
ABSTRACT 

Yang, Tung-Sheng. Performance Analysis of Adaptive Transmission Aided 
by Long Range Channel Prediction for Realistic Single- and Multi-Carrier 
Mobile Radio Channels. (Under the direction of Dr. Alexandra Duel-
Hallen) 

Reliable adaptive transmission for frequency selective mobile radio systems is 

addressed. In particular, we investigate adaptive channel loading for wireless Orthogonal 

Frequency Division Multiplexing (OFDM) systems and adaptive modulation aided by 

observations of another carrier (e.g, Frequency Division Duplex (FDD) channels). Adaptive 

transmission techniques, where the modulation size, coding rate, or other signal transmission 

parameters are dynamically adapted to the changing channel conditions, have recently 

emerged as powerful tools for increasing the data rate and spectral efficiency for wireless 

system. However, reliable adaptive transmission requires long-range prediction (LRP) of 

future channel state information (CSI) due to the variation of the wireless channel, which 

results in different channel conditions between the time of data transmission and the time of 

the channel estimation. We derive the minimum mean-square-error (MMSE) long range 

channel prediction method that utilizes the time and frequency domain correlation function of 

the Rayleigh fading channel. Since the channel statistics are usually unknown, reduced 

complexity robust prediction methods that can converge rapidly to the theoretical MMSE and 

do not require the knowledge of correlation functions are developed for OFDM channels and 

systems aided by observations of another carrier. Statistical model of the prediction error that 

depends on the frequency and time correlation is developed and is used in the design of 

reliable adaptive modulation methods. 
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A standard sum-of-sinusoids Rayleigh fading channel model and a novel physical 

model based on the method of images augmented with diffraction are employed to test the 

prediction algorithm. This physical model can generate non-stationary datasets to test both 

the LRP and its application in adaptive transmission schemes. It is demonstrated that this 

physical model generates realistic datasets that closely resemble measured data, and the 

results of the LRP for the physical model and measured data are similar, and differ 

significantly from those produced for the Jakes model. We use this model to produce 

different scenarios to classify typical and challenging cases to test the performance of the 

proposed prediction algorithm. These cases are more difficult to identify with the measured 

data. Moreover, we examine the dependency of the correlation between two different carrier 

frequencies on the variation of the root mean square (rms) delay spread and investigate the 

limits on the adaptation rate in adaptive transmission systems aided by observations of 

another carrier. Thus, the physical model allows to test robustness and to determine practical 

constraints of the proposed adaptive transmission methods. 
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CHAPTER 1 

INTRODUTION 

1.1 Background and Motivation 

Wireless communications is experiencing an explosive growth rate due to enabling 

technologies which permit wide spread deployment. Continued increase in demand for all 

types of wireless services such as voice, data, and multimedia is fueling the need for high 

capacity and data rate. This high demand for wireless communications services requires 

increased system capacities. Therefore, new transmission methods and service have been 

enthusiastically adopted by people throughout the world. Particularly during the past ten 

years, the mobile radio communications industry has grown by orders of magnitude, fueled 

by digital and RF circuit fabrication improvement, new large-scale circuit integration, and 

other miniaturization technologies which make portable radio equipment smaller, cheaper, 

and more reliable. Digital switching techniques have facilitated the large scaled deployment 

of affordable, easy-to-use radio communication networks. These trends will continue at an 

even greater pace during the next decade. 

It is well known that the fundamental limitation of wireless systems is constituted by 

their time-variant channel fading, which results in dramatic signal-to-noise (SNR) 

fluctuations observed in both time and frequency. The traditional wireless cellular systems 

are designed to provide good transmission quality for the worst channel conditions. As a 

result, SNR that are much larger than the target are achieved over a large portion of the 

cellular coverage area and transmission time, which leads to inefficient utilization of the full 

channel capacity. In addition, the integration of the voice and data transmission has caused 
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different quality of service (QoS) requirements over wireless systems. Voice transmission 

requires a certain minimum SNR and can only tolerate a latency of up to 100ms. On the other 

hand, data is more flexible. Data flow may be increased in good channels to boost the 

throughput and conversely, reduced in poor conditions in exchange for a lower bit error rate 

(BER). 

Motivated by the above mentioned performance limitations of fixed-mode 

transceiver, adaptive transmission (AT) techniques, where the modulation level, coding rate, 

and other signal transmission parameters are dynamically adapted to the changing channel 

conditions without sacrificing the BER, have recently emerged as powerful tools for 

increasing the data rate and spectral efficiency and have attracted considerable research 

interests in the past decades [21,22,57,64]. The AT techniques can be applied to single-

carrier [16,21,22,24,31,57], multi-carrier Orthogonal Frequency Division Multiplex (OFDM) 

[11,10,26,36] as well as Code Division Multiple Access (CDMA) [1,41] transceivers. 

Besides, it can be incorporated in transmit antenna diversity systems [30,32]. The goal is to 

communicate over hostile mobile channels at a higher integrity or higher throughput, than 

conventional fixed-mode transceivers. A number of existing wireless systems already support 

some grade of adaptivity and future research is likely to promote these principles further by 

embedding them into the already existing standards. The range of various existing solutions 

that have found favor in already operational standard systems was summarized in [40] by 

Nanda et al. 

The AT techniques generally require accurate channel state information (CSI) that 

can be acquired from different sources. If the communication between the two stations is bi-

direction and the channel can be considered reciprocal, as, for example, in time division 
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duplex (TDD) systems, then each station can estimate the channel quality on the basis of the 

received symbols and adapt the parameters to this estimation. This is called open-loop 

adaptation [57]. If the channel is not reciprocal, the receiver has to estimate channel quality 

from feedback resulting in closed-loop adaptation. The feedback load consumes power and 

bandwidth, and the fed back CSI needs to be quantized resulting in degraded performance. 

Note that for many adaptive transmission applications (e.g., selective transmitter diversity or 

adaptive modulation [31]), it is not necessary to feed back the actual fading coefficient. It is 

sufficient to send to the transmitter just the antenna selection or modulation index bits 

derived from the estimates of predicted values at the receiver. The feedback delay, overhead, 

channel estimation and CSI quantization errors, and processing delay degrade the 

performance of adaptive modulation, especially in rapidly time variant fading. Even in open-

loop channels, current CSI is not sufficient since future channel conditions need to be known 

to adapt transmission parameters. To realize the potential of adaptive transmission methods, 

the channel variations have to be reliably predicted at least several milliseconds ahead. 

Recently, many researchers have developed techniques to predict the near-term 

behavior of the mobile channel. In [20], the multivariate adaptive regression splines (MARS) 

model was used to capture the dynamics for predicting parameters of wideband fading 

channels several millisecond ahead for fast vehicle speed. The sub-space based [46] root-

MUSIC [27] method and ESPRIT [3] type algorithm are employed to estimate the power 

spectrum that constitutes the fading process. Then these sinusoids are extrapolated to predict 

future samples. In addition, a novel long-range prediction (LRP) method was proposed in 

[16,18,19,31]. This algorithm employs an autoregressive (AR) model to characterize the 

fading channel and computes the minimum mean-square-error (MMSE) estimate of a future-
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fading coefficient based on a number of past observations. The advantage of this algorithm 

relative to conventional methods is due to its low sampling rate (on the order of twice the 

maximum Doppler shift and much lower than the data rate), which results in longer memory 

span and further prediction into the future for a fixed filter length. The low sampling rate also 

results in reduced feedback rate for closed-loop AT systems. All these methods were 

examined by synthetic and measured data, and it was concluded that reliable prediction is 

feasible at least one wavelength into the future (or 10 ms ahead for vehicle the vehicle speed 

of 68 miles per hour and the carrier frequency of 1 GHz). Since fades occur at least half a 

wavelength apart, this prediction capability means that enough information about the future 

deep fade can be forecasted to adjusting transmission modes in an optimal sense.  

In this thesis, we focus on the adaptive modulation (AM) and power control (PC) 

aided by the long-range prediction technique on single- and multi-carrier systems. The LRP 

method was modified to predict not only in time but also in frequency domain. Since the 

channel statistics are time-variant, adaptive LRP techniques using least mean square (LMS) 

and recursive least-squares (RLS) algorithm are also developed. 

For the single carrier system, we concentrate on the scenario where we observe a 

received uplink signal at the carrier frequency f1 and attempt to predict the downlink signal at 

the carrier frequency f2 without feedback from the mobile. Alternatively, a signal at 

frequency f1 can be fed back and a signal at adjacent frequency f2 is predicted without 

feedback. To accomplish this prediction, the predicted samples must be sufficiently 

correlated with the observations in both time and frequency. This technique can be applied in 

correlated uplink and downlink channels as in Frequency Division Duplex (FDD) systems, in 

orthogonal frequency division multiplexing (OFDM) systems (where narrow correlated sub-
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channels are employed) or other wideband systems to reduce feedback and overhead 

requirements. 

For the multicarrier system, we developed LRP for Orthogonal Frequency Division 

Multiplexing (OFDM) [5,63] systems and investigated the performance of adaptive bit and 

power loading for the OFDM system. OFDM has been proposed for use in high-speed 

wireless data applications due to its relatively simple receiver structure compared to single 

carrier transmission in frequency selective fading channel. In OFDM, the frequency band is 

divided into narrow subcarriers, and data bits are multiplexed onto these subcarriers. The 

systems eliminate the need for an equalizer by greatly reducing the intersymbol interference 

(ISI), and have been extremely popular in Digital Subscribe Line (DSL), digital audio and 

television broadcasting (DAB [61] and DVB) in Europe and wireless Internet access.  

The fading channel is characterized as superposition of several scattered components. 

The prediction accuracy of the LRP algorithm is determined by the rate of change of 

amplitude, frequency and phase of each path [16,18,33,34]. However, the standard Jakes 

channel model [35] or a stationary random process description does not capture the variation 

of these parameters. To validate the LRP algorithm, a novel physical channel modeling based 

on the method of images and augmented with diffraction is proposed in [16,33,34]. This 

physical model can generate non-stationary datasets to test both the LRP and its application 

in adaptive transmission scheme. It is demonstrated in [16,33,34] that this physical model 

generates datasets that closely resemble measured data, and results of the LRP for the 

physical model and measured data are similar, and differ significantly from those produced 

for the Jakes model. Thus, we have demonstrated that the proposed physical model is 

realistic. In addition, this model’s insights allow classification of scenarios into typical and 
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challenging cases for testing the algorithm. These scenarios are more difficult to identify with 

the measured data. Thus, the physical model allows us to test robustness and to determine 

practical constraints of the proposed adaptive transmission methods. 

1.2 Outline of the Thesis 

This thesis focuses on the investigation of the single- and multicarrier-adaptive 

transmission systems, physical mobile channel modeling and the long-range channel 

prediction algorithm in the time- and frequency domain. The thesis outline is as follows: 

In chapter 2, we first briefly review the fading channel phenomenon over narrow 

band signal and develop a sum-of-sinusoids multipath fading channel model. We derive the 

correlation functions over time and frequency domain based on this model. Subsequently, we 

employ the standard Jakes model, a modified Jakes model, and a novel physical model to 

generate fading channels for numerical system simulations. We also discuss the limitation of 

the Jakes model and the properties of the physical model. 

In chapter 3, we investigate the applications of the adaptive modulation and adaptive 

power control method. We discuss principles and possible scenarios where adaptive 

modulation can be applied, and then we review the fading channel capacity, which serves as 

the theoretical performance upper bound. Next, we present our adaptive modulation method 

utilizing multilevel quadrature amplitude modulation (MQAM) in conjunction with power 

control methods. The modulation selection rule of our method is independent of the channel 

statistics. We compare the performance of our method with several other methods that are 

optimized for the assumed channel statistics. Finally, we address the practical consideration 

of the AM such as CSI mismatch, co-channel interference, outage probability, and adaptation 

rate. 
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In chapter 4, we extend the long-range prediction algorithm into frequency domain. 

We derive the theoretical linear MMSE filter and discuss the factors that affect the prediction 

accuracy. Next, we employ the least-square (LS) methods in conjunction with forward and 

backward linear prediction to estimate the correlation matrix and obtain the filter 

coefficients. Robust adaptive LRP techniques based on the least-mean-squares (LMS) 

algorithm that can track the time-variant channel statistics are developed as well. We analyze 

the transient behavior, convergence rate and asymptotic mean-square error of the LMS 

algorithms. Lastly, we employ the Jakes and the physical model to test our proposed system 

and demonstrate the significant gains relative to non-adaptive techniques for sufficiently 

correlated channels and prediction range. In addition, typical and challenging cases are 

identified to test the limitation of the adaptation rate of our system. 

In chapter 5, the multicarrier OFDM system is introduced. We first revive the 

modulation and demodulation process of the OFDM system and analyze the effect of 

Doppler shifts on the receiver SNR performance. Then we apply the long-range channel 

prediction and adaptive modulation on the OFDM system. In particular, the desired carrier 

CSI is predicted based on the observation of multiple subcarriers. Modified channel 

prediction method for OFDM is proposed to significantly reduce the complexity based on the 

fact that all the subcarriers have approximately the same Doppler shift associated with each 

path. Adaptive LRP methods based on the LMS and RLS algorithms that do not require the 

knowledge of channel statistics are developed. Next, optimal and less complex sub-optimal 

bit and power allocation algorithms are used and the performances are compared for the 

imperfect CSI. Subsequently, reduced feedback methods are developed to reduce the 

overhead to synchronize the CSI at the transmitter and the receiver. Finally, the modified 
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Jakes and physical models are used to test the performance of the adaptive OFDM system 

aided by the long range prediction. 
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CHAPTER 2 

FADING CHANNEL CHARACTERIZATION AND 
MODELING 

2.1 Background 

Radio-wave propagation through wireless channel is a complicated phenomenon 

characterized by many factors such as the reflection, diffraction, and scattering. It is too 

complex to precisely describe this phenomenon by a mathematical model. However, 

considerable efforts and extensive measurements have been made using the continuous−wave 

or narrowband signals to determine the propagation characteristics. The measured channel is 

analyzed by data reduction and characterized by statistical properties that are used by system 

designers. The results are a range of relatively simple and accurate statistical models for 

fading channels, which depend on the particular propagation environment and the underlying 

communication scenario. 

As a mobile moves over a very short distance, the instantaneous received signal 

strength may fluctuate rapidly resulting in small-scale fading [51]. (Propagation models that 

describe the mean signal strength for a large transmitter-receiver separation distance are 

called large-scale fading models.) The reason for this is that the received signal is a sum of 

may contributions coming from different directions. Throughout the thesis, we only consider 

the small-scale fading. Interested readers are referred to textbooks, e.g. [6] and [51], for 

different types of fading channels. 

In this chapter, we first briefly review a commonly used continuous-time mobile 

fading channel model, which can be described as a weighted sum of complex sinusoids. This 

model is based on the assumptions of planar wave-front, constant vehicle velocity and 
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propagation via reflecting and scattering objects. The assumptions and approximations in the 

derivation of this model will be discussed. Channel correlation functions over time and 

frequency based on this model will be established. The limitation of this simple sum-of-

sinusoids model is discussed, and a non-stationary physical model that can generate realistic 

mobile fading channels [16,33,34] is introduced to test our system performance in the later 

chapters. 

2.2 Frequency Non-Selective Multipath Fading Channels 

A typical scenario of a mobile station (MS) traveling along a street is depicted in 

Figure 2.1, where we have shown a few of the many possible rays arriving at the MS. These 

paths, which make it possible to communicate between base stations (BS) and the MS 

without line-of-sight (LOS), involve physical phenomena of reflection, diffraction, and 

scattering from buildings, vehicles, people, and so on. The envelope and phase of the 

received signal fluctuate over time due to the superposition of the multiple waves leading to 

either constructive (peak) or destructive (deep fades) interference as shown in Figure 2.2. 

Figure 2.1 Scattering from objects results in signals arriving at 
the mobile station from many directions. 
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This fading phenomenon, which is called multiplath fading, can severely degrade system 

performances unless measures are taken to compensate at the receiver. In chapter 3, we will 

employ adaptive modulation and power control techniques at the transmitter based on the 

feedback channel information to mitigate the performance loss due to the violent channel 

variations. Therefore, it is important to first realize the properties of the multipath-fading 

channels. 

2.2.1  Mathematical Model 

As shown in Figure 2.1, many multiple plane waves arrive at a MS from many 

different directions. Associated with each path is a propagation delay and attenuation factor. 

Due to changes in the structure of the medium, both the propagation delay and the 

0 0.05 0.1 0.15 0.2 0.25 0.3
-35

-30

-25

-20

-15

-10

-5

0

5

10

time(sec)

si
gn

al
 p

ow
er

(d
B)

deep fades 

peak 

Figure 2.2 Example of signal fading over time. 
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attenuation factors are time-variant. The channel impulse response h(t, τ) at time t due to an 

impulse applied at time t − τ can be expressed as: 

 h(t, τ) = ∑
n=1

N
An(t)δ(τ − τn(t)) (2.1) 

where δ(•) is the Dirac delta function, N is the number of waves, and for the nth path, An(t) is 

the (real) attenuation factor and τn(t) is the propagation delay. By taking the Fourier 

transform of h(t, τ) with respect to τ, we obtain the time-variant frequency response: 

 H(t, f) = 
⌡⌠
−∞

∞
h(t, τ)exp{−j2πfτ}dτ = ∑

n=1

N
An(t)exp{−j2πf τn(t)} (2.2) 

We now consider a narrowband signal 

 s(t) = Re{sl(t)exp(j2πfct)} (2.3) 

where sl(t) is the complex low-pass signal [45] and fc is the carrier frequency. Assume the 

symbol interval is much larger than the excessive propagation delay and hence the channel is 

frequency non-selective [45]. This implies that all of the frequency components in s(t), 

denoted as S(f), undergo about the same attenuation and phase shift. Since S(f) has its 

frequency content concentrated in the vicinity of fc, the received complex lowpass signal rl(t) 

over the time-variant channel (2.2) can be approximately expressed as [45]: 

 rl(t) ≈ 
⌡⌠
−∞

∞
 H(t, fc) Sl(f)exp{j2πft}df = H(t, fc)⌡⌠

−∞

∞
 Sl(f)exp{j2πft}df = 

 H(t, fc) sl(t) = sl(t)∑
n=1

N
An(t)exp{−jφn(t)} (2.4) 

where Sl(f) is the frequency response of sl(t) and φn(t) = 2πfcτn(t). From (2.4), the received 

signal rl(t) is the transmitted signal sl(t) multiplied by a time-variant complex channel gain 
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H(t, fc), which is called channel state information (CSI). As indicated in (2.4), CSI consists 

of a sum of a number of time-variant vectors having amplitudes An(t) and phases φn(t). For 

carrier frequency fc in the ultrahigh frequency (UHF; 300MHz ≤ f ≤ 3GHz) and delay 

propagation τn(t) on the order of 0.1 to 10µsec. It is reasonable to model φn(t) using a uniform 

distribution around [0,2π]. For large N, the CSI is distributed approximately as a zero mean 

complex Gaussian random variable by central limit theorem [43]. Hence the amplitude α(t) = 

|rl(t)| is Rayleigh distributed with probability density function (pdf): 

 p(α) = 
2α
Ω exp{

−α2

Ω } (2.5) 

where Ω = E[α2] is the average power of the CSI. When there is a dominant (non-fading) 

signal component present, such as LOS propagation path, the envelope distribution is Ricean 

[51]. Throughout the thesis, we analyze our system performance over the Rayleigh fading 

channel. 

