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1.  Summary 
 
Over the past two years we significantly increased recall of GeneWays pipeline processing, 
developed, tested and applied tools for automated data cleaning (AI curation) of the produced 
database. We also increased significantly (> 50%) the volume of textual information processed by 
the GeneWays pipeline, applied AI curator tools to the newly generated database and incorporated 
automatically curated data into a new version of a GeneWays database.  
 
2.  Introduction 
 
Picture a tribe of bright, but ignorant, cave people trying to understand the work of a modern car 
by analyzing a collection of damaged cars produced by various makers. After many hours of hard 
manual labor, the cave people disassemble the cars into myriad small parts. Some parts are 
damaged, whereas some are intact.  A few interact with each other, while others do not. Some 
pieces are different in different cars, yet apparently have the same function.  The leap to 
understanding the whole from knowing the parts requires compilation of many pieces of 
information into a comprehensive “computable” model. Researchers in the field of molecular 
biology are in a situation similar to that of the junkyard cave people, save that they are 
contemplating a collection of diverse pieces of cellular machinery—the number of those cellular 
components is way greater than the number of parts in a typical car—the number of nodes in 
human molecular networks is measured in hundreds of thousands when all substances (genes, 
RNAs, proteins, and other molecules) are considered together. These numerous substances can be 
in turn present or absent in dozens of cell types in humans—clearly, the complexity is too great to 
yield to manual analysis.  
 
The information overload in molecular biology is a mere example of the status common to all 
fields of the current science and culture: An ever-strengthening avalanche of novel data and ideas 
overwhelms specialists and non-specialists alike, unavoidably fragments knowledge, and makes 
enormous chunks of knowledge invisible/inaccessible to those who desperately need it.  
 
The help of relieving the information overload may come from the text-miners who can 
automatically extract and catalogue facts described in books and journals. 
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Figure 1. Cocaine : The predicted accuracy of individual text-mined facts involving semantic  
relation.  

 
In Figure 1, each directed arc from an entity A to an entity B should be interpreted as a statement 
“A stimulates B”, where, for example, A is cocaine and B is progesterone. The predicted accuracy 
of individual statements is indicated both in color and in width of the corresponding arc. Note that, 
for example, the relation between cocaine and progesterone was derived from multiple sentences, 
and different instances of extraction output had markedly different accuracy. Altogether we 
collected 3, 910 individual facts involving cocaine. Because the same fact can be repeated in 
different sentences, only 1, 820 facts out of 3, 910 were unique. The facts cover 80 distinct 
semantic relations, out of which stimulate is just one example. 
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3.  Methods, Assumptions, and Procedures 
Information extraction uses computer-aided methods to recover and structure meaning that is 
locked in natural-language texts. The assertions uncovered in this way are amenable to 
computational processing that approximates human reasoning. In the special case of biomedical 
applications, the texts are represented by books and research articles, and the extracted meaning 
comprises diverse classes of facts, such as relations between molecules, cells, anatomical 
structures, and maladies.  

Unfortunately, the current tools of information extraction produce imperfect, noisy results. 
Although even imperfect results are useful, it is highly desirable for most applications to have the 
ability to rank the text-derived facts by the confidence in the quality of their extraction (as we did 
for relations involving cocaine, see Figure 1). We focus on automatically extracted statements 
about molecular interactions, such as small molecule A binds protein B, protein B activates gene C, 
or protein D phosphorylates small molecule E. (In the following description we refer to phrases 
that represent biological entities (such as small molecule A, protein B, and gene C) as terms, and to 
biological relations between these entities (such as activate or phosphorylate) as relations or 
verbs.)   

Several earlier studies have examined aspects of evaluating the quality of text-mined facts. For 
example, Sekimizu et al. and Ono et al. attempted to attribute different confidence values to 
different verbs that are associated with extracted relations, such as activate, regulate, and inhibit 
[1,2]. Thomas et al. proposed to attach a quality value to each extracted statement about molecular 
interactions [3], although the researchers did not implement the suggested scoring system in 
practice. In an independent study [4], Blaschke and Valencia used word-distances between 
biological terms in a given sentence as an indicator of the precision of extracted facts. In our 
present analysis we applied several machine-learning techniques to a large training set of 98 679,  
manually evaluated examples (pairs of extracted facts and corresponding sentences) to design a 
tool that mimics the work of a human curator who manually cleans the output of an information-
extraction program.  

Approach 

Our goal was to design a tool that could be used with any information-extraction system developed 
for molecular biology. In this study, our training data came from the GeneWays project 
(specifically, GeneWays 6.0 database, [5,6]) and thus our approach is biased toward relationships 
that are captured by that specific system. We believe that the spectrum of relationships represented 
in the GeneWays ontology is sufficiently broad that our results will prove useful for other 
information-extraction projects.  

Our approach followed the path of supervised machine-learning. First, we generated a large 
training set of facts that were originally gathered by our information-extraction system, and then 
manually labeled as “correct” or “incorrect” by a team of human curators. Second, we used a 
battery of machine-learning tools to imitate computationally the work of the human evaluators. 
Third, we split the training set into ten parts, so that we could evaluate the significance of 
performance differences among the several competing machine-learning approaches.  
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Methods 

Training data 

With the help of a text-annotation company, ForScience Inc., we generated a training set of 
approximately 45 000,  multiple-annotated unique facts, or almost 100 000,  independent 
evaluations. These facts were originally extracted by the GeneWays pipeline, then were annotated 
by biology-savvy doctoral-level curators as “correct” or “incorrect,” referring to quality of 
information extraction. Examples of automatically extracted relations, sentences corresponding to 
each relation, and the labels provided by three evaluators are shown in Table 1.  

