
  

AFRL-IF-RS-TR-2006-315 
Final Technical Report 
October 2006 
 
 
 
 
 
 
STANDARDIZATION OF OBJECT ORIENTED 
EXTENSIONS TO VECTOR SIGNAL AND IMAGE 
PROCESSING LIBRARY (VSIPL) 
  
Georgia Tech Applied Research Corporation 
 
  
 
 
 
 
 
 
 
 
 
 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 
 
 
 
    STINFO FINAL REPORT 
 
 
 
 
 
 
 
 
 

AIR FORCE RESEARCH LABORATORY 
INFORMATION DIRECTORATE 

ROME RESEARCH SITE 
ROME, NEW YORK 

  

 



  

NOTICE AND SIGNATURE PAGE 
 
 
 
Using Government drawings, specifications, or other data included in this document for 
any purpose other than Government procurement does not in any way obligate the U.S. 
Government. The fact that the Government formulated or supplied the drawings, 
specifications, or other data does not license the holder or any other person or 
corporation; or convey any rights or permission to manufacture, use, or sell any patented 
invention that may relate to them.  
 
This report was cleared for public release by the Air Force Research Laboratory Rome 
Research Site Public Affairs Office and is available to the general public, including 
foreign nationals. Copies may be obtained from the Defense Technical Information 
Center (DTIC) (http://www.dtic.mil).   
 
 
AFRL-IF-RS-TR-2006-315 HAS BEEN REVIEWED AND IS APPROVED FOR 
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION 
STATEMENT. 
 
 
 
FOR THE DIRECTOR:  
 
 /s/       /s/ 
 
STANLEY LIS    JAMES A. COLLINS, Deputy Chief  
Work Unit Manager     Advanced Computing Division 
      Information Directorate 
 
 
 
 
This report is published in the interest of scientific and technical information exchange, and its 
publication does not constitute the Government’s approval or disapproval of its ideas or findings.  
 
 
 



  

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection 
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports, 
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, 
Paperwork Reduction Project (0704-0188) Washington, DC 20503. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 

OCT 2006 
2. REPORT TYPE 

Final  
3. DATES COVERED (From - To) 

May 05 – May 06 
5a. CONTRACT NUMBER 

 

5b. GRANT NUMBER 
FA8750-05-1-0217 

4. TITLE AND SUBTITLE 
 
STANDARDIZATION OF OBJECT ORIENTED EXTENSIONS TO 
VECTOR SIGNAL AND IMAGE PROCESSING LIBRARY (VSIPL)  

5c. PROGRAM ELEMENT NUMBER 
63755D 

5d. PROJECT NUMBER 
HPEC 

5e. TASK NUMBER 
SI 

6. AUTHOR(S) 
 
Daniel P. Campbell  

5f. WORK UNIT NUMBER 
06 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Georgia Tech Applied Research Corp 
Centennial Research Building  
Georgia Institute of Technology  
Atlanta GA 30332 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 
 

10. SPONSOR/MONITOR'S ACRONYM(S) 
 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
 
AFRL/IFTC 
525 Brooks Rd 
Rome NY 13441-4505 

11. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 
AFRL-IF-RS-TR-2006-315 

12. DISTRIBUTION AVAILABILITY STATEMENT 
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.  PA# 06-730 
 

13. SUPPLEMENTARY NOTES 
 

14. ABSTRACT 
The Vector Signal and Image Processing Library (VSIPL) is an industry standard Application Programming Interface for 
embedded signal processing tasks.  The High Performance Embedded Computing Software Initiative (HPEC-SI) program is a 
collaborative program to establish extensions to the VSIPL specification to support Object Oriented elements of the C++ 
programming language, and encapsulated support for data parallel processing.  The program goals include the simultaneous 
threefold improvement in software portability, threefold improvement in developer productivity, and fifty per cent improvement in 
software performance compared to standard practices.  This report describes the efforts of the Georgia Tech Research Institute in 
support of the HPEC-SI program during the period from May 2005 through April 2006.  These efforts included development of 
functional prototypes, and organizational strategies, participation in the HPEC-SI Applied Research and Development Working 
Groups, dissemination of program results to outside organizations via conference presentations and internet tools, and maintenance 
of a parallel computing software testbed for program participants. 
15. SUBJECT TERMS 
 
