin contrast a functiofPublicKeygives rise to a strong key.
cryptions. An atom is an indivisible element. Sets of atoms We will talk more about function applications in section 3.2.

are grouped together atgent, Nonce, Pubkey and so Projections are defined on tagged facts as:
on. The tags for elements of the these sets are given obvi- R .
ous names such agent, nonce etc. In our modification th=t(t =T

we add the sell enc to Atoms to represent “weak encryp-
tions”. The corresponding tag vgenc. We treat weak en-
cryptions as an “abstract type”. We will talk more about this
set as we progress in the paper.

A pair tag is associated with concatenation of two tagged
facts. The tagnc is associated with encryptions together

with the collection of tags for the elements inside the en- |, the following definition, we introduce the subfact relation

A version of the perfect encryption assumption is as-
sumed, whereby honest agents are capable of knowing if
they decrypted an encryption correctB}.[

3.1.2 Subtaggedfacts

cryption and a tag for the key. denoted by’ to refer tosubtaggedfactsf a tagged fact.
Definition 1. The subfactrelation is the smallest relation
Tag ::= agent | nonce | wenc | ...| pair | enc Tag™ Tag on tagged facts such that:
1.tfCtf;
Fact ::= Atom | PAIRTaggedFact TaggedFact i _
| ENCRYPT Tag TaggedFact Fact 2. tfC (@, (tf1,1f2)) ff tf CHfIVEf T tf2;

An atomic fact of type “agent”, associated with the cor- 3 £/ & (& {tf"}x) Wf tf C¢f".
responding taggent is written as(agent, a). The pairing,
PAIR ¢f1 tf2 is written as(tf1,¢f2). When this is associ-
ated with its corresponding tagpdir”, this is written as
(pair, (tf1,tf2)). PAIR PAIR ¢f; tfs tfs should actually
be((tf1,tf2),tfs); butitis simply written agt f1,tf2, tf3)
in order to avoid notational clutter, since it is unambigous.
Atagged fact f encrypted with a key using an algorithm A tagged fact is said to be correctly tagged if it's tag repre-
kt is written as{tf};*. A tag for an encryption, going by sents the true type of the associated fact. A function “well-
the grammar, would look likenc < 1,t3,...,t, > Kkt tagged” is defined inductively over the structure of tags to
Wheretl, to,...t, are the collection of tags for the facts in- represent correct tagg”']g
side the encryption ankk is the tag for the key. This tag is
written in a simpler notation a§t1, to, . . ., tn|} k. Itis as- well-taggedagent,z) < 1z € Agent,
sumed that the tag for the key contains enough information well-taggednonce,z) <« x € Nonce,
regarding the type of the key (public-key or shared-key etc.) well-taggedwenc,z) << € Wene,
and the encryption algorithm used (RSA, DES etc.) e

We extend this message structure by defining the struc- well-taggedpair, z) & dtfi,
ture of atoms of typevenc as below: tfo : TaggedFact . x = PAIRLf) tfs A

well-tagged: f; A well-tagged: f5,

Such a relation is also lifted to refer to sub-untagged-
facts of a tagged fact. i.ef C tf if (¢, f) C tf for some
tagt.

3.1.3 Correct Tagging

SubWenc ::= Atom | PAIR Subwenc Subwenc well-tagged{|ts|}xi, x) & 3tf : TaggedFact;
| ENCRYPT T'ag TaggedFact Fact k : Fact . x = {tf};* A well-taggedtf)

Wene = ENCRYPT Subwenc WeakKey A well-taggedit, k) A ts = get-tagsf.
where get-tags returns the collective sequence of tags inside
By defining such a structure, we imply that no facts in- an encryption, defined as:
side a weak encryption is associated with a tag. We will call
the set of all such facts &ubwenc We assume that hon-

est agents follow such a structure before encrypting with aget-tagépair, (tf1,tf2)) = get-tagsf1™ get-tags fo,
weak key (fairly realistic since otherwise, as explained be- get-tagét, f) = (t), for t# pair.
fore, the tags themselves would verify a guess).

