
How to prevent type-flaw guessing attacks on password protocols∗

Sreekanth Malladi, Jim Alves-Foss
Center for Secure and Dependable Systems

University of Idaho
Moscow, ID - 83844

{msskanth,jimaf }@cs.uidaho.edu

Abstract

A message in a protocol is said to have atype-flaw if it
was created with some intended type, but is later received
and treated as a different type. Atype-flaw guessing attack
is an attack where a password is guessed and verified by
inducing type-flaws in a protocol.

Heather et al. [HLS00] prove that attacks that use type-
flaws can be prevented if honest agents tag messages with
their intended types. However, their tagging scheme can not
be used in a password protocol since it allows a guess to be
directly verified using the tags inside password encryptions.

In this paper we prove that following a modification of
Heather et al.’s scheme most type-flaw guessing attacks can
still be prevented.

1 Introduction

Numerous protocols have been introduced to initialize
security services for protocol users. One of the goals
of these protocols is authentication of a sender’s identity.
There exists a class of protocols called password protocols,
that use user chosen passwords for authentication. If these
protocols are not designed well, they may be subject to
guessing attacks[GLNS93]; here an attacker can learn the
password by guessing it and verifying the guess using the
messages in the protocol.

A message in a protocol is said to have atype-flawif
it was created with an intended type but is later received
and treated as a different type. For example, receiving a
nonce and treating it as though it was an agent’s identity. A
type-flaw guessing attackis an attack where a type flaw is
induced in a protocol to enable a password guessing attack.

∗We dedicate this paper to Late Professor Roger Needham. This work
was funded in part by DARPA under grant no. F30602–2-1-0178.

1.1 Type-Flaw Guessing Attacks

Consider the following protocol we discussed in [?]:

Msg 1.A → B : {{K}pk(B), {{K}pk(B)}k}pab

Msg 2.B → A : {NB, {K2}K}pab

Msg 3.A → B : {NB}K2 .

A type-flaw guessing attack is possible against this pro-
tocol. During the on-line phase of the attack, the attacker
performs the following communication withA (we write
I(x) when the attacker impersonates honest agentx):

Msg 1.A → I(B) : {{k}pk(B), {{k}pk(B)}k}pab

Msg 2.I(B) → A : {{k}pk(B), {{k}pk(B)}k}pab

Msg 3.A → I(B) : {{k}pk(B)}{k}pk(B)
.

In message 2, attacker replays message 1 back toA, caus-
ing a type-flaw.A cannot detect this type-flaw and hence
responds by sending message 3.

Attack: The attacker goes off line and begins guessing
values forpab. Using a guess he decrypts message 1 with
the guess, splits it, and takes the first part ({k}pk(B)) out
of it. He can then decrypt message 3 with the this value to
obtain it{k}pk(B) again, thereby verifying the guess. This
guessing attack is possible because the attacker trickedA
into sending redundant information in message 3 [?].

Observe that this attack is not possible ifA can detect
the type-flaw in message 2. Tagging messages 1 and 2 will
enable this detection, but can also enable the guessing attack
unless we are careful.

1.2 Tagging to Prevent Type Flaw Attacks

Heather et al. in [HLS00] proved that attacks involving
type-flaws can be prevented if all messages are tagged with
their types. For example, in their scheme, a noncena should
be tagged as(nonce, na), an agent’s identitya as,(agent, a)
and so on.

However, there is a problem with Heather et al.’s solu-
tion. Consider the message:

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2003 2. REPORT TYPE

3. DATES COVERED
 00-00-2003 to 00-00-2003

4. TITLE AND SUBTITLE
How to prevent type-flaw guessing attacks on password protocols

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Idaho,Center for Secure and Dependable Systems,PO Box
441008,Moscow,ID,83844-1008

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

11

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

{na}passwd(a,b)
1

An attacker can attempt a guessing attack by guessing
the passwordpasswd(a, b). For example, if the user name
is “Arnold Schwarzenegger”, “terminator” wouldn’t be a
bad guess forpasswd(a, b). If the attacker knowsna, he
can decrypt{na}passwd(a,b) with “terminator” to see if
it matches thena he knows. If so, that verifies the guess.
Otherwise, he can try using another guess.

Note that this attack is not feasible if the attacker does
not knowna initially. But consider the same message using
Heather et al.’s scheme of type-tagging:

{nonce, na}passwd(a,b)

The attacker can decrypt with the guess and see if there
is the tag “nonce” in it. If so, that would directly verify
the guess. He doesn’t even need to knowna! Therefore,
Heather et al.’s solution against type-flaw attacks cannot be
used in password protocols.

1.3 Tagging to Prevent Type-Flaw Guessing At-
tacks

We have run into a classic security problem: one security
solution, tagging to prevent type-flaw attacks, introduces a
new problem, enabling of non type-flaw guessing attacks.

In this paper, we address this problem by modifying the
tagging scheme. We prove that if we follow Heather et
al.’s scheme but avoid type-tags inside terms encrypted with
passwords, most the type-flaw guessing attacks can still be
prevented.

The only type-flaw that our modified scheme fails to
prevent is the following: a password encrypted term, say
{m1}passwd(a,b) being received, expecting to be of the form
{m2}passwd(a,b) with m1 and m2 having different types
(ideally). We will have more to say about this case in the
Conclusion.

2 Proof Strategy

We introduce a modified version of Heather et al.’s tag-
ging scheme that prevents most type-flaw guessing attacks
and does not add redundancy that enables normal guessing
attacks. We prove this claim following a model and proof
structure very similar to Heather et al. [HLS00].

Our main aim is to prove the following:

Whenever there is a guessing attack on a protocol
using our tagging scheme, there is an equivalent
guessing attack when there are no type-flaws in
the protocol.