VSIPL C++ Object Oriented High Performance Software  

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON 
Stanley Lis 

a. REPORT 
U 

b. ABSTRACT 
U 

c. THIS PAGE 
U 

17. LIMITATION OF 
ABSTRACT 
 

UL 

18. NUMBER 
OF PAGES 
 

17 
19b. TELEPHONE NUMBER (Include area code) 

 
           Standard Form 298 (Rev. 8-98) 

Prescribed by ANSI Std. Z39.18



 

             i 

Table of Contents 

List of Figures ................................................................................................................................. ii 

List of Tables .................................................................................................................................. ii 

Table of Acronyms ........................................................................................................................ iii 

Acknowledgements........................................................................................................................ iv 

1. Introduction............................................................................................................................. 1 

2. Tasks Completed..................................................................................................................... 1 

3. Results..................................................................................................................................... 2 

Parallel VSIPL++ Specification .................................................................................... 2 

VSIPL++ User’s Guide................................................................................................. 3 

Parallel VSIPL++ for tiled architectures ....................................................................... 6 

4. Conclusions............................................................................................................................. 9 

5. References............................................................................................................................. 10 

 



 ii

List of Figures 

Figure 1 - Baseline Morphware Development................................................................................ 8 

Figure 2 - VSIPL++ Encapsulates Morphware .............................................................................. 8 

Figure 3 - VSIPL++ Integrated with Morphware Source Languages............................................. 9 

 

 

 

List of Tables 

 

Table 1 - VSIPL++ User's Guide Examples ................................................................................... 4 

Table 2 - VSIPL++ User's Guide contributing authors .................................................................. 4 

Table 3 - No-Copy Vector Reference to Matrix (1.2) .................................................................... 5 

Table 4 - Pulse Compression Comparison Example (1.5.5)........................................................... 6 

 



 iii

Table of Acronyms 

API Application Programming Interface 

DARPA Defense Advanced Research Program Agency 

DRI Data Reorganization Initiative 

FFT Fast Fourier Transform 

GTRI Georgia Tech Research Institute 

HPEC-SI High Performance Embedded Computing Software Initiative 

MPI Message Passing Interface 

MSI Morphware Stable Interface 

PCA Polymorphous Computing Architectures 

SPMD Single Program Multiple Data 

VSIPL Vector Signal & Image Processing Library 

 



 iv

Acknowledgements 

This material is based on research sponsored by Air Force Research Laboratory under 
agreement number FA8750-05-1-0217.  The U.S. Government is authorized to reproduce and 
distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. 

 

 

 

 



 1

1. Introduction 
During the period of 4 May 2005 – 3 May 2006, the Georgia Tech Research Institute (GTRI) 
engaged in the project “Standardization of Object Oriented Extensions to VSIPL,” in support of 
the High Performance Embedded Computing Software Initiative (HPEC-SI) Program.  The 
Vector Signal and Image Processing Library (VSIPL) [1] is an industry standard Application 
Programming Interface for embedded signal processing tasks.  The High Performance 
Embedded Computing Software Initiative (HPEC-SI)[2] program is a collaborative program to 
establish extensions to the VSIPL specification to support Object Oriented elements of the C++ 
programming language, and encapsulated support for data parallel processing.  GTRI 
contributed to the HPEC-SI forum objectives by assisting in the development of Object Oriented 
VSIPL standards, co-chairing the HPEC-SI Development Working Group, and assisting in the 
dissemination of technical designs and ideas.   

2. Tasks Completed 
GTRI provided specific standards prototypes for the Working Group for discussion and 
implementation.  GTRI served on the Technical Advisory Board of the HPEC-SI program.  GTRI 
served as co-chair for the HPEC-SI Development Working Group.  GTRI maintained the 
website [2] for the HPEC-SI effort, which served as a collection point for information about the 
effort, as well as information presented at the meetings, for the forum members.  