2.2.2 Sum-of-Sinusoids Model 

The CSI modeled in (2.4) does not give much information about the mechanism of its 

time-variant properties. In this section, we show the variation of the multipath fading channel 

significantly depends on the velocity and the direction of the MS, and we establish a sum-of-

sinusoids (SoS) model. As shown in Figure 2.3, consider a mobile moving at a constant 

velocity v from X at t = t0 to Y in a very short period of time ∆t while it receives signals from 

a remote source S. The distance between X and Y is v∆t. The incident angle θ can be 

considered the same at X and Y since the source S is assumed to be very far away. Let τ(t0) 

and τ(t0 + ∆t) denote the propagation delay from S to point X and Y, respectively. Then τ(t0 + 

∆t) can be approximately calculated as: 
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 τ( t0 + ∆t) ≈ τ(t0) − 
v∆t
c  cosθ (2.6) 

where c is speed of the light. By using the approximation (2.6), (2.2) can be expressed as: 

 H(t0 + ∆t, fc) = ∑
n=1

N
An(t0 + ∆t)exp{−j2πfcτn(t0 + ∆t)} 

  ≈ ∑
n=1

N
An(t0 + ∆t)exp{j(2π fd(n) ∆t − φn)} (2.7) 

where φn = 2πfcτn(t0), fd(n) = fc
v
ccosθn is called Doppler shift, which accounts for the 

frequency shift due to the movement of the mobile relative to the signal source, and fc
v
c, 

denoted as fdm is defined to be the maximum Doppler shift. In general, it requires large 

dynamic variations in the medium to cause significant changes for An(t) [45]. Therefore, in a 

short period of time ∆t, An(t) can be modeled as a constant. Therefore, from (2.7), the 

channel variation over time ∆t relative to instance t0 at carrier frequency fc can be modeled as 

a sum-of-sinusoids process: 

 c(t) = ∑
n=1

N
 A(n)exp{j(2πfd(n) t − φ(n))} (2.8) 

Figure 2.3 Illustration of short-term channel behavior 
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It is observed that the Doppler shifts determine how rapidly the channel fluctuates over time. 

In [45], the coherence time (∆t)c, a time period within which the CSI are strongly correlated, 

is defined as: 

 (∆t)c ≈ 
1

2fdm
 (2.9) 

Thus, the CSI fades about (∆t)c sec away. In order to have a uniform measure, we multiply 

(2.9) by the maximum Doppler shift and the coherence time is expressed in terms of spatial 

movements of the antenna in terms of wavelength (fdm(∆t)c = 
v(∆t)c

λ  = 0.5). In other words, 

fades occur at least half a wavelength apart. 

It is also interesting to investigate the relationship between CSI at two carrier 

frequencies. Let f2  = fc + ∆f be a carrier frequency ∆f away from fc. From (2.8), the CSI c(f2,t) 

at carrier f2  can be expressed as [35]: 

 c(f 2 ,t) = ∑
n=1

N
 A(n)exp{j(2πfd(n)′t − φ′(n))} (2.10) 

where fd(n)′ = fd(n) + 
∆f v

c , and φ′n = φn + 2π∆fτn(t0). In general, ∆f, for our interests, is on the 

order of hundred kilohertz, and thus 
∆f v

c  is very small and can be neglected. Therefore, fd(n)′ 

≈ fd(n) and it is the phase difference 2π∆fτn(t0) that dominates the correlation between the two 

carrier frequencies. 

2.3 Channel Statistics and Measurement 

We shall now develop a number of useful statistical properties that will be employed 

throughout the thesis based on the SoS model to characterize the multipath fading channel. 
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Let {A,θ,τ,φ1} denote the set {A(n),θ(n),τ(n),φ1(n), n=1…N} that parameterizes the channel 

model in (2.8) and (2.10). 

2.3.1 Channel Correlation Functions 

We develop two useful correlation functions that will be employed for the analysis of 

our prediction algorithm. For a deterministic channel where {A,θ,τ}, are known, the 

temporal average correlation function (TACF) [28] can be calculated from (2.8) and (2.10) 

as: 

 RT(∆t, ∆f) = 
 lim
T→∞ 

1
2T−|∆t| ⌡⌠

−T+|∆t|/2

 T−|∆t|/2
 c(f 1 ,t−∆t/2) c *(f 2 ,t+∆t/2)dt =  

 ∑
n=1

N
 A(n)2exp{−j2π fd(n)∆t}exp{j2π∆fτ(n)} (2.11) 

Note that TACF does not depend on the parameters {φ1}. Assume {φ1} are mutually 

independent random variables uniformly distributed around [0,2π]. It can be readily shown 

from (2.8) and (2.10) that the conditional expectation E{φ1}[c(f1,t)c*(f2,t+∆t)|{A,θ,τ}] = 

TAFC in (2.11), where E{φ1} denotes the statistical expectation over all possible random 

parameters {φ1}. 

For c(t) characterized as wide sense stationary uncorrelated scattering (WSSUS) [45], 

the ensemble average correlation function (EACF) for two fading signals with the time 

difference ∆t and the frequency separation ∆f is defined as RE(∆t ,∆f) = E[c(f 1 ,t) c *(f 2 ,t+∆t)], 

where E denotes the statistical average over all possible random parameters {A,θ,τ,φ1}. 

Equivalently, RE(∆t ,∆f) is the average of the TACF, i.e., RE(∆t ,∆f) = 

E{A,θ,τ}{E{φ1}[c(f1,t)c*(f2,t+∆t)|{A,θ,τ}]}. It is shown in the Appendix A the RE(∆t ,∆f) can be 
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factored into the time-domain correlation function Rt(∆t) and the frequency domain 

correlation function R f(∆f) as  

 RE(∆t ,∆f) =  ΩR t(∆t)R f(∆f) (2.12) 

where Ω = E[|c(fi, t)|2] is the average power of the fading signals. (We normalize Ω to 1 

throughout the paper.) Assume θ(n) is uniformly distributed around 2π (isotropic scattering 

[54]), and the propagation delay τ(n) is exponentially distributed [35] with the probability 

density function 

 p(τ) = 
1
σ exp{−τ/σ} (2.13) 

where σ is the rms delay spread [51]. Then  

 Rt(∆t) = J0(2πfdm∆t) (2.14) 

is the zero order Bessel function [35] and Rf(∆f) = 
1

1+(2π∆fσ)2 + j
2π∆fσ

1+(2π∆fσ)2. We define 

fdm∆t and ∆fσ as the normalized time difference (NTD) and the normalized frequency 

separation (NFS), respectively. Note that (2.12) is expressed in terms of these normalized 

quantities. The power spectrum density Sc(f) is obtained by taking the Fourier transform of 

Rt(∆t) as [35]: 

 Sc(f) = 


 Ω
2πfdm 

1
 1−(f / fdm)2 

      | f | ≤ fdm

0                                   otherwise
  (2.15) 

Note the power spectrum is zero outside the maximum Doppler shift. This property can be 

employed for noise reduction by suppressing out-of-band signals [19]. 
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2.4 Laboratory Simulation 

To generate the mobile fading channel for system simulations, the most accurate 

method is to use recoded strips of actual channel measurements. Unfortunately, it is time-

consuming and often inconclusive due to uncertainty in the statistical signal variations 

actually encountered. Hence a simple channel simulator that can generate the assumed 

statistical properties is desired. One technique of this type has been suggested by Jakes in 

1974 [35]. 

The description of the Jakes method begins with (2.8) and assumes N equal strength 

multipath components uniformly distributed in angle, i.e., 

 θn = 
2πn
N , n = 1,2,…,N (2.16) 

Figure 2.4 Comparison of the theoretical correlation function 
and the numerical results from Jakes model. 
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While in theory very large N is required for the TACF RT(∆t, 0) (2.11) of a deterministic 

channel process to approach Rt(∆t) in (2.14), it is shown by Jake that the time domain 

correlation function Rt(∆t) can be well approximately by RT(∆t, 0) for a summation of a 

relative small number N of sinusoids [35]. Detailed analysis of the Jakes model can be found 

in [35,48]. Figure 2.4 shows the comparison of the theoretical correlation (Bessel) function 

(2.14) and the numerical results of RT(∆t, 0) for different number of path N from the Jakes 

model. It is observed that larger N is required for larger normalized time difference fdm∆t for 

accurate modeling of the Rayleigh fading channel using the Jakes model. 

2.4.1 Modified Jakes Model: Random Phase Model 

By designating the fixed incident angles θ(n), Jakes model can easily generate the 

desired time domain correlation function. However, in the real world, θ(n) is randomly 

distributed on [0,2π], and in both LOS and non-LOS environment, spectral analysis of 

measured fading data strongly supports the conjecture that the complex baseband fading 

process mainly consists of a small number of sinusoids. In addition, for our adaptive channel 

prediction method, which is capable of tracking the current channel statistics, the behavior 

(learning curve, prediction accuracy) of the predictor is mainly determined by the TACF, not 

the EACF. Therefore, instead of using θ(n) = 2πn/N, we generate the fading channel using 

random uniform distribution of the incident angle θ(n) on [0,2π]. We call this method 

random phase model (RPM). Unlike the Jakes model where the RT(∆t, 0) is fixed for each 

generated channel, RPM can generate different RT(∆t, 0) to investigate the performance of 

our system in different channel environments. After generating the CSI at frequency f i, we 

compose the CSI at frequency f j  = f i  + ∆f by employing the same parameters {A,θ,τ} except 
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phases φi(n) =  φj(n) −2π∆fτ(n), n = 1…N, where {τ} is exponentially distributed according 

to (2.13). 

2.5 Limitation of Sum-of-Sinusoids Model and Physical Model 

The Jakes model and RPM can easily generate the multipath Rayleigh fading signals 

with desired correlation functions RT(∆t, ∆f) (2.11) by assuming amplitudes, phases, and 

Doppler shifts are time-invariant. However, in a real mobile radio channel, the shape of the 

correlation functions, affected by many time-variant factors such as the vehicle speed, 

number and location of the scatters, also vary with time. These models are sufficient for 

systems concerned with short term and narrowband channel behavior. However, in our study 

of long-range channel prediction, we predict the CSI over time and frequency domain, and 

the observation interval and the memory span are much larger. This requires us to take into 

account the variation of parameters such as the excess delays, the Doppler shifts, and the 

amplitudes. Thus, realistic non-stationary modeling is necessary. 

A novel physical model based upon the method of images combined with diffraction 

theory is proposed in [16,33,34]. This model can (1) create non-stationary datasets to test our 

long range prediction algorithm, (2) classify the reflector geometries that have typical or the 

most severe parameter variations, so that the reflector configurations for test datasets can be 

appropriately chosen, (3) provide limits on the speed of adaptation needed for an algorithm to 

predict the channel significantly into the future, and thereby reveal the timing of future deep 

fades, and (4) illuminate the origins of the temporal and statistical properties of the measured 

data [34]. It is demonstrated in [16,33,34] that this physical model generates datasets that 

closely resemble measured data, and results of the long range prediction for the physical 

model and measured data are similar, and differ significantly from those produced for the 
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Jakes model. The generation and the properties of the deterministic physical modeling have 

been addressed in [16,33,34]. We next briefly review these properties. 

The first property is that the parameters A(n), fd(n),φ(n), and τ(n) vary much slower 

than the actual fading channel. The rate of change depends on the local environment. Insights 

into this property can be found in [33,34]. The variation of these parameters limits the range 

for which the fading process can be reliably predicted in time and in frequency given current 

and past fading channel observations. The second important property is that the number of 

significant scatterers N is modest. There are likely to be many insignificant scatterers that 

add small variations to the received signals. However, we only want to track those beams 

with power up to 1/10 the power of the strongest beams. Propagation studies show that the 

number of significant reflectors is modest, usually not more than 20 [35,50].  

In chapters 4 and 5, we illustrate the geometries for generating the physical model to 

test our prediction algorithm and evaluate the performance loss relative to the standard sum-

of-sinusoids model due to the time-variant non-stationary processes. 
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CHAPTER 3 

ADAPTIVE MODULATION 

3.1 Background 

As we discussed in the chapter 1, adaptive transmission (AT) techniques are now 

widely recognized as a key solution to significant improvement of the wireless system 

performance in hostile fading channels. The basic idea of AT techniques is to adapt the 

transmission parameters to take advantage of prevailing channel conditions. A simple AT 

system diagram is shown in Figure 3.1. The Transmitter sends data symbols through wireless 

mobile channel A (narrow band or wideband) and obtains estimated CSI (or system 

parameters) from the receiver via channel B for adjusting the transmission modes to optimize 

the system performance. If the Time Division Duplex (TDD) scheme [57] is employed, the 

channel A and B share the same frequency band but different time slots to provide both a 

forward and reverse link. In this case, the transmitter can estimate the CSI from the received 

signals if the channel is considered reciprocal, which means that the CSI are strongly 

correlated in a forward and reverse time frame. This scheme is called open-loop system. On 

the other hand, if the Frequency Division Duplex (FDD) is used, then the CSI is estimated at 

the receiver and fed back to the transmitter via the feedback channel B. (Alternatively, 

instead of the estimated CSI, transmission mode can be decided by the receiver and fed 

back.) This scheme is called the closed-loop system. The TDD adaptive transmission has the 

advantage of reducing feedback overhead. However, it is very sensitive to timing and has 

only recently been used for indoor or small area wireless applications where the physical 

coverage distances are much smaller than the many kilometers used in conventional cellular 
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systems [51]. Moreover, there is a time-latency due to the fact that communications is not 

full duplex. In this and the following chapters, we mainly focus on the closed loop adaptive 

modulation (AM) system in conjunction with power control (PC) to maximize the system 

capacity. 

Having discussed briefly the principles of AM and the possible scenarios where it can 

be applied, we now consider the practical limitation and implementation issues. The 

following steps have to be considered to design an AM system: 

� Channel quality estimation: In order to appropriately select the system parameters to be 

employed for the next transmission, a reliable estimate of the CSI during the next active 

transmission time slot is necessary. Pilot symbol assisted modulation (PSAM) [9,55] has 

been proposed as an attractive technique to detect the CSI in the rapid fading 

environment by periodically inserting known symbols, from which the receiver derives 

its amplitude and phase reference. In addition, channel prediction techniques 

[3,16,19,20,27] can be used to mitigate the mismatch between the estimated CSI and the 

actual CSI experienced for the next transmission symbol. 

� Determination of the appropriate parameters: Based on the estimated or predicted 

channel conditions, the transmitter has to select an appropriate transmission mode. 

Figure 3.1 Adaptive transmission system diagram 
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Historically, interests in techniques of adapting the modulation and transmission rate 

parameters began in 1968, when Hayes [25] adapted the signal amplitude according to 

the prevalent channel environment by utilizing a feedback channel between the 

transmitter and the receiver. More recently, this area has attracted enormous research 

interests due to the large demands of voice and multimedia service and the significantly 

enhanced hardware technologies. Most of this research work focuses on the following 

issues: modulation selection rule [14,21,24,49,57,64], transmit signal power control 

[7,21,37,56], symbol rate switching [38,57], adaptive coding techniques [22,24,42] and 

AM in conjunction with antenna diversity [30,32,62,65]. 

� Adaptation rate: The adaptation rate determines what kind of channel variations the AM 

algorithm is tracking. If the channel is changing faster than it can be estimated and fed 

back to the transmitter, AT techniques will perform poorly, and other means to mitigate 

the effects of fading should be used. It is easy to understand that faster adaptation leads to 

larger capacity gain, since the channel variations are exploited in a more accurate 

manner. However, fast adaptation has practical limitations such as hardware constraints. 

Besides, fast adaptation increases the number of mode-change messages sent to the 

receiver, which consume bandwidth and time resources. 

� Feedback: The feedback messages inform the transmitter of the CSI estimated or the 

transmission mode decided by the receiver. The feedback load should be minimized since 

it consumes resources that would be otherwise used for data. For example, channel mean 

feedback instead of the exact CSI is employed in [66] to reduce the feedback load. In 

chapter 5, we develop several reduced feedback methods for the mobile radio adaptive 

OFDM system. 
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� Signaling or blind detection of the employed parameters: The transmitter has to inform 

the receiver of the transmission mode. This information can either be conveyed within the 

symbol, at the cost of loss of effective data throughput, or the receiver can attempt to 

estimate the parameters by means of blind detection techniques [60]. 

In this chapter, adaptive modulation employing Multilevel Quadrature Amplitude 

Modulation (MQAM) in conjunction with power control (PC) is applied in a narrow-band 

Rayleigh fading channel to maximize the transmission throughput. AM for the wideband 

multicarrier OFDM system is addressed in the chapter 5. 

3.2 Fading Channel Capacity 

The ideal system achieves a small bit error rate with a high spectral efficiency and a 

low SNR. Information theory [13] places bounds on the value of these parameters that can be 

achieved by any coding and modulation techniques. The capacity of the Rayleigh fading 

channel is addressed in [23]. We first briefly review the fading channel capacity to provide 

invaluable design concepts, and the results serve as the theoretical performance upper bound. 

Consider a discrete-time narrow-band system model depicted in Figure 3.2 with a 

stationary and ergodic complex fading channel gain c[i] with average power Ω = E[|c[i]|2] 

and additive white Gaussian noise (AWGN) n[i] with power spectrum N0. For an average 

transmitted power constraint S− , the average received SNR γ−  = S−Ω/N0, and the instantaneous 

received SNR γ[i] = S−α2[i]/N0, where α[i] = |c[i]| is the amplitude of the complex channel 

gain. We normalize the average channel power Ω = E[α2] = 1 and thus γ−  = S−/N0. Suppose 

power control is employed and denote S[i] as the transmitted power at time i based on the 

parameter γ[i]. (Note E[S[i]]≤ S− .) We assume coherent detection and the phase variations are 
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completely removed during the demodulation process. Therefore, the receiver BER 

performance is decided by the received SNR γS = γ[i]S[i]/S− . Since α[i] is stationary, we will 

drop the time index i for simplicity. We assume α is Rayleigh fading (2.5) distributed in the 

numerical simulation below, although our formulas apply for any distribution of α. 

From [15], the GAP concept can be used to approximate the performance of a coding 

and modulation (C/M) scheme in use on an AWGN channel. For a gap Γ, corresponding to 

the target probability of error and the coding scheme in use, the number of bits b that can be 

transmitted on a given AWGN channel using QAM as a function of received SNR γS is given 

as: 

 b = log2(1 + 
γS

Γ  ) = log2(1 + 
γ[i]S[i]

S
−Γ

) (3.1) 

The parameter Γ denotes the maximum possible improvement gain for that C/M scheme 

relative to the channel capacity. For example, Γ ≈ 3 for uncoded QAM with BER = 10−3. The 

maximum throughput Rmax over fading channel with GAP Γ and bandwidth B can be 

calculated as: 
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 Rmax = 
             max
S(γ):⌡⌠ S(γ)p(γ)dγ = S− ⌡⌠

0

∞

 Blog2(1 + 
γS(γ)
S
−Γ

)p(γ)dγ (3.2) 

Note that Γ = 1 in (3.2) results in the fading channel capacity C, i.e., 

 C = 
             max
S(γ):⌡⌠ S(γ)p(γ)dγ = S− ⌡⌠

0

∞

 Blog2(1 + 
γS(γ)

S
− )p(γ)dγ (3.3) 

For the Rayleigh fading channel, p(γ) can be expressed as [58]: 

 p(γ) = 
1
γ− exp{−

γ
γ− }, γ ≥ 0 (3.4) 

where γ−  = E[γ] = ΩS
− / N0. From [23], the power control method to maximize (3.2) is 

 
S(γ)

S
−  = 



1
γ0

 −−−− 
1
γΓ        γ ≥ γ0/Γ

0                  γ ≤ γ0/Γ
  (3.5) 

where γ0 is obtained by solving  

 ⌡⌠
γ0

∞

 (
1
γ0

 − 
1
γ) p(γ)dγ = 1 (3.6) 

From the bit rate gain (3.2) and power adaptation (3.5), it is observed that the power 

adaptation and spectral efficiency for MQAM technique has an effective power loss of Γ 

relative to the optimal transmission scheme. That is, there is a simple relation between the 

maximum spectral efficiency of a fading channel and the spectral efficiency of uncoded 

adaptive MQAM methods [21]. 