1Herena is a nonce;{na}passwd(a,b) representsna encrypted with
passwd(a, b).

Therefore, we prove that:

Whenever there is a guessing attack on a proto-
col using our tagging scheme, there is an equiva-
lent guessing attack when all fields are correctly
tagged.

An off-line guessing attack is characterized by two factors:

• The protocol run (an attacker can actively participate
in the protocol run, inducing type-flaws, but doesn’t
use a guess);

• Attacker inferences from the set of messages in the
protocol run that enable him to verify a guess.

Therefore, in order to prove our main claim, we need to
prove two things:

1. If an attacker participates in a protocol runC that uses
our tagging scheme, then an equivalent protocol run
C ′′ can be visualized in which, every field is correctly
tagged;

2. If the attacker can verify a guess from the set of mes-
sages inC, then he can also verify a guess fromC ′′.

We use the main result from [HLS00] for point 1 above.
Our only modification to their model is the following: We
consider all weak encryptions (terms encrypted with pass-
words) as if they were just another type of atomic ele-
ments such asnonce, agent etc. We associate a generic tag
“wenc” for weak encryptions. We introduce their protocol
model and state their main result in section 3.

For point 2 above, we use the definition for guessing at-
tacks from [?] and show that, whenever a guess is verifiable
from C, then it is also verifiable fromC ′′. This is covered
in section 4.

3 Proof Part 1: Heather et al.’s Protocol
Model and Main Result

In this section we reiterate the model and main results of
Heather et al.’s [HLS00] tagging scheme in the context of
our modification.

3.1 Message Structure

3.1.1 Tags, Facts and Taggedfacts

The main message element is ataggedfact. It is a combi-
nation of atag andfact, written as(tag, fact). The idea is
that the tag represents the “type” of the fact.

TaggedFact ::= Tag × Fact.

2

Message structures are divided into atoms, pairs and en-
cryptions. An atom is an indivisible element. Sets of atoms
are grouped together asAgent, Nonce, Pubkey and so
on. The tags for elements of the these sets are given obvi-
ous names such asagent, nonce etc. In our modification
we add the setWenc to Atoms to represent “weak encryp-
tions”. The corresponding tag iswenc. We treat weak en-
cryptions as an “abstract type”. We will talk more about this
set as we progress in the paper.

A pair tag is associated with concatenation of two tagged
facts. The tagenc is associated with encryptions together
with the collection of tags for the elements inside the en-
cryption and a tag for the key.

Tag ::= agent | nonce | wenc | . . . | pair | enc Tag∗ Tag

Fact ::= Atom | PAIR TaggedFact TaggedFact
| ENCRYPT Tag TaggedFact Fact

An atomic facta of type “agent”, associated with the cor-
responding tagagent is written as(agent, a). The pairing,
PAIR tf1 tf2 is written as(tf1, tf2). When this is associ-
ated with its corresponding tag, “pair”, this is written as
(pair, (tf1, tf2)). PAIR PAIR tf1 tf2 tf3 should actually
be((tf1, tf2), tf3); but it is simply written as(tf1, tf2, tf3)
in order to avoid notational clutter, since it is unambigous.
A tagged facttf encrypted with a keyk using an algorithm
kt is written as{tf}kt

k . A tag for an encryption, going by
the grammar, would look likeenc < t1, t2, . . . , tn > kt
wheret1, t2, . . . tn are the collection of tags for the facts in-
side the encryption andkt is the tag for the key. This tag is
written in a simpler notation as{|t1, t2, . . . , tn|}kt. It is as-
sumed that the tag for the key contains enough information
regarding the type of the key (public-key or shared-key etc.)
and the encryption algorithm used (RSA, DES etc.)

We extend this message structure by defining the struc-
ture of atoms of typewenc as below:

SubWenc ::= Atom | PAIR Subwenc Subwenc

| ENCRYPT Tag TaggedFact Fact

Wenc ::= ENCRYPT Subwenc WeakKey

By defining such a structure, we imply that no facts in-
side a weak encryption is associated with a tag. We will call
the set of all such facts asSubwenc. We assume that hon-
est agents follow such a structure before encrypting with a
weak key (fairly realistic since otherwise, as explained be-
fore, the tags themselves would verify a guess).

We split keys into sets calledStrongkeysandWeakkeys,
depending on the application of the function to generate the
keys. For example application ofPasswdgives a weak key.

In contrast a functionPublicKeygives rise to a strong key.
We will talk more about function applications in section 3.2.

Projections are defined on tagged facts as:

(t, f)1 =̂ t, (t, f)2 =̂ f.

A version of the perfect encryption assumption is as-
sumed, whereby honest agents are capable of knowing if
they decrypted an encryption correctly [?].

3.1.2 Subtaggedfacts

In the following definition, we introduce the subfact relation
denoted by ‘@’ to refer tosubtaggedfactsof a tagged fact.

Definition 1. The subfactrelation is the smallest relation
on tagged facts such that:

1. tf @ tf ;

2. tf @ (t, (tf1, tf2)) iff tf @ tf1 ∨ tf @ tf2;

3. tf @ (t, {tf ′}k) iff tf @ tf ′.

Such a relation is also lifted to refer to sub-untagged-
facts of a tagged fact. i.e.f @ tf if (t, f) @ tf for some
tagt.