GTRI attended working group meetings in June 2005, August 2005, December 2005, and April 
2006 in support of program efforts.  At these meetings, GTRI participated in discussions vetting 
the proposed VSIPL++ and parallel VSIPL++. 

GTRI attended the High Performance Computing Modernization Program Users Group 
Conference in Nashville, TN, in June 2005, to present progress on the HPEC-SI Development 
Working Group.  The abstract of the technical paper submitted for that conference is included 
below: 

 

The High Performance Embedded Computing Software Initiative (HPEC-SI) program is 
developing a unified computation and communication Application Programming 
Interface (API) and framework for high performance signal processing tasks on parallel 
computers.  The goal of the program is to address the high cost of software in 
Department of Defense (DoD) systems by improving the portability and productivity of 
signal processing application development threefold, while improving performance by 
one half compared to current practices.  This paper describes the motivation for the 
HPEC-SI program, its goals and approaches, and progress of the HPEC-SI Working 
Groups in extending the Vector, Signal, and Image Processing Library (VSIPL) standard 
to C++ and transparent operation in parallel computing systems.  The C++ extension to 
VSIPL is described, and highlights of its advantages are considered.  This paper also 
examines results from the Demonstration Working Group, and describes requirements 
and plans developed by the Applied Research Working Group for data parallel 
extensions to VSIPL and describes Development Working Group progress so far in 
developing parallel VSIPL. 



 2

GTRI continued development and maintenance of the HPEC-SI Program website, including 
meeting notes and presentations for each of the Working Group meetings during the project 
period, conference presentations, and prototype applications.  In conjunction with this, GTRI 
continued to maintain email reflectors for use by HPEC-SI program participants. 

GTRI made a parallel computing cluster available for use by HPEC-SI program [3] participants 
as a testbed for VSIPL++, parallel VSIPL++, and other parallel computing systems.  The cluster 
is a fifty node Beowulf style cluster with 104 compute processors of varying types.  Several 
HPEC-SI program participants were given login access and have used the testbed.  Software 
support, including the installation of software and tools useful to the HPEC-SI program was 
begun.  

GTRI maintained a VSIPL++ User’s Guide [4].  The Guide is intended to complement the 
VSIPL++ Specification Document and serve as an introduction and clarification of the 
Specification for application programmers.  The guide contains elaborations and examples from 
portions of the VSIPL++ Specification that the HPEC-SI Working Groups find to be difficult or 
confusing for new VSIPL++ application programmers.  The choices of topics draw heavily from 
the experiences of the projects undertaken by the Demonstration Working Group, as well as the 
vetting and clarification of the VSIPL++ Specification by the Development Working Group. 

GTRI continued its advisory role on the Technical Advisory Board of the HPEC-SI program, as 
well as serving as the co-chair of the Development Working Group. 

3. Results  
Parallel VSIPL++ Specification 

GTRI participated in the conceptual design, detailed specification, vetting, and verification of the 
Parallel VSIPL++ specification [5], as well as the consideration and adoption of the specification 
by the VSIPL Forum.  GTRI was not the primary author of the Parallel VSIPL++ specification, 
but nevertheless was actively involved in the listed aspects of its development. 

Parallel VSIPL++ is primarily focused on the productive facilitation of Single Program Multiple 
Data (SPMD) style data parallelism on a low latency parallel computing system.  In common 
parallel computing practice, in the absence of Parallel VSIPL++, the process of splitting vectors 
and matrices into pieces, distributing the pieces, redistributing, and combining the pieces during 
and after communication are mostly static and well established processes.  Nevertheless, these 
steps typically require a large number of instructions to fully specify, and typically embed a large 
amount of information about the platform configuration directly in the source code of the 
software.  Use of middleware standards and libraries such as the Message Passing Interface 
(MPI) and the Data Reorganization Interface (DRI) have mitigated this problem, but the 
communication and organization of parallel data remains a large source of lines of code that are 
not directly related to algorithm specification, and are heavily platform configuration dependent.  
These problems significantly have traditionally hindered the productivity and portability of 
parallel software.  Parallel C++ VSIPL addresses these problems by adding a data distribution 
map argument to the constructor of blocks and views.  Initial data distribution is instantiated by 
the data objects, and mathematical operators are responsible for data collection and 