For a constant transmit power case, the capacity of (3.3) reduces to: 

 C = ⌡⌠
0

∞

 Blog2(1+S(γ)γ)p(γ)dγ (3.7) 

Note that (3.7) is the Shannon capacity of the fading channel when the transmitter adapts to 

the channel variation using a constant-power variable-rate strategy. It is shown in [23] the 
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difference between (3.7) and (3.3) is a small fraction of a decibel for most types of fading. 

This negligible impact of power adaptation results from the fact the capacity (3.7) places no 

restriction on the input signal constellation. Thus, when the constellation size is restricted to 

discrete size, restricting the power has a greater impact on spectral efficiency [21]. Next we 

introduce our discrete rate adaptive modulation in conjunction with continuous power control 

method. 

3.3 Discrete AM and Continuous PC 

Shannon capacity (3.3) and the continuous MQAM technique (3.1) places no 

restriction on the complexity of the multiplexed transmission scheme to achieve the optimal 

performance. In our study, we employ variable rate and variable power square multilevel 

quadrature amplitude modulation (M(i)−QAM, M(0) = 0, M(1)= 2, M(i) = 22(i−1), i = 2…4) 

signal constellations as shown in Figure 3.3 due to their inherent spectral efficiency and ease 

of implementation [21,45]. Thus, at each symbol interval, we transmit a modulation level 

from the set {M(i): i = 0,1…4} based on the observed CSI. Gray encoding [45] is used to 

map the k information bits to the possible 2k constellations. A Star−QAM adaptive 

modulation was studied in [64]. Let 2d be the Euclidean distance between the closest 

constellation points, then the average transmitted power S−  for BPSK, 4-QAM, 16-QAM, and 

64-QAM in Figure.3.3 are d2, 2d2, 10d2, and 42d2. The BER for each modulation on AWGN 

channel (channel gain α =1) can be represented by [12]: 

 Pe(M(i), γ) = Q( 2γ),  i = 1 

 Pe(M(i), γ) = 
1

log2 M
 ∑

k=1

log2 M

Pb(k),  i = 2…4 (3.8) 
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where γ = S− / N0 is the SNR per symbol and 

 Pb(k) = 
1
M

 ∑
i=1

(1−2
−k

) M−1
 {(−1)  (i2k−1)/ M  (2k−1 − 

i2k−1

M
 + 

1
2 ) erfc( (2i + 1) 

3γ
2(M−1))} (3.9) 

For simplicity, the BER for i >2 can be calculated using an upper bound [21]: 

 Pe(M(i), γ) ≤ 0.2exp{
−1.5γ

M(i)−1} (3.10) 

Figure 3.4 shows the BER vs. average SNR per symbol γ for M-QAM. It is observed that the 

exact BER is approximately upper-bounded by (3.10) for higher SNR. For example, the 

approximation can only be used when the SNR is higher than 10dB for 64-QAM and than 

6dB for 16-QAM. 

d  -d  d  -d  

d  

-d  

(a) BPSK (M=2)  (b) 4-QAM  

(c) 16-QAM  (d) 16-QAM  

Figure 3.3 Square M-QAM constellation with Gray coding 
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We now discuss our modulation selection and power adaptation algorithm. We first 

consider the case of perfect knowledge of CSI and instantaneous feedback. The practical 

issues of imperfect CSI are discussed in section 3.4. Given a target bit error rate BERtg and a 

fixed transmit power per symbol S
−  (or SNR γ−  = S

− /N0), we adjust the modulation level 

according to the instantaneous channel gain α. We use threshold-based modulation selection 

method. The thresholds Ti, i =  1…4 is the α that satisfies the condition Pe(M(i), γ−α2) = 

BERtg, and when the channel gain α satisfies: Ti+1  ≥  α ≥  Ti, the modulation level M = M(i) 

is employed, where T0=0 and T5 =∞. Figure 3.5 demonstrates an example of the threshold 
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search for BERtg = 10−3 and γ−  = 20dB.  If the gap approximation (3.1) is used, thresholds can 

be simply determined by: 

 T1 = 
Q−1(BERtg)

2γ−
 

 Ti = 
(M(i)−1)Γ

γ− ,  i=2…4 (3.11) 

where for BERtg = 10−3, Q−1(10−3) ≈ 3.0902 and Γ ≈ 3. We will use (3.11) to determine the 

thresholds for our numerical system simulation. Equivalently, the above modulation selection 

Figure 3.5 An example of modulation level-controlled adaptive 
modulation for perfect CSI. Average SNR = 20dB. BER = 10−−−−3. 
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algorithm is to choose the maximum modulation level such that the BER is less than the 

target BER for a given transmit SNR γ−  and channel gain α, i.e., 

 M = max{M(i) | Pe(M(i), γ−α2) < BERtg} (3.12) 

Once the constellation M = M(i) and the threshold Ti are decided, the BER of this 

fixed power discrete rate adaptive modulation is lower than the BERtg since Pe(M, γ−α2) < 

BERtg when α does not take on a threshold value. Therefore, we can use a power control 

policy to reduce the power consumption while maintaining the target BER. A fixed BER for 

the constellation M(i) can be maintained by multiplying S
−  by a power control factor β = 

(Ti/α)2 since 

 Pe(M(i), γ− (
Ti

α)2α2) = Pe(M(i), γ− Ti
2) = BERtg (3.13) 

Therefore, the instantaneous transmitted power is S− β. Note the power control factor is always 

less than or equal to 1.  

The modulation selection and power control algorithm described above is 

independent of the channel statistics. However, the average transmission rate and the average 

power usage depend on the probability density function of the channel gain α. The average 

bit rate is determine as: 

 Rada =∑
i=1

4
log2Mi ⌡⌠

Ti

Ti+1
pα(x)dx, (3.14) 

This rate also gives the spectral efficiency assuming the ideal Nyquist data pulse [45]. And 

the average power usage can be calculated as: 

 Savg = S−  ∑
i=1

4
 
⌡⌠
Ti

Ti+1
 (

Ti
x )2pα(x)dx (3.15) 
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The power control method above involves continuously varying transmitter power. It can be 

simplified by selecting a constant power for each constellation M(i) level to maintain the 

target BER. The power Es(i) for each constellation M(i) is chosen using: 

 
⌡⌠
Ti

Ti+1
Pe(M(i), 

Es(i)α2

N0
) p(α |Ti< α <Ti+1)dα  ≤  BERtg (3.16) 

where p(α |Ti<α< Ti+1) is the conditional pdf of α is determined using thresholds Ti. Thus 

each modulation level is only associated with one transmit power. This is called discrete rate 

discrete power method [21]. 

3.3.1 Comparison of Different AM Methods 

Several other adaptive modulation and power control algorithms are proposed in the 

literature. An optimal discrete rate continuous power scheme is proposed in [21], and an 

optimal fixed power discrete rate is derived in [14] by employing the Lagrangian multiplier 

technique to find a set of SNR-dependent AQAM mode switching level to maximize the 

achievable throughput while maintaining the average BER. While these methods are optimal, 

they require the knowledge of the channel statistics and complex numerical calculation to 

obtain the optimal threshold and thus are not practical. Our simpler discrete rate continuous 

power method results in less than 0.5 dB power loss compared with that in [21]. 

We compare several adaptive transmission techniques in Figure 3.6 over Rayleigh 

fading channel. Perfect CSI is assumed. A Continuous rate and power adaptation method in 

[21] is included in the comparison. Note that the method places no restrictions on the 

constellation size, which makes it impractical. We also found that the fixed-rate truncated 

channel inversion [21] based on M-QAM has similar performance to the discrete power 

discrete rate method, while it is also non-feasible in practice. We also plot the Shannon 
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capacity of the fading channel (3.3) for comparison. We observe that our continuous power 

control policy achieves about 3dB gain relative to the fixed power discrete rate adaptive 

modulation, and the discrete rate discrete power method has power loss of less than 2dB 

relative to the continuous power discrete rate transmission scheme. 

3.3.2 Power Control Limitation 

Cellular systems reuse the same frequency channel at spatially separated locations to 

provide more efficient utilization of the limited available spectrum within a given area [51]. 

Frequency reuse introduces co-channel interference, which ultimately determines the data 

rate and BER for each user. Thus, while power control techniques increases the power usage 

of a single channel, these techniques may also increase co-channel interference level in a 

Figure 3.6 Spectral efficiency vs. SNR = Savg/N0 for 
different transmission techniques. Target BER= 10-3. 
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cellular system, resulting in a higher reuses distance to mitigate the increased interference 

power. 

For our power control method, the instantaneous transmitted power S
−β does not 

exceed S−  since the power control factor β ≤ 1. Therefore, S−  is an important parameter in the 

design of a cellular system since it is the power usage upper bound during the transmission. 

Figure 3.7 shows the difference between the average power usage Savg and power usage 

upper bound S−  over Rayleigh fading channel with target BER 10−3. It is observed that there 

is about 1.5−3dB gap between the two parameters for our method depending on the upper 

bound S− .  In general, a small gap between Savg and S−  is desired. Larger gap may cause larger 

instantaneous power boost to increase CCI upon other users, which in turn may require 

further power increments for maintaining the target quality. In this case, although AM 

increases the spectral efficiency of a single channel, it may reduce the area spectral 
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efficiency. On the other hand, for the same upper bound S− , smaller gap can provide higher 

average power consumption and thus higher spectral efficiency. 

3.3.3 Outage Probability 

According to the modulation switching policy, the transmission is interrupted if the 

fading gain α falls below the threshold T1. Thus, adaptive modulation suffers an outage 

probability Pout of: 

 Pout = ⌡⌠
0

T1

 pα(x)dx (3.17) 

Figure 3.8 shows the outage probability vs. the power usage upper bound S−  on the Raylegih 

fading channel.  The outage probability ranges from about 0.15 to 0.4. For high outage 

probability, the policy is similar to packet radio, with burst of high speed data when the 
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channel conditions are favorable. For real time applications such as voice or video that 

cannot tolerate the variable delays exhibited by the modulation strategy to achieve the high 

spectral efficiency, low outage probability is desired. However, lower outage probability 

requires higher power usage upper bound, which causes larger CCI. Thus, there is a trade-off 

between the quality of service and the frequency reuse distance.  

3.4 Imperfect CSI 

We now consider the case when the fed back CSI is imperfect due to delay or channel 

estimation error. Let α denote the actual fading channel gain and α^  be the estimated CSI of α 

or related to α. The BER for imperfect CSI α^  with transmitted power S can be obtained by 

evaluating the expectation of Pe(M(i), α2S/N0) over α using condition pdf of α given α^  as: 

 Pe
*(M(i),S/N0,α

^ ) = 
⌡⌠
0

∞
 Pe(M(i), x2S/N0)pα|α̂(x)dx ( 3.18)  

Similar to the adaptive modulation for the perfect CSI (see section 3.3), the threshold for the 

imperfect CSI can be calculated as: 

 Ti = {α^  | Pe
*(M(i),γ− ,α^ ) = BERtg}, i = 1…4 ( 3.19)  

The modulation level selection for the imperfect CSI is M = M(i) if Ti+1 > α^  > Ti. 

Equivalently, it can be selected as: 

 M = max {M(i) | Pe
* ( M(i),γ−,α^ ) < BERtg} (3.20) 

The power control factor β is chosen such that Pe
* ( M ,γ− β ,α^ ) = BERtg. The average BPS is  

 Rada =∑
i=1

4
log2M(i)

⌡⌠
Ti

Ti+1
pα̂(x)dx (3.21) 

where pα̂(x) is the pdf of α^ . The power factor β is a function of α^  and the average signal to 

noise ratio is  
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 γavg = 
⌡⌠
0

∞
γ− β(x)pα̂(x)dx (3.22) 

In our analysis, we assume α is Rayleigh fading, the estimation error is modeled as 

white Gaussian noise and α^  is the predicted CSI of α using linear combination of the past 

channel observation of α. (Channel prediction technique will be addressed in the chapter 4). 

Thus, α and α^  are bivariate Rayleigh distributed and the conditional pdf of α given α^  is 

Rician given by [24,31,59]: 

 p(α |α^ ) = p(α,α^ ) / p(α^ ) = 
2α

(1−ρ)Ω  I0(
2 ραα^

(1−ρ) ΩΩ^
) exp(−

1
1−ρ(

α2

Ω  + 
ρα^ 2

 Ω^ )) ( 3.23)  

where the correlation coefficient  

 ρ =
Cov(α2,α^ 2)

Var(α2)Var(α^ 2)
 , ( 3.24)  

0 ≤ ρ ≤ 1, Ω= E{α2}, Ω^ = E{α^ 2}, and I0 is the 0th order modified Bessel function. From (3.20) 

and (3.23), the required power to employ M−QAM modulation is dependent on the 

parameters ρ and Ω
^

. Nevertheless, it can be shown that when the estimated power Ω
^

 is 

scaled to 1, the performance of adaptive modulation is not affected. Hence throughout the 

thesis, Ω
^

 is normalized to 1 for simplicity (In practice, auto gain control (AGC) is required 

to track and normalized the average power of CSI), and the performance depends only on the 

parameter ρ. For the power control adaptive modulation method described above, we plot the 

BPS (3.21) vs. the correlation ρ for different SNR computed from (3.22) and for BERtg =  

10−3 in Figure 3.9. The correlation ρ= 1 corresponds to perfect prediction, while ρ= 0 

represents the worst case when the BPS of the adaptive modulation converges to that of the 

non-adaptive M-QAM for given SNR and BERtg. 
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We now discuss the adaptive modulation based on the outdated CSI [24]. Assume the 

estimated channel gain α^  =|x1 + jy1| is τ sec delay of the actual channel gain α = |x2 + jy2| due 

to feedback propagation delay, where j = −1. It is shown in the Appendix C that ρ between 

α and α^  can also be computed as: 

 ρ = 4
uI

2 + uQ
2

Ω 1Ω 2
 (3.25) 

where uI = E[x1x2] = E[y1y2], uQ = E[x1y2] = − E[y1x2], Ω1/2 = E[x1
2] = E[y1

2] and Ω2/2 = 

E[x2
2] = E[y2

2]. For channels characterized by the correlation function Rt(∆t) in (2.14), uI = 

Rt(∆t)/2, and uQ = 0. Figure 3.10 shows the correlation ρ vs. the feedback delay normalized 

by maximum Doppler shift fdm. It is observed that even small delay causes significant 

performance loss. For example, for delay fdmτ = 0.1, the coefficient ρ = 0.9 and the 

Figure 3.9 Bit per symbol vs. ρρρρ for different SNR = Savg/N0 
for power control M-QAM. Target BER=10-3. 
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performance is loss is about 2 BPS relative to ρ = 1. Therefore, to realize the potential of the 

adaptive modulation method, channel prediction methods to mitigate the CSI mismatch due 

to feedback delay is required. 

3.5 Block Loading in Time 

Beside imperfect CSI, another practical consideration is the rate adaptation of the 

constellation size and power adaptation at the transmitter. It is easy to realize that faster AM 

and PC can result in larger capacity gain since the channel variations are exploited in a more 

accurate manner. However, hardware constraints and pulse-shaping considerations may 

require the modulation level to remain constant over tens or even hundred of symbols. Also, 

for systems that require signaling to the receiver which transmission mode is employed, the 

signaling overhead will significantly reduce the achievable bit rate gain. In addition, power-
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amplifier linearity requirements and out-of-band emission constraints may restrict the rate at 

which power can be adapted [21]. Thus, block-loading techniques, where the same 

modulation level or power is employed for many transmission symbols, are desired. 

We develop two block loading methods based on the threshold-based AM and power 

control described in section 3.3. Within these two methods, the power control can be 

categorized as per-symbol basis and frame-basis. Depending on the power control method, 

the largest achievable modulation level without violating the BER target and the power 

constraint S−  is used for each symbol in the frame. Let L be the frame length for block loading 

methods and {α1,α2,…αL} be the amplitudes of CSI sampled at the symbol rate. Assume 

perfect CSI and the thresholds Ti, i=1…4 are decided as in (3.11). 

Per-Symbol Basis Power control (PP) 

We assume the power can be continuously adjusted for each symbol in the frame. The 

largest achievable modulation level M is given by: 

 M = max{M(i) | 
1
L ∑

k=0

L−1
 S− (

Ti

αk
)2 < S−}  (3.26) 

Once the index i is determined, the average power usage in that frame is: 

 Sf = 
1
L ∑

k=0

L−1
 S− (

Ti

αk
)2 (3.27) 

Note the power control factor (
Ti

αk
)2 can be larger than 1, and hence S−  is no longer the power 

usage upper-bound during the transmission. 

Frame Basis Power Control (FP) 

In this method, not only the modulation level but also the power remains constant for 

the whole frame. The modulation level is chosen as: 
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 M = max{M(i) | 
1
L ∑

k=0

L−1
 Pe(M(i), γ− (αk)2) < BERtg} (3.28) 

The average power usage in that frame is: 

 Sf = {S
− β | 

1
L ∑

k=0

L−1
 Pe(Mi, γ

−β (αk)2) = BERtg} (3.29) 

Figure 3.11 demonstrates the numerical performance of the block loading adaptive 

modulation and power control. The Jakes model is used. The maximum Doppler shift fdm = 

100 Hz and the symbol rate fsym is 25KHz. The target BER = 10−3. It is observed that PP has 

better performance than FP since the power can be adjusted for each symbol in the frame. 

For frame length L = 100 (fdmL/fsym = 0.4), the performances loss of PP and FP relative to the 

non-blocking loading method are about haft a bit and 0.8 bit, respectively. 

Figure 3.11 Bit per symbol for block loading 
adaptive modulation and power control. 
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CHAPTER 4 

LONG RANGE CHANNEL PREDICTION AIDED BY 
OBSERVATIONS OF ANOTHER FADING CHANNEL 

4.1 Background 

As we discussed in the chapter 3, to implement adaptive transmission methods in 

practice, the CSI must be available at the transmitter. The CSI can be estimated at the 

receiver and sent to the transmitter via a feedback channel. Thus, feedback delay and 

overhead processing delay, and practical constraints on modulation, coding or adaptation rate 

have to be taken into account in the performance analysis of adaptive transmission method. 

For very slowly fading channels, outdated CSI is sufficient for reliable adaptive system 

design [24]. For fast fading that corresponds to realistic mobile speeds, however, even a 

small delay will cause significant degradation of performance since channel variation due to 

Doppler shifts usually results in a different channel at the time of transmission than at the 

time of channel estimation [21,24]. Even in open-loop [57] channels, current CSI is not 

sufficient since future channel conditions need to be known to adapt transmission parameters. 

To realize the potential of adaptive transmission methods, theses channel variations have to 

be predicted at least several milliseconds, or tens to hundreds of data symbols, ahead. 