 
Table 1. A sample of sentences that were used as an input to automated information extraction 

 
Sentence [Source]  Extracted relation  Evaluation 

(Confidence)   
NIK binds to Nck in cultured cells.[8] nik bind nck  Correct (High)  
   
One is that presenilin is required for the proper 
trafficking of Notch and APP to their proteases, which 
may reside in an intracellular compartment. [9] 

presenilin required for notch  Correct (High)   

   
Serine 732 phosphorylation of FAK by Cdk5 is 
important for microtubule organization, nuclear 
movement, and neuronal migration. [10] 

cdk5 phosphorylate fak  Correct (High)   

   
Histogram quantifying the percent of Arr2 bound to 
rhodopsin-containing membranes after treatment with 
blue light (B) or blue light followed by orange light (BO). 
[11] 

arr2 bind rhodopsin  Correct (Low)   

   
It is now generally accepted that a shift from monomer to 
dimer and cadherin clustering activates classic 
cadherins at the surface into an adhesively competent 
conformation. [12] 

cadherin activate cadherins  Correct (Low)   

   
Binding of G to CSP was four times greater than binding 
to syntaxin. [13] 

csp bind syntaxin  Incorrect (Low)  

   
Treatment with NEM applied with cGMP made 
activation by cAMP more favorable by about 2.5 
kcal/mol. [14] 

camp activate cgmp  Incorrect (Low)  

   
This matrix is likely to consist of actin filaments, as 
similar filaments can be induced by actin-stabilizing 
toxins (O. S. et al., unpublished data). [15] 

actin induce actin  Incorrect (High)  

   
A ligand-gated association between cytoplasmic 
domains of UNC5 and DCC family receptors converts 
netrin-induced growth cone attraction to repulsion. [16] 

cytoplasmic domains associate unc5  Incorrect (High)  
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In Table 1, a sample of sentences that were used as an input to automated information extraction 
(the first column), biological relations extracted from these sentences (either correctly or 
incorrectly, the second column), and the corresponding evaluations provided by 3  human experts 
(the third column). A high-confidence label corresponds to a perfect agreement among all experts; 
a low-confidence label indicates that one of the experts disagreed with the other two. Clearly, 
automated information extraction can be associated with a loss of detail of meaning, as is in the 
case of cadherin activates cadherins example (sentence 5).  

Each extracted fact was evaluated by one, two, or three different curators. The complete evaluation 
set comprised 98 679,  individual evaluations performed by four different people, so most of the 
statement–sentence pairs were evaluated multiple times, with each person evaluating a given pair 
at most once. In total, 13 502,  statement/sentence pairs were evaluated by just one person, 10 457,  
by two people, 21 421,  by three people, and 57  by all four people. Examples of both high inter-
annotator agreement and low-agreement sentences are shown in Table 1.  

 
Table 2. List of annotation choices available to the evaluators. 

 
Term level   

 Upstream term is a junk 
substance   

 Action is incorrect biologically 
 Downstream term is a junk 

substance   
Relation level   

 Correctly extracted   
 Sentence is hypothesis, not fact 
 Unable to decide   
 Incorrectly extracted   
 Incorrect upstream   
 Incorrect downstream   
 Incorrect action type   
 Missing or extra negation   
 Wrong action direction   
 Sentence does not support the 

action   
Sentence level   

 Wrong sentence boundary   

 

In Table 2, the term “action” refers to the type of the extracted relation. For example, in statement 
A binds B “binds” is the action, “A” is the upstream term, and “B” is the downstream term. Action 
direction is defined as upstream to downstream, and “junk substance” is an obviously incorrectly 
identified term/entity.  

The statements in the training data set were grouped into chunks; each chunk was associated with a 
specific biological project, such as analysis of interactions in Drosophila melanogaster. Pair-wise 
agreement between evaluators was high (92%) in most chunks, with the exception of a chunk of 



 6

5 271,  relations where agreement was only 74%. These relatively low-agreement evaluations were 
not included in the training data for our analysis.  

To facilitate evaluation, we developed a Sentence Evaluation Tool implemented in Java 
programming language by Mitzi Morris and Ivan Iossifov. This tool presented to an evaluator a set 
of annotation choices regarding each extracted fact; the choices are listed in Table 2. The tool also 
presented in a single window the fact itself and the sentence it was derived from. In the case where 
a broader context was required for the judgment, the evaluator had a choice to retrieve the 
complete journal article containing this sentence by clicking a single button on the program 
interface.   

For convenience in representing the results of manual evaluation, we computed an evaluation score 
for each statement as follows. Each sentence–statement score was computed as a sum of the scores 
assigned by individual evaluators; for each evaluator, 1−  was added if the expert believed that the 
presented information was extracted incorrectly, and 1+  was added if he or she believed that 
extraction was correct. For a set of three experts, this method permitted four possible scores: 
3(1 1 1), , , 1(1 1 1), , − , 1(1 1 1)− ,− ,− , and 3− . Similarly, for just two experts, the possible scores are 
2(1 1), , 0(1 1), − , and 2( 1 1)− − ,− . 

 

Computational methods 

Machine-learning algorithms 

General framework 

The objects that we want to classify, the fact–sentence pairs, have complex properties. We wanted 
to place each of the objects into one of two classes, correct or incorrect. In the training data, each 
extracted fact was matched to a unique sentence from which it was extracted, even though multiple 
sentences can express the same fact and a single sentence can contain multiple facts. The thi  object 
(the thi  fact–sentence pair) comes with a set of known features or properties that we encoded into a 
feature vector, iF :  

 1 2( )i i i i nf f … f, , ,= , , , .F (1) 

In the following description we used C  to indicate the random variable that represents class (with 
possible values correctc  and incorrectc ), and F  to represent a 1 n×  random vector of feature values 
(also often called attributes), such that jF  is the thj  element of F . For example, for fact p53 
activates JAK, feature 1F  would have value 1 because the upstream term p53 is found in a 
dictionary derived from the GenBank database [19]; otherwise, it would have value 0 .   
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Full Bayesian inference 

The full Bayesian classifier assigns the thi  object to the thk  class if the posterior probability 
( )k iP C c F= | = F  is greater for the thk  class than for any alternative class. This posterior 

probability is computed in the following way (a re-stated version of Bayes’ theorem).  

 ( ) ( ) ( )
( )

i k
k i k

i

P F C c
P C c F P C c

P F
= | =

= | = = = × .
=

F
F

F
(2) 

In real-life applications, we estimate probability ( )i kP F C c= | =F  from the training data as a ratio 
of the number of objects that belong to the class kc  and have the same set of feature values as 
specified by the vector iF  to the total number of objects in class kc  in the training data.   

In other words, we estimate the conditional probability for every possible value of the feature 
vector F  for every value of class C . Assuming that all features can be discretized, we have to 
estimate  

 1 2( 1)nv v …v m× × − × (3) 

parameters, where iv  is the number of discrete values observed for the thi  feature and m  is the 
number of classes.  

Clearly, even for a space of only 20  binary features the number of parameters that we would need 
to estimate is 20(2 1) 2 2 097 150− × = , , , which exceeds several times the number of data points in 
our training set.  