We split keys into sets calle8trongkeyandWeakkey,s A well-tagged fact represents a taggedfact which is

depending on the application of the function to generate thecorrectly tagged and has every subtaggedfact in it, cor-
keys. For example application Basswdgives a weak key. rectly tagged. In contrast, a fact is characterized as

top-level-well-tagged when a fact is correctly tagged at the are defined which specify the message structure of honest
outer-most level. This means, for example, a taggedfact isagents under ideal conditions. These contain variables that
indeed a pair of tagged facts when it's tag equalsg, even would be instantiated to output honest strands.
if the two tagged facts may not be well-tagged. Each taggedfact in an honest strand corresponds to an
instantiation of a “tagged template” in a strand template.
Tagged templates are defined by the following grammar:
top-level-well-taggethgent, z) < x € Agent,
top-level-well-taggethonce,) < 2 € Nonce,

top-level-well-taggeflvenc,) < € Wene, TaggedTemplate = Tag x Template

Template ::=
Var | APPLYFE, Var* |
PAIR TaggedTemplate TaggedTemplate |
ENCRYPT Tag TaggedT emplate TaggedT emplate

top-level-well-taggetbair, z) < 3 tf1,
tfo : TaggedFact.x =PAIRtf tfs,

top-level-well-tagget! |ts|} ki,) < I tf : TaggedFact;

k : Fact « = {tf}}* A ts = get-tagsf. Here Var represents atomic variables, which upon in-

stantiation output atomic factsAPPLY F,, Var* means
that a function identifietZ}, is being applied to a collec-
tion of atomic variables. This is application is the basis

. . . _to generate keys, hashes of messages etc. For example, in
In the previous section, the structure of messages in a 9 4 ‘ b

protocol and their properties were introduced. In this sec- PublicKey(A), Iy, = PublicKey. Note that this speci-

tion. we introduce the framework on which messaces arefication allows to model constructed keys, not just atomic
' . 9 keys, which is important for ‘real-world’ protocols such as
used to build protocol runs.

) . SSL 3.0. (Atomic keys refer to the keys possessed by
of T’)he Zagrzvr\:?jrit 'z ggr'\lﬁ?‘ggog; ::r:)emsrgjr?i?:z;?oancse rrgorc(iael partipants which are handled by exhaustive substitution of
ser[l';(]e.d as +tf, +tf q Ltf, >. +tf indicates sen(Fj)- agents’ identities. Constructed keys are keys produced from
) J1, 22, Zlfn >+ . just about any random bitstring formed using different mes-
ingtf and—tf indicates receivingf. Each send or receive sage elements)
event is enode A transition from consecutive nodes and . .

) The next step is to consider how tagged templates are
n;+1 on the same strand is representechas= n; 1. A . . . X
o instantiated to form taggedfacts. This is accomplished by
transmission of a tagged fact from on one strand, fol-

LS : defining an instantiation functiosub to substitute facts for

lowed by a reception ir; on another strand is represented . i
variables:
asn; — n;.
A bundlerepresents a partial or complete protocol run.

It is an acyclic digraph using edges and = such that,
whenever a tagged fact is received, the bundle also includes The properties of this function are defined below in order
a transmission of the tagged fact. Further, a bundle holdsto instantiate all possible tagged templates:
the history of the network from the starting of the commu-

3.2 The framework

sub : Var — Fact

nication.
A node is said to be aentry pointto a set of tagged sub(t,v) = (¢, sub(v)) forv e Var,
facts if no previous node has uttered an element of that Selsub(t, g(vl,...,on)) = (¢ g(sub(vl),...,sub(vn))),

A taggedfact is said to beriginating on a node if the node

is an entry point for the set to which the taggedfact belongs. o o
A taggedfact is said to beniquely originatingf there is no set of function identifiers
other node in the bundle that utters an element of the setto sub(pair, (tt1, ttz2)) (pair, (sub(tty), sub(tta))),

which the tagged fact belongs. sub({[ts| e, {tt}n) {1£5]} o> {5Ub(EE) Y sub(eh i)

wherek = g(vl,...,vn)

andg € F'n represents a key
Honest strands represent execution traces of honest type using a particular keying

agents. Since roles of honest agents is dictated by the proto- algorithm.

col (in terms of sending and receiving messages), it makes

sense to have some set of “templates” that dictate the actions For the third and fourth clauses above, there is a little
of those roles in the protocol. Therefore strand templateschange from the same expressions given in [HLSO00Q]. (They

whereg € Fn, andF'n is the

3.3 Honest strands

usetf,,tfo andtf in place oftty, tts andtt. However, wheretk andtk’ are tags representing inverse key types,
sincesub is an instantiation of variables and not facts, we and#k’ is the corresponding decrypting key bfwith both
feel itis proper to apply it on templates instead of facts. This being of the typek andtk’ respectively.
change however, wouldn't affect their results in any way).) ,
There are two assumptions on strand templates and in¥* ~ fetagging (=t), +(. f))-
stantiating templates: The retagging strand captures the concept of receiving
1. For every strand template, there is some ideal tag envi-2 message of one type and sending it, with a claim of a
ronmentp defined as: different type. In Section 4 we will later add some more
strands to the above capabilities to model off-line guessing
p:(Var — Tag)U (Fn — Tag"* x Tag) attacks.