A novel long range channel prediction (LRP) for single carrier was proposed in 

[16,18,19,31]. In this chapter, we extend the long-range prediction algorithm into frequency 

domain. For the LRP technique, when dealing with signals that are statistically stationary, the 

longer the data record, the better the channel prediction that can be performed from the data. 

On the other hand, if the signal statistics are non-stationary, we cannot select an arbitrarily 

long data record to estimate the future CSI. In such a case, the length of the data record that 
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we select is determined by the rapidity of the time variation in the signal statistics. 

Ultimately, our goal is to select as short a data record as possible that still allows us to 

accurately predict the future CSI. In this chapter, we first derive the MMSE LRP for the 

isotropic scattering channel whose correlation function is characterized by (2.12) and then 

develop a robust adaptive prediction method that is capable of tracking the channel statistics. 

Furthermore, a challenging environment is generated by the realistic physical model to test 

the limitation of the adaptation rate. 

4.2 System Model 

The discrete-time adaptive modulation system model in conjunction with the long-

range prediction is illustrated in Figure 4.1. The carrier frequency of the observed CSI is f1 

and the carrier frequency of the transmitted signal is f2. Assume narrow band signals and the 

cs(f2,i) n(i)

Data rate fs 
for LRP LRP at f2

c^(f2,n)  

input  

Adaptive 
modulation at f2

Figure 4.1 System model of adaptive modulation at 
carrier f2 based on the channel observations at f1. 

Observed 
CSI c~ (f1,n) 
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channels can be considered as frequency non-selective. Thus from (2.8) and (2.10), the CSI at 

f1 and f2 can be described as 

 c(f i ,t) =∑
n=1

N
 A(n) exp{j(2πfd(n)t+φi(n)} i = 1,2 (4.1) 

where for the nth path, A(n) is the real amplitude and fd(n) is the Doppler shift. The phase 

difference φ1(n) − φ2(n) = 2π∆fτ(n), where ∆f = f2 − f1 is the frequency separation, and τ(n) is 

the excess propagation delay distributed according to (2.13). Furthermore, the channel 

correlation function between f1 and f2 can be characterized as (2.12). 

Suppose the CSI does not change within one symbol duration but varies from symbol 

to symbol. Let cs(f2,i) denote the samples of the c(f 2 ,t) with symbol interval Tsym, and c~ (f 1 ,n) 

denote the estimate of the observed channel information at f1 at sub-sampling rate fs. (Note 

1/(fsTsym) is an integer.) Assume the estimation error is modeled as white Gaussian noise 

with power spectrum N0
~

. Define the observation SNE (OSNR) as  

 OSNR = 
Ω1

N0
~  (4.2) 

where Ω1 = E[|c(f 1 ,t)|2] is the average power of the CSI at f1. We predict the future CSI at f2 

based on the previously observed CSI c~ (f 1 ,n). The normalized prediction range in frequency 

domain is ∆fσ. Interpolation is utilized to predict the channel coefficients c(f2,i) at the 

symbol rate 1/Tsym. 

One important feature of the LRP is its low sampling rate. That is, the sampling rate fs 

is much lower than the symbol rate 1/Tsym. Since the channel information at symbol rate is 

obtained by interpolation, from Nyquest theorem [45], the minimum data rate for LRP must 

be larger than twice the maximum Doppler shift to prevent aliasing. On the other hand, low 
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sampling rate results in longer memory span and further prediction into the future for a fixed 

filter length. In addition, the low sampling rate also reduces the feedback rate. However, long 

memory span may cause problems when severely time-variant signal have to be processed. 

LRP for different sampling is investigated at [19]. We use sampling rate fs = 5fdm in our 

numerical simulations. 

4.3 MMSE Long Range Channel Prediction 

The linear one-step long range prediction of the future channel sample c(f 2
,n) at 

frequency f 2  based on p previously observed samples at frequency f1 is given by: 

 c^(f 2 ,n) =∑
j=1

p
dj

*c~ (f 1 ,n−j) (4.3) 

where p is the filter length. The normalized prediction range in time is fdm/fs. The prediction 

error is defined by the difference 

 e(n) = c(f2,n) − c^(f 2 ,n)  ( 4.4)  

To optimize the filter design, we choose to minimize the mean-square value of the prediction 

error e(n). Define the cost function as the mean-square error (MSE): 

 J = E[|c(f 2 ,n)−c^(f 2 ,n)|2]  (4.5) 

The problem is therefore to determine the operating conditions for which J attains its 

minimum value. From [28], the necessary and sufficient condition for the cost function J to 

attain its minimum value is called orthogonality principle. That is, the corresponding value 

of the prediction error is orthogonal to each input samples that enters into the prediction of 

the desired response at time n, i.e., 

 E[c~ (f 1 ,n−j)e*(n)] = 0, j = 1,2,3,…p (4.6) 
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Assume the correlation function (2.12) is known. We can obtain the optimum linear filter do
T 

= [do1,do2,…dop] (the superscript T denotes transpose) by solving a set of linear equation, 

called the normal equation: 

 d o = R − 1 r (4.7) 

where the correlation matrix of the input data: 

 R = 











R(0) R(1) … R(p−1)
R*(1) R(0) … .
. . … .
. . … .
. . … .
R*(p−1) R*(p−2) … R(0)

 , (4.8) 

R(i) = E[c~ (f 1 ,n)c~ *(f1,n−i)] = Ω1Rt(−i/fs) + N0δ[i], where δ[i] is delta function, and rT = [r(1) 

r(2),…..,r(p)] is the cross-correlation between the input data and the desired data, where r(i) = 

E[c~ (f 1 ,n−i)c*(f2,n)] = RE(i/fs, ∆f). The resulting MMSE is given by [28]: 

 MMSE = E[|e(n)|2]  =  Ω2 −∑
j=1

p
doj

*r(j) (4.9) 

where Ω2 is the average power of the CSI at f2. Throughout the chapter, we normalize Ω1 and 

Ω2 to 1. This filter is well known as Wiener filter. 

After prediction the future CSI at f2, we perform adaptive modulation at frequency f2 

to maximize the throughput based on the predicted CSI. Assume the observed CSI c~(f 1 ,n) is 

Rayleigh distributed as in (2.5) with Ω = Ω1 + N0

~
. Since the predicted symbol c^(f2,i) is the 

linear combination of the past channel observation at f1, its amplitude is also Rayleigh 

distributed, and |c^(f2,i)| and |c(f2,i)| are bivariate Rayleigh distributed [59]. The correlation 

coefficient ρ (3.24) between |c^(f2,i)|2 and |c(f2,i)|2 is estimated and adaptive modulation can 
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be performed as discussed in the chapter 3 (see section 3.4). In fact, when the optimal Wiener 

filter is employed, it is shown in the Appendix B that  

 ρ = Ω2 − MMSE (4.10) 

Figure 4.2 shows the theoretical correlation coefficient (4.10) vs. normalized prediction range 

in frequency domain filter. We also demonstrate the numerical simulation using the optimal 

Wiener filter. Jake model with N = 34 is employed to generate fading signal at f1 and f2, and 

the parameter ρ is estimated based on the predicted and actual channel state information. 

4.3.1 Factors Affecting Prediction Accuracy 

To achieve bit rate gain for the AM systems, accurate prediction of the CSI is 

required. From (4.7) and (4.9), the prediction accuracy depends on the correlation function of 

the input data and the correlation function between the input and the desired data. Since the 
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correlation function over time and frequency domain can be separated into the multiplication 

of two independent correlation functions (2.12), it can be readily shown that the MMSE (4.9) 

can be expressed as 

 MMSE = 1 − |Rf(∆f)|2 (1 – MMSE∆f=0) (4.11) 

where MMSE∆f=0 is the MMSE with ∆f = 0. The frequency domain correlation function 

Rf(∆f) is dependent on the frequency separation and delay spread. Smaller frequency 

separation and delay spread result in larger Rf(∆f) and thus better prediction accuracy (small 

MMSE). This is demonstrated in Figure 4.2. On the other hand, two factors affect the 

performance of single carrier channel prediction MMSE∆f=0. They are noisy CSI observation 

and filter length. 

First, the noisy channel observation degrades the prediction accuracy. When the 

effective SNR of the observed CSI is low, noise reduction techniques can be employed. In 

[19], an adaptive noise reduction method at the symbol rate is investigated, and in [27], noise 

reduction is implemented by suppressing out-of-band noise since the power spectrum of the 

fading channel is 0 outside the maximum Doppler shift (see Eq. (2.15)). In some systems, 

multiple steps prediction where previously predicted value is used to predict the future fading 

coefficients is desired for longer prediction range. In these cases, noise reduction is important 

since the noise will cause error propagation and make prediction accuracy unacceptable. 

Second, the filter length affects the prediction performance. In general, larger filter 

length results in better prediction performance. As the filter length p increases, the MMSE 

saturation level is approached. We derive the closed form expression of MMSE for p = ∞ and 

one-step prediction (see Appendix C): 

 MMSEp=∞ = Rn(0) − |Rf (∆f)|2 [Rn (0) −r +(0) 2 + N0] (4.12) 
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where r+(0)2 = exp{
1

2π ⌡⌠
-π

π

ln[Rw(w)+N0]dw}, and Rw (w) = ∑
n=−∞

∞
Rn(n)exp{−jwn} is the folded 

power spectrum of the channel. In Figure 4.3, the theoretical MMSE of one-step prediction 

(4.12) is plotted vs. normalized frequency separation ∆fσ for different values of the signal-to-

noise ratio (SNR). The sampling rate fs = 5fdm is chosen since it results in near optimal 

performance for LRP [19]. The prediction range is 0.2/fdm seconds. We also compare the 

MMSE of the system with filter order p = 50 (see (4.3)). We found that for p =50, the MMSE 

approaches the optimal case (p = ∞) for fs = 5fdm. For our numerical simulation in this 

chapter, we employ p = 50 and the sampling rate of 500Hz assuming the maximum Doppler 

shift of 100Hz. 
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4.3.2 Backward Prediction 

The form of linear prediction described in (4.3) is called forward predictor. We use a 

subset of p previously observed samples c~ (f1, n−1), c~ (f1, n−2)…c~ (f1, n−p) at f1 to make a one 

step linear prediction of the sample c(f2, n) at f2. Naturally, we may also operate on this time 

series in the backward direction [28]. In other words, we may use the subset of p samples of 

c~ (f2, n), c~ (f2, n−1)…c~ (f2, n−p+1) to make a prediction of the past samples c(f1, n−p), i.e.  

 c^(f 1 ,n−p) =∑
j=1

p
gj

*c~(f 2 ,n−j+1) (4.13) 

Similarly to (4.7), the optimal backward prediction coefficients go = [g1,g2,…gp] can be 

solved by a set of linear equation as: 

 R1go=r1 (4.14) 

Since we assume the fading process at f1 and f2 are constituted by the same Doppler shift, it 

can be readily shown that R1 = R and r1[i] = r*[p−i+1], i=1,…,p. Note that the autocorrelation 

matrix R is Hermitian and Toeplitz. It is demonstrated in [46] that the optimal backward 

predictor is the reverse order complex conjugate of the optimal forward predictor, i.e.,  

 doi = go
*
p−i+1, i = 1…p (4.15) 

We employ this relation in the following section when only finite data records are available 

to estimate optimal prediction filter coefficient. 

4.3.3 Least Squares Estimation methods 

For the LRP, we can obtain the optimum filter if the channel correlation functions are 

known. In practice, these channel statistics are unknown and need to be estimated from a 

finite data record. In this section, we use the least squares method to solve the linear 

prediction problem without invoking the assumption on the statistics of the input and the 
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desired data. The method of least squares may be viewed as an alternative to Wiener filter 

theory. Basically, Wiener filters are derived from ensemble average with the result that one 

filter is obtained for all realizations of the environment, assumed to be wide-sense stationary. 

On the other hand, the method of least squares is deterministic in approach. Specifically, it 

involves the use of time average, with the result that the filter depends on the number of 

samples used in the computation. 

Suppose we have finite M training symbols at both carriers f1 and f2 during the 

observation interval. Define the forward prediction error at time n as: 

 fp(f1,f2,n) = c~ (f 2 ,n) − ∑
j=1

p
dj

*c(f 1 ,n−j) (4.16) 

and the backward prediction error at time n as: 

 bp(f2,f1,n) = c~(f 1 ,n−p) − ∑
j=1

p
gj

*c(f 2 ,n−j+1) (4.17) 

Utilizing the fact that the optimal backward predictor is the reverse order complex conjugate 

of the optimal forward predictor from (4.15), the method of least squares is to minimize the 

cost function that consists of the sum of square errors: 

 ELS = ∑
n=p+1

M
 |fp(f1,f2,n)|2 + ∑

m=p+1

M
 |bp

*(f2,f1,m)|2 (4.18) 

subject to the constraint that di = g*
p−i+1, i = 1…p. From [28], the prediction coefficient vector 

d to minimize ELS can be solved be a set of linear equation: 

 R
~

 =  dr~  (4.19) 

where R
~

 =  AHA, AH = [FD | BD*], and the forward data matrix FD and backward data 

matrix BD is: 
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FD = 











c~ (f1,p) c~ (f1,p+1) … c~ (f1,K−1)
c~ (f1,p−1) c~ (f1,p) … .
. . … .
. . … .
. . … .
c~ (f1,1) c~ (f1,2) … c~ (f1,K−p)

  

BD = 











c~ (f2,K+1−p) c~ (f2,K−p) … c~ (f2,p+1)
. . … .
. . … .
. . … .
c~ (f2,K−1) c~ (f2,K−2) … c~ (f1,2p−1)
c~ (f2,K) c~ (f2,K−1) … c~ (f2,2p)

  

And r~ = AHD, where DH=[c~ (f1,p+1),c~(f1,p+2)…c~ (f1, K),c~ * (f2,K−p),c~ * (f1,K−p−1)…c~ * (f2,p)]. 

The minimum sum of squared error can be expressed as [28]: 

 Emin,LS =  DHD −−−− DHA(AHA)−−−−1AHD (4.20) 
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Note that R
~

 and r~  in (4.19) can be considered as estimation of R and r in (4.7). In Figure 

4.4, we demonstrate, for different prediction range ∆fσ, the average prediction MSE vs. 

number of observation CSI samples used to obtain the least-squares based prediction 

coefficients. It is observed about 150 CSI samples are required to obtain near-optimal 

prediction performance for standard Jakes channel model. 

4.4 Robust Long Range Prediction: LMS Algorithm 

We derived the optimum MMSE channel prediction in (4.7) if the channel statistics, 

such as the time and frequency domain correlation, are known. Otherwise, the channel 

statistics can be estimated by least squares method in (4.19) during the observation interval. 

However, in the realistic mobile fading channels, the Doppler shifts in (2.8) is time-variant, 

and thus the model coefficients need to be updated continuously based on the observations. 

Since we are not able to observe the fading coefficients at frequency f 2  after observation 

interval, we modify our approach as follows. First, we predict future channel coefficient 

c(f 1 ,n) and then use the frequency correlation function to select the transmitter parameters at 

f 2 . The predicted CSI at f 1  are given by: 

 c^(f 1 ,n)  =  ∑
j=1

p
dj(n)*c(f 1 ,n−j) (4.21) 

The coefficients dj(n) are determined using the Least Mean Square (LMS) adaptive tracking 

method: 

 dj(n+1)  =  dj(n)  +  µεn
*c^(f 1 ,n−j) (4.22) 

where µ is the step size and ε( n ) =  c(f 1 ,n)−c^(f 1 ,n). This adaptive tracking can be performed 

since the observations at frequency f 1  are available at the transmitter [16,19]. The recursive 

least-squares (RLS) algorithm can also be used to improve accuracy and reduce the 
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observation interval [33,34]. The coefficients c^(f 1 ,n) are interpolated to obtain predictions at 

the symbol rate at frequency f1 [18]. 

Once c^(f 1 ,n) is found, the adaptive modulation parameters for transmitting at f 2  at 

time n are selected. (Note that c^(f 2 ,n) is not predicted directly). As explained in chapter 3 

(see sec. 3.4), this procedure depends on the pdf of the α(f 2 ,n) = |c(f 2 ,n)| given α^ (f 1 ,n) = |c^

(f 1 ,n)|. If we assume perfect CSI at frequency f1 for sample n, this conditional pdf is 

determined by (3.23) with Ω  =  Ω
^

 =  1  and  

 ρ= 1/(1+(2π∆fσ)2) (4.23) 

In practice, this pdf is computed as in (3.23) using empirical estimates of Ω
^

 and ρ and 

depends on the accuracy of prediction in (4.21). As discussed in the chapter 3, the 

performance of adaptive modulation is not affected by the value of Ω
^

. Hence Ω^  is 

normalized to 1 for simplicity in our numerical simulation and the performance depends only 

on the correlation coefficient ρ. The adaptation of ρ to the variation of the rms delay spread 

is discussed in section 4.5. 

4.4.1 Performance Analysis of the LMS algorithm 

The adaptive prediction algorithms involve feedback in its operation, which therefore 

raises the related issue of stability. A meaningful criterion is to require that  

 J(n) → J(∞) (4.24) 

where J(n) = E[|ε( n ) | 2] is the mean-square error produced by the adaptive prediction 

algorithm at time n, and its final value J(∞) is a constant. An algorithm that satisfies this 

requirement is said to be convergent in the mean square [28]. 

In general, the performance of an adaptive predictor is measured by four factors. 

They are convergence rate, excess mean square error, tracking ability, and complexity. First, 
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the convergence rate tells how fast the adaptive algorithm can reach its steady state. Second, 

the excess mean square error Jex(∞) is the difference between the final value J(∞) and the 

minimum value Jmin attained by the Wiener solution (4.9). This difference represents the 

price paid for using the adaptive stochastic mechanism to control the filter coefficients 

instead of the expected value of the channel statistics. However, it is important to realize that 

this value is under designer’s control. Third, tracking ability, contrasted with convergence, is 

a steady state phenomenon. For an adaptive predictor to examine its tracking capability, it 

must first pass from the transient mode to the steady state mode. We use the physical channel 

model to generate non-stationary environment to test the tracking ability of our adaptive 

prediction algorithm. Note that convergence rate and tracking ability are two different 

properties. In particular, an adaptive prediction algorithm with good convergence properties 

does not necessarily possess a fast tracking capability, and vice versa [28]. Finally, 

complexity measures the cost of the system. 

The transient behavior of the mean square error J(n) of the LMS algorithm and the 

excess mean square error Jex(∞) are determined by the step size µ and the correlation matrix 

R (4.7) of the input data. By unitary similarity transformation [28], the correlation matrix can 

be decomposed as: 

 QHRQ = ΛΛΛΛ (4.25) 

where ΛΛΛΛ is a diagonal matrix consisting of the eigenvalue λi of the correlation matrix R, and 

Q is the unitary matrix consisting of the eigenvectors associated with these eigenvalues. The 

transient behavior J(n) is derived in [28] as: 

 J(n) = Jmin + ∑
i=1

p
 λixi(n) (4.26) 

where xi(n) can be determined iteratively as: 
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 xi(n+1) = (1 − µλi)2xi(n) + µ2Jminλi (4.27) 

The initial value of xi(0) is the ith diagonal component of the matrix QHd0d0
HQ. The selection 

of step size µ is a trade−off between the convergence rate and the excess MSE. We obtain 

good results with µ from 0.005 to 0.01. Figure 4.5 shows the theoretical LMS learning curve 

in (4.26) and the theoretical MMSE in (4.9). It is observed that the LMS algorithm converges 

slowly with significant excess mean square error. We also found that while OSNR 

determines the performance of the theoretical MMSE, it does not significantly effect the 

learning curve of the LMS algorithm on the fading channel characterized by the correlation 

function Rt(∆t) in (2.14). We also demonstrate the numerical simulation using Jakes model 

for comparison. In spite of its slow convergence rate, LMS is a very simple algorithm to 

implement. It does not require measurements of the pertinent correlation functions, nor does 

Figure 4.5 LMS algorithm learning curve. Normalized 
Prediction range fdm/fs = 0.2. filter length p =50. 
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it require matrix inversion. Indeed, it is the simplicity of the LMS algorithm that has made it 

the standard against which other adaptive filtering algorithms are benchmarked. The LMS 

algorithm requires 2p+1 complex multiplication and 2p complex additions per iteration. In 

other words, the computational complexity of the LMS algorithm is O(p) [28]. 