3.1.3 Correct Tagging

A tagged fact is said to be correctly tagged if it’s tag repre-
sents the true type of the associated fact. A function “well-
tagged” is defined inductively over the structure of tags to
represent correct tagging:

well-tagged(agent, x) ⇔ x ∈ Agent,
well-tagged(nonce, x) ⇔ x ∈ Nonce,
well-tagged(wenc, x) ⇔ x ∈ Wenc,

· · ·
well-tagged(pair, x) ⇔ ∃ tf1,

tf2 : TaggedFact � x = PAIR tf1 tf2 ∧
well-taggedtf1 ∧ well-taggedtf2,

well-tagged({|ts|}kt, x) ⇔ ∃ tf : TaggedFact;
k : Fact � x = {tf}kt

k ∧ well-tagged(tf)
∧ well-tagged(kt, k) ∧ ts = get-tagstf.

where get-tags returns the collective sequence of tags inside
an encryption, defined as:

get-tags(pair, (tf1, tf2)) = get-tagstf1_ get-tagstf2,

get-tags(t, f) = 〈 t 〉, for t 6= pair.

A well-tagged fact represents a taggedfact which is
correctly tagged and has every subtaggedfact in it, cor-
rectly tagged. In contrast, a fact is characterized as

3

top-level-well-tagged when a fact is correctly tagged at the
outer-most level. This means, for example, a taggedfact is
indeed a pair of tagged facts when it’s tag equalspair, even
if the two tagged facts may not be well-tagged.

top-level-well-tagged(agent, x) ⇔ x ∈ Agent,

top-level-well-tagged(nonce, x) ⇔ x ∈ Nonce,

top-level-well-tagged(wenc, x) ⇔ x ∈ Wenc,

· · ·

top-level-well-tagged(pair, x) ⇔ ∃ tf1,
tf2 : TaggedFact � x = PAIR tf1 tf2,

top-level-well-tagged({|ts|}kt, x) ⇔ ∃ tf : TaggedFact;
k : Fact � x = {tf}kt

k ∧ ts = get-tagstf.

3.2 The framework

In the previous section, the structure of messages in a
protocol and their properties were introduced. In this sec-
tion, we introduce the framework on which messages are
used to build protocol runs.

The framework is derived from the strand space model
of [?]. A strand is a sequence of communications repre-
sented as< ±tf1,±tf2, . . . ,±tfn >. +tf indicates send-
ing tf and−tf indicates receivingtf . Each send or receive
event is anode. A transition from consecutive nodesni and
ni+1 on the same strand is represented asni ⇒ ni+1. A
transmission of a tagged fact fromni on one strand, fol-
lowed by a reception innj on another strand is represented
asni → nj .

A bundlerepresents a partial or complete protocol run.
It is an acyclic digraph using edges→ and⇒ such that,
whenever a tagged fact is received, the bundle also includes
a transmission of the tagged fact. Further, a bundle holds
the history of the network from the starting of the commu-
nication.

A node is said to be anentry point to a set of tagged
facts if no previous node has uttered an element of that set.
A taggedfact is said to beoriginating on a node if the node
is an entry point for the set to which the taggedfact belongs.
A taggedfact is said to beuniquely originatingif there is no
other node in the bundle that utters an element of the set to
which the tagged fact belongs.

3.3 Honest strands

Honest strands represent execution traces of honest
agents. Since roles of honest agents is dictated by the proto-
col (in terms of sending and receiving messages), it makes
sense to have some set of “templates” that dictate the actions
of those roles in the protocol. Therefore strand templates

are defined which specify the message structure of honest
agents under ideal conditions. These contain variables that
would be instantiated to output honest strands.

Each taggedfact in an honest strand corresponds to an
instantiation of a “tagged template” in a strand template.
Tagged templates are defined by the following grammar:

TaggedTemplate ::= Tag × Template

Template ::=
V ar | APPLYFn V ar∗ |
PAIR TaggedTemplate TaggedTemplate |
ENCRYPT Tag TaggedTemplate TaggedTemplate

HereV ar represents atomic variables, which upon in-
stantiation output atomic facts.APPLY Fn V ar∗ means
that a function identifierFn is being applied to a collec-
tion of atomic variables. This is application is the basis
to generate keys, hashes of messages etc. For example, in
PublicKey(A), Fn = PublicKey. Note that this speci-
fication allows to model constructed keys, not just atomic
keys, which is important for ‘real-world’ protocols such as
SSL 3.0 . (Atomic keys refer to the keys possessed by
partipants which are handled by exhaustive substitution of
agents’ identities. Constructed keys are keys produced from
just about any random bitstring formed using different mes-
sage elements).

The next step is to consider how tagged templates are
instantiated to form taggedfacts. This is accomplished by
defining an instantiation functionsub to substitute facts for
variables:

sub : V ar → Fact

The properties of this function are defined below in order
to instantiate all possible tagged templates:

sub(t, v) = (t, sub(v)) for v ∈ V ar,

sub(t, g(v1, . . . , vn)) = (t, g(sub(v1), . . . , sub(vn))),
whereg ∈ Fn, andFn is the

set of function identifiers.

sub(pair, (tt1, tt2)) = (pair, (sub(tt1), sub(tt2))),
sub({|ts|}tk, {tt}k) = {|ts|}tk, {sub(tt)}sub(tk,k)2 ,

wherek = g(v1, . . . , vn)
andg ∈ Fn represents a key

type using a particular keying

algorithm.

For the third and fourth clauses above, there is a little
change from the same expressions given in [HLS00]. (They

4

usetf1, tf2 and tf in place oftt1, tt2 and tt. However,
sincesub is an instantiation of variables and not facts, we
feel it is proper to apply it on templates instead of facts. This
change however, wouldn’t affect their results in any way).

There are two assumptions on strand templates and in-
stantiating templates:

1. For every strand template, there is some ideal tag envi-
ronmentρ defined as:

ρ : (V ar → Tag) ∪ (Fn → Tag∗ × Tag)

The idea is thatρ returns the tags for each variable in
a template. This is to ensure that the same tags are
always given to the same variables in a template. (For
the exact properties ofρ, please refer [HLS00].)