Note that, we treat weak encryptions as an “abstract
Jdype”. i.e. we do not allow the attacker to perform any oper-
ations on it during the on-line communication. We also as-
sume that guessing the password and deducing the contents
inside the encryption is done entirely off-line. Lastly, we
2. If a taggedfact f originates on a honest strand, then consider only those attacks in which the attacker is able to

top-level-well-taggett /). learn a password shared by honest agents by attempting an
This means, itis assumed that honest agents a|Ways ta@ﬁ:'”ne guessing attack. In other WOI’dS, we do not consider
messages correctly. However, since it is impossible to attacks wherein a password is learnt by breaching secrecy.
distinguish between random bitstrings, it is probably

more appropriate to say, whenever a bitstring is sub- 3.5 Transforming arbitrarily tagged bundles to

The idea is thap returns the tags for each variable in
a template. This is to ensure that the same tags ar
always given to the same variables in a template. (For
the exact properties @f, please refer [HLS00].)

stituted for a variable next to a tag in a template, then well-tagged bundles
the bitstring is automatically added to the set corre-
sponding to that tag. (For example instantiativig in An arbitrarily tagged bundle represents a bundle with or

(nonce, na) would result inN 4 being added to the set without type-flaws. Since a tag in a taggedfact indicates the
Nonce.) The bitstring is treated to be of that type from type of it's fact, a correctly tagged fact indicates that the fact

then onwards. is indeedthe type indicated by it's tag. Generally speaking,
a well-tagged bundle represents that all it's tagged facts are
3.4 Penetrator strands correctly tagged. This in turn means that there are no type-

flaws in a well-tagged bundle. The main result in [HLS00]
The penetrator is considered to have standard Dolev-Yaostates that any bundle that uses the tagging scheme can be

attacker capabilities [DY83]. i.e. She can overhear mes-changed into an equivalent well-tagged bundle.
sages on a network, construct messages, split them, send To prove this hypothesis, Heather et al. defimersam-
her own messages and so on. She is also assumed to po#iag functionthat changes any arbitrarily tagged bundle to a
sess some sét p of keys and prodcue some texfsof her well-tagged bundle. The main idea behind such a transfor-
choice. These capabilities are listed in the following defini- mation being possible is that, if an honest agent is willing
tion. to accept an ill-tagged fa¢t, f), then it should accept any
Definition 2. A penetrator strands one of the following: value in place off. Naturally, this includes the fagt such

that well-tagge¢t, /).

Below is the definition and properties of the renaming

M Text message <+(t, Sﬂ)> W|th Well-tagge(ﬂt, ﬁU) transformation:
andz € T. Definition 3.
F flushing (—tf).
T Tee (—tf, +tf, +tf). ¢ : TaggedFact — TaggedFact
C Concatenation (~tf, —tf', +(pair, (tf,1f"))). is arenaming functiornaving the following properties:
S Separation {(—(pair, (tf,tf"), +tf, +tf).
K Key (+(tk, k)) with well-taggedt, k) 1. ¢ preserves top-level tags:
andk € Kp. ot)=t f)=t=t
E Bneryption (—(tk, k), —tf, +({[ts}er, {t/3E5),
wherets = get-tagét f). 2. ¢ returns well-tagged terms: well-tagdedt f));
D Decryption (—(tk', k"), —({|t|} e, {tF}E), +tf), 2There seems to be a typo in [HLSO00] in stating the same.

3. ¢ is the identity function over well-tagged terms:

well-taggedt f) = ¢(tf) = tf;

4. ¢ distributes through concatenations that are top-level-

well-tagged:
p(tf1,tf2) = (¢(tf1), 6(tf2));

5. ¢ distributes through encryptions that are top-level-

well-tagged:

S({ltshre (LA = (It A ik
if ts = get-tagét f);

6. ¢ respects inverses of keys: (tk, k) and (tk', k')
are inverses of each other, then so afek, k) and
o(tk', k'), tk andtk’ being their types;

7. Wheng is applied to a top-level-ill-tagged fa¢t, f)
of C, such thaw(t, f) = (¢, f'), thenf € T;

8. When¢ is applied to a top-level-ill-tagged faef of

C, it produces a fact that has an essentially new value.
i.e., a fact that has no sub-untagged-fact in common

with ¢(tf')2 for any other factf’ of C:

Vitf € facts(C) . —top-level-well-tagge@t f) A f C
o(tf) = Vtf' € facts(C) tf Z tf' = fFZ S(1f').

where facts(C) represents all the facts and sub-

untagged-facts of nodes (.