4.5 Channel Generation for Realistic Physical Model 

The prediction accuracy of our system depends not only in normalized time 

difference but also in the normalized frequency separation ∆fσ. For adaptive modulation 

algorithm, we assume the rms delay spread σ is fixed while in realistic fading channels, it is 

time variant. Thus, σ needs to be estimated and updated at the transmitter. We use the 

physical model to generate different time-variant rms delay spread environments to 

investigate the limits on the speed of the adaptation. The geometries for generating varying 

delay spreads are shown in Figure 4.6 (a),(b), and (c), and the delay spread for each case is 

shown in Figure 4.7. The distance between the transmitter and the mobile is 1Km, the 

sampling rate is 500 Hz, the speed of the mobile is 30m/s and the carrier frequency is 

900MHz. This corresponds to the maximum Doppler shift 100 Hz. In the case 1, the direction 

of the mobile is approximately parallel to the scattering objects. In the case 2, the scattering 

objects are arranged to be perpendicular to the moving direction. Figure 4.7 shows that the 

delay spread for the case 1 remains approximately constant since the propagation paths do 

not change significantly. On the other hand, the delay spread for the case 2 changes more 

rapidly relative to the case 1 due to the significant variation of the delay spread. This is 

consistent with the results in [29] that the CSI is slowly variant and easy to track when the 

scatterers are parallel to the direction of the mobile; and the CSI changes rapidly and is hard 

to track if the mobile moves toward the scattering objects. 
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Figure 4.6 Geometries of three physical modeling cases. 
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In the last case, the shadow fading is modeled. This situation can occur in an urban 

area where there exist large buildings. In Figure 4.7 (c), the mobile is shadowed by buildings 

in the beginning and can only receive signals by diffraction phenomenon (dashed line). When 

the mobile moves ahead, it can receive the signals directly from the source (LOS), resulting a 

significant change of the impulse response and the rms delay spread. Due to the severe 

variation of the delay spread, the frequency domain correlation also changes significantly. 

We call the third case the challenging case since accurate estimate and rapid track of the rms 

delay spread is required to maintain the performance of our adaptive modulation system. 
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Due to the capability of the physical model to capture the properties of a real mobile 

channel, the obtained datasets from the physical model usually exhibit, in addition to small 

scale fading (multipath fading), large scale fading (shadowing, power loss over distance). To 

compare the system performance over the physical model with that over the stationary Jakes 

model, it is important to separate the datasets from large scale fading. It is discussed in [6] 

that the small-scale fading can be approximately obtained by calculating A(x)/A
−

(x), where 

A(x) is the envelope of the obtained data, and A
−

(x) a small-area-average calculated by: 

 A
−

(x ) = 
1

2W 
⌡⌠
−W

W
 A(x + t) dt (4.28) 

where W is the window length used to calculate the average at time x. The small-area-

average should be calculated on the order of 10m [6]. For example, W = 0.3 sec can be 

chosen if the speed of the vehicle is 30m/s. In a real mobile channel, this technique can be 

used in the auto-gain-control (AGC) to track the mean value of the signal power. 

4.6 Numerical Simulation 

We use the Jakes model and the aforementioned physical model to validate the 

performance of the continuous power discrete rate adaptive M−QAM discussed in the 

chapter 3 aided by the LRP. The bit rate and average SNR is calculated as in (3.21) and 

(3.22). The maximum Doppler shift of 100 Hz is used in both models. The target BER = 10−3. 

The fading signal is sampled at the rate of 500Hz for the LRP. The observation interval is 

150 samples, the OSNR in the observations is 80dB, the symbol rate is 25ksymbol/s, and the 

modulation-switching rate is the same as the symbol rate. Interpolation is utilized to predict 

the channel coefficients at the symbol rate. The prediction range is 2ms.  
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In Figure 4.8, we plot BPS vs. normalized frequency separation ∆fσ for the ideal 

(non-adaptive) MMSE filter (4.7) and the robust method using the LMS algorithm with the 

step size 0.005. The parameters ρ in (3.23) are estimated during the observation interval for 

both data sets and are used throughout the transmission. For example, for ∆f = 0, the 

estimated ρ= 0.983 for the Jakes model and ρ= 0.965 for the physical model (case 1). The bit 

rate loss is less than half a bit for non-stationary data generated by the physical model 

relative to the stationary case. We also investigated the BPS under the assumption that 

prediction is perfect at frequency f 1 . We observe that the performance of the robust 

algorithm is very close to this ideal case as well as to the performance of the ideal MMSE 

algorithm. This is consistent with the results in [31] where it is shown that when observations 

and the predicted samples are at the same frequency, performance of adaptive modulation 
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aided by robust (adaptive) LRP closely approximates the ideal performance with perfect CSI. 

Hence the robust method is near-optimal and has the ability to adapt transmission parameters 

to the time-variant channel conditions. Moreover, for given σ, the theoretical value of the 

parameter ρ in (4.23) can be utilized in the selection of thresholds when robust prediction is 

used. 

The performance of the adaptive modulation using the outdated CSI for the Rayleigh 

fading channel with the correlation function (2.12) is also shown in Figure 4.8. To alleviate 

the mismatch of the delayed and future CSI, a novel approach to calculate thresholds based 

on the delayed CSI was studied in [24]. A similar method is employed here. A single 

observation c(f 1 ,n−1) is used instead of the estimate c^(f 1 ,n)  in (4.21) to compute the 

modulation parameters at frequency f 2 . We found that even very small delay causes 

significant loss of the bit rate for fast vehicle speeds when accurate long range prediction is 

not utilized. For example, for ∆fσ=0 and τ = 2ms, the loss is 1 to 2 BPS. Thus, accurate LRP 

is required to achieve the bit rate gain of adaptive modulation for fast vehicle speeds and 

realistic delays.  

Figure 4.8 also shows that adaptive modulation is primarily beneficial when the 

normalized frequency separation ∆fσ does not significantly exceed 0.1. For example, for 

∆fσ= 0.1, about 17dB is required to obtain 1 BPS for adaptive M-QAM as opposed to 24dB 

for non-adaptive signaling (BPSK). As ∆fσ approaches 0.4, the bit rate of adaptive 

modulation approximates that of non-adaptive transmission. Hence the frequency separation 

and the multipath delay (or the coherence bandwidth) are the factors that determine the 

performance of the proposed adaptive modulation method. The typical values of σ are on the 

order of microseconds in outdoor mobile radio channel [51]. Suppose ∆fσ= 0.1 and σ= 1µ 
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sec. Then the frequency separation ∆f = 100KHz. This means that two channels can be 

separated by 100KHz and still benefit from the proposed adaptive transmission method. 

Another practical consideration is the adaptation of the parameter ρ at the transmitter 

as a function of the variation of the rms delay spread σ. To investigate the limits on the speed 

of adaptation, we use the physical model to generate challenging and typical scenarios shown 

in Figure 4.9. We investigate the performance of adaptive modulation on these channels 

during the T=1 sec interval when σ varies rapidly in cases 2 and 3 (from 3.5 to 4.5 sec in 

Figure 4.7). The variation of the rms delay spread is approximately from 0.7 to 2.3 µs and 0.4 

to 2.6 µs for cases 2 and 3, respectively. The target BER is 10−3 and the power is adjusted to 

maintain the target BER to compensate for the mismatch of the rms delay. The parameter ρ is 

updated at the rate Rρ Hz. Figure 4.9 shows the BPS vs. SNR for the normalized adaptation 

rate RρT = 1, i.e. the value of ρ is not updated during the interval T. There is about 2dB loss 
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for the challenging case 3 relative to the rms-invariant case 1. To improve performance, the 

correlation ρ needs to be tracked and updated more frequently. Figure 4.10 illustrates that 

there is significant performance loss for the challenging case if RρT < 2. By analyzing 

datasets produced by the physical model, we concluded that the variation of the rms delay 

(and ρ) is typically slow and tracking of the correlation ρ does not result in significant 

additional computational and feedback load. The required rate of update of the parameter ρ is 

significantly slower than the low sampling rate for predicting at frequency f 1  in (4.21). Thus, 

the proposed robust prediction method based on the observations at a different carrier is 

feasible, but infrequent update of the time-variant frequency correlation is required to satisfy 

the adaptive transmission performance criterion (e.g. the BERtg). 

In this paper, the assumption of the exponentially distributed propagation delay (2.13) 

results in the relationship of the parameter ρ and the rms delay spread σ that is approximated 
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by (4.23). If the distribution of the propagation delay is different, this relationship will 

change. For example, for the uniform distribution, the coherence bandwidth and ρ are 

reduced for a given σ, and hence the performance of the prediction in the frequency domain 

and the bit rate are degraded relative to the exponentially distributed excess delay. Since we 

directly estimate the correlation ρ from the dataset, our algorithm is robust to the variation in 

the distribution of the excess delay. 
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CHAPTER 5 

ADAPTIVE OFDM SYSTEM AIDED BY LONG 
RANGE PREDICTION 

5.1 Background 

High data rate communications are limited not only by noise, but often more 

significantly by the inter symbol interference (ISI) [45] due to the time dispersive wireless 

communication channel. As a general rule, the effects of ISI on the transmission error 

statistics are negligible if the delay spread is significantly shorter than the duration of the 

transmitted symbol. For higher symbol rate transmissions, mechanisms such as channel 

equalizers [44] must be implemented in order to combat the effect of ISI. Significant research 

efforts were invested to develop such channel equalizer, and most wireless systems in 

operation use equalizer to combat ISI. 

There is, however, an alternative approach called Orthogonal Frequency Division 

Multiplexing (OFDM) for transmitting data over a multipath channel. The basic principle of 

OFDM is to split a high-rate data stream into a number of lower rate streams that are 

transmitted simultaneously over a number of subcarriers. The relative amount of dispersion 

in time caused by the multipath delay spread is decreased due to the increased symbol 

duration for the lower rate parallel subcarriers, resulting in relatively simple receiver 

structure compared with single carrier transmission in frequency selective fading channels. In 

addition, OFDM can significantly enhance the capacity by adapting the data rate per 

subcarrier according to the signal-to-noise ratio of that particular subcarrier. 

In this chapter, we first review the modulation and demodulation process of the 

OFDM signal. Next, we develop the long-range prediction algorithms for OFDM systems. 
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An ideal MMSE method that utilizes previous observations in time and frequency domain, 

and robust adaptive LRP algorithms are developed and compared. The LRP is utilized in 

adaptive bit and power allocation for the OFDM system. Statistical model of the prediction 

error is created and used in the design of reliable adaptive modulation. In addition, several 

methods that significantly reduce the feedback load for mobile radio AOFDM systems are 

developed and compared. 

5.2 Modulation and Demodulation for OFDM Signals 

In a classic parallel data system, the total signal frequency band is divided into K non-

overlapping frequency subcarriers. Each subcarrier is modulated with a separate symbol and 

then the K subcarriers are frequency-multiplexed. While it is desirable to avoid spectral 

overlap of channels to eliminate interchannel interference (ICI), this might lead to inefficient 

use of the available spectrum. To cope with the inefficiency, the ideas proposed from the 

mid-1960s [8,52] were to use parallel data and FDM with overlapping subcarriers. 

As an example, Figure 5.1 shows four subcarriers S1(t) to S4(t) from one OFDM 

signal with different phases and amplitudes in a symbol interval Tm (t = 0 to Tm). To maintain 

orthogonality between these subcarriers from 0 to Tm (
⌡⌠
0

Tm
Si(t)Sj(t)dt = 0 if Si(t) and Sj(t) are 

orthogonal for i ≠ j), each subcarrier has exactly an integer number of cycles in the interval 

[0,Tm], and the number of cycles between adjacent subcarriers differs by exactly one. An 

additional guard time (GT) from −Tg to 0 is inserted to prevent multipath induced 

interchannel interference at the receiver. For instance in the Figure 5.1, S′1(t), the delayed 

version of S1(t), maintains the orthogonality to the other subcarriers S2(t), S3(t), and S4(t) 

without causing any interference and vice versa from t = 0 to Tm due to the guard time. On 
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the other hand, S′2(t), the delayed version of S2(t), causes interference to other subcarriers 

since the excess propagation delay is larger than the GT. Thus, the GT is chosen larger than 

the expected maximum excess propagation delay, such that the multipath components from 

one symbol cannot interfere with other symbols. 

From the above discussion, an OFDM signal with K subcarriers, symbol interval Tm 

and guard time Tg at carrier frequency fc can be represented as: 

 s(t) = ∑
i=0

K−1
 Ai cos(2π(fc + 

i
Tm

)t + ϕi), −Tg ≤ t ≤ Tm (5.1) 

where for the ith subcarrier, Ai is the (real) amplitude, ϕi is the phase. The equivalent complex 

baseband notation can be expressed as: 

 sl(t) = ∑
i=0

K−1
 si exp{j2π

i
Tm

t}, −Tg ≤ t ≤ Tm (5.2) 

Figure 5.1 Example of four subcarriers within one OFDM symbol 

T 

delay due to multipath 
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where si = Aiexp{jϕi} are complex transmitted symbols. Figure 5.2 shows the operation of the 

OFDM modulator in a block diagram. Unfortunately, for a large number of channels, the 

array of sinusoidal generators and coherent demodulators required in parallel systems 

become unreasonablely expensive and complex. However, it is shown in [63] that (5.2) can 

be approximately generated by sampled data from sl(t) with sampling interval Tm/K and a 

lowpass filter. The sampled data s[n] can be expressed as: 

 s[n] = ∑
i=0

K−1
 si exp{j2π

in
K}, −Ng ≤ n < K (5.3) 

where Ng is the number of samples in the GT. Notice that the sampled data {s(n), n = 

0,…,K−1} is nothing more than the inverse discrete Fourier transform (IDFT) of K input 

complex data {si, i = 0…Ns −1}. And the data set {s(n), n = −Ng,…,−1} are exactly the 

 

 
 
 
 
 

Serial 

To 
parallel

OFDM 
signal OFDM 

data 

exp{−−−−j2ππππit/T} 

exp{−−−−j2ππππ(Ns−−−−1)t/Tm} 

1

Figure 5.2 OFDM modulator 
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duplicate of the data set{s(n), n = K−Ng,…,K−1}. Therefore, they are called the cyclic prefix 

(CP) code. 

Suppose the channel is time-invariant and let hl(τ) denote the equivalent complex 

lowpass channel impulse response. Assume the GT is larger than the maximum delay spread, 

i.e., hl(τ) = 0 for τ > Tg. The received OFDM signal rl(t) can be expressed as: 

 rl(t) = ⌡⌠
0

∞

 hl(τ) sl(t − τ)dτ = ∑
i=0

K−1
 ⌡⌠

0

∞

 hl(τ)exp{−j2π
i

Tm
}dτ si exp{j2π

i
Tt}, −0 ≤ t ≤ Tm (5.4) 

To demodulate the signal si, rl(t) is sampled at sampling rate Tm/K, and the sampled data 

{rl[n], n = 0,…,K−1} are taken Discrete Fourier Transform (DFT). The resulting symbol at ith 

subcarrier can be given as 

 u[i] = si ⌡⌠
0

∞

 hl(τ)exp{−j2π
i

Tm
}dτ = c[i] si, i = 0,…,K−1 (5.5) 

It is observed that the desired signal si is effected by a complex channel gain c(i), which is 

the frequency response at subcarrier i. Thus, the signal can be demodulated by a simple one-

tap complex equalizer. 

5.2.1 OFDM over Mobile Fading Channel 

As we discussed in the previous section, OFDM signal can be demodulated without 

any ICI as long as the guard time is larger than the maximum excess delay spread and the 

channel impulse response is time-invariant. However, the impulse response is time-variant 

for mobile radio channels and a more interesting issue is the effect of Doppler shift on the 

OFDM receiver performance. Assume the GT is always longer than the maximum delay 

spread, so that the effects of ISI are totally removed and the blocks can be analyzed 
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independently. From (2.8) and (2.10), the equivalent lowpass complex fading coefficients at 

K subcarriers f 1 , …, f K , f1<f2<…<fk, where | f i− f j |<<  the carrier frequency fc,  can be 

closely approximated as [35]: 

 c(f i ,t) =∑
n=1

N
 A(n)exp{j(2πfd(n)t+φi(n)}, i = 1,2…K (5.6) 

Ignoring AWGN, the equivalent complex lowpass received OFDM signal, after multipath 

fading channel, can be characterized as: 

 rl(t) = ∑
m=1

N
 ∑

i=0

K−1
 Am(i) si exp{j2π(

i
Tm

 + fd(m))t}, 0 ≤ t ≤ Tm (5.7) 

where N is the total number of the path, and for the mth path, Am(i) = A(m)exp{jφi(m)}is the 

complex fading gain, and fd(m) is the Doppler shift. To demodulate at the receiver, rl(t) is 

sampled at the sampling interval Tm/K, resulting in: 

 rl[n] =∑
m=1

N
 ∑

i=0

K−1
 Am(i) si exp{j2π(

i
Tm

 + fd(m))n
Tm
Ns

}, n = 0,…,K−1 

 = ∑
m=1

N
 ∑

i=0

K−1
 Am(i) exp{j2πfm

nTm
K } si exp{j2π

inTm
K }, n = 0,…,K−1 (5.8) 

Let c[k, n] = ∑
m=1

N
 Am(k) exp{j2πfm

nTm
K }, which is the complex fading channel gain at kth 

subcarrier with sampling interval Tm/K. Define Xi(n) = c[i, n] si exp{j2π
inTm

K }, then (5.8) can 

be rewritten as: 

 rl(n) = ∑
i=0

K−1
 Xi(n) (5.9) 
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Let W = exp{−j
2π
K } and {s~(n), n = 0… K−1} denote the symbols after taking DFT of {rl(n), n 

= 0… K −1}. Then the ith component, s~(i), can be expressed as: 

s~(i) = 
1
K[(Wi)0 (Wi)1… (Wi)K−1] 









rl[0]

rl[1]
.
.

rl[K−1]

 = 
1
K [(Wi)0 (Wi)1… (Wi)K−1] ∑

i=0

K−1
 









Xk[0]

Xk[1]
.
.

Xk[K−1]

 

= 
1
K [(Wi)0 (Wi)1… (Wi)K−1]









Xi[0]

Xi[1]
.
.

Xi[K−1]

 + 
1
K∑

k=0
k≠i  

K−1
 [(Wi)0 (Wi)1… (Wi)K−1]









Xk[0]

Xk[1]
.
.