 3

communication to and from data objects.  The preferred method of specifying the mapping 
argument is via reference to an external distribution declaration that can be read at run time, but 
other mechanisms are supported.  This approach addresses some of the problems with current 
methods of data parallel programming.  Data distribution configuration information can be 
collected into one location per data object, and decoupled from algorithmic specification; and 
communication functionality will be abstracted away from the algorithmic specification of the 
application, and encapsulated by the math operators.  These improvements improve the 
productivity of signal processing application development by reducing the number of lines of 
code required to achieve common tasks, and improve the portability of applications by 
significantly reducing the amount of rewrite required in order to deploy an application to a new 
platform configuration.   

The Parallel VSIPL++ Specification is a document which defines the Parallel VSIPL++ API in 
terms relative to the VSIPL++ Specification [6].  It is relatively concise, and describes the 
additional functionality required to support Parallel applications using VSIPL++.  The primary 
additions are the addition of a map object type, and updated functionality for the various view 
data types.  The map object type is the primary mechanism for describing the data distribution of 
VSIPL++ view objects.  Maps support block, block-cyclic, and cyclic data distributions, with 
various controls for sizes of blocks and degree of cyclicity.  The map type also provides various 
support services, such as mechanisms to access the indices of a view that are on the local node, 
or within a particular subblock.  The updates to the view type allow the distribution of views 
over a set of processors or nodes, as described by the map type provided at the initialization of 
the view.  A variety of additional support services are defined for the view type for proper and 
intuitive behavior within the context of a parallel application, including, for example, obtaining 
local subviews, identification of the local region of a view, etc. 

The full text of the Parallel VSIPL++ Specification can be obtained electronically at 
http://www.hpec-si.org/spec-par-1.0-final.pdf  

 

VSIPL++ User’s Guide 

GTRI led the development of a User’s Guide for VSIPL++.  The Guide was created by soliciting 
example application source code from the various HPEC-SI program participants, collecting 
them, and editing into a consistent format.  An initial draft of the User’s Guide was delivered to 
HPEC-SI program participants in June 2005, and a subsequent draft was delivered in December 
2005. 

The purpose of the User’s Guide is to serve as a complement to the VSIPL++ Specification for 
application developers.  The VSIPL++ specification fully defines the behavior of VSIPL++ 
implementations, and is focused on compactness and formal correctness rather than ease of 
reading.  The Guide seeks to clarify important aspects of VSIPL++ application development. 

The Guide is presented in the form of several illustrative examples that have been developed by 
VSIPL Forum members during the development and demonstration of the VSIPL++ 
Specification.  Each example is in the form of VSIPL++ C++ source code, along with 



 4

descriptions, and in some cases equivalent VSIPL C source code for contrast.  Each illustrates an 
element of VSIPL++ application development that users have found needing clarification. 

The examples that are included in the VSIPL++ User’s Guide are summarized in Table 1, below.  
The authors that have contributed examples and text to the Guide are summarized in Table 2, 
below.  The VSIPL++ User’s Guide is under continuous evaluation and expansion as new 
examples become available, and revisions to the VSIPL++ Specification are made. The most 
current version of the VSIPL++ User’s Guide can be obtained electronically at http://www.hpec-
si.org/VSIPL++%20User_s%20Guide%20Draft%20v0.2pdf.  Table 3 and Table 4 capture 
specific examples that are in the current draft of the VSPL++ User’s Guide. 