This establishes an injectivity property forover facts
of C.

3. The penetrator is “equally capable”dand(C). In
other words, ifX is a penetrator strand ifi, thenX is
also a penetrator strand ii{C') with every tagged f
in X replaced by(tf). (Refer [HLS00, Section 3.3].)

4. Protocol security is entirely based on values that orig-
inate uniquely, such as nonces and short term keys.
Therefore, it is important to ensure that the trans-
formed bundle doesn't contain nodes that “duplicate”
such values. To this end, a bundle is produced from
#(C) such that, facts i’ are uniquely originating if
they were uniquely originating i’. (Refer [HLSO00,
section 3.4].)

3.6 Main Result

The main result of Heather et al. ([HLS00, Theorem 1])
follows from the concepts explained in the previous section:

Theoreml. If C is a bundle (under the tagging scheme)
then there is a renaming functignand a bundle>”, such
that:

e C" contains the tagged facts 6f(considered as a set),
renamed byp;

e " contains the same honest strand¢’asodulo the
above renaming;

e facts are uniquely originating irC’" if they were
uniquely originating inC’;

e all tagged facts iC” are well-tagged.

4 Proof part 2 : Guessing attacks

In this section we will introduce our notion of an attacker

Merely defining such a renaming transformation neither engaging in off-line guessing and verification. We assume

proves that all possible taggedfactsGhare covered by

nor proves that the(C) is a bundle by definition. Since

a setG of guesses that an attacker possesses. We add some
more penetrator strands to the capabilities in definition 2 to

our modification only defines a new subset of the atoms, thecapture capabilities in the off-line phase:

proofs presented in Heather et al. [HLSOO] still hold and are

summarized below:

1. Given a bundle”, there is some renaming functign
for C. (Refer [HLS00, Lemma 3]).

2. If temp is a template for an honest agent and
sub(temp) is an instantiation of the template, then
¢(sub(temp)) corresponds to an instantiation of the

same template using some other functiad’. i.e.

o (sub(temp)) = sub’ (temp)

Dc Decryptionusing Guess(—(wenc, f), —g, +f')
withg € G, f € Wenc. f ={f'"}w
ANw € Weakkeys . w = g.

Ec EncryptionusingGuess(—f, —g, +{f})
with g € G, f € Subwenc.

Cf Concatenatindacts(—f, —f', +(f,).

Sf Separatingfacts(—(f, f'), +f, +f')-

Tg Tagging<7ta 7f7 +(ta f)>

Utg Untagging(—(¢,), +f).

We prove that basically the same strands can be con-

This means ifsub(temp) is an honest strand, then structed fromC”. Let X be a penetrator strand frof
sub/ (temp) is also an honest strand. (Refer [HLS00, and X', the corresponding strand fro6i . If X isaDg

Lemma 4)).

strand, define

X' = (—¢(wenc, f), —g, +f'), which is a validDg
strand.

If X is aEg strand, define

X' = (—¢(t,), —g, +{b(t, f)2},), which is a validEg
strand.

If X is aCf strand, define

X'= <7¢(t7 .f)27 7¢(t7 f/)Qa +(¢(t7 .f)27 ¢(ta f/)2)>'

which is a validCf strand.

If X is aSf strand, define

X' = (+(o(t, fl2, o(t, f')2), +&(t,)2, +o(t, f')2,),

which is a validSf strand.
If X is aTg strand, define
X' = (=t,—¢(t,)2, +¢(t, f)).

Now ¢(t, f) (t,f') for some f’ such that
well-taggedt, /). Therefore, we can rewrite the above ex-
pression as

X' = (=t,—f",+(t, f')), which is a validT'g strand.
If X is a Utg strand, define

X' = <_¢(t> f)’ +¢(t> f)2>

again, sincep(t, f)o (t, f") for some f’ such that
well-taggedt, f'), this can be rewritten as

X' = (—(t, f),+f"), which is a validUtg strand.
4.1 Defining guessing attacks

Before giving a formal definition for guessing attacks,
we define a relatiomeduciblesuch that,tf is deducible
from a bundleC, if there is a valid sequence of penetrator
strands that yieldf from C.