Xk[K−1]

  

 = 
1
K∑

m=0

K−1
 c[i, m] si + 

1
K∑

k=0
k≠i  

K−1
 sk ck,i (5.10) 

where ck,i = ∑
m=0

K−1
 (Wi)mc[k, m] is the ICI from kth subcarrier to the ith subcarrier. By comparing 

(5.10) with (5.5), it is observed that OFDM signals over multipath fading channel not only 

result in different CSI 
1
K∑

m=0

K−1
 c[i, m] but introduce a ICI. Assume the channel gain c[i, m] does 

not change within one OFDM symbol interval Tm, i.e., c[i, m] is a constant for m = 0…K−1, 

thus the channel gain 
1
K∑

m=0

K−1
 c[i, m] at subcarrier i can be approximately modeled as the 

samples of the time-varying frequency selective channel in (5.6) with the time domain 

interval Tm. The effect of the ICI is not considered in this thesis, although in practice it can 

be significant and has to be addressed in the overall system optimization. [47]. 
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5.2.2 Physical Model 

We employ the physical model to generate the realistic multicarrier channel. The 

geometry for generating the model data set used in this chapter is shown in Figure 5.3. The 

scattering objects are arranged approximately parallel (group A) and perpendicular (group B) 

to the direction of the mobile. The fading amplitude is shown in Figure 5.4. The maximum 

Doppler shift is 100Hz, and the sampling rate is 500Hz. For the first 500 samples, the CSI is 

influenced significantly by the multipath from group A, whereas the CSI is dominated by the 

multipath from group B for the following 500 samples due to the reversal of signal 

amplitudes from the relative distance to the scattering objects. Taking into account the 

direction of the mobile, we see that the Doppler shift rapidly changes in both magnitude and 

sign, and the dominant amplitudes and phases undergo significant variation during the 

transition period from samples 500 to 700. We use this transition interval to test the 

robustness of the LRP to parameter variation in section 5.3. 

M A 

B 

Figure 5.3 Geometries of the physical modeling. 
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5.3 Long Range Prediction for AOFDM System 

We now consider an OFDM system with K subcarriers, symbol (block) duration Tm, 

and adjacent subcarrier (tone) spacing ∆fs. Assume the channel bandwidth of the each 

subcarrier is much smaller than the coherence bandwidth and the channel state information 

does not change within one OFDM symbol duration T = Tm+Tg but varies from symbol to 

symbol. The equivalent complex channel gain H[n, k] at nth symbol block and kth subcarrier 

can be modeled as the samples of the time-varying frequency selective channel in (5.6) with 

the time domain and frequency domain sampling interval T and ∆fs. From (2.11) and (2.12), 

the temporal and ensemble channel correlation functions for the OFDM symbols with block 

difference ∆n and tone spacing ∆k can be readily written as RT(∆nT, ∆k∆fs) and RE(∆nT, 

∆k∆fs), respectively. 
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Figure 5.4 CSI for the physical model. 
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The uncoded AOFDM system aided by the LRP and reduced feedback considered in 

this paper is depicted in Figure 5.5. The input data is allocated to the subcarriers according to 

the CSI fed back from the receiver. The LRP is employed at the transmitter to enhance the CSI 

accuracy. Let a[n, k] denote the complex baseband symbols at nth block and kth tone. The 

received signal after OFDM demodulation can be expressed: 

 X[n, k] = H[n, k]a[n, k] + w[n, k] (5.11) 

where w[n, k] is complex additive white Gaussian noise with variance E[|w[n, k]|2] = N0. Then 

frequency domain coherent channel estimation of the complex symbols associated with each 

of the K subcarriers is employed. A 2−D minimum mean square error channel estimator was 

proposed in [39]. Let  

 H
~

[n, k] = H[n, k] + w~ [n, k]  (5.12) 

denote the estimated CSI, where w~ [ n, k] is the estimation error modeled as white Gaussian 

noise with power spectrum N0
~

. We define the observation SNR (OSNR) = E[|H[n, k]|2]/N0
~

. 

We normalized E[|H[n, k]|2 to 1 throughout the chapter. Due to the correlated subcarriers, the 

estimated CSI H
~

[n, k], k=1…K, can be reduced and fed back to the long-range predictor at 

a[n, k] 

H
~

[n, k] 

LRP 

OFDM 
demodulation 

Time-varying multipath 
fading channel 

OFDM 
modulation 

Channel 
estimation 

Reduced 
feedback 

Adaptive bit and 
power allocation

Input data 

Feedback 
information

Figure 5.5 Block diagram of an adaptive OFDM system 
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the transmitter at low rate. Alternatively, the predictor can be placed at the receiver between 

the channel estimation and the reduced feedback blocks depending on the implementation 

issues such as complexity, performance and costs. The reduced feedback methods will be 

discussed in section 5.5. In this section, we assume that estimates of all subcarriers H
~

[ n, k], 

k=1…K are available for the following long- range prediction algorithm. 

5.3.1 MMSE Long Range Prediction 

As we discussed in the chapter 2, the mobile fading channel over multiple carriers 

over a very short period of time can be characterized by a sum-of-sinusoids model as in (2.8) 

and (2.10) with the parameters {A,θ,τ,φ1}. In this section, we derive the linear MMSE-based 

channel predictor for a multicarrier fading channel where {A,θ,τ} are fixed and the 

components of {φ1} are mutually independent random variables uniformly distributed on 

[0,2π]. One important parameter for the LRP is the sampling rate. For narrow band single 

carrier systems, the sampling rate of the LRP is much lower than the symbol rate (see chapter 

4 or [16]). While the symbol interval in OFDM systems is longer, it is still beneficial to 

choose the sampling rate of the LRP lower than the symbol rate. Let H
~

[n, k] denote the 

estimated CSI (as in (5.12)) with a sample interval Tp (an integer multiple of the OFDM 

symbol interval T). The channel predictor for the CSI at the kth tone and the nth sample based 

on the p previously observed samples at K subcarriers can be constructed by: 

 H
^

 [n, k] = ∑
j=1

p
 ∑
m=1

K
 d*(j, m) H

~
 [n−j, m] (5.13) 

Provided that the correlation function (2.11) is known, the optimal filter coefficients do(j, m) 

that minimize the conditional MSE E{φ1}[|(H[n, k]−H
^

[n, k])|2|{A,θ,τ}] can be derived by 

using the orthogonaltiy principle [28]: 
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 E{φ1}[(H[n, k] − H
^

 [n, k])* H
~

 [n−g, l]|{A,θ,τ}] = 0, g = 1…p, l = 1…K (5.14) 

The resulting MMSE Jmin is given by:  

 Jmin = 1 − tr [DH G]. (5.15) 

where tr[•] is the trace of a matrix, the subscript H is Hermitian transpose and the matrix 

D= 









do(1,1) do(1,2) …. do(1,K)

do(2,1) . . .
. . . .
. . . .

do(p,1) . . do(p,K)

 and G = 









r(1,k−1) r(1,k−2) …. r(1,k−K)
r(2,k−1) . . .

. . . .

. . . .
r(p,k−1) . . r(p,k−K)

 

where r(∆n, ∆k) = RT(∆nTp, ∆k∆fs). This result serves as a theoretical foundation for our 

prediction problem and will be used in the performance analysis. The MMSE Jmin depends on 

the scattering configuration {A,θ,τ} and number of waves N of the fading process. In 

general, our prediction method performs better when N is small. As N becomes large, the 

TACF (2.11) for the Jakes model and for our RPM (see sec. 2.4) approaches EACF (2.12) 

[35]. Therefore, Jmin is upper-bounded by (5.15) with r(∆n, ∆k) ≈ R t(∆nTp)R f(∆k∆fs). With 

this separation property, the closed-form expression for the optimal predictor and the MMSE 

given infinite past channel observation are derived in the appendix D. In Figure 5.6, we 

generate different scattering parameters {A,θ,τ} and calculate Jmin for each experiment with 

k=2 (desired subcarrier) and K=3 (number of observation subcarriers) in (5.13). And Figure 

5.7 shows the average of the calculated Jmin. It is observed that Jmin calculated by TACF 

approaches that calculated by EACF when N is larger than 150. Moreover, the linear MMSE 

prediction results in the maximum likelihood (ML) prediction given past observations due to 

the assumption of joint Gaussian distribution of the observations and future samples [43]. 
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5.3.2 Simplified LRP Method 

In the linear prediction algorithm (5.13), the optimum MMSE is achieved by 

observing previous symbols of multiple subcarriers. However, this method is very complex 

in practice. Moreover, we have found that if the OSNR of the observed feedback samples is 

high, the improvement in the prediction accuracy when non-adjacent subcarriers’ 

observations are used relative to utilizing just past samples of desired and adjacent 

subcarriers is negligible. This results from the fact that the CSI can be accurately predicted 

by the desired subcarrier for high OSNR and non--adjacent subcarriers is uncorrelated to the 

desired subcarrier due to large NFS. Actually, for the asymptotic case when the TAFC 

approaches the EACF factorization (2.12), and when the CSI is noiseless, it is sufficient to 

use just the past samples of the desired subcarrier to achieve the optimal MMSE performance 

(see Appendix D). Thus, we propose to simplify the algorithm by using only previously 

observed samples at subcarrier k to predict the CSI H[n,k]: 

 H
^

[n, k]  =  ∑
j=1

p
 dj

*(n) H
~

(n − j, k) k = 1,2,…,K (5.16) 

Note that if the observation SNR is low, adjacent subcarriers can be easily incorporated to 

reduce the noise level at the cost of the system complexity. While in general, the coefficient 

vector d(n) = [d1 d2…dp]T in (5.16) needs to be computed and adapted individually for each 

subcarrier, for our channel model, it is sufficient to employ the same filter coefficient vector 

d(n) to predict future CSI for each subcarrier. This method is justified by the fact that the flat 

fading coefficients of different subcarriers have approximately the same Doppler shifts (see 

(5.6)). It was shown in [18] that only the Doppler shifts associated with the scattering 

determine the prediction coefficients d(n) in (5.16). Hence the filter coefficient vector d(n) 

should remain tone-invariant resulting in significantly reduced computational complexity and 
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greatly improved tracking ability for the adaptive prediction methods discussed in the 

following sections since all feedback observations can be used jointly to update the 

coefficients. We call this method simplified multiple carriers prediction (SMCP). Note that 

this tone invariability can be generalized to the case when observation of several adjacent 

carriers are used provided that the same number of adjacent carriers is employed on each side 

of the desired carrier. This method extends to adaptive transmitter antenna diversity systems 

since the channels for all antennas have the same Doppler shifts [4]. 

The optimum MMSE channel prediction above relies on the knowledge of the time 

and frequency domain correlation functions (2.11). However, these correlation functions 

depend on the particular environment and usually are unknown. In addition, the coefficients 

d(n) in (5.16) needs to be computed adaptively as the Doppler shifts in (5.6) vary with time. 

In the following section, we employ the adaptive Least Mean Square (LMS) and Recursive 

Least Squares (RLS) algorithms, which do not require the knowledge of the correlation 

functions of the channel, to update the prediction filter coefficients for the OFDM system. 

The error between the desired response and the predicted CSI at subcarrier k is: 

 e[n, k] = H[n, k] − ∑
j=1

p
 dj

*[n] H
~

[n − j, k], k = 1…K. (5.17) 

The average mean square error (AMSE) over all subcarriers is  

 AMSE = J(n) = 
1
K∑

k=1

K
 |e[n, k]|2 (5.18) 

This AMSE is used for updating the coefficients of the LMS and RLS algorithms. Note that 

the subcarriers are parameterized by the same {A,θ,τ} but different phases {φi}, where {φi} = 

{φi(1)… φi(N), i = 1…K}. As the number of subcarriers K increases, the phases {φi} become 
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randomized, and thus J(n) ≈ E{φk}[e[n, k]2|{A,θ,τ}] for any k, and a lower bound on AMSE 

tends to the conditional MMSE for the single carrier LRP Jsmin 

 Jsmin = Jmin for K = 1 (5.19) 

where Jmin is defined in (5.15). Note that using AMSE in SMCP, we adapt the coefficient 

vector d(n) jointly using the errors for all subcarriers. As discussed below, this improves 

accuracy and convergence rate relative to single carrier adaptive prediction [16,19,34]. We 

also observed that the prediction algorithm is more robust to noise in the feedback signals 

compared to the single carrier prediction [16,31] for both the LMS and RLS algorithms if the 

adjacent subcarriers are employed for prediction. 

Assume the first p (filter length) samples are available for all subcarriers. Define the 

desired samples at time p+n as H
~

d[n]= [H
~

[p+n, 1], H
~

[p+n, 2],…, H
~

[p+n, K]]T and the input 

p×p data matrix as H
~

[n] = 









H

~
(p+n−1,1) H

~
(p+n−1,2) …. H

~
(p+n−1,K)

H
~

(p+n−2,1) . . .
. . . .
. . . .

H
~

(n,1) . . H
~

(n,K)

 . This 

notation will be used in the following robust prediction algorithms. 

5.3.3  LMS algorithm for AOFDM 

The LMS algorithm belongs to the family of stochastic gradient algorithms and 

iteratively estimates the MMSE predictor filter [28]. The LMS algorithm uses the cost 

function J(n) in (5.18). The equations for updating the predictor coefficients, shown in Table 

5.1, are derived by calculating the gradient vector ∇J(n). From [28], the LMS learning curve 

depends on the step size µ and the eigenvalue spread of the correlation matrix, which can be  
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dpx1(0) = 0 

For each time instance, n=1,2…, compute 

ξpx1(n) = H
~

d(n) − d(n−1)HH
~

(n) 

d(n) = d(n−1) + µ
1
KH

~
(n)ξ*(n) 

determined from the TAFC (2.11), of the input process. The selection of step size µ is a 

trade−off between the convergence rate and the excess MSE: 

 Jex(n) = J(n) − Jsmin (5.20) 

where J(n) and Jsmin are defined in (5.18) and (5.19), respectively. Similarly to the derivation 

for the single carrier prediction (see section 4.4), we derive the theoretical learning curve of 

the LMS for SMCP. Figure 5.8 demonstrate the comparison between the average theoretical 

learning curve and the numerical simulation for different scattering parameters {A,θ,τ}. It is 

observed that while Jex(∞) is larger for µ = 0.1, it converges more rapidly than that for µ = 

0.005.  

5.3.4 RLS algorithm for AOFDM 

The RLS algorithm is a natural extension of the method of least squares. The idea of 

the algorithm is to design an adaptive filter such that given the least−squares estimate of the 

tap−weight vector at iteration n − 1, we may compute the updated estimate of the vector at 

iteration n upon the arrival of new data.  

With the RLS algorithm, the predictor coefficients are calculated so that they 

minimize the error: 

Table 5.1 LMS algorithm for OFDM channel prediction 
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 ε[n] = ∑
i=1

n
 ∑
k=1

K
 λn − i |e[i, k]|2 (5.21) 

where λ with 0 < λ ≤ 1 is the forgetting factor that accounts for possible non-stationary of the 

input CSI. The resulting update equation for the predictor coefficient vector d[n] is shown in 

Table 5.2. The parameter δ in the initialization procedure should be chosen small compared 

to the variance of the data samples. We use δ = 0.01 in our simulation. For the RLS, the 

excess mean square error Jex(n) for SMCP is derived similarly to that for the single carrier 

case [28]. Its learning curve, unlike LMS algorithm, is independent of the eigenvalue spread 

of the input process and decays almost linearly with nK (the convergence rate is 

approximately K times faster than for single carrier prediction). For λ =1, Jex(n) converges to  
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prediction range in time fdmT = 0.2. p = 50. K =100. ∆∆∆∆fs = 0.005. 
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Initialize the algorithm by setting 

Ppxp(0) = (H
~

(1)H
~

H(1) + δI)−1 

dpx1(0) = 0 

For each time instance, n=1,2…, compute 

kpxp(n) = 
λ−1P(n-1)H

~
(n)

1+λ−1H
~

H(n)P(n-1)H
~

(n)
 

ξpx1(n) = H
~

d (n) − d(n−1)HH
~

(n) 

d(n) = d(n) + k(n) ξ*(n) 

P(n) = λ−1P(n − 1) − λ−1k(n)H
~

H(n)P(n − 1) 

zero, and for λ close to 1 and large K, the Jex(∞) ≈ Jsmin
(1−λ)p

2K . Hence for large K, Jex(∞) ≈ 0. 

(While Jex(∞) ≥ 0 in our example, for small values of K and proper choice of λ (close to 1 but 

not 1), it is possible for Jex(∞) to be smaller than 0 due to the nonstationarity of the 

deterministic channel model (5.6) [48] and the fast tracking property of the RLS algorithm. 

Thus, SMCP improves the convergence rate and the steady state MSE for the RLS relative to 

the single carrier prediction [18,19,31]. Figure 5.9 demonstrates the learning curve of the 

RLS algorithm. It is observed that the RLS algorithm can converge rapidly to the Jsmin for 

large K (=100). In addition, when K =10, and λ = 0.9, the AMSE can be smaller than Jsmin. 

This simulation result reveals that the performance of the AMSE can be improved by 

properly choosing the number of K and the forgetting factor λ for SMCP RLS algorithm.  

Table 5.2 RLS algorithm for OFDM channel prediction 
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5.3.5 Numerical simulations 

We use the RPM and the physical model (see section 5.1.3) to validate the 

performance of the LRP for the OFDM system. To test the performance of our prediction 

algorithm on the fading channel modeled by the RPM, N = 34 is chosen and multiple 

deterministic channel realizations are generated by using independent angles {θ} and 

propagation delays {τ}. We apply the LRP for each independent realization and calculate the 

AMSE (5.18). Furthermore, the Jsmin (5.19) averaged over these independent realizations is 

presented for comparison. Note that when we use the RPM, each channel realization has 

different TACF. Thus, we can test the tracking ability and the prediction accuracy (AMSE) 

of our prediction algorithm in different scattering environments. This task cannot be 

accomplished using the Jakes model, where the incident angles are fixed. The prediction 

filter length p in (5.16) is 50. The maximum Doppler shift of 100 Hz is used in both models. 
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The rms delay spreads is approximately 1µs in both channel models. To construct an OFDM 

symbol, assume that the entire channel bandwidth, 800kHz, is divided into 128 subcarriers. 

The symbol duration is 160µs. An additional 5µs guard interval is used to provide protection 

from ISI due to channel multipath delay spread. Thus the total block length is 165µs and the 

subcarrier symbol rate is approximately 6KHz. For each subcarrier, the fading signal is 

sampled at the low rate of 466Hz for the LRP (the prediction range is 1/466Hz ≈ 2ms). In 

this thesis, we assume reliable channel estimation and high effective SNR (80 dB) of the 

observed CSI. While actual SNR of the observed samples might be much lower, it is possible 

to employ noise reduction techniques due to very low sampling rate of the LRP [16,19,27]. 

Interpolation is utilized to predict channel coefficients at the subcarrier symbol rate 

[16,19,31]. 

Figure 5.10 demonstrates the average AMSE (5.18) over all the channel realizations 

for the SMCP method for the RPM model. When these results are compared with the single 
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carrier prediction, we find that the excess mean square error for the LMS algorithm Jex(n) 

(5.20) of these two approaches is approximately the same given the same step size µ.. This 

result suggests that the number of the subcarriers employed for the SMCP is insignificant for 

determining the learning curve of the LMS algorithm once the step size µ is chosen. The 

MSE curve shown for µ=0.005 corresponds to both methods. However, the single carrier 

algorithm diverges for large µ, while for the SMCP (5.16), µ can be chosen as large as 0.1 

without divergence, thus improving the convergence rate. As the NFS increases, larger step 

size µ can be chosen, resulting in faster convergence. This phenomenon results from the fact 

that weak correlation between the subcarriers due to large NFS results in small bias in the 

estimate of the gradient vector ∇J(n). While the RLS has higher computational complexity 

than the LMS algorithm, its learning curve and the excess MSE Jex(n) (5.20) are significantly 

improved relative to the LMS. It is observed that the RLS algorithm converges rapidly with 

almost no excess MSE for λ = 0.9, whereas the LMS algorithm converges more slowly with 

significant excess MSE relative to the RLS algorithm. We also demonstrate the RLS 

algorithm for the Jakes model. We observe that for λ = 0.9, the AMSE of the more realistic 

RPM is better than that of the Jakes model. 