 

Vector Add 

No-Copy vector reference to matrix  

Using User Defined Blocks  

Simple FFT Example  

Comparing VSIPL to VSIPL++ Simple Pulse Compression Case Studies 

Importing and Exporting User Allocated Memory to VSIPL++ View Objects 

Synthetic Aperture Radar VSIPL++ Example 

Table 1 - VSIPL++ User's Guide Examples 

 

Jules Bergmann 

Susan Emeny 

Randall Judd 

Rick Pancoast 

David Leimbach 

Sharon Sacco 

Brian Sroka 

Table 2 - VSIPL++ User's Guide contributing authors 



 5

 
#include <vsip/initfin.hpp> 
#include <vsip/matrix.hpp> 
#include <vsip/vector.hpp> 
#include <vsip/domain.hpp> 
#include <iostream> 
 
// display a row of the matrix with tabs. 
std::ostream & operator << (std::ostream & os, vsip::Vector <> v) { 
  int idx = 0; 
  int size = v.size(); 
  for ( ; idx < size; ++idx)  
    os << v.get(idx) << '\t'; 
 
  return os; 
} 
 
// Prints out a matrix row-wise 
std::ostream & operator << (std::ostream & os, vsip::Matrix <> m) { 
  int idx = 0; 
  int size = m.size(1); /* m.size(1) is the size of a dimension of the matrix 
*/ 
  for( ; idx < m.size(1); ++idx)   
    os << m.row(idx) << std::endl; 
 
  return os; 
} 
 
int main () { 
  vsip::vsipl  
 
  // defaults to scalar_f. 
  vsip::Matrix<> m0 (4, 4, 0.0f); //4x4 Matrix with 0s 
 
  // Show the contents of the matrix. 
  std::cout << m0 << std::endl; 
 
  // Each row_type is a reference to a row in the Matrix 
  vsip::Matrix<>::row_type v00(m0.row(0)); 
  vsip::Matrix<>::row_type v01(m0.row(1)); 
  vsip::Matrix<>::row_type v02(m0.row(2)); 
  vsip::Matrix<>::row_type v03(m0.row(3)); 
 
  // Throw in some values diagonally. 
  v01.put(1, 1.0f); 
  v02.put(2, 2.0f); 
  v03.put(3, 3.0f); 
 
  // Show the original matrix 
  std::cout << std::endl << m0 << std::endl; 
} 
 
  

Table 3 - No-Copy Vector Reference to Matrix (1.2) 



 6

VSIPL 
void pulseCompress( int decimationFactor, vsip_cvview_f *in, vsip_cvview_f *ref, 
vsip_cvview_f *out) { 
  vsip_length savedSize   = vsip_cvgetlength_f(in); 
  vsip_length savedStride = vsip_cvgetstride_f(in); 
  vsip_length size = vsip_cvgetlength_f(in) / decimationFactor; 
 
  vsip_fft_f *forwardFft = vsip_ccfftop_create_f(size, 1.0, VSIP_FFT_FWD, 1, 

VSIP_ALG_SPACE); 
  vsip_fft_f *inverseFft = vsip_ccfftop_create_f(size, 1.0/size, VSIP_FFT_INV, 1,  

VSIP_ALG_SPACE); 
  vsip_cvview_f *tmpView1 = vsip_cvcreate_f(size, VSIP_MEM_NONE); 
  vsip_cvview_f *tmpView2 = vsip_cvcreate_f(size, VSIP_MEM_NONE); 
  vsip_cvputlength_f(in, size); 
  vsip_cvputstride_f(in, decimationFactor); 
  vsip_ccfftop_f(forwardFft, in, tmpView1); 
  vsip_cvmul_f(tmpView1, ref, tmpView2); 
  vsip_ccfftop_f(inverseFft, tmpView2, out); 
  vsip_cvputlength_f(in, savedSize); 
  vsip_cvputstride_f(in, savedStride); 
 
  vsip_cvalldestroy_f(tmpView1); 
  vsip_cvalldestroy_f(tmpView2); 
  vsip_fft_destroy_f(forwardFft); 
  vsip_fft_destroy_f(inverseFft); 
} 

 