Firstly, we introduce a simple inference relatienIf S
a set of tagged facts, we writeFx tf if the strandX can
be constructed such that, for everff on a ‘—' node in X,
tf' € Sandtf is atagged fact on any’ node of X.

Definition 4. Let C' be a bundle. Then,fn is deducible
from C, or:

C k4 tfn, where tr = < S1 Fx1
tf1,82 Fxo tf2,...,8n Fx, tfn >, and for:
1...n,58i+1 C Taggedfacts(C)U{tf1,...,tfi}, where
Taggedfacts(C) is the set of taggedfacts on all the nodes
inC.

We will tend to drop the subscript: when it is obvious.

Lemma 1. Let C andC" be two bundles defined as in sec-
tion 3. Then,

CU{g} Eui tf = C" U{g} Fus o(t1).

Proof. In order to prove the above proposition, we need to
show that, for every possible inferenéetx tf in trl,
there is an equivalent(S) Fx ¢(¢tf) in ¢r2. This inturn
implies we need to show that for every possible strand in
from C, there is an equivalent strandd .

It is proven in [HLSOO, section 3.3] that for each of the
penetrator strands i, equivalent penetrator strandsGh
can be constructed. In section 4 we proved that, for every
penetrator strand used @éhin the off-line phase, an equiv-
alent penetrator strand can be constructed fdm

Hence, the result.

O

Lemma 2. Let C andC” be two bundles defined as in sec-
tion 3. Then,

CHtf=C" | o(tf)

Proof. We proceed as in the previous lemma. For every
possible strand frond’, there will be an equivalent strand
possible fronC”'. Observe from Heather et al.’s results that,
every tagged factf in C' has an equivalens(tf) in C”
which is well-tagged.

There are two cases when it may be possible to construct
a penetrator strand frod@" but fromC":

1. There is a tagged factf such thattf €
Taggedfacts(C"), buttf ¢ C;

2. When a keyk cannot be used in B strand inC' but
¢(k) can be used in an equivalent strand frém.

However,

1. From [HLS00, Theorem 1], unique origination is pre-
served inC” obtained from;

2. By condition 6 of definition 3,/ respects inverses.
Therefore, it is not possible to constructDastrand
from C* which was not possible from@'.

O

Using the above formalism, we give a simple definition
for a guessing attack. We say thag@essing attacks pos-
sible on a bundl€”, if a guesgy € G is verifiablein C.

In short, we try to see if the attacker can derive a tagged-
fact in atmostone way before guessing, but in more than
one way after guessing. To find if there are two differ-
ent ways to derive a taggedfact, we ‘mask’ the first oc-
curence with some random value and then look for another
occurence of it.

Definition 5. Let C andg be as defined above. Letb
be an instantiation function for a templaienp such that
sub(temp) € C andtt be a tagged template temp; Also
lettf = sub(tt). Then,

g is verifiablefrom C andtf is averifier for g iff:

1. Cu{g} =tf A CU{g} E tf;and

2. CWtf v CI-tLf.

wheret f is a fresh constant ard is obtained by replac-
ing the particular occurrence of in C, with ¢ f.

4.2 The main result

Our main aim is to show that, whenever there is a guess-
ing attack onC, there is also a guessing attack 6n. If
there is a guessing attack 6h by definition, a guesg € G
is verifiable inC' with a verifier sub(tt). Therefore, we
frame our main theorem as,

Theoren?. Whenevel € G is verifiable fromC, g is also
verifiable fromC”

Proof. Let sub’ be defined as in section 3.3:
sub'(tt) = ¢(sub(tt))

Let C" be denoted a€ and¢(tf) astf’. Now if g is
verifiable inC, by definition 5,

1. Cu{g} =tf’ A CU{g} =tf;and
2. CHtf' VO -tf.

FromLemma 4.2C U {g} Etf = CU{g} E o(tf).
Further, from Lemma 4.37 [~ tf = C [~ ¢(tf). There-
fore, (1) and (2) above can be rewritten as,

1. Cu{gl =tf' A CU{g} =tf;and
2. CHtf vC I~ tf.

Further,g(tf) = ¢(sub(tt)) = sub'(tt).
Thereforey is verifiable inC with a verifiersub’ (tt).
O