2. If a taggedfacttf originates on a honest strand, then
top-level-well-tagged(tf).
This means, it is assumed that honest agents always tag
messages correctly. However, since it is impossible to
distinguish between random bitstrings, it is probably
more appropriate to say, whenever a bitstring is sub-
stituted for a variable next to a tag in a template, then
the bitstring is automatically added to the set corre-
sponding to that tag. (For example instantiatingNA in
(nonce, na) would result inNA being added to the set
Nonce.) The bitstring is treated to be of that type from
then onwards.

3.4 Penetrator strands

The penetrator is considered to have standard Dolev-Yao
attacker capabilities [DY83]. i.e. She can overhear mes-
sages on a network, construct messages, split them, send
her own messages and so on. She is also assumed to pos-
sess some setKP of keys and prodcue some textsT of her
choice. These capabilities are listed in the following defini-
tion.

Definition 2. A penetrator strandis one of the following:

M Text message 〈+(t, x)〉 with well-tagged(t, x)
andx ∈ T.

F flushing 〈−tf〉.
T Tee 〈−tf,+tf,+tf〉.
C Concatenation 〈−tf,−tf ′,+(pair, (tf, tf ′))〉.
S Separation 〈−(pair, (tf, tf ′)),+tf,+tf ′〉.
K Key 〈+(tk, k)〉 with well-tagged(tk, k)

andk ∈ KP .

E Encryption 〈−(tk, k),−tf,+({|ts|}tk, {tf}tk
k 〉,

wherets = get-tags(tf).
D Decryption 〈−(tk′, k′),−({|t|}tk, {tf}tk

k),+tf〉,

wheretk and tk′ are tags representing inverse key types,
andk′ is the corresponding decrypting key ofk with both
being of the typetk andtk′ respectively.

R Retagging 〈−(t, f),+(t′, f)〉.

The retagging strand captures the concept of receiving
a message of one type and sending it, with a claim of a
different type. In Section 4 we will later add some more
strands to the above capabilities to model off-line guessing
attacks.

Note that, we treat weak encryptions as an “abstract
type”. i.e. we do not allow the attacker to perform any oper-
ations on it during the on-line communication. We also as-
sume that guessing the password and deducing the contents
inside the encryption is done entirely off-line. Lastly, we
consider only those attacks in which the attacker is able to
learn a password shared by honest agents by attempting an
off-line guessing attack. In other words, we do not consider
attacks wherein a password is learnt by breaching secrecy.

3.5 Transforming arbitrarily tagged bundles to
well-tagged bundles

An arbitrarily tagged bundle represents a bundle with or
without type-flaws. Since a tag in a taggedfact indicates the
type of it’s fact, a correctly tagged fact indicates that the fact
is indeedthe type indicated by it’s tag. Generally speaking,
a well-tagged bundle represents that all it’s tagged facts are
correctly tagged. This in turn means that there are no type-
flaws in a well-tagged bundle. The main result in [HLS00]
states that any bundle that uses the tagging scheme can be
changed into an equivalent well-tagged bundle.

To prove this hypothesis, Heather et al. define arenam-
ing functionthat changes any arbitrarily tagged bundle to a
well-tagged bundle. The main idea behind such a transfor-
mation being possible is that, if an honest agent is willing
to accept an ill-tagged fact(t, f), then it should accept any
value in place off . Naturally, this includes the factf ′ such
that well-tagged(t, f ′).2

Below is the definition and properties of the renaming
transformation:

Definition 3.

φ : TaggedFact → TaggedFact

is arenaming functionhaving the following properties:

1. φ preserves top-level tags:

φ(t, f) = (t′, f ′) ⇒ t = t′;

2. φ returns well-tagged terms: well-tagged(φ(tf));

2There seems to be a typo in [HLS00] in stating the same.

5

3. φ is the identity function over well-tagged terms:

well-tagged(tf) ⇒ φ(tf) = tf ;

4. φ distributes through concatenations that are top-level-
well-tagged:

φ(tf1, tf2) = (φ(tf1), φ(tf2));

5. φ distributes through encryptions that are top-level-
well-tagged:

φ({|ts|}kt, {tf}tk
k) = ({|ts|}kt, {φ(tf)}tk

φ(tk,k)2

if ts = get-tags(tf);

6. φ respects inverses of keys: if(tk, k) and (tk′, k′)
are inverses of each other, then so areφ(tk, k) and
φ(tk′, k′), tk andtk′ being their types;

7. Whenφ is applied to a top-level-ill-tagged fact(t, f)
of C, such thatφ(t, f) = (t, f ′), thenf ∈ T ;

8. Whenφ is applied to a top-level-ill-tagged facttf of
C, it produces a fact that has an essentially new value.
i.e., a fact that has no sub-untagged-fact in common
with φ(tf ′)2 for any other facttf ′ of C:

∀tf ∈ facts(C) � ¬top-level-well-tagged(tf) ∧ f @
φ(tf) ⇒ ∀tf ′ ∈ facts(C) � tf 6@ tf ′ ⇒ f 6@ φ(tf ′).

where facts(C) represents all the facts and sub-
untagged-facts of nodes inC.

This establishes an injectivity property forφ over facts
of C.

Merely defining such a renaming transformation neither
proves that all possible taggedfacts inC are covered byφ
nor proves that theφ(C) is a bundle by definition. Since
our modification only defines a new subset of the atoms, the
proofs presented in Heather et al. [HLS00] still hold and are
summarized below:

1. Given a bundleC, there is some renaming functionφ
for C. (Refer [HLS00, Lemma 3]).

2. If temp is a template for an honest agent and
sub(temp) is an instantiation of the template, then
φ(sub(temp)) corresponds to an instantiation of the
same template using some other functionsub′. i.e.