Naïve Bayes classifier 

The most affordable approximation to the full Bayesian analysis is the Naïve Bayes classifier. It is 
based on the assumption of conditional independence of features:  

( ) 1 1i k i kP F C c P F f C c⎛ ⎞
⎜ ⎟,⎝ ⎠

= | = = = | =F  

2 2i kP F f C c …⎛ ⎞
⎜ ⎟,⎝ ⎠

× = | =  

n i n kP F f C c⎛ ⎞
⎜ ⎟,⎝ ⎠

× = | = .  (4) 

Obviously, we can estimate j i j kP F f C c⎛ ⎞
⎜ ⎟,⎝ ⎠

= | = ’s reasonably well with a relatively small set of 
training data, but the assumption of conditional independence (Equation 4) comes at a price: the 
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Naïve Bayes classifier is usually markedly less successful in its job than are its more sophisticated 
relatives.  

In an application with m  classes and n  features (given that the thi  feature has iv  admissible 
discrete values), a Naïve Bayes algorithm requires estimation of 

1
( 1)ii n

m v
= ,

× −∑  parameters 

(which value, in our case, is equal to 4 208, ).  

Middle ground between the full and Naïve Bayes: Clustered Bayes 

We can find an intermediate ground between the full and Naïve Bayes classifiers by assuming that 
features in the random vector F  are arranged into groups or clusters, such that all features within 
the same cluster are dependent on one another (conditionally on the class), and all features from 
different classes are conditionally independent. That is, we can assume that the feature random 
vector ( F ) and the observed feature vector for the thi  object ( iF ) can be partitioned into sub-
vectors:  

1 2( ) andMF …= Φ ,Φ , ,Φ ,  (5) 

1 2( )i i i i M…, , ,= , , , ,F f f f  (6) 

respectively, where jΦ  is the thj  cluster of features; i j,f  is the set of values for this cluster with 

respect to the thi  object, and M  is the total number of clusters of features.   

 

The Clustered Bayes classifier is based on the following assumption about conditional 
independence of clusters of features:  

( ) 1 1i k i kP F C c P C c⎛ ⎞
⎜ ⎟,⎝ ⎠

= | = = Φ = | =F f  

2 2i kP C c …⎛ ⎞
⎜ ⎟,⎝ ⎠

× Φ = | =f  

M i M kP C c⎛ ⎞
⎜ ⎟,⎝ ⎠

× Φ = | = .f  (7) 

We tested two versions of the Clustered Bayes classifier: one version used all 68  features 
(Clustered Bayes 68) with a coarser discretization of feature values; another version used a subset 
of 44 features (Clustered Bayes 44) but allowed for more discrete values for each continuous-
valued feature, see legend to Figure 2.  
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Figure 2. The correlation matrix for the features used by the classification algorithms.  
 

In Figure 2, the half-matrix below the diagonal was derived from analysis of the whole GeneWays 
6.0 database; the half-matrix above the diagonal represents a correlation matrix estimated from 
only the manually annotated data set. The white dotted lines outline clusters of features, suggested 
by analysis of the annotated data set; we used these clusters in implementation of the Clustered 
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Bayes classifier. We used two versions of the Clustered Bayes classifier: with all 68 features 
(Clustered Bayes 68), and with a subset of only 44 features, but higher number of discrete values 
allowed for non-binary features (Clustered Bayes 44). The Clustered Bayes 44 classifier did not 
use features 1, 6, 7, 8, 9, 12, 27, 28, 31, 34, 37, 40, 42, 47, 48, 49, 52, 54, 55, 60, 62, 63, and 65. 

Linear and quadratic discriminants 

Another method that can be viewed as an approximation to full Bayesian analysis is Discriminant 
Analysis invented by Sir Ronald A. Fisher [20]. This method requires no assumption about 
conditional independence of features; instead, it assumes that the conditional probability 

( )i kP F C c= | =F  is a multivariate normal distribution.  

( )
( ) ( )

( )

11
2

2

i k k i k

i k n
k

eP F C c
μ μ

π

−− − −

= | = = ,
| |

F V F

F
V

 (8) 

where n  is the total number of features/variables in the class-specific multivariate distributions. 
The method has two variations. The first, Linear Discriminant Analysis, assumes that different 
classes have different mean values for features (vectors kμ ), but the same variance-covariance 
matrix, k=V V  for all k  (see Suppl. Note 7). In the second variation, Quadratic Discriminant 
Analysis (QDA), the assumption of the common variance-covariance matrix for all classes, is 
relaxed, such that every class is assumed to have a distinct variance-covariance matrix, kV .  

In this study we present results for QDA; the difference from the linear discriminant analysis was 
insignificant for our data (not shown). In terms of the number of parameters to estimate, QDA uses 
only two symmetrical class-specific covariance matrices and the two class-specific mean vectors. 
For 68  features the method requires estimation of 2 (68 69) 2 2 68 4 828× × / + × = ,  parameters.  

Maximum-entropy method 

The current version of the maximum-entropy method was formulated by E.T. Jaynes [21,22]; the 
method can be traced to earlier work by J. Willard Gibbs. The idea behind the approach is as 
follows. Imagine that we need to estimate a probability distribution from an incomplete or small 
data set—this problem is the same as that of estimating the probability of the class given the 
feature vector, ( )k iP C c F= | = F , from a relatively small training set. Although we have no hope 
of estimating the distribution completely, we can estimate with sufficient reliability the first (and, 
potentially, the second) moments of the distribution. Then, we can try to find a probability 
distribution that has the same moments as our unknown distribution and the highest possible 
Shannon’s entropy—the intuition behind this approach being that the maximum-entropy 
distribution will minimize unnecessary assumptions about the unknown distribution. The 
maximum-entropy distribution with constraints imposed by the first-order feature moments alone 
(the mean values of features) is known to have the form of an exponential distribution [23]:  
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1

2

1
1

exp

exp

n

i k j i
i

k j n

i l j il
i

f
P C c F

f

λ

λ

⎛ ⎞
⎜ ⎟
⎜ ⎟, ,⎜ ⎟

=⎛ ⎞ ⎝ ⎠
⎜ ⎟

⎛ ⎞⎝ ⎠
⎜ ⎟
⎜ ⎟, ,= ⎜ ⎟

=⎝ ⎠

−
= | = = ,

−

∑

∑ ∑
F  (9) 

and the maximum-entropy distribution for the case when both the first- and the second-order 
moments of the unknown distribution are fixed has the form of a multidimensional normal 
distribution [23]. The conditional distribution that we are trying to estimate can be written in the 
following exponential form:  

1 1

2

1
1 1

exp

exp

n n n

i k j i x y k j x j y
i x y x

k j n n n

i l j i x y l j x j yl
i x y x

f f f
P C c F

f f f

λ ν

λ ν

⎛ ⎞
⎜ ⎟
⎜ ⎟, , , , , ,⎜ ⎟⎜ ⎟= = =⎛ ⎞ ⎝ ⎠

⎜ ⎟ ⎛ ⎞⎝ ⎠
⎜ ⎟
⎜ ⎟, , , , , ,= ⎜ ⎟⎜ ⎟= = =⎝ ⎠

− −
= | = = .