In Figure 5.11, the SMCP is explored for the physical model. It is demonstrated that 

the RLS algorithm is good at tracking the non-stationary channel. During the transition 

period (from samples 500 to 700 in Figure 5.4), the forgetting factor λ = 0.1 has better 

tracking ability than λ = 0.9. Hence it is more robust to the non-stationary environment. The 

tracking results for the LMS algorithm are much poorer with a relatively high MSE during 

and even after the transition period. 
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5.4 Adaptive Bit and Power Loading Algorithm 

Adaptive OFDM system, similarly to adaptive modulation for single carrier flat 

fading channel [16,21,22,24,31,57], involves optimizing the modulation level and the 

transmit power over the entire frequency band to maximize the spectral efficiency. In a 

frequency selective fading channel, some subcarriers experience a deep fade while others are 

subject to channel gain. The spectral efficiency can be improved by allocating more bits to 

those subcarriers with favorable channel conditions than to those in a deep fade, as motivated 

by the “water filling” distribution [45]. Several practical integer-bit and power allocation 

algorithms have been addressed in [10,11,26,36] that perform the optimum or near-optimum 

loading of bit and power in an OFDM frame. However, these methods perform adaptive bit 

and power allocation assuming perfect CSI. In this section, we employ channel loading 

optimization in the presence of imperfect CSI that results from prediction errors under the bit 
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rate maximization (BRM) criterion, where the goal is to allocate the limited energy among 

the subcarriers to maximize the overall bit rate subject to a target bit error rate constraint 

[11]. A simplified loading method similar to [10] is compared with the optimal Hughes-

Hartogs algorithm [26]. 

5.4.1 Robust adaptive and power allocation 

For each subcarrier we employ rectangular M(i)−QAM modulation [12] where 

M(1)=0, M(i)=2i−1, i = 2…6. Let c^ denote the CSI obtained from the linear prediction 

algorithm (5.16) and c the actual complex gain at a certain subcarrier. Hence c^ and c are 

jointly complex Gaussian and their amplitudes α^  and α are both Rayleigh distributed. For 

subcarrier k, let Pk (= E[|a[n, k]|2] (5.11)) denote the transmitted signal power of the complex 

M(i)−QAM symbol that is determined by allocation algorithm. (Note the sum of the allocated 

powers for all subcarriers does not exceed the total power constraint Ptotal). Assume each subcarrier 

has the same noise power N0 (see (5.11)). The SNR γ(i) (= Pk/N0) required to employ 

M(i)−QAM modulation based on the predicted channel gain α^ k at the kth subcarrier can be 

found by numerical search to solve Pe
*(M(i),γ(i),α^ k) = BERtg, where Pe

* is demonstrated in 

(3.18). Note Pe
* depends on the correlation coefficient ρ between |αk|2 and |α^ k|2. Once γ(i) are 

calculated for each modulation level and each subcarrier, they are used to implement the 

Hughes-Hartogs and the simplified algorithm. The only difference in the implementation 

(relative to the perfect CSI case) is that the SNR γ(i) is used in place of the ideal SNR 

required to achieve the BER with M(i)-QAM [12]. 

The optimal Hughes-Hartogs algorithm is based on a relatively simple scheme called 

successive bit allocation algorithm. In each iteration, the algorithm assigns one bit to the 
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subcarrier requiring the least additional power to reliably transmit that bit. The additional 

power per bit required by the modulation with M(i+1) levels relative to the modulation with 

M(i) levels can be calculated by: 

 γb = 
γ(i+1) − γ(i)

log2M(i+1) − log2M(i) (5.22) 

The parameter γb is computed for each subcarrier in each iteration and the bits and power are 

designated to the subcarrier with the minimum γb. The algorithm stops when no additional 

bits can be added without violating the total power constraint. 

While the Hughes-Hartogs algorithm is optimal and simple to implement, it requires 

intensive sorting and computation and thus renders the algorithm impractical for applications 

where the number of subcarriers are large. We employ a simplified sub-optimal algorithm in 

[10]. This algorithm has two steps. The first step is called equal power allocation. The same 

amount of energy Ptotal/K is assigned to each subcarrier at subcarrier k for selecting the initial 

modulation level: 

 M= max {M(i) | Pe
* ( M(i), Ptotal/(KN0),α

^
k) < BERtg}, k = 1…K (5.23) 

After the modulation level is decided, the power distribution Pk at subcarrier k is calculated 

so that Pe
*(M, Pk/N0,α

^
k) = BERtg. This power allocation step exploits the fact that the 

difference between the optimal water-filling distribution and the flat-energy distribution is 

minimal. Note the total power usage must be less than the total power constraint Ptotal. By 

applying the successive bit allocation algorithm, the second step performs adaptive bit 

allocation using the rest of the power.  
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5.4.2 Numerical simulation 

The performance of the aforementioned AOFDM algorithm depends on the 

correlation coefficient ρ between |αk|2 and |α^ k|2, k = 1…K. The average bits per symbol 

(BPS) vs. the correlation coefficient ρ vs. the average SNR constraint given by 
Ptotal
KN0

 is shown 

in Figure 5.12, where we assume each subcarrier has the same prediction accuracy ρ. The 

BER constraint for each subcarrier is 10−3. The correlation ρ= 1 corresponds to perfect 

prediction, while ρ= 0 represents the worst case when the BPS of the adaptive modulation 

converges to that of the non-adaptive M-QAM for given SNR and bit error rate constraint 
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BERc. It is observed that the simplified algorithm is near-optimal when ρ is close to 1 and 

has performance loss less than 0.1 BPS for ρ <<1 compared with the optimal Hughes-

Hartogs algorithm. 

We use the RPM and the physical model to validate the performance of our AOFDM 

algorithm aided by the LRP. Perfect feedback is assumed. The target BER for the adaptive 

OFDM system is 10−3. The system parameters are described in section 5.2.5. The average 

BPS of the AOFDM for different prediction algorithms over the RPM and physical channel 

models is plotted in Figure 5.13. Note that the spectral efficiency will be slightly less than the 

average BPS due to the guard interval used to eliminate the ISI. Comparison reveals that the 
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RLS has better performance than the LMS algorithm for the RPM and non-stationary 

physical model. The performance of the RLS algorithm for the RPM is almost near-optimal, 

whereas the loss is only about half dB for the physical model compared to the perfect 

knowledge of CSI. The performance of the AOFDM using the outdated CSI for the RPM is 

also shown in Figure 5.13. To alleviate the mismatch of the delayed and future CSI, an 

approach to calculate thresholds based on the delayed CSI was studied in [24]. We found that 

even very small delay causes significant loss of the bit rate for fast vehicle speeds when 

accurate LRP is not utilized. For example, the delay of 1ms for fdm =100Hz corresponds to 

correlation coefficient ρ = 0.9 in (3.24). This results in the bit rate loss about 0.5 bits/symbol 

for the target BER = 10−3 and the SNR per symbol = 15 dB assuming stationary Rayleigh 

fading channel, while prediction with RLS allows to achieve the bit rate of about 2.6 

bits/symbol for the non-stationary, and the near-ideal rate for the stationary model. Thus, 

accurate LRP is required to achieve the bit rate gain of adaptive OFDM system for fast 

vehicle speeds and realistic delays. 

5.4.3 Block Loading in Frequency 

To reduce signaling overhead complexity and to accommodate the hardware 

constraints, we investigated the performance of block adaptive loading in frequency domain, 

where neighboring subcarriers are grouped into a sub-channel and use the same modulation 

level and power control. In addition, block loading can reduce the complexity of the loading 

algorithm since the number of sub-channels is fewer than the number of subcarriers. 

Similarly to the block loading method in 3.5, we employ two different power control 

methods. They are per-subcarrier (PS) and per-sub-channel (PC) power control. In the PS 

method, power can be adjusted for each subcarrier in that sub-channel, and in the PC method, 
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power remains constant for the whole sub-channel. Next, we discuss the Hughes-Hartogs 

block loading algorithm.  

Let L be the number of subcarriers in a sub-channel and {α1,α2,…αL} be the 

amplitudes of CSI at subcarrier 1 to subcarrier L in a sub-channel during an OFDM symbol 

interval. Assume perfect CSI and threshold Ti, i = 1…4 is decided as in (3.11). For that sub-

channel, the required power to employ M(i)-QAM for the PS and PC methods are Sf(i) = 
1
L 

∑
k=0

L−1
 S− (

Ti

αk
)2 and Sf(i) = {S

−β | 
1
L ∑

k=0

L−1
 Pe(Mi, γ

−β (αk)2) = BERtg}, respectively. For the Hughes-

Hartogs algorithm, The additional power per bit required by the modulation with M(i+1) 

levels relative to the modulation with M(i) levels for each sub-channel is calculated by: 

 γb = 
Sf(i+1)−Sf(i)

log2M(i+1)−log2M(i) (5.24) 

The parameter γb is computed for each sub-channel in each iteration and the bits and power 

are designated to the sub-channel with the minimum γb. The algorithm stops when no 

additional bits can be added without violating the total power constraint. Figure 5.14 

demonstrates the numerical results for the block loading over frequency domain. The total 

number of subcarrier K =160, and the normalized subcarrier spacing ∆fsσ = 0.005. It is 

observed that performance loss is negligible if ∆fsLσ < 0.1 (L = 20). Thus, 8 sub-channels, 

relative to 160 subcarriers, are created for the loading algorithm, resulting in significant 

complexity reduction. Furthermore, block loading method in time described in 3.5 can be 

incorporated resulting in block loading in time and frequency adaptive loading method. Note 

the simplified loading algorithm can also be easily accommodated for the block loading to 

further reduce the computation complexity. 
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5.5 Feedback Load Reduction 

In addition to adaptive channel loading, many other adaptive transmission techniques 

can be implemented in a wireless OFDM system. These include adaptive coding, adaptive 

transmitter antenna diversity and interference suppression at the transmitter. In a closed−loop 

system the transmitter obtains the CSI for this adaptive transmission from the receiver via a 

feedback channel. The prediction can be performed either at the transmitter or at the receiver, 

depending on the complexity and feedback requirements. In some adaptive transmission 

applications, it might be feasible to predict at the receiver and feed back the CSI parameters 

derived from the predictions (e.g., the modulation level and power for adaptive modulation). 

In other adaptive transmission techniques (e.g., adaptive antenna diversity), predicted 

channel gains are often required at the transmitter, and thus channel gains have to be fed 

Figure 5.14 Bit per symbol for block loading 
adaptive modulation and power control.  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
1.5

2

2.5

3

3.5

4

4.5

normalized frame length ∆f Lσ

Bi
t p

er
 s

ym
bo

l

PS

PC 

Hughes-Hartogs algorithm
Average SNR = 20dB
Perfect CSI            

s 



 97

back, independent of whether the prediction is accomplished at the transmitter or receiver. 

This CSI is required for all subcarriers. It is desirable to minimize this feedback load since it 

consumes resources that would otherwise be used for data. At the same time, the feedback 

signal should carry enough information so the transmitter can perform reliable adaptive 

transmission. 

In this section, we explore several methods for reducing the feedback of the OFDM 

signal vectors H
~

= [H
~

(n, 1) … H
~

(n, K)] (the estimates in (5.12) sampled at low rate) while 

insuring accurate reconstruction at the transmitter. Since H
~

 is modeled as Gaussian, the 

estimates of the reconstructed signals are formed as linear combinations of the signals that 

are fed back. The performance is measured by the correlation coefficient ρ (3.24) between 

the reconstructed signals and actual CSI for each subcarrier and is dependent on the feedback 

density (FD) given by: 

 FD = 
Number of fed back symbols
Total number of subcarriers  (5.25) 

We also define the normalized feedback density (NFD) as: 

 NFD = 
FD

normalized subcarrier frequency separation (5.26) 

We assume non-quantized channel observations. In practice, the fedback symbols need to be 

quantized. However, due to the low feedback rate (sampling rate) required for the LRP and 

the reduced feedback feasible for AOFDM, the quantization level can be chosen large 

without significantly reducing the achievable bit rate. Thus, the actual performance is 

expected to be close to that obtained for ideal non-quantized channel observations. 
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5.5.1 Karhunen-Loeve (KL) Low Rank Modeling 

The K-L method [28] requires the knowledge of the eigen-vectors of the correlation 

matrix of the feedback signal vector at both the transmitter and the receiver. For the fading 

channel characterized as WSSUS with the frequency domain correlation function R f(∆f) 

(2.12), the K×K correlation matrix defined as R = E[H
~

 H
~ H ] is computed from R f(∆f). Let 

q1,q2…qK  be the eigenvectors associated with K eigenvalues (λ1>λ2>…λK) of the matrix R. 

The vector H
~

 can be expressed as a linear combination of these eigenvectors as  

 H
~

 = ∑
i=1

K
viqi. (5.27) 

The coefficients vi of the expansion are zero-mean, uncorrelated random variables 

defined by the inner product vi = qi
HH

~
.  From (5.27), we can reduce the feedback by sending 

only vi for i = 1…m and to approximately reconstruct H
~

 at the transmitter by H
^

 = ∑
i=1

m
viqi, 

m<K. Hence the feedback density (5.25) is m/K. The reconstruction error vector is defined 

by e = H
^

 − H
~

. It can be shown that the mean square error is E[eHe] = ∑
i=m+1

K
 λi, [28], Thus, 

accurate reconstruction is achieved if the eigenvalues λm+1,…, λK are very small. The number 

of significant eigenvalues depends on the rms delay spread, frequency separation, and the 

number of the subcarriers and can be shown to be small for typical OFDM channels. 

5.5.2 IDFT Method and Direct Feedback Method 

Since computation of the basis of the K-L low rank modeling [24] requires the 

knowledge of the channel correlation function, we propose to utilize the discrete Fourier 
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basis and transform the CSI H
~

 using the inverse discrete Fourier transform (IDFT). This 

choice is meaningful since the IDFT corresponds to the channel impulse response. The K-

point IDFT of the CSI H
~

 is given by 

 I(m) =
1
K ∑

k=1

K
 H

~
(n, k)exp{j2π

k−1
K (m −1)}, m= 1…K (5.28) 

The samples I(m) are relatively small for m>τmax∆fK, where τmax is the maximum excess 

delay, ∆f is the subcarrier frequency separation and K is the total number of subcarriers. This 

suggests that FD>τmax∆f is required to obtain good performance. In OFDM channels, K is 

chosen much larger than τmax∆fK (i.e. ∆f << 1/τmax) to avoid intersymbol interference (ISI). 

Thus, the transformed signal I(m) can be truncated, fed back to the transmitter and 

reconstructed by the DFT. 

Alternatively, we can directly feed a subset of the CSI samples H
~

 back to the 

transmitter without any transformation. The feedback signals are sampled uniformly over the 

entire frequency band. The original signal can be reconstructed by interpolation or using the 

MMSE criterion if the correlation functions are known. This method results in different 

accuracy for each subcarrier and increases the complexity of the bit and power allocation. 

We call this method direct reduced feedback. 

For all reduced feedback methods, the performance depends on the rms delay spread 

and the subcarrier frequency separation. Furthermore, it will affect the LRP accuracy and 

hence the performance of the adaptive loading algorithm. Therefore, there is a tradeoff 

between the feedback load and the performance of the AOFDM. 



 100

5.5.3 Numerical Simulation for AOFDM and Reduced Feedback 

Figure 5.15 shows the deterministic channel response, its K-point IDFT (K=200), and 

the reconstructed signal (5 symbols are fed back). Note that significant “anti-causal” part of 

|I(m)|, m=180…200, is observed since the observation signal H
~

(n, k) is only a truncation of 

the channel frequency response. Discarding this anti-causal part will degrade the 

performance of the IDFT method. The performance loss can be mitigated by increasing the 

total number of subcarriers K to reduce the anti-causal part. 

In Figure 5.16, we compare the performance of the KL and IDFT reduced feedback 

methods. The normalized subcarrier frequency separation is 0.005, and the FD (5.25) of 

0.025 is used. This implies that only 5 complex symbols out of 200 are fed back to the 

transmitter. The SNR of the observed signal H
~

 is 80dB. The correlation between the 
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reconstructed signal and the original signal ρ (3.24) is computed for each subcarrier. It is 

observed that the parameter ρ is close to 1 for the center subcarriers and drops sharply for the 

IDFT method for the edge subcarriers. The performance can be improved by increasing the 

total number of subcarriers K to reduce the anti-causal part of I(m) for the same FD. In 

practical systems, the edge subcarriers can be used as guard bands [39] and do not require 

feedback. 

The performance of the prediction algorithm using reduced feedback methods for 

different SNR constraint is shown in Figure 5.17 for the random phase channel model (see 

2.4.1). Assume the OSNR of the estimated signal at the receiver is 80dB. The signals are 

reduced by the methods described in section 5.5 and fed back to the transmitter. The 

transmitter predicts the next OFDM symbol based on the received signal, estimates the 
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prediction accuracy ρ, and performs adaptive bit and power allocation. It shows that for the 

KL method, performance is near optimal when the NFD (5.26) is larger than 6. This implies 

from (5.26) that only 4 symbols need to be fed back for a 128-subcarriers OFDM system 

with normalized subcarrier frequency separation 0.005. For the IDFT method, the 

performance loses 0.5 BPS at NFD = 6 as opposed to 1 BPS loss for the direct reduced 

feedback method with linear interpolation. The selection of the feedback density is a trade off 

between the feedback load and the prediction accuracy, and hence the transmission rate. 
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CHAPTER 6 

CONCLUSIONS 

This thesis has concentrated on realistic fading channel modeling, long range channel 

prediction for wireless mobile fading channel and adaptive modulation with power control. 

In particular, we investigated adaptive modulation aided by observations of another carrier 

and adaptive channel loading for the wireless OFDM system. 

A commonly used continuous-time mobile fading channel model, which is a weighted 

sum of complex sinusoids, is employed for our study. We derived the temporal average 

correlation function and ensemble average correlation function over time and frequency 

domain. These correlation functions serve as the theoretical foundation for the study of the 

long range channel prediction. In addition to this parameter-fixed sum-of-sinusoids model, a 

novel physical model that can generate realistic non-stationary fading process is introduced. 

A discrete rate adaptive modulation method employing M−QAM and continuous 

power control is investigated to maximize the transmission throughput over wireless fading 

channels. We compared its performance with the algorithm optimized for the assumed 

channel statistics and observed that our practical and simple method results in less than 0.5 

dB power loss relative to the optimal discrete rate continuous power method over Rayleigh 

fading channel. Block loading methods when the same modulation method and power control 

are employed in time domain are investigated for practical constraints. Similar block loading 

algorithms can be applied in frequency domain over a large number of subcarrier. Imperfect 

CSI is also considered in the design of reliable adaptive modulation methods. It is found that 

small delay causes significant loss of the bit rate for adaptive transmission systems for fast 

vehicle speeds. Therefore, to realize the potential of adaptive transmission methods, the 
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channel variations have to be predicted at least several milliseconds, or tens to hundreds of 

data symbols, ahead. 