φ(sub(temp)) = sub′(temp)

This means ifsub(temp) is an honest strand, then
sub′(temp) is also an honest strand. (Refer [HLS00,
Lemma 4]).

3. The penetrator is “equally capable” inC andφ(C). In
other words, ifX is a penetrator strand inC, thenX is
also a penetrator strand inφ(C) with every taggedtf
in X replaced byφ(tf). (Refer [HLS00, Section 3.3].)

4. Protocol security is entirely based on values that orig-
inate uniquely, such as nonces and short term keys.
Therefore, it is important to ensure that the trans-
formed bundle doesn’t contain nodes that “duplicate”
such values. To this end, a bundleC

′′
is produced from

φ(C) such that, facts inC
′′

are uniquely originating if
they were uniquely originating inC. (Refer [HLS00,
section 3.4].)

3.6 Main Result

The main result of Heather et al. ([HLS00, Theorem 1])
follows from the concepts explained in the previous section:

Theorem1. If C is a bundle (under the tagging scheme)
then there is a renaming functionφ and a bundleC

′′
, such

that:

• C
′′

contains the tagged facts ofC (considered as a set),
renamed byφ;

• C
′′

contains the same honest strands asC, modulo the
above renaming;

• facts are uniquely originating inC
′′

if they were
uniquely originating inC;

• all tagged facts inC
′′

are well-tagged.

4 Proof part 2 : Guessing attacks

In this section we will introduce our notion of an attacker
engaging in off-line guessing and verification. We assume
a setG of guesses that an attacker possesses. We add some
more penetrator strands to the capabilities in definition 2 to
capture capabilities in the off-line phase:

DG DecryptionusingGuess〈−(wenc, f),−g,+f ′〉
with g ∈ G, f ∈ Wenc � f = {f ′}w

∧ w ∈ Weakkeys � w = g.
EG EncryptionusingGuess〈−f,−g,+{f}g〉

with g ∈ G, f ∈ Subwenc.
Cf Concatenatingfacts〈−f,−f ′,+(f, f ′)〉.
Sf Separatingfacts〈−(f, f ′),+f,+f ′〉.
Tg Tagging〈−t,−f,+(t, f)〉.
Utg Untagging〈−(t, f),+f〉.

We prove that basically the same strands can be con-
structed fromC

′′
. Let X be a penetrator strand fromC

andX ′, the corresponding strand fromC
′′
. If X is aDG

strand, define

6

X ′ = 〈−φ(wenc, f),−g,+f ′〉, which is a validDG

strand.

If X is aEG strand, define

X ′ = 〈−φ(t, f),−g,+{φ(t, f)2}g〉, which is a validEG

strand.

If X is aCf strand, define

X ′ = 〈−φ(t, f)2,−φ(t, f ′)2,+(φ(t, f)2, φ(t, f ′)2)〉,
which is a validCf strand.

If X is aSf strand, define

X ′ = 〈+(φ(t, f)2, φ(t, f ′)2),+φ(t, f)2,+φ(t, f ′)2, 〉,
which is a validSf strand.

If X is aTg strand, define

X ′ = 〈−t,−φ(t, f)2,+φ(t, f)〉.

Now φ(t, f) = (t, f ′) for some f ′ such that
well-tagged(t, f ′). Therefore, we can rewrite the above ex-
pression as

X ′ = 〈−t,−f ′,+(t, f ′)〉, which is a validTg strand.

If X is a Utg strand, define

X ′ = 〈−φ(t, f),+φ(t, f)2〉.

again, sinceφ(t, f)2 = (t, f ′) for somef ′ such that
well-tagged(t, f ′), this can be rewritten as

X ′ = 〈−(t, f ′),+f ′〉, which is a validUtg strand.

4.1 Defining guessing attacks

Before giving a formal definition for guessing attacks,
we define a relationdeduciblesuch that,tf is deducible
from a bundleC, if there is a valid sequence of penetrator
strands that yieldtf from C.

Firstly, we introduce a simple inference relation`. If S
a set of tagged facts, we writeS `X tf if the strandX can
be constructed such that, for everytf ′ on a ‘−’ node inX,
tf ′ ∈ S andtf is a tagged fact on any ‘+’ node ofX.

Definition 4. Let C be a bundle. Then,tfn is deducible
from C, or:

C |=tr tfn, where tr = < S1 `X1

tf1, S2 `X2 tf2, . . . , Sn `Xn tfn >, and for i =
1 . . . n, Si+1 ⊆ Taggedfacts(C)∪{tf1, . . . , tfi}, where
Taggedfacts(C) is the set of taggedfacts on all the nodes
in C.

We will tend to drop the subscripttr when it is obvious.

Lemma 1. Let C andC
′′

be two bundles defined as in sec-
tion 3. Then,

C ∪ {g} |=tr1 tf ⇒ C
′′
∪ {g} |=tr2 φ(tf).

Proof. In order to prove the above proposition, we need to
show that, for every possible inferenceS `X tf in tr1,
there is an equivalentφ(S) `X φ(tf) in tr2. This inturn
implies we need to show that for every possible strand inX
from C, there is an equivalent strand inC

′′
.

It is proven in [HLS00, section 3.3] that for each of the
penetrator strands inC, equivalent penetrator strands inC

′′

can be constructed. In section 4 we proved that, for every
penetrator strand used onC in the off-line phase, an equiv-
alent penetrator strand can be constructed fromC

′′
.

Hence, the result.