− −

∑ ∑∑

∑ ∑ ∑∑
F  (10) 

Parameters i kλ , ’s and x y kν , , ’s are k -class-specific weights of individual features and feature pairs, 
respectively, and in principle can be expressed in terms of the first and second moments of the 
distributions. The values of parameters in Equations 9 and 10 are estimated by maximizing the 
product of probabilities for the individual training examples.   

 

We tested two versions of the maximum-entropy classifier. MaxEnt 1 uses only information about 
the first moments of features in the training data (Equation 9); MaxEnt 2 uses the set of all 
individual features and the products of feature pairs (Equation 10). To select the most informative 
pairs of features we used a mutual information approach, as described in the subsection dealing 
with classification features.  

 

For two classes (correct and incorrect) and 68  features MaxEnt 1 requires estimation of 136  
parameters. In contrast, MaxEnt 2 requires estimation of 4 828,  parameters: weight parameters for 
all first moments for two classes, plus weights for the second moments for two classes. MaxEnt 2-
v is a version of MaxEnt 2 classifier where the squared values of features are not used, so that the 
classifier requires estimation of only 4 692,  weight parameters.  

Feed-forward neural network 

A typical feed-forward artificial neural network is a directed acyclic graph organized into three (or 
more) layers. In our case, we chose a three-layered network, with a set of nodes of the input layer, 

1{ }
xi i … Nx = , , , nodes of the hidden layer, 1{ }

yj j … Ny = , , , and a single node representing the output layer, 

1z , see Figure 2. The number of input nodes, xN , is determined by the number of features used in 
the analysis ( 68  in our case). The number of hidden nodes, yN , determines both the network’s 
expressive power and its ability to generalize. Too small a number of hidden nodes makes a 
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simplistic network that cannot learn from complex data. Too large a number makes a network that 
tends to overtrain—that works perfectly on the training data, but poorly on new data. We 
experimented with different values of yN  and settled on 10yN = .   

The values of the input nodes, 1{ }
xi i … Nx = , , , are feature values of the object that we need to classify. 

The value of each node, jy , in the hidden layer is determined in the following way:  

1 1 2 2( )
x xj j j j N Ny F w x w x … w x, , ,= + + + ,  (11) 

where ( )F x  is a hyperbolic tangent function that creates an S-shaped curve:  

( )
x x

x x

e eF x
e e

−

−

−
= ,

+
 (12) 

and { }j kw ,  are weight parameters. Finally, the value of the output node, 1z  is determined as a 
linear combination of the values of all hidden nodes:  

1 1 1 2 2 y yN Nz a y a y … a y= + + + ,  (13) 

where { }ka  are additional weight parameters. We trained our network, using a back-propagation 
algorithm [24], to distinguish two classes, correct and incorrect, where positive values of 1z  
corresponded to the class correct.   

 
The feed-forward neural network that we used in our analysis can be thought of as a model with 

x y yN N N× +  parameters ( 690  in our case).  



 13

 
 

Figure 3. A hypothetical three-layered feed-forward neural network.  
 
In Figure 3, we used a similar network with 68 input units (one unit per classification feature) and 
10 hidden-layer units. 

Support vector machines 

The Support Vector Machines (SVM, [25,26]) algorithm solves a binary classification problem by 
dividing two sets of data geometrically, by finding a hyperplane that separates the two classes of 
objects in the training data in an optimum way (maximizing the margin between the two classes).  

The SVM is a kernel-based algorithm, where the kernel is an inner product of two feature vectors 
(function/transformation of the original data). In this study, we used three of the most popular 
kernels: the linear, polynomial and Rbf (radial basis function) kernels. The linear kernel 

1 2 1 2( )LK , =< , >x x x x  is simply the inner product of the two input feature vectors; an SVM with 
the linear kernel searches for a class-separating hyperplane in the original space of the data. Using 
a polynomial kernel, 1 2 1 2( ) (1 )P d

dK , = + < , >x x x x , is equivalent to transforming the data into a 
higher-dimensional space and searching for a separating plane there. Finally, using an Rbf kernel, 

2
1 2Rbf

1 2( ) g
gK e− < − >, = x xx x , corresponds to finding a separating hyperplane in an infinite-dimensional 

space.  
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In most real-world cases the two classes cannot be separated perfectly by a hyperplane, and some 
classification errors are unavoidable. SVM algorithms use the C -parameter to control the error 
rate during the training phase (if the error is not constrained, the margin of every hyperplane can 
be extended infinitely). In this study, we used the default values for the C -parameter suggested by 
the SVM Light tool. Table 3 lists the SVM models and C -parameter values that we used in this 
study.  

 
Table 3. Parameter values used for various SVM classifiers in this study. 

 
Model  Kernel  Kernel 

parameter 
C -parameter 

SVM (OSU SVM)  Linear   1   
SVM-t0 (SVM Light)  Linear   1   
SVM-t1-d2  Polynomial 2d =   0.3333   
SVM-t1-d3  Polynomial 3d =   0.1429   
SVM-t2-g0.5  Rbf  0 5g = .  1.2707   
SVM-t2-g1  Rbf  1g =   0.7910   
SVM-t2-g2  Rbf  2g =   0.5783   

 

The output of an SVM analysis is not probabilistic, but there are tools to convert an SVM 
classification output into “posterior probabilities,” see chapter by J. Platt in [27]. (A similar 
comment is applicable to the artificial neural network.)  

The number of support vectors used by the SVM classifier depends on the size and properties of 
the training data set. The average number of (1 68× -dimensional) support vectors used in 10 cross-
validation experiments was 12 757 5, . , 11 994 4, . , 12 092, , 12 289 9, . , 12 679 7, . , and 14 163 8, . , for 
SVM, SVM-t1-d2, SVM-t1-d3, SVM-t2-g0.5, SVM-t2-g1, and SVM-t2-g2 classifiers, 
respectively. The total number of data-derived values (which we loosely call “parameters”) used 
by the SVM in our cross-validation experiments was therefore, on average, between 827 614,  and 
880 270,  for various SVM versions.  
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Table 4. Machine learning methods used in this study and their implementations. 