We studied linear LRP for the OFDM system and for the single carrier system based 

on the observation of another carrier. One important feature of the LRP is its low sampling 

rate (on the order twice the maximum Doppler shift), which results in large memory span for 

a fixed filter length. The low sampling rate also reduces the feedback rate. 

For the single carrier prediction system, we concentrate on the scenario where we 

observe a received uplink signal at the carrier frequency f 1  and attempt to predict the 

downlink signal at the carrier frequency f 2  without feedback from the mobile. We derive the 

MMSE LRP that utilizes the time and frequency domain correlation function of the Rayleigh 

fading channel. An adaptive MMSE prediction method is also proposed. We demonstrated 

that significant bit rate gains can be achieved relative to non-adaptive systems for realistic 

channel parameters, and that increased frequency separation and multipath delay limit the 

performance of adaptive transmission. We also use the physical model to identify a typical 

case where the rms delay is approximately constant and a challenging case where rms delay 

is severely and rapidly changes. We test the limitation of the adaptation rate to the variation 

of the rms delay. The results give valuable insights into designing adaptive transmission 

methods for correlated carriers and multicarrier systems. 

For the multicarrier OFDM system, we investigated the long range prediction based 

on past channel observations over multiple subcarriers. We found that while larger number of 

observed subcarriers can result in better prediction performance, the improvement in the 

prediction accuracy when non-adjacent subcarriers’ observations are used relative to utilizing 

just past samples of desired and adjacent subcarriers is negligible. We develop a simplified 
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multiple carriers prediction method (SMCP) based on the fact that fading for all subcarriers 

can be approximately characterized by the same auto-regressive model. Adaptive prediction 

methods based on the LMS and RLS algorithms for SMCP are developed. For the LMS 

algorithm, the learning curve depends on the step size and the eigen-structure of the input 

CSI. Larger step size relative to that for the single carrier LMS algorithm can be employed 

for SMCP resulting in faster convergence. While the RLS algorithm is more complex than 

the LMS algorithm, it has significantly improved learning curve and the excess MSE and is 

capable of tracking non-stationary signals. Numerical simulations reveal that, for the physical 

and the standard sum-of-sinusoids model, the performance of the adaptive OFDM based on 

the CSI predicted by the RLS algorithm approaches that based on the perfect CSI. An 

optimal and a simplified adaptive bit and power loading algorithm are investigated assuming 

imperfect CSI, and their performance is compared. It is observed that the simplified 

algorithm is near-optimal with accurate CSI and has performance loss less than 0.1 BPS with 

unreliable CSI compared with the optimal Hughes-Hartogs algorithm. Finally, several 

methods were developed to reduce the feedback load, and it was shown that the IDFT 

method offers significant feedback load reduction while maintaining near-optimal spectral 

efficiency. 
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APPENDIX A 

DERIVATION OF THE ENSEMBLE AVERAGE 
CORRELATION FUNCTION 

We derive the ensemble correlation function in (2.12). The CSI at carrier frequency f1 

and f2can be characterized by (2.8) and (2.10). The correlation function with time difference 

∆t and frequency separation ∆f can be calculated as E[c(t, f) c*(t+∆t, f+∆f)] = 

E[∑
n=1

N
A(n)exp{j(2π fd(n) t − φ(n))}∑

m=1

N
A(m)exp{j(−2π fd(m) (t + ∆t) + φ(m) + 2π∆fτ(m))}] (A.1) 

Assume uncorrelated scattering, i.e., E[A(n)A(m)] = 0 for n≠m, (A.1) can be simplified as 

 E[∑
n=1

N
A(n)2 exp{j(2π fd(n) t − φ(n))} exp{j(−2π fd(n) (t + ∆t) + φ(n) + 2π∆fτ(n))}] 

 = E [∑
n=1

N
 A(n)2exp{−j2πfd∆t}exp{j2π∆fτ(n)} (A.2) 

It is reasonable to assume the amplitude, Doppler shift and delay spread are independent 

random variables and hence the correlation function can be separated as: 

 ∑
n=1

N
 E[A(n)2] E[exp{−j2πfd(n)∆t}] E[exp{j2π∆fτ(n)}] (A.3) 

 = ΩR t(∆t) R f(∆f) 

where Ω is the total average received power from all multipath components, and R t(∆t)  =  

E[exp{−j2πfd(n)∆t}], and R f(∆f) = E[exp{j2π∆fτ(n)}]. Evaluation of the expectation in (A.3) 

requires that we specify the probability density function for the angle of incident θ of the 

arrival wave and for the delay spread τ. By assuming isotropic channel, i.e. θ are uniformly 

distributed around [0,2π], Rt(∆t) can be calculated as [35] 
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 E[exp{−j2πfd∆t}] = 
1

2π ⌡⌠
0

2π

  exp{−j2πfdmcos(θ)∆t}dθ = J0(2πfdm∆t) (A.4) 

where J0 is the zero-order Bessel function of the first kind. Likewise, by assuming the delay 

spread are exponentially distributed [35] as in (2.13), R f(∆f) can be evaluated as 

 E[exp{j2π∆fτn(t)}] = ⌡⌠
0

2π

 exp{j2π∆fτ) 
1
σ exp{−τ/σ}dτ  

 = 
1

1+(2π∆fσ)2 + j
2π∆fσ

1+(2π∆fσ)2 (A.5) 
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APPENDIX B 

CORRELATION COEFFICIENT ρρρρ 

We derive the formula for the correlation coefficient ρ in (3.25) and (4.10). As we 

discussed in this chapter 3, the performance of the AM with imperfect CSI significantly 

depends on the correlation coefficient ρ between α = |c|2 and α^  = |c^|2, where c is the actual 

CSI and c^ is the estimate of c or related to c. The definition of the correlation coefficient ρ is 

shown in (3.24). 

B.1 Proof of (3.25) 

The covariance between α2 and α^ 2 can be calculated as 

 cov(α2, α^ 2) = E[((x1
2+y1

2) − Ω1)((x2
2+y2

2) − Ω2)] = 

 E[x1
2x2

2+x1
2y2

2+y1
2x2

2+y1
2y2

2−Ω2(x1
2+y1

2)− Ω1(x2
2+y2

2)+ Ω1Ω2] (B.1) 

It is shown in [43, p 160] that if the random variables x and y are jointly normal with zero 

mean, then 

 E[x2y2] = E[x2]E[y2] + 2E2[xy] (B.2) 

Since we assume x1, x2, y1 y2 are jointly normal, (B.1) can be simplified as 

 cov(α2, α^ 2) = 4(uI + uQ) (B.3) 

For α being Rayleigh distribution, it is shown in [43, p 111] 

 Var(α1
2) = E[α1

4] − E2[α1
2] = 2Ω1

2 − Ω1
2 = Ω1

2 (B.4) 

 Var(α2
2) = Ω2

2 

Substituting (B.2) and (B.3) for (3.24) gives 

 ρ = 
Cov(α2,α^ 2)

Var(α2)Var(α^ 2)
 = 4

uI
2 + uQ

2

Ω 1Ω 2
 (B.5) 
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B.2 Proof of (4.10) 

For c2 being the MMSE estimate of c1, from orthogonality principle, E[(c1 − c2)*c2] = 

0, the power Ω2 can be expressed as 

 Ω2 = E[c1
*c2] = 2uI + j2uQ (B.6) 

Since Ω2 is a real number, uQ = 0 and Ω2 = 2uI. From (B.4), Ω2 can be written as Ω2 = ρΩ1, 

Therefore, the MMSE can be expressed as: 

 MMSE = Ω1 − Ω2 = Ω1(1 − ρ) (B.7) 



 110

APPENDIX C 

MMSE LRP FOR INFINITE NUMBER OF PAST 
CHANNEL OBSERVATIONS 

We derive the discrete time linear MMSE shown in (4.11) for one step prediction 

given infinite number of past observations. From (4.3), the one-step prediction at frequency 

f2 given infinite past channel observations at f1 is given by: 

 c^(f 2 ,n)  =  ∑
j=1

∞
dj

*c~ (f 1 ,n−j) (C.1) 

The filter coefficient d(n) can be determined from the orthogonality principle [28] as: 

 ∑
j=1

∞
d(j)rn(k − n) = g(k) k=1,2…∞ (C.2) 

where rn(j − k) = E[c~ (f1,k)c~ *(f1,j)] = Rt((j − k)∆t/at sub-sampling rate fs) + N0δ(j − k) is the 

discrete time autocorrelation of the noisy fading channel samples, and g(k) = E[c~ (f1,n − 

k)c*(f2,n)] = Rf(∆f)Rt(k∆t/at sub-sampling rate fs). Since rn(n) is a correlation sequence, we 

can represent rn (n) as: 

 rn(n) = ∑
j=−∞

0
 rn

−(j) rn
+(n − j) for all n (C.3) 

where rn
−(n) and rn

+(n) are sequences with the properties that rn
−(n) = 0 when n>0 and rn

+(n) 

= 0 when n<0. From [53], d(z), the Z−transform of the filter d(n), can be derived as  

 d(z) = Rf(∆f) [z − 
1

 rz +(z) rn
+(0)z] (C.4) 
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where rz
+(•) is the Z−transform of r+(k). With the knowledge of filter coefficient, we can 

express the MMSEp=∞ = E[|c(n) − c^|2] as: 

 MMSEp=∞ = Rn(0) − ∑
n=1

∞
d*(n)g(n) = Rn(0) – b0 (C.5) 

where Rn(0) = rn(0) – N0 and b0 is the 0th term of the convolution of d*(−n) and g(n). Let B(z) 

= g(z)Z[d*(−n)] = g (z) d(z –1), where Z [d(−n)] is the z transform of d (−n). Then B(z) can be 

expressed as 

 B(z) = [1 –
1

rz
–(z) rn

+(0)] [rz(z) – N0]  (C.6) 

Hence b0 can be decided as 

 b0= [rn(0) – N0 – rn
+(0)2 + N0] (C.7) 

Then we have  

 MMSEp=∞ = Rn (0) – b0 = Rn (0) – [rn (0) – rn
+(0)2] = rn

+(0)2 – N0 (C.8) 

where rn
+(0)2 can be decided as [53]: 

 rn
+(0)2 = exp { 

1
2π ⌡⌠

-π

π

ln[rw(w)]dw } = exp { 
1

2π ⌡⌠
-π

π

ln[Rw(w)+N0]dw } (C.9) 

where Rw (w) = ∑
n=–∞

∞
 Rn(n) e-jwn is the folded power spectrum of the c(n) and Rn (n) = E[C (k) 

C*(k+n)] is the autocorrelation function of the C (n). 
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APPENDIX D 

MMSE LRP FOR OFDM SYSTEMS 

It is discussed in the chapter 5 that Jmin is upper-bounded by (5.15) if the correlation 

can be separated by the time and frequency correlation functions, i.e., r(∆n, ∆k) ≈ 

R t(∆nTp) R f(∆k∆fs). Based on this separation property, we derive the closed form solution of 

the optimal predictor do(j,m) in (5.13), and the asymptotical MMSE for the infinite past 

channel observations. In addition, we also prove that when the CSI is noiseless, it is 

sufficient to use just the past samples of the desired subcarrier to achieve the optimal MMSE 

performance. 

D.1 LRP of OFDM  

From the separation property, the correlation function can be expressed as: 

 E[H
~ *[j, m] H

~
 [g, l] = rt[j − g]rf[m − l] + N0δ[j − g]δ[m − l] (D.1) 

The optimal channel predictor for the CSI at the kth tone and the nth block based on the p 

previous observed samples and K subcarriers can be can be derived by orthogonaltiy 

principle as in (5.14). By applying (D.1), we can rewrite (5.14) as: 

 rt [g] rf [k − l] = ∑
j=1

p
 ∑
m=1

K
 d(j, m) rt [g − j] rf [m − l] + N0 d(g, l), g = 1…p, l = 1…K (D.2) 

Denote rf = 









rf[k − 1]
rf[k − 2]

.

.
rf[k − K]

, df(j) = 









d(j, 1)

d(j, 2)
.
.

d(j, K)

, and Rf = 











rf[0] rf[1] …. rf[K-1]
rf

*[1] . . .
. . . .
. . . .
. . . .
. . . .

rf
*[K-1] . . rf[0]

 

Eq. (D.2) can be expressed in vector form as: 
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 rt [g] rf = ∑
j=1

p
 rt [g − j] Rf df(j) + N0 df (g), g = 1…p (D.3) 

Let the eigendecomposition of Rf be 

 Rf = UH Q U (D.4) 

where U is a unitary matrix and Q is a diagonal matrix with diagonal element ql. Substituting 

(D.4) for (D.3) gives 

 rt [g] Q−1 U rf = ∑
j=1

p
 rt [g − j] U df (j) + N0 Q−1 U df (g) (D.5) 

Denote r
~

f = Q−1 U rf, and d
~

f(j) = U df (j), then (D.5) can be rewritten as 

 rt [g] r
~

f = ∑
j=1

p
 rt [g − j] d

~
f(j) + N0 Q−1 d

~
f(g) (D.6) 

Equivalently, (D.6) can be written as: 

 rt [g] r
~

f[l] = ∑
j=1

p
 rt [g − j] d

~
(j, l) + 

N0
ql

 d
~
(g, l), l = 1…K, g = 1…p (D.7) 

where r
~

f[l], d
~
(j, l) are the lth elements of r

~
f and d

~
f(j), respectively. And ql is the lth diagonal 

element of Q. Denote  

rt = 









rt[1]

rt[2]
.
.

rt[p]

, d
~

t(l) = 









d

~
(1, l)

d
~
(2, l)

.

.
d
~
(p, l)

, Rt, l = 













rt[0]+

N0
dl

rt[1] …. rt[p-1]

rt[1] . . .
. . . .
. . . .
. . . .
. . . .

rt[p-1] . . rt[0]+
N0
dl

 

From (D.7), the filter coefficient d
~

t(l) can be solved by: 
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 d
~

t(l) = r
~

f[l] Rt, l
−1 rt (D.8) 

Let D
~

Kxp = 









d

~
t
T(1)

d
~

t
T(2)
.
.

d
~

t
T(K)

. Equivalently, D
~

Kxp can be expressed as D
~

Kxp = 

[ ]d
~

f(1) d
~

f(2) ... d
~

f(p) . The optimal coefficient d(j,m) can be found as 

 DKxp = 











d(1,1) d(2,1) …. d(p,1)
d(1,2) . . .

. . . .

. . . .

. . . .

. . . .
d(1,K) . . d(p,K)

 = UH D
~

 (D.9) 

The average power of the predicted symbol E[|H
^

 [n, k]|2] is required to calculate the MMSE. 

From (5.13), E[|H
^

[n,k]|2] = E[∑
j1=1

p
 ∑
m1=1

K
 d*(j1,m1)H

~
[n−j1,m1]∑

j2=1

p
 ∑
m2=1

K
 d(j2, m2) H

~ * [n−j2, m2]] 

= ∑
j1=1

p
 ∑
m1=1

K
 d*(j1, m1) ∑

j2=1

p
 ∑
m2=1

K
 d(j2, m2) E[H

~ * [n−j2, m2] H
~

 [n−j1, m1]]  

= ∑
j1=1

p
 ∑
m1=1

K
 d*(j1, m1) rt [j1] rf [k − m1] = tr[DHG],  

where G = 











rt(1)rf(k-1) rt(2)rf(k-1) …. rt(p)rf(k-1)
rt(1)rf(k-2) . . .

. . . .

. . . .

. . . .

. . . .
rt(1)rf(k-K) . . rt(p)rf(k-K)

 

Hence, the MMSE = E[|(H[n, k]−H
^

[n, k])|2] = 1 − tr [DH G]. 
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D.2. MMSE for Infinite Past Observation 

If the parameter p goes to infinity, (D.7) can be rewritten as: 

 rt [g] = ∑
j=1

∞
 rt [g − j] 

d
~
(j, l)
r
~

f[l]
 + 

N0
ql

 
d
~
(g, l)
r
~

f[l]
, l = 1…K, g = 1…p (D.10) 

Notice the solution 
d
~
(j, l)
r
~

f[l]
 in (D.10) is equivalent to that solved in the single carrier prediction 

investigated in the Appendix C with observation noise power 
N0
ql

. Therefore, 

 ∑
j=1

∞
 d
~*(j, l) rt[j] = bl r

~
f[l], l = 1…K (D.11) 

where bl = rt[0] + 
N0
ql

 − rl
+[0] = 1 + 

N0
ql

 − rl
+[0], rl

+[0] = exp { 
1

2π 
⌡

⌠

−π

π

ln[Rw(w)+ 
N0
ql

]dw }, and Rw 

(w) = ∑
n=−∞

∞
 rt(n) e−jwn 

Eq. (D.11) can be expressed in vector form as: 

 ∑
j=1

∞
 rt[j] d

~
f(j)H = [ b1r

~
f[1]   b2r

~
f[2] … bKr

~
f[K] ] = vT (D.12) 

where vT =∑
j=1

∞
 rt[j] df(j)HUH. To calculate the MMSE, the average power of the predicted 

symbol E[|H
^

 [n, k]|2] can be expressed as E[|H
^

 [n, k]|2] = ∑
j=1

∞
 ∑
m=1

K
 d*(j, m) rt [j] rf [k − m], and it 

can be written in vector form as E[|H
^

 [n, k]|2] = ∑
j=1

∞
 rt[j] df(j)H rf = vT U rf. Hence 

 MMSE = E[|(H[n, k]−H
^

[n, k])|2] = 1 − vT U rf (D.13) 
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D.3. Noiseless Observation 

In this section, we prove that when the CSI is noiseless, it is sufficient to use just the 

past samples of the desired subcarrier to achieve the optimal MMSE performance. For 

noiseless observation, the correlation function, (D.1) can be simplified as 

 E[H
~ *[j, m] H

~
 [g, l] = rt[j − g]rf[m − l] (D.14) 

Denote H[n, k] the desired channel information. The observation can be decomposed as H
~

[n−j, m] = {H
~

 [n−j, m] − E[•]H
~

 [n−j, k]} + E[•]H
~

 [n−j, k]  

= H
~

o [n−j, m] + E[•]H
~

 [n−j, k], j = 1…p, m = 1…K. 

where E[•] = E[H
~

 [n−j, m] H
~ * [n−j, k]] = rt[0]rf[k − m] = rf[k − m]. It can be proved readily 

from (D.14) that H
~

o [n−j, m], j=1…p is orthogonal to H
~

 [n−g, k], g = 1…p and to desired 

symbol H[n, k], i.e., 

 E[H
~

o [n−j, m] H
~ * [n−g, k]] = 0, j= 1…p, g = 1…p, m = 1…K (D.15) 

 E[H
~

o [n−j, m] H* [n, k]] = 0, j = 1…p, m = 1…K (D.16) 

Thus, from (5.13), the predicted symbol H
^

 [n, k] can be expressed as H
^

[n, k] = H
~

 + H
~

o, where 

H
~

 is spanned by H
~

 [n−j, k], j=1…p, and H
~

o is spanned by H
~

o [n−j, m], j=1…p, m = 1…K. 

Notice that  

 E[H
~

oH
~ *] = 0. (D.17) 

The MSE = E[|(H[n, k]−H
^

[n, k])|2] = E[|(H[n, k]− H
~

)|2] + |H
~

o|2. The second equality is based 

on (D.15−D.17). Consequently, to minimize the MSE, it is best to restrict attention to H
~

 

spanned by H
~

[n−j, k], j = 1…p. 
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