5 Conclusion

In this paper we have considered type-flaw guessing at-
tacks on password protocols. We modified Heather et al.'s
existing solution to prevent type-flaw attacks and proved

that such modification prevents type-flaw guessing attacks

on password protocols. Our proof strategy was built on
Heather et al’'s proof structure with a minor change: We

1. The on-line communication: here we proved that ba-
sically the same protocol run is obtained when all
messages are correctly tagged, if it was obtained by
adopting our tagging scheme. Most of this result was
already established by Heather et al. A renaming
function is applied on an arbitrarily tagged bundle so
that the resulting bundle has every message correctly
tagged. Such a renaming is realistic because, if an hon-
est agent is willing to accept an ill-tagged message, it
should accept any value in it's place;

. We showed that a guessing attack is possible on the
correctly tagged bundle, if it was possible on the orig-
inal bundle. This indirectly proves that the attack was
not based on a type-flaw but on some other mechanism.

The implementation of the tagging scheme using bit
strings can be referred from [HLSOQ].

In the following section we will discuss some interesting
issues together with directions towards future work.

5.1 Discussion and Future work

Observe that our proof (or for that matter Heather et al.’s
proof) is highly dependent on the way a type-flaw is defined.
i.e. for example, if we define that sending an atom of one
type, claiming it as an atom of another type is not a type-
flaw, then the tag structure would appear as follows:

Tag ::= atom| pair | enc Tag* Tag

Such a tagging would allow for example, sending a key,
claiming it as an agent’s identity but prevents sending an
atom as a pair or as a (strong) encryption.

Similarly, we identified all weak encryptions, regard-
less of their structure, as belonging to a unique typec.
Therefore, it would allow weak encryptions having different
structures to be replayed in place of one another. For exam-
ple, a messaggna, k, nb},qs5wd(a) CaN be replayed, claim-
ing it to be structurally identical tqk, na, ts}passwd(a)
(na,nb are noncesk is a key ands is a timestamp). Such
type-flaws may be used in attacks but can neither be pre-
vented by our tagging scheme nor our proof establishes that
they cannot be used in attacks.

However, in practice, many times such replays can be
avoided. For example, consider the following messages in
Gong et al.'s popular, “Demonstration protocoP] |

Msgl.a — s: {a, b,nal,na2, ca, {ta}passwd(a) }pk‘(s)
Msg4.s — a: {naL na2 ® k}passwd(a)

Here ca is a redundant random numbepk(s) is the

considered all weak encryptions as atoms. This was pos-{public-key of s. Under some assumptions about message
sible since we disallowed any attacker operations on suchstructures, a type-flaw guessing attack is possible on this

terms.
Our proof proceeded in two stages:

protocol. An attacker can use Msg 4 in a legitimate run be-
tweena ands as follows:

ing” inside encrypted components would preventlti-

Msg1l.1(a) — s: {a,b,nll,nl2, ca, protocol guessing attackdAFMO2, 7] if we can find a
{nal, na?/ ® k}passwd(a) bpk(s) way to enforce the numbering. (A multi-protocol guessing
Msg4.s — I(a): {nll,nl2® k'}passwd(a) attack works by replaying encrypted components from one

protocol into a different protocol.)

Observe that we assume sufficient redundancy inside
strong encryptions that allows honest agents to know if they
decrypted them correctly. However, we did not allow such a
redundancy in weak encryptions because that may verify a
guess directly [Gon90]. In contrast, Lowe states that redun-
dacy inside any encryptions (including strong) would aid in
guessing attacks [Low02]. However, without the redundan-
cies it is hard to see how honest agents can run protocols,
satisfactorily.

Secrecy and guessing attacks seem to be quite more in-
tegrally related than what meets the eye. Halevi et al. have
shown that security against guessing attacks can be reduced
"to the initial problem of establishing a secret between two

unfamiliar parties P]. (A corollary is that public key en-
cryption is unavoidable to solve both the problems.) Thus,
it is not entirely surprising that the same problems and solu-

stants in f and f’ should match, whenevef and f’ tions encountered in studying secrecy attacks on protocols