 
Method  ImplementationURL  Number of 

parameters   
Naïve Bayes  this study, 

WEKA  
http://www.cs.waikato.ac.nz/ml/weka/ 4,208  

    
Clustered Bayes 68  this study N/A  276,432  

    
Clustered Bayes 44  this study N/A  361,270  

    
Discriminant 

Analysis  
this study N/A  4,828  

    
SVM  OSU SVM 

Toolbox for 
Matlab  

http://sourceforge.net/projects/svm  827 614,    

    
SVM-t*  SVM light 

[28] 
http://svmlight.joachims.org/  827 614,  to 

880 270,    
    

Neural Network  Neural 
Network 

toolbox for 
Matlab  

N/A  690   

    
MaxEnt 1  Maximum 

Entropy 
Modeling 
Toolkit for 
Python and 

C++  

http://homepages.inf.ed.ac.uk 
/s0450736/maxent_toolkit.html  

136   

    
MaxEnt 2  same as the 

MaxEnt 1 
same as the MaxEnt 1  4,828   

    
MaxEnt 2-v  same as the 

MaxEnt 1 
same as the MaxEnt 1  4,692   

    
Meta-Classifier  OSU SVM 

Toolbox for 
Matlab  

http://sourceforge.net/projects/svm  >  11 560,   
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Meta-method 

We implemented the meta-classifier on the basis of the SVM algorithm (linear kernel with 1C = ) 
applied to predictions (converted into probabilities that the object belongs to the class correct) 
provided by the individual “simple” classifiers. The meta-method used 1 445,  support vectors 
(1 7× -dimensional), in addition to combined parameters of the seven individual classifiers used as 
input to the meta-classifier.  

Implementation 

A summary of the sources of software used in our study is shown in Table 4.  

Features used in our analysis 

We selected 68 individual features covering a range of characteristics that could help in the 
classification, see Table 5. To capture the flow of information in a molecular interaction graph (the 
edge direction), in each extracted relation we identified an “upstream term” (corresponding to the 
graph node with the outgoing directed edge) and a “downstream term” (the node with the incoming 
directed edge): for example, in the phrase “JAK phosphorylates p53,” JAK is the upstream term, 
and p53 is the downstream term. Features in the group keywords represent a list of tokens that may 
signal that the sentence is hypothetical, interrogative, negative, or that there is confusion in the 
relation extraction (e.g. the particle “by” in passive-voice sentences). We eventually abandoned 
keywords as we found them to be uninformative features, but they are still listed for the sake of 
completeness.  

 
Table 5. List of the features that we used in the present study.  

 
Group of features Feature(s)  Values  Number of 

features  
Dictionary look-
ups  

{Upstream, downstream} term can be found in 
{GeneBank, NCBI taxonomy, LocusLink, 
SwissProt, FlyBase, drug list, disease list, Specialist 
Lexicon, Bacteria, English Dictionary}  

Binary  20   

Word metrics  Length of the sentence (word count)  Positive integer  1  
 Distance between the upstream and the downstream 

term  
Integer  1  

 Minimum non-negative word distance between the 
upstream and the downstream term  

Non-negative 
Integer  

1  

 Distance between the upstream term and the action  Integer  1   
 Distance between the downstream term and the 

action  
Integer  1  

Previous scores  Average score of relationships with the same 
{upstream term, downstream term, action}  

Real  3  

 Count of evaluated relationships with the same 
{upstream term, downstream term, action}  

Positive integer  3  

 Total count of relationships with the same {upstream 
term, downstream term, action}  

Positive integer  3  

 Average score of relationships that share the same 
pair of upstream and downstream terms  

Real  1  

 Total count of evaluated relationships that share the 
same pair of upstream and downstream terms  

Positive integer  1   
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 Total count of relationships with both the same 
upstream and downstream terms  

Positive integer  1  

 Number of relations extracted from the same 
sentence  

Positive integer  1   

 Number of evaluated relations extracted from the 
same sentence  

Positive integer  1   

 Average score of relations from the same sentence  Real  1   
 Number of relations sharing upstream term in same 

sentence  
Positive integer  1   

 Number of evaluated relations sharing upstream 
term in the same sentence  

Positive integer  1   

 Average score of relations sharing upstream term in 
same sentence  

Real  1   

 Relations sharing downstream term in the same 
sentence  

Positive integer  1   

 Evaluated relations sharing downstream term in the 
same sentence  

Positive integer  1   

 Average score of relations sharing downstream term 
in the same sentence  

Real  1   

 Number of relations sharing same action in the same 
sentence  

Positive integer  1   

 Number of evaluated relations sharing action in the 
same sentence  

Positive integer  1   

 Average score of relations sharing action in the same 
sentence  

Real  1   

Punctuation  Number of {periods, commas, semi-colons, colons} 
in the sentence  

Non-negative 
integer  

4  

 Number of {periods, commas, semi-colons, colons} 
between upstream and downstream terms  

Non-negative 
integer  

4  

Terms  Semantic sub-class category of the {upstream, 
downstream} term  

Integer  2   

 Probability that the {upstream, downstream} term 
has been correctly recognized  

Real  2  

 Probability that the {upstream, downstream} term 
has been correctly mapped  

Real  2  

Part-of-speech 
tags  

{Upstream, downstream} term is a noun phrase  Binary  2   

 Action is a verb  Binary  1   
Other  Relationship is negative  Binary  1  
 Action index  Positive integer  1  
 Keyword is present  Binary  (not used)  

 
Dictionary lookups are binary features indicating absence or presence of a term in a specific 
dictionary. Previous scores are the average scores that a term or an action has in other relations 
evaluated. Term- recognition probabilities are generated by the GeneWays pipeline and reflect the 
likelihood that a term had been correctly recognized and mapped. Sharing of the same action 
(verb) by two different facts within the same sentence occurs in phrases such as A and B were  
shown to phosphorylate C. In this example, two individual relations, A phosphorylates C and  
B phosphorylates C, share the same verb, phosphorylate. Semantic categories are entities  
(semantic classes) in the GeneWays ontology (e.g. gene, protein, geneorprotein). Part-of-  
speech tags were generated by the Maximum Entropy tagger, MXPOST [29].
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To represent the second-order features (pairs of features), we defined a new feature as a product of 
the normalized values of two features. We obtained the normalized values of features by 
subtracting the mean value from each feature value, then dividing the result by the standard 
deviation for this feature.  
 