Lemma 2. Let C andC
′′

be two bundles defined as in sec-
tion 3. Then,

C 6|= tf ⇒ C
′′
6|= φ(tf).

Proof. We proceed as in the previous lemma. For every
possible strand fromC, there will be an equivalent strand
possible fromC

′′
. Observe from Heather et al.’s results that,

every tagged facttf in C has an equivalentφ(tf) in C
′′

which is well-tagged.
There are two cases when it may be possible to construct

a penetrator strand fromC
′′

but fromC:

1. There is a tagged facttf such that tf ∈
Taggedfacts(C

′′
), but tf /∈ C;

2. When a keyk cannot be used in aD strand inC but
φ(k) can be used in an equivalent strand fromC

′′
.

However,

1. From [HLS00, Theorem 1], unique origination is pre-
served inC

′′
obtained fromC;

2. By condition 6 of definition 3,φ respects inverses.
Therefore, it is not possible to construct aD strand
from C

′′
which was not possible fromC.

Using the above formalism, we give a simple definition
for a guessing attack. We say that aguessing attackis pos-
sible on a bundleC, if a guessg ∈ G is verifiablein C.

In short, we try to see if the attacker can derive a tagged-
fact in atmostone way before guessing, but in more than
one way after guessing. To find if there are two differ-
ent ways to derive a taggedfact, we ‘mask’ the first oc-
curence with some random value and then look for another
occurence of it.

7

Definition 5. Let C andg be as defined above. Letsub
be an instantiation function for a templatetemp such that
sub(temp) ∈ C andtt be a tagged template intemp; Also
let tf = sub(tt). Then,

g is verifiablefrom C andtf is averifier for g iff:

1. Ĉ ∪ {g} |= tf ∧ Ĉ ∪ {g} |= t̂f ; and

2. Ĉ 6|= tf ∨ Ĉ 6|= t̂f .

wheret̂f is a fresh constant and̂C is obtained by replac-
ing the particular occurrence oftf in C, with t̂f .

4.2 The main result

Our main aim is to show that, whenever there is a guess-
ing attack onC, there is also a guessing attack onC

′′
. If

there is a guessing attack onC, by definition, a guessg ∈ G
is verifiable inC with a verifier sub(tt). Therefore, we
frame our main theorem as,

Theorem2. Wheneverg ∈ G is verifiable fromC, g is also
verifiable fromC

′′
.

Proof. Let sub′ be defined as in section 3.3:

sub′(tt) = φ(sub(tt))

Let C
′′

be denoted asC andφ(tf) astf ′. Now if g is
verifiable inC, by definition 5,

1. Ĉ ∪ {g} |= tf ′ ∧ Ĉ ∪ {g} |= ˆtf ′; and

2. Ĉ 6|= tf ′ ∨ Ĉ 6|= ˆtf ′.

From Lemma 4.2,C ∪ {g} |= tf ⇒ C ∪ {g} |= φ(tf).
Further, from Lemma 4.3,C 6|= tf ⇒ C 6|= φ(tf). There-
fore, (1) and (2) above can be rewritten as,

1′. Ĉ ∪ {g} |= tf ′ ∧ Ĉ ∪ {g} |= ˆtf ′; and

2′. Ĉ 6|= tf ′ ∨ Ĉ 6|= ˆtf ′.

Further,φ(tf) = φ(sub(tt)) = sub′(tt).
Therefore,g is verifiable inC with a verifiersub′(tt).

5 Conclusion

In this paper we have considered type-flaw guessing at-
tacks on password protocols. We modified Heather et al.’s
existing solution to prevent type-flaw attacks and proved
that such modification prevents type-flaw guessing attacks
on password protocols. Our proof strategy was built on
Heather et al’s proof structure with a minor change: We
considered all weak encryptions as atoms. This was pos-
sible since we disallowed any attacker operations on such
terms.

Our proof proceeded in two stages:

1. The on-line communication: here we proved that ba-
sically the same protocol run is obtained when all
messages are correctly tagged, if it was obtained by
adopting our tagging scheme. Most of this result was
already established by Heather et al. A renaming
function is applied on an arbitrarily tagged bundle so
that the resulting bundle has every message correctly
tagged. Such a renaming is realistic because, if an hon-
est agent is willing to accept an ill-tagged message, it
should accept any value in it’s place;

2. We showed that a guessing attack is possible on the
correctly tagged bundle, if it was possible on the orig-
inal bundle. This indirectly proves that the attack was
not based on a type-flaw but on some other mechanism.

The implementation of the tagging scheme using bit
strings can be referred from [HLS00].

In the following section we will discuss some interesting
issues together with directions towards future work.

5.1 Discussion and Future work

Observe that our proof (or for that matter Heather et al.’s
proof) is highly dependent on the way a type-flaw is defined.
i.e. for example, if we define that sending an atom of one
type, claiming it as an atom of another type is not a type-
flaw, then the tag structure would appear as follows:

Tag ::= atom| pair | enc Tag∗ Tag

Such a tagging would allow for example, sending a key,
claiming it as an agent’s identity but prevents sending an
atom as a pair or as a (strong) encryption.

Similarly, we identified all weak encryptions, regard-
less of their structure, as belonging to a unique type,wenc.
Therefore, it would allow weak encryptions having different
structures to be replayed in place of one another. For exam-
ple, a message{na, k, nb}passwd(a) can be replayed, claim-
ing it to be structurally identical to{k, na, ts}passwd(a)

(na, nb are nonces.k is a key andts is a timestamp). Such
type-flaws may be used in attacks but can neither be pre-
vented by our tagging scheme nor our proof establishes that
they cannot be used in attacks.