VSIPL++ 
void pulseCompress(int decimationFactor,  const vsip::Vector< std::complex<float> >  

&in, const vsip::Vector< std::complex<float> > &ref 
const vsip::Vector< std::complex<float> > &out) { 
  int size = in.size() / decimationFactor; 
  vsip::Domain<1> decimatedDomain(0, decimationFactor, size); 
 
  vsip::Fft<vsip::Vector, vsip::cscalar_f, vsip::cscalar_f, vsip::fft_fwd> forwardFft 

((vsip::Domain<1>(size)), 1.0); 
  vsip::Fft<vsip::Vector, vsip::cscalar_f, vsip::cscalar_f, vsip::fft_inv, 0,  

vsip::SINGLE, vsip::by_reference> inverseFft ((vsip::Domain<1>(size)),  
1.0/size); 

 
  inverseFft( ref * forwardFft( in(decimatedDomain) ), out ); 
}  

Table 4 - Pulse Compression Comparison Example (1.5.5) 

 

Parallel VSIPL++ for tiled architectures 

GTRI participated in several discussions at HPEC-SI Working Group meetings, as well as 
additional meetings in support of defining possible approaches for Parallel VSIPL++ for tiled 
architectures.  Examples of targeted tiled architectures include those developed under the 
DARPA Polymorphous Computing Architectures program, the IBM/Sony/Toshiba Cell 
Broadband Engine, and commodity multicore general purpose processors.  The HPEC-SI 



 7

participants expressed a desire to leverage the software results obtained on the DARPA PCA 
program, therefore GTRI developed proposals for approaches that are based on integrating the 
Morphware Stable Interface [7], designed under the DARPA PCA program, into development 
flows of the HPEC-SI program.  GTRI organized a joint meeting of the HPEC-SI and PCA 
programs for the purpose of allowing participants from each program to interact. 

The baseline Morphware development flow is shown in Figure 1, below.  This development flow 
is based around a two level compilation process.  The higher level compiler translates programs 
from one of several input languages into a virtualized, abstract, architecture neutral intermediate 
language.  This is then compiled by one of several platform specific backend systems into an 
executable for a particular platform.  GTRI summarized and proposed several alternative 
approaches to augmenting the Morphware approach to support VSIPL++, and analyzed the 
impacts of the approaches.  Two of the approaches were most widely considered by HPEC-SI 
program participants to be the most appropriate approaches for including tiled processor support 
in VSIPL++, and are discussed. 

The first favored approach is to use the existing Morphware development system as an 
implementation method for VSIPL++.  This approach is depicted in Figure 2, below.  This 
approach was viewed favorably primarily due to speed and ease of implementation.  It is 
reasonable to believe that VSIPL++ implementations delivering adequate performance for 
VSIPL++ applications can be created quickly using this approach, because the stream input 
languages are well suited to the functionality specified by VSIPL++.  The main detractions from 
this approach are that the encapsulation of Morphware created by this approach is likely to 
impose a performance penalty, and remove the dynamic flexibility improvements achieved by 
Morphware.  In addition, the small size of the Morphware community limits the robustness of 
some of the elements of the toolchain.  Reliance on this approach may negatively impact the 
achieved results of VSIPL++ using this approach. 

The second favored approach is to augment the VSIPL++ specification to include elements of a 
stream abstraction, and to then integrate VSIPL++ with one or more Morphware source 
languages.  This approach is depicted in Figure 3, below.  The primary disadvantage to this 
approach is the level of engineering effort that the group expected to be required in order to 
implement.  This approach requires significant augmentation of one more compilers in order to 
implement.  The primary advantage to this approach is that the relatively tight integration of 
VSIPL and Morphware high level compilers should reduce the performance impact of 
unnecessary abstraction barriers, and should allow the use of dynamic reconfiguration of 
applications based on runtime conditions. 