are textually distinct (except for the positions of the con- also apply for guessm-g attacks.)
stants), the constants would themselves verify a guess. Observe thatlearning a password through a guessing at-
For example,{na, K, NB}usewd(a) CaN be unified with tack can resplt in breaches of secrecy not known to exist
{na, Ts, K} passwa(a) (na i constant, K, NB are vari- when anaIysmg protocqls for secrecy. For example, a suc-
ables). Howeverna can be obtained from both messages ¢essful guessing attack is possible{@s, nb}qsswa(q) and
in two different ways, by using a guess; this verifies the 7.a., but attacker also learns an otherwise seebet
guess even before unification! Also observe that, like secrecy and authentication, guess-
Observe that in the tagging scheme, tags not protectedng attacks should also be stuided asrace property(A
by encryption can be safely removed while acheiving the trace property is a security property that can be verified by
same results. Further, the tags inside encryptions can bexamining all possible traces or protocol runs within a sce-
combined into a singleomponent numberAs Heather et nario). Therefore, it would be interesting to see if the same
al. argue, this simplication fault-preservingn the sense of ~ results regarding decidability that were published for se-
Hui and Lowe [HLO1]: That means, if there is an attack on crecy and authentication apply for guessing attacks as well
the component numbering scheme, there was also an attacked. [MS01,7]).
on the original tagging scheme. The ideal tag environmenptdefined in section 3 assumes
Such component numbering ensures that encrypted commore importance than it may seem. A necessary condition
ponents can not be replayed in place of one another. Abovefor successful use of the tagging scheme is giahonest
we argued (although yet to prove formally), that weak agents follow the same implementation. For example, agent
encryptions should as well be non-replayable (i.e. non-a cannot run a protocol using value 001 for the tagce
unifiable). Therefore, a protocol following this numbering with b, who uses another value, say 101 for the same tag.
suggestion, along with the component numbering scheme,This is also true when itself is involved in different runs
ensures that no replays of encrypted components are posef the same protocol or if it is simultaneously engaging in
sible. Such a result in protocol analysis has already beenruns from different protocols (egSL 3.0 andSET con-
shown in numerous occasions as holding the key to proto-currently). However, Heather et al.'s formal definitionof
col security [AN94,?]. Fairly recently, it was also shown only specifies that each of the honest roles need to have tag
to ensure decidability for security protocols in the context values that are consistent within the same template; they do
of secrecy P]. (Secrecy is a security property that specifies not specify thatll honest agents follow the same tag values,
that an attacker should not be able to learn a secret valuavhich we believe is inadequate. Of course, it is also hard
from a protocol run.) to have such “universally-agreed upon” tag values without
We also believe that the result regarding component having some sort of “international standards” for tagging
numbering makes it easy to prove that “protocol number- schemes. And, there is no guarantee that malicious code

I(a) denotes attackef pretending as. The attacker
creates his own nonced/ 1 andnl2 together with Msg 4
of the previous run to construct Msg 1 and sends is.to
After he gets back Msg 4 fromas a response, he decrypts
it with a guess and matches the first parf{) with hisnl1
to verify the guess.

The other messages of the protocol are irrelevant in this
attack.

Now this attack can be prevented if there is a tag for the
time stampts in Msg 1. This type tag would not directly
verify a guess because it is protected by another layer of
encryption under a strong keyX(s)).

Some replays cannot be avoided. For example
{f}passwd(a) can be replayed ir{f/}passwd(a) prOVided
f and f’ can be “unified”. However, in most cases, the
possibility of such unification itself means that a guess-
ing attack is possible: since unification implies that con-

will use the wrong tag values to deliberately tailor a proto- [GLNS93] Li Gong, Mark A. Lomas, Roger M. Need-

col to use for attacks?] AF98] ham, and Jerome H. Saltzer. Protecting poorly
In this paper we have considered the definition for guess- chosen secrets from guessing attackEEE

ing attacks given inq] which only considers verifiers that Journal on Selected Areas in Communications

are subterms of the attacker’s initial knowledge. This defi- 11(5):648-656, 1993.

nition is specifically tailored to the standard inference rules.

In contrast, Lowe’s definition i is stronger in this sense,

because it can be used for any attacker inference set. (For

example the ruldm, n}; - {m} is notin the standard in-

ference set, but holds when using Cipher Block Chaining.) [HLO1]

It yvould be interesting to see how this affects the results in preserving Safe Simplifying Transformations

this paper. , on Security Protocols.Journal of Computer
However, regardless of how such inference rules affect Security 9:3-46, 2001.

the results, they can be used in attacking Heather et al.'s

original scheme as well (See Appendix for an attack on the[HLS00] James Heather, Gavin Lowe, and Steve

[Gon90] L. Gong. A Note on Redundancy in Encrypted
Messages. ACM Computer Communication
Review 20(5):18-22, October 1990.