However, in practice, many times such replays can be
avoided. For example, consider the following messages in
Gong et al.’s popular, “Demonstration protocol” [?]:

Msg 1.a → s : {a, b, na1, na2, ca, {ta}passwd(a)}pk(s)

Msg 4.s → a : {na1, na2⊕ k}passwd(a)

Here ca is a redundant random number.pk(s) is the
public-key ofs. Under some assumptions about message
structures, a type-flaw guessing attack is possible on this
protocol. An attacker can use Msg 4 in a legitimate run be-
tweena ands as follows:

8

Msg 1.I(a) → s : {a, b, nI1, nI2, ca,
{na1, na2⊕ k}passwd(a)}pk(s)

Msg 4.s → I(a) : {nI1, nI2⊕ k′}passwd(a)

I(a) denotes attackerI pretending asa. The attacker
creates his own noncesnI1 andnI2 together with Msg 4
of the previous run to construct Msg 1 and sends it tos.
After he gets back Msg 4 froms as a response, he decrypts
it with a guess and matches the first part (nI1) with hisnI1
to verify the guess.

The other messages of the protocol are irrelevant in this
attack.

Now this attack can be prevented if there is a tag for the
time stampts in Msg 1. This type tag would not directly
verify a guess because it is protected by another layer of
encryption under a strong key (pk(s)).

Some replays cannot be avoided. For example,
{f}passwd(a) can be replayed in{f ′}passwd(a) provided
f and f ′ can be “unified”. However, in most cases, the
possibility of such unification itself means that a guess-
ing attack is possible: since unification implies that con-
stants in f and f ′ should match, wheneverf and f ′

are textually distinct (except for the positions of the con-
stants), the constants would themselves verify a guess.
For example,{na,K, NB}passwd(a) can be unified with
{na, Ts, K}passwd(a) (na is constant,K, NB are vari-
ables). However,na can be obtained from both messages
in two different ways, by using a guess; this verifies the
guess even before unification!

Observe that in the tagging scheme, tags not protected
by encryption can be safely removed while acheiving the
same results. Further, the tags inside encryptions can be
combined into a singlecomponent number. As Heather et
al. argue, this simplication isfault-preservingin the sense of
Hui and Lowe [HL01]: That means, if there is an attack on
the component numbering scheme, there was also an attack
on the original tagging scheme.

Such component numbering ensures that encrypted com-
ponents can not be replayed in place of one another. Above
we argued (although yet to prove formally), that weak
encryptions should as well be non-replayable (i.e. non-
unifiable). Therefore, a protocol following this numbering
suggestion, along with the component numbering scheme,
ensures that no replays of encrypted components are pos-
sible. Such a result in protocol analysis has already been
shown in numerous occasions as holding the key to proto-
col security [AN94,?]. Fairly recently, it was also shown
to ensure decidability for security protocols in the context
of secrecy [?]. (Secrecy is a security property that specifies
that an attacker should not be able to learn a secret value
from a protocol run.)

We also believe that the result regarding component
numbering makes it easy to prove that “protocol number-

ing” inside encrypted components would preventmulti-
protocol guessing attacks[MAFM02, ?] if we can find a
way to enforce the numbering. (A multi-protocol guessing
attack works by replaying encrypted components from one
protocol into a different protocol.)

Observe that we assume sufficient redundancy inside
strong encryptions that allows honest agents to know if they
decrypted them correctly. However, we did not allow such a
redundancy in weak encryptions because that may verify a
guess directly [Gon90]. In contrast, Lowe states that redun-
dacy inside any encryptions (including strong) would aid in
guessing attacks [Low02]. However, without the redundan-
cies it is hard to see how honest agents can run protocols,
satisfactorily.

Secrecy and guessing attacks seem to be quite more in-
tegrally related than what meets the eye. Halevi et al. have
shown that security against guessing attacks can be reduced
to the initial problem of establishing a secret between two
unfamiliar parties [?]. (A corollary is that public key en-
cryption is unavoidable to solve both the problems.) Thus,
it is not entirely surprising that the same problems and solu-
tions encountered in studying secrecy attacks on protocols
also apply for guessing attacks.

Observe that learning a password through a guessing at-
tack can result in breaches of secrecy not known to exist
when analysing protocols for secrecy. For example, a suc-
cessful guessing attack is possible on{na, nb}passwd(a) and
na, but attacker also learns an otherwise secretnb.

Also observe that, like secrecy and authentication, guess-
ing attacks should also be stuided as atrace property(A
trace property is a security property that can be verified by
examining all possible traces or protocol runs within a sce-
nario). Therefore, it would be interesting to see if the same
results regarding decidability that were published for se-
crecy and authentication apply for guessing attacks as well
(eg. [MS01,?]).

The ideal tag environmentρ defined in section 3 assumes
more importance than it may seem. A necessary condition
for successful use of the tagging scheme is thatall honest
agents follow the same implementation. For example, agent
a cannot run a protocol using value 001 for the tagnonce
with b, who uses another value, say 101 for the same tag.
This is also true whena itself is involved in different runs
of the same protocol or if it is simultaneously engaging in
runs from different protocols (eg.SSL 3.0 andSETcon-
currently). However, Heather et al.’s formal definition ofρ
only specifies that each of the honest roles need to have tag
values that are consistent within the same template; they do
not specify thatall honest agents follow the same tag values,
which we believe is inadequate. Of course, it is also hard
to have such “universally-agreed upon” tag values without
having some sort of “international standards” for tagging
schemes. And, there is no guarantee that malicious code

9

will use the wrong tag values to deliberately tailor a proto-
col to use for attacks [?, AF98]

In this paper we have considered the definition for guess-
ing attacks given in [?] which only considers verifiers that
are subterms of the attacker’s initial knowledge. This defi-
nition is specifically tailored to the standard inference rules.
In contrast, Lowe’s definition in [?] is stronger in this sense,
because it can be used for any attacker inference set. (For
example the rule{m,n}k ` {m}k is not in the standard in-
ference set, but holds when using Cipher Block Chaining.)
It would be interesting to see how this affects the results in
this paper.