After a number of feature-selection experiments for the MaxEnt 2 method we settled on using all 
second-order features.  

Separating data into training and testing: Cross-validation 

To evaluate the success of our classifiers we used a 10-fold cross-validation approach, where we 
used 9

10  of data for training and 1
10  for testing. More precisely, given a partition of the manually 

evaluated data into 10 equal portions, we created 10 different pairs of training–test subsets, so that 
10 distinct testing sets put together covered the whole collection of the manually evaluated 
sentences. We then used 10 training–test set pairs to compare all algorithms.  

 

Comparison of methods: Receiver operating characteristic (ROC) scores 

To quantify and compare success of the various classification methods we used receiver operating 
characteristic (ROC) scores, also called areas under ROC curve [32].  

An ROC score is computed in the following way. All test-set predictions of a particular 
classification method are ordered by the decreasing quality score provided by this method; for 
example, in the case of the Clustered Bayes algorithm, the quality score is the posterior probability 
that the test object belongs to the class correct. The ranked list is then converted into binary 
predictions by applying a decision threshold, T .  All test objects with a quality score above T  are 
classified as correct and all test objects with low-than-threshold scores are classified as incorrect. 
The ROC score is then computed by plotting the proportion of true-positive predictions (in the test 
set we know both the correct label and the quality score of each object) against false-positive 
predictions for the whole spectrum of possible values of T , then integrating the area under the 
curve obtained in this way, see Figure 4.  

The ROC score is an estimate of the probability that the classifier under scrutiny will label 
correctly a pair of statements, one of which is from the class correct and one from the class 
incorrect [32]. A completely random classifier therefore would have an ROC score of 0 5. , 
whereas a hypothetical perfect classifier would have an ROC score of 1. It is also possible to 
design a classifier that performs less accurately than would one that is completely random; in this 
case the ROC score is less than 0 5. , which indicates that we can improve the accuracy of the 
classifier by simply reversing all predictions.  
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Figure 4. Receiver-operating characteristic (ROC) curves for the classification methods that we used 

in the present study.  
 

In Figure 4, we show only the linear-kernel SVM and the Clustered Bayes 44 ROC curves to avoid 
excessive data clutter. 
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Figure 5. Accuracy of the raw (non-curated) extracted relations in the GeneWays 6.0 database.  

The accuracy was computed by averaging over all individual specific information extraction 
examples manually evaluated by the human curators.  The plot compactly represents both the per-
relation accuracy of the extraction process (indicated with the length of the corresponding bar) and 
the abundance of the corresponding relations in the database (represented by the bar color). There 
are relations extracted with a high precision; there are also many noisy relationships. The database 
accuracy was markedly increased by the automated curation outlined in this study, see Figure 6. 
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Figure 6. Accuracy and abundance of the extracted and automatically curated relations.  
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Figure 6 represents both the per-relation accuracy after both information extraction and automated 
curation were done.  Accuracy is indicated with the length of the relation-specific bars, while the 
abundance of the corresponding relations in the manually curated data set is represented by color.  
Here, the MaxEnt 2 method was used for the automated curation.  The results shown correspond to 
a score-based decision threshold set to zero; that is, all negative-score predictions were treated as 
“incorrect.”  An increase in the score-based decision boundary can raise the precision of the output 
at the expense of a decrease in the recall, see Figure 9. 
 

4.  Results 

The raw extracted facts produced by our system are noisy. Although many relation types are 
extracted with accuracy above 80 %, and even above 90 % (see Figure 2), there are particularly 
noisy verbs/relations that bring the average accuracy of the “raw” data to about 65%. Therefore, 
additional purification of text-mining output, either computational or manual, is indeed important.  

The classification problem of separating correctly and incorrectly extracted facts appears to belong 
to a class of easier problems. Even the simplest Naïve Bayes method had an average ROC score of 
0 84. , which more sophisticated approaches surpassed to reach almost 0 95. . Judging by the 
average ROC score, the quality of prediction increased in the following order of methods: 
Clustered Bayes 68, Naïve Bayes, MaxEnt 1, Clustered Bayes 44, Quadratic Discriminant 
Analysis, artificial neural network, support vector machines, and MaxEnt 2/MaxEnt 2-v (see Table 
6). The Meta-method was always slightly more accurate than MaxEnt 2, as explained in legend to 
Table 6 and shown in Figure 4. 

Table 6 provides a somewhat misleading impression that MaxEnt 2 and MaxEnt 2-v are not 
significantly more accurate than their closest competitors (the SVM family), because of the 
overlapping confidence intervals. However, when we trace the performance of all classifiers in 
individual cross-validation experiments (see Figure 7) it becomes clear that MaxEnt 2 and MaxEnt 
2-v outperformed their rivals in every cross-validation experiment. The SVM and artificial neural 
network methods performed essentially identically, and were always more accurate than three 
other methods: QDA, Clustered Bayes 44, and MaxEnt 1. Finally, the performance of the 
Clustered Bayes 68 and the Naïve Bayes methods was reliably the least accurate of all methods 
studied.  

It is a matter of both academic curiosity and of practical importance to know how the performance 
of our artificial intelligence curator compares to that of humans. If we define the correct answer as 
a majority-vote of the three human evaluators(see Table 4), the average accuracy of MaxEnt 2 is 
slightly lower than, but statistically indistinguishable from humans (at the 99%  level of 
significance, see Table 4; capital letters “A,” “L,” “S,” and “M” hide the real names of the human 
evaluators). If, however, in the spirit of Turing’s test of machine intelligence [17], we treat the 
MaxEnt 2 algorithm on an equal footing with the human evaluators, compute the average over 
predictions of all four anonymous evaluators, and compare the quality of the performance of each 
evaluator with regard to the average, MaxEnt 2 always performs slightly more accurately than one 
of the human evaluators. (In all cases we compared performance of the algorithm on data that was 
not used for its training; see Tables 4 and 5.)   
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Table 6. Comparison of the performance of human evaluators and of the MaxEnt 2 algorithm.  