Mei Lin Hui and Gavin Lowe. Fault-

Woo and Lam authentication protocel). Schneider. How to prevent type flaw attacks on
There are two other unsolved issues in Heather et al.'s security protocols. IfProceedings, 13th Com-
scheme: puter Security Foundations WorksholEEE

.] Computer Society Press, July 2000.
1. They do not consider all possible forms of constructed

keys (but only those that result from application of a [Low02] Gavin Lowe. Analyzing protocols subject to

key functionF'n to concatenation of sequence of atoms guessing attacksWorkshop on Issues in the
(f1,...,fn)) Theory of Security (WITS’02January 2002.

2. They do not consider cancellativity and other algebraic [MAFMO02] Sreekanth Malladi, Jim Alves-Foss, and
properties obeyed by message elements when using Sreenivas Malladi. Preventing Guessing At-
operations such as products af@R (these operations tacks Using Fingerprint Biometrics. To Ap-
are frequently used in real-world protocols). pear,Proceedings of 2002 International Con-

ference on Security and Management, SAMO02
Lastly, we did not consider implementation dependent June 2002.

guessing attacks in this paper. For example, the password . . _
can be learned fronfienglish_text} passwd(a) DY decrypt- [MSO01] Jonathan Millen and Vitaly Shmatikov. Con-

ing it with a guess (even thougimglishtextis not known straint solving for bounded-process crypto-
initially). graphic protocol analysis. IACM Confer-
We look forward to the future with all the issues pointed ence on Computer and Communication Secu-
out in this section, which will keep us busy. rity, volume Proc. 2001, pages 166-175. ACM
press, 2001.
Acknowledgments [WL94] T.Y.C. Woo and S. S. Lam. A lesson on au-

]) thentication protocol designOperating Sys-
We would like to thank lliano Cervesato and the anony- tems Reviey28(3):24-37, 1994.

mous referrees for insightful comments. Thanks are also

due to Ricardo Corin for many helpful technical discus- Appendix 1 : Attack on Heather et al.’s scheme

sions.
Consider the Woo and Lam authentication protocol,
References 71 [WL94J:
[AN94] M. Abadi and R. Needham. Prudent Engineer- Msgl.a—b:a
ing Practice for Cryptographic Protocols. In Msg 2.b — a : nb
Proc. IEEE Symposium on Research in Secu- Msg 3.a — b: {a,b,nb}sp(as)
rity and Privacy pages 122-136, 1994. Msg 4.b — s :{a,b,{a,b,nb}sn(as) }sh(bs)

Msg 5.5 — b : {a,b,nb} sp(bs)
[DY83] D. Dolev and A.C. Yao. On the security of
public key protocols. IEEE Transactions on sh(zy) represents a shared-key between agermisdy.
Information Theory29(2), 1983. Heather et al. present a type-flaw attack on this protocol:

10

Msg 3.a — b:nb
Msg 4.0 — I, : {a,b,nb} p(bs)
Msg 5.1, — b: {a,b,nb}shs)

The attack works by (i) using a type-flaw in message 3
(nb in place of{a, b, nb} 4 (s)} and (i) replay of message
4 in message 5. Heather et al. argue that inserting unique
component numbers inside encryptions prevents this attack.
In their scheme, the same protocol would be implemented
as:

Msgl.a —b:a

Msg 2.b — a:nb

Msg 3.a — b : {a,b,nb, 1} (as)

Msg 4.b — s : {a,b,{a,b,nb,1}sp(as), 2} sh(bs)
Msg 5.5 — b: {a,b,nb, 3} snps)

However, Heather et al’s results are vadidly when as-
suming the standard inference rules. To see why, consider
the inference rulg¢m, n}y F {m}; which would hold when
using Cipher Block Chaining for encryption.

Msgl.a —b:a

Msg 2.b — a:nb

Msg 3.1(a) — b: (nb,3) [*In place of{a, b, nb}sp(as) */

Msg 4.b — I(s) : {a,b, (nb,3), 2} sh(vs)

Msg 5.1(s) — b:{a,b,nb,3},s) [*using CBC infrule on Msg 4. */

This attack works because, an attacker can infer
{a,b,nb, 3} sns) from Msg 4 ({a,b, (nb, 3),2} sn(ps)) US-
ing the CBC inference rule.

Note that according to Heather et al., if there is an at-
tack on a protocol using component numbering, there is also
an attack on the protocol when using their original tagging
scheme (although it is doubtful whether the result applies
for inference rules outside the standard set).

11