However, regardless of how such inference rules affect
the results, they can be used in attacking Heather et al.’s
original scheme as well (See Appendix for an attack on the
Woo and Lam authentication protocolπ1).

There are two other unsolved issues in Heather et al.’s
scheme:

1. They do not consider all possible forms of constructed
keys (but only those that result from application of a
key functionFn to concatenation of sequence of atoms
(f1, . . . , fn));

2. They do not consider cancellativity and other algebraic
properties obeyed by message elements when using
operations such as products andXOR. (these operations
are frequently used in real-world protocols).

Lastly, we did not consider implementation dependent
guessing attacks in this paper. For example, the password
can be learned from{english text}passwd(a) by decrypt-
ing it with a guess (even thoughenglishtext is not known
initially).

We look forward to the future with all the issues pointed
out in this section, which will keep us busy.

Acknowledgments

We would like to thank Iliano Cervesato and the anony-
mous referrees for insightful comments. Thanks are also
due to Ricardo Corin for many helpful technical discus-
sions.

References

[AN94] M. Abadi and R. Needham. Prudent Engineer-
ing Practice for Cryptographic Protocols. In
Proc. IEEE Symposium on Research in Secu-
rity and Privacy, pages 122–136, 1994.

[DY83] D. Dolev and A.C. Yao. On the security of
public key protocols. IEEE Transactions on
Information Theory, 29(2), 1983.

[GLNS93] Li Gong, Mark A. Lomas, Roger M. Need-
ham, and Jerome H. Saltzer. Protecting poorly
chosen secrets from guessing attacks.IEEE
Journal on Selected Areas in Communications,
11(5):648–656, 1993.

[Gon90] L. Gong. A Note on Redundancy in Encrypted
Messages. ACM Computer Communication
Review, 20(5):18–22, October 1990.

[HL01] Mei Lin Hui and Gavin Lowe. Fault-
preserving Safe Simplifying Transformations
on Security Protocols.Journal of Computer
Security, 9:3–46, 2001.

[HLS00] James Heather, Gavin Lowe, and Steve
Schneider. How to prevent type flaw attacks on
security protocols. InProceedings, 13th Com-
puter Security Foundations Workshop. IEEE
Computer Society Press, July 2000.

[Low02] Gavin Lowe. Analyzing protocols subject to
guessing attacks.Workshop on Issues in the
Theory of Security (WITS’02), January 2002.

[MAFM02] Sreekanth Malladi, Jim Alves-Foss, and
Sreenivas Malladi. Preventing Guessing At-
tacks Using Fingerprint Biometrics. To Ap-
pear,Proceedings of 2002 International Con-
ference on Security and Management, SAM02,
June 2002.

[MS01] Jonathan Millen and Vitaly Shmatikov. Con-
straint solving for bounded-process crypto-
graphic protocol analysis. InACM Confer-
ence on Computer and Communication Secu-
rity, volume Proc. 2001, pages 166–175. ACM
press, 2001.

[WL94] T.Y.C. Woo and S. S. Lam. A lesson on au-
thentication protocol design.Operating Sys-
tems Review, 28(3):24–37, 1994.

Appendix 1 : Attack on Heather et al.’s scheme

Consider the Woo and Lam authentication protocol,
π1 [WL94]:

Msg 1.a → b : a
Msg 2.b → a : nb
Msg 3.a → b : {a, b, nb}sh(as)

Msg 4.b → s : {a, b, {a, b, nb}sh(as)}sh(bs)

Msg 5.s → b : {a, b, nb}sh(bs)

sh(xy) represents a shared-key between agentsx andy.
Heather et al. present a type-flaw attack on this protocol:

10

Msg 3.a → b : nb
Msg 4.b → Is : {a, b, nb}sh(bs)

Msg 5.Is → b : {a, b, nb}sh(bs)

The attack works by (i) using a type-flaw in message 3
(nb in place of{a, b, nb}sh(as)} and (ii) replay of message
4 in message 5. Heather et al. argue that inserting unique
component numbers inside encryptions prevents this attack.
In their scheme, the same protocol would be implemented
as:

Msg 1.a → b : a
Msg 2.b → a : nb
Msg 3.a → b : {a, b, nb, 1}sh(as)

Msg 4.b → s : {a, b, {a, b, nb, 1}sh(as), 2}sh(bs)

Msg 5.s → b : {a, b, nb, 3}sh(bs)

However, Heather et al’s results are validonly when as-
suming the standard inference rules. To see why, consider
the inference rule{m,n}k ` {m}k which would hold when
using Cipher Block Chaining for encryption.

Msg 1.a → b : a
Msg 2.b → a : nb
Msg 3.I(a) → b : (nb, 3) /* In place of{a, b, nb}sh(as) */
Msg 4.b → I(s) : {a, b, (nb, 3), 2}sh(bs)

Msg 5.I(s) → b : {a, b, nb, 3}sh(bs) /* using CBC inf rule on Msg 4. */

This attack works because, an attacker can infer
{a, b, nb, 3}sh(bs) from Msg 4 ({a, b, (nb, 3), 2}sh(bs)) us-
ing the CBC inference rule.

Note that according to Heather et al., if there is an at-
tack on a protocol using component numbering, there is also
an attack on the protocol when using their original tagging
scheme (although it is doubtful whether the result applies
for inference rules outside the standard set).

11