 
Evaluator  Correct  Incorrect  Accuracy  
   [99% CI]   
Batch A     
A.  10,981  208 (11,189)  0.981410  
   [0.978014 0.984628]   
L.  10,547  642 (11,189)  0.942622  
   [0.936902 0.948253]   
M.  10,867  322 (11,189)  0.971222  
   [0.967111 0.975244]   
MaxEnt 2  10,537  652 (11,189)  0.941728  
   [0.935919 0.947359]   
Batch B     
A.  9,796  430 (10,226)  0.957950  
   [0.952767 0.962938]   
M.  9,898  328 (10,226)  0.967925  
   [0.963329 0.972325]   
S.  9,501  725 (10,226)  0.929102  
   [0.922453 0.935556]   
MaxEnt 2  9,379  847 (10,226)  0.917172  
   [0.910033 0.924115]   

 

The first column in Table 6 lists all evaluators (four human evaluators, “A”, “L”, “M”, and “S”, 
and the MaxEnt 2 classifier). The second column gives the number of correct answers (with 
respect to the gold standard) produced by each evaluator. The third column shows the number of 
incorrect answers for each evaluator out of the total number of examples (in parentheses). The last 
column shows the accuracy and the 99%confidence interval for the accuracy value. The gold 
standard was defined as the majority among three human evaluators (examples with uncertain 
votes were not considered, so each evaluator’s vote was either strictly negative or strictly positive). 
Batches A and B were evaluated by different sets of human evaluators. We computed the binomial 
confidence intervals at the α -level of significance ( 100%α ×  CI) by identifying a pair of 
parameter values that separate areas of approximately (1 )

2
α−  at each distribution tail.  
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Figure 7. Ranks of all classification methods used in this study in 10 cross-validation experiments. 
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Figure 8.  Comparison of a correlation matrix for the features 
 
Figure 8 is a comparison of a correlation matrix for the features (colored half of the matrix) 
computed using only the annotated set of data and a matrix of mutual information between all 
feature pairs and the statement class (correct or incorrect). The plot indicates that a significant 
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amount of information critical for classification is encoded in pairs of weakly correlated features. 
The white dotted lines outline clusters of features, suggested by analysis of the annotated data set; 
we used these clusters in implementation of the Clustered Bayes classifier 
 

 
 

Figure 9. Values of precision, recall and accuracy of the MaxEnt 2 classifier plotted against the 
corresponding log-scores provided by the classifier.  

 

The optimum accuracy was close to 88%, and attained at score threshold slightly above 0. We can 
improve precision at the expense of accuracy: For example, by setting the threshold score to 
0.6702 we can bring the overall database precision to 95%, which would correspond to a recall of 
77.91% and to an overall accuracy of 84.18%. 
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Table 7. Comparison of human evaluators and a program that mimicked their work. 
 

Evaluator  Correct  Incorrect  Accuracy  
  (Total)  [99% CI]   
Batch A     
A.  10,700  182 (10,882)  0.983275   
   [0.980059 0.986400]   
L.  10,452  430 (10,882)  0.960485  
   [0.955615 0.965172]   
M.  10,629  253 (10,882)  0.976751  
   [0.972983 0.980426]   
MaxEnt 2  10,537  345 (10,882)  0.968296  
   [0.963885 0.972523]   
Batch B     
A.  9,499  363 (9,862)  0.963192  
   [0.958223 0.967958]   
M.  9,636  226 (9,862)  0.977084  
   [0.973130 0.980836]   
S.  9,332  530 (9,862)  0.946258  
   [0.940276 0.952038]   
MaxEnt 2  9,379  483 (9,862)  0.951024  
   [0.945346 0.956500]   

 

The first column in Table 7 lists all evaluators (four human evaluators, “A”, “L”, “M”, and “S”, 
and the MaxEnt 2 classifier). The second column gives the number of correct answers (with 
respect to the gold standard) produced by each evaluator. The third column shows the number of 
incorrect answers for each evaluator out of the total number of examples (in parentheses). 
Examples with tied scores (i.e. two positive and two negative votes) were not considered for the 
gold standard. The last column shows the accuracy and the 99% confidence interval for the 
accuracy value. The gold standard was defined as the majority among three human evaluators and 
the MaxEnt 2 algorithm. We did not include evaluation ties (two positive and two negative 
evaluations for the same statement–sentence pair) into the gold standard, which explains the 
difference in the number of the statement-sentence pairs used in the 3-evaluator-gold-standard and 
4-evaluator-gold-standard experiments. The even (2-by-2) evaluator splits are clearly 
uninformative in assessing the relative performance of our evaluators because all four evaluators 
get an equal penalty for each tie case. Batches A and B were evaluated by different sets of human 
evaluators. We computed the binomial confidence intervals at the α -level of significance 
( 100%α ×  CI) by identifying a pair of parameter values that separate areas of approximately (1 )

2
ha−  

at each distribution tail.  

The features that we used in our analysis are obviously not all equally important. To elucidate the 
relative importance of the individual features and of feature pairs, we computed the mutual 
information between all pairs of features and the class variable, (see Figure 8). The mutual 
information of class variable, C , and a pair of feature variables, i jF F⎛ ⎞

⎜ ⎟
⎝ ⎠

,  is defined in the 
following way (e.g., see  [23,30]).  
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i jI C F F⎛ ⎞
⎜ ⎟
⎝ ⎠
; , =  

( ) ( )i j i j i jI F F C H F F H C H C F F⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, ; = , + − , , ,  (14) 

where function ( [ ])H P x  is Claude E. Shannon’s entropy of distribution ( )P x  (see p. 14 of [31]), 
defined in the following way:  

 ( ) ( )( ) log
x

H P P x P x= − ,∑ (15) 

where summation is done over all admissible values of x . Figure 8 shows that the most 
informative standalone features, as expected, are those that are derived from the human evaluations 
of the quality of extraction of individual relations and terms (such as the average quality scores), 
and features reflecting properties of the sentence that was used to extract the corresponding fact. In 
addition, some dictionary-related features, such as finding a term in the Locus Link, are fairly 
informative. Some features, however, become informative only in combination with other features. 
For example, the minimum positive distance between two terms in a sentence is not very 
informative by itself, but becomes fairly useful in combination with other features, such as the 
number of commas in the sentence, or the length of the sentence (see Figure 8). Similarly, while 
finding a term in GenBank does not help the classifier by itself, the feature becomes informative in 
combination with syntactic properties of the sentence and statistics about the manually evaluated 
data.   