The HPEC-SI working groups seemed to reach consensus that the appropriate approach for 
integrating tiled processor support into VSIPL++ would be to implement the layered approach 
first, and the integrated approach later.  This would allow rapid demonstration of the concepts 
and an early opportunity for users, application developers, hardware providers, and development 
tool compilers to work with the API, while not preventing the more flexible and higher 
performing approach in the future. 

 



 8

Po
rta

bi
lit

y 
(3

x)

Productivity (3x)

HPEC
Software
Initiative

Performance (1.5x)

Morphware Compilation

StreamIt Brook C/C++ Others…
Stable APIs (SAPI)

Stable Architecture
Abstraction Layer 
(SAAL)

Binaries

Low Level Compilers

TRIPS Monarch Smart Memories RAW Others...

High Level Compilers

Virtual Machine API
Stream VM

API
Thread VM

API

Target Platform
Description

Platform Specific

Portable

 

Figure 1 - Baseline Morphware Development 

 
Po

rta
bi

lit
y 

(3
x)

Productivity (3x)

HPEC
Software
Initiative

Performance (1.5x)

VSIPL++ Targets SAPI

StreamIt Brook C/C++ Others…
Stable APIs (SAPI)

Stable Architecture
Abstraction Layer 
(SAAL)

Binaries

Low Level Compilers

TRIPS Monarch Smart Memories RAW Others...

High Level Compilers

Virtual Machine API
Stream VM

API
Thread VM

API
Stream VM

API
Thread VM

API

Target Platform
Description

Platform Specific

Portable

VSIPL++ Functions

VSIPL++ Library

 

Figure 2 - VSIPL++ Encapsulates Morphware 

 



 9

Po
rta

bi
lit

y 
(3

x)

Productivity (3x)

HPEC
Software
Initiative

Performance (1.5x)

VSIPL++ Integrates with SAPI

StreamIt Brook C/C++ Stream-VSIPL++

Stable APIs (SAPI)

Stable Architecture
Abstraction Layer 
(SAAL)

Binaries

Low Level Compilers

TRIPS Monarch Smart Memories RAW Others...

High Level Compilers

Virtual Machine API
Stream VM

API
Thread VM

API

Target Platform
Description

Platform Specific

Portable

 

Figure 3 - VSIPL++ Integrated with Morphware Source Languages 

4. Conclusions 
During the period of performance of the subject contract, the Georgia Tech Research Institute 
contributed to the High Performance Embedded Computing Software Initiative program as a 
technical participant, and as a member of the technical advisory board.  GTRI developed 
functional prototypes and software strategies, assisted in the dissemination of program results 
via conference presentation and internet tools, continued to provide a parallel software testbed 
for program participants, and continued development of a user’s guide for VSIPL++ application 
development.  GTRI also participated in technical advisory planning for the HPEC-SI program. 



 10

 

5. References 
1. Schwartz, D.A., Judd, R.R., Harrod, W.J., Manley, D.P., “VSIPL 1.2 API” available 

electronically at http://www.vsipl.org/VSIPL_1p2_1.pdf 

2. HPEC-SI Website, http://www.hpec-si.org 

3. The Georgia Tech Research Institute Parallel Software Test and Evaluation Center – 
https://pastec.gtri.gatech.edu  

4. Bergmann, J., Emeny, S., Judd, R., Pancoast, R., Leimbach, D., Sacco, S., Sroka, B., 
“VSIPL++ User’s Guide”, available electronically at http://www.hpec-
si.org/VSIPL++%20User_s%20Guide%20Draft%20v0.2.pdf 

5. CodeSourcery, LLC, “VSIPL++ Specification – Parallel Specification”, available 
electronically at http://www.hpec-si.org/spec-par-1.0-final.pdf 

6. CodeSourcery, LLC, “VSIPL++ Specification 1.01”, available electronically at 
http://www.hpec-si.org/spec-1.01-final.pdf 

7. Campbell, D.P., Cottel, D.M., Judd, R.R., Richards, M.A., “Introduction to Morphware – 
Software Architecture for Polymorphous Computing Architectures”, Georgia Institute of 
Technology Library, Call Number QA 76.758.I579X 2004 

 