Assignment of facts to classes correct and incorrect by evaluators is subject to random errors. 
Facts that were seen by many evaluators would be assigned to the appropriate class with higher 
probability than facts that were seen by only one evaluator. This introduction of noise affects 
directly the estimate of the accuracy of an artificial intelligence curator. If the gold standard is 
noisy, the apparent accuracy of the algorithm compared to the gold standard is lower than the real 
accuracy. Indeed, the three-evaluator gold standard, see Table 4, indicated that the actual optimum 
accuracy of the MaxEnt 2 classifier is higher than 88% percent. (The 88%  accuracy estimate came 
from comparison of MaxEnt 2 predictions to the whole set of annotated facts, half of which were 
seen by only one or two evaluators, see Figure 9) When MaxEnt 2 was compared with the three-
human gold standard, the estimated accuracy was about 91%. 
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5.  Discussion 
As evidenced by Figures 2 and 3, the results of our study are directly applicable to analysis of large 
text-mined databases of molecular interactions. We can identify sets of molecular interactions with 
any pre-defined level of precision (see Figure 9). For example, we can request from a database all 
interactions with extraction precision 95%  or greater, which would result in the case of the 
GeneWays 6.0 database in recall of77 9%. . However, we are not forced to discard the unrequested 
lower-than-threshold-precision interactions.  Intuitively, even weakly supported facts (i.e. those on 
which there is not full agreement) can be useful in interpreting experimental results, and may gain 
additional support when studied in conjunction with other related facts (see Figure 1 for examples 
of weakly supported yet useful facts, such as cocaine stimulates prolactin—with a low extraction 
confidence, but biologically plausible, the accuracy predictions were computed using the MaxEnt 
2 method). We envision that, in the near future, we will have computational approaches, such as 
probabilistic logic, that will allow us to use weakly supported facts for building a reliable model of 
molecular interactions from unreliable facts (paraphrasing John von Neumann’s “synthesis of 
reliable organisms from unreliable components” [18]).   

Experiments with any stand alone set of data generate results insufficient to allow us to draw 
conclusions about the general performance of different classifiers. Nevertheless, we can speculate 
about the reasons for the observed differences in performance of the methods when applied to our 
data. The modest performance of the Naïve Bayes classifier is unsurprising: We know that many 
pairs of features used in our analysis are highly or weakly correlated (see Figures 8 and 9). The 
actual feature dependencies violate the method’s major assumption about the conditional 
independence of features. MaxEnt 1 performed significantly more accurately than the Naïve Bayes 
in our experiments, but was not as efficient as other methods. It takes into account only the class-
specific mean values of features. It does not incorporate parameters to reflect dependencies 
between individual features. This deficiency of MaxEnt 1 is compensated by MaxEnt 2, which has 
an additional set of parameters for pairs of features leading to a markedly improved performance. 

Our explanation for the superior performance of the MaxEnt 2 algorithm with respect to the 
remainder of the algorithms in the study batch is that MaxEnt 2 requires the least parameter 
tweaking in comparison to other methods of similar complexity. Performance of the Clustered 
Bayes method is highly sensitive to the definition of feature clusters and to the way we discretize 
the feature values—essentially presenting the problem of selecting an optimal model from an 
extensive set of rival models, each model defined by a specific set of feature clusters. Our initial 
intuition was that a reasonable choice of clusters can become clear from analysis of an estimated 
feature-correlation matrix. We originally expected that more highly correlated parameters would 
belong to the same cluster. However, the correlation matrices estimated from the complete 
GeneWays 6.0 database and from a subset of annotated facts turned out to be rather different (see 
Figure 8) suggesting that we could group features differently. In addition, analysis of mutual 
information between the class of a statement and pairs of features (see Figure 8) indicated that the 
most informative pairs of features are often only weakly correlated. It is quite likely that the 
optimum choice of feature clusters in the Clustered Bayes method would lead to classifier 
performance accuracy significantly higher than that of MaxEnt 2 in our study, but the road to this 
improved classifier lies through a search in an astronomically large space of alternative models.   
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Similar to optimizing the Clustered Bayes algorithm through model selection, we can experiment 
with various kernel functions in the SVM algorithm, and can try alternative designs of the artificial 
neural network. These optimization experiments are likely to be computationally expensive, but 
are almost certain to improve the prediction quality. Furthermore, there are bound to exist 
additional useful classification features waiting to be discovered in future analyses. Finally, we 
speculate that we can improve the quality of the classifier by increasing the number of human 
evaluators who annotate each data point in the training set. This would allow us to improve the 
gold standard itself, and could lead to development of a computer program that performs the 
curation job consistently and at least as accurately as an average human evaluator.  

 
Table 8. The receiver operator characteristic (ROC) scores 

 
Method  ROC score ±  2σ    
Clustered Bayes 68  0 8115 0 0679. ± .    
Naïve Bayes  0 8409 0 0543. ± .    
MaxEnt 1  0 8647 0 0412. ± .    
Clustered Bayes 44  0 8751 0 0414. ± .    
QDA  0 8826 0 0445. ± .    
SVM-t0  0 9203 0 0317. ± .    
SVM  0 9222 0 0299. ± .    
Neural Network  0 9236 0 0314. ± .    
SVM-t1-d2  0 9277 0 0285. ± .    
SVM-t2-g2  0 9280 0 0285. ± .    
SVM-t1-d3  0 9281 0 0280. ± .    
SVM-t2-g1  0 9286 0 0283. ± .    
SVM-t2-g0.5  0 9287 0 0285. ± .    
MaxEnt 2  0 9480 0 0178. ± .    
MaxEnt 2-v  0 9492 0 0156. ± .    

 

Table 8 gives the receiver operator characteristic (ROC) scores (also called the area under the 
ROC curve) for methods used in this study, with error bars calculated in 10-fold cross-validation. 
The Meta-method is much more expensive computationally than the rest of the methods, so we 
evaluated it using a smaller data set and the corresponding results are not directly comparable with 
those for the other methods. The Meta-method outperformed other methods listed in this table 
when trained on the same data (not shown).  
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6.  Conclusions 
Text-mining algorithms make mistakes in extracting facts from the natural-language texts. In 
biomedical applications, which rely on use of text-mined data, it is critical to assess the quality (the 
probability that the message is correctly extracted) of individual facts—to resolve data conflicts 
and inconsistencies. Using a large set of almost manually produced evaluations (most facts were 
independently reviewed more than once producing independent evaluations), we implemented and 
tested a collection of algorithms that mimic human evaluation of facts provided by an automated 
information-extraction system. The performance of our best automated classifiers closely 
approached that of our human evaluators (ROC score close to 0.95). Our hypothesis is that, were 
we to use a larger number of human experts to evaluate any given sentence, we could implement 
an artificial-intelligence curator that would perform the classification job at least as accurately as 
an average individual human evaluator.  
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