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Abstract

Solutions of learning problems by Empirical Risk Minimization (ERM) –
and almost-ERM when the minimizer does not exist – need to be consis-
tent, so that they may be predictive. They also need to be well-posed in the
sense of being stable, so that they might be used robustly. We propose a sta-
tistical form of leave-one-out stability, called CVEEEloo stability. Our main
new results are two. We prove that for bounded loss classes CVEEEloo

stability is (a) sufficient for generalization, that is convergence in probability
of the empirical error to the expected error, for any algorithm satisfying
it and, (b) necessary and sufficient for generalization and consistency of ERM.
Thus CVEEEloo stability is a weak form of stability that represents a suf-
ficient condition for generalization for general learning algorithms while
subsuming the classical conditions for consistency of ERM. We discuss al-
ternative forms of stability. In particular, we conclude that for ERM a cer-
tain form of well-posedness is equivalent to consistency.
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1 Introduction

In learning from a set of examples, the key property of a learning algorithm is
generalization: the empirical error must converge to the expected error when the
number of examples n increases2. An algorithm that guarantees good general-
ization for a given n will predict well, if its empirical error on the training set
is small. Empirical risk minimization (ERM) on a class of functions H, called
the hypothesis space, represents perhaps the most natural class of learning al-
gorithms: the algorithm selects a funcion f ∈ H that minimizes the empirical
error – as measured on the training set.
Classical learning theory was developed around the study of ERM. One of its
main achievements is a complete characterization of the necessary and suffi-
cient conditions for generalization of ERM, and for its consistency (consistency
requires convergence of the expected risk to the minimum risk achievable by
functions in H; for ERM generalization is equivalent to consistency [1] and thus
for ERM we will often speak of consistency meaning generalization and consis-
tency). It turns out that consistency of ERM is equivalent to a precise property
of the hypothesis space: H has to be a uniform Glivenko-Cantelli (uGC) class of
functions (see later).
Less attention has been given to another requirement on the ERM solution of
the learning problem, which has played an important role in the development
of several learning algorithms but not in learning theory proper. In general,
empirical risk minimization is ill-posed (for any fixed number of training ex-
amples n). Any approach of practical interest needs to ensure well-posedness,
which usually means existence, uniqueness and stability of the solution. The
critical condition is stability of the solution; in this paper we refer to well-
posedness, meaning, in particular, stability. In our case, stability refers to con-
tinuous dependence on the n training data. Stability is equivalent to some
notion of continuity of the learning map (induced by ERM) that maps training
sets into the space of solutions, eg L : Zn → H.
As a major example, let us consider the following, important case for learning
due to Cucker and Smale [5]. Assume that the hypothesis space H is a compact
subset of C(X) with X a compact domain in Euclidean space3. Compactness
ensures4 the existence of the minimizer of the expected risk for each n and, if
the risk functional is convex5 and regularity conditions on the measure hold,
its uniqueness [5, 21]. Compactness guarantees continuity of the learning oper-
ator L, measured in the sup norm in H (see section 2.4.3 ). However, compact-
ness is not necessary for well-posedness of ERM (it is well-known, at least since

2The precise notion of generalization defined here roughly agrees with the informal use of the
term in learning theory.

3Our concept of generalization, ie convergence in probability of the expected error I[fS ] to the
empirical error IS [fS ], corresponds to the uniform estimate of the “defect” of Theorem B in [5] (in
their setup); consistency of ERM corresponds to their Theorem C; we do not consider in this paper
any result equivalent to their Theorem C*.

4Together with continuity and boundedness of the loss function V .
5For convex loss function V (f, z).
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Tikhonov, that compactness is sufficient but not necessary for well-posedness
of a large class of inverse problems involving linear operators.). Interestingly,
compactness is a sufficient6 but not necessary condition for consistency as well
[5].
Thus it is natural to ask the question of whether there is a definition of well-
posedness, and specifically stability – if any – that is sufficient to guarantee
generalization for any algorithm. Since some of the key achievements of learn-
ing theory revolve around the conditions equivalent to consistency of ERM, it
is also natural to ask whether the same notion of stability could subsume the
classical theory of ERM. In other words, is it possible that some specific form
of well-posedness is sufficient for generalization and necessary and sufficient
for generalization and consistency7 of ERM? Such a result would be surprising
because, a priori, there is no reason why there should be a connection between
well-posedness and generalization – or even consistency (in the case of ERM):
they are both important requirements for learning algorithms but they seem
quite different and independent of each other.
In this paper, we define a notion of stability that guarantees generalization and in the
case of ERM is in fact equivalent to consistency.
There have been many different notions of stability that have been suggested in
the past. The earliest relevant notion may be traced to Tikhonov where stability
is described in terms of continuity of the learning map L. In learning theory,
Devroye and Wagner [7] use certain notions of algorithmic stability to prove
the consistency of learning algorithms like the k-nearest neighbors classifier.
More recently, Kearns and Ron [12] investigated several notions of stability to
develop generalization error bounds in terms of the leave one out error. Bous-
quet and Elisseeff [4] showed that uniform hypothesis stability of the learning
algorithm may be used to provide exponential bounds on the generalization
error without recourse to notions such as the VC dimension.
These various notions of algorithmic stability are all seen to be sufficient for
(a) the generalization capability (convergence of the empirical to the expected
risk) of learning algorithms. However, until recently, it was unclear whether
there is a notion of stability that (b) is also both necessary and sufficient for
consistency of ERM. The first partial result in this direction was provided by
Kutin and Niyogi [14] who introduced a probabilistic notion of change-one
stability called Cross Validation or CV stability. This was shown to be necessary
and sufficient for consistency of ERM in the Probably Approximately Correct
(PAC) Model of Valiant [24].
However, the task of finding a correct characterization of stability that satisfies
both (a) and (b) above is subtle and non-trivial. In Kutin and Niyogi (2002) [15]
at least ten different notions were examined. An answer for the general setting,
however, was not found.
In this paper we give a new definition of stability – which we call Cross-validation,
error and empirical error Leave-One-Out stability or, in short, CVEEEloo stability –

6Compactness of H implies the uGC property of H since it implies finite covering numbers.
7In the case of ERM it is well known that generalization is equivalent to consistency
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of the learning map L. This definition answers the open questions mentioned
above.
Thus, our somewhat surprising new result is that this notion of stability is suf-
ficient for generalization and is both necessary and sufficient for consistency of
ERM. Consistency of ERM is in turn equivalent to H being a uGC class. To us
the result seems interesting for at least three reasons:

1. it proves the very close relation between two different, and apparently
independent, motivations to the solution of the learning problem: con-
sistency and well-posedness;

2. it provides a condition – CVEEEloo stability – that is sufficient for gener-
alization for any algorithm and for ERM is necessary and sufficient not
only for generalization but also for consistency. CVEEEloo stability may,
in some ways, be more natural – and perhaps an easier starting point for
empirical work8– than classical conditions such as complexity measures
of the hypothesis space H, for example finiteness of Vγ or VC dimension;

3. it provides a necessary and sufficient condition for consistency of ERM
that – unlike all classical conditions (see Appendix 6.1) – is a condition on
the mapping induced by ERM and not directly on the hypothesis space
H.

The plan of the paper is as follows. We first give some background and def-
initions for the learning problem, ERM, consistency and well-posedness. In
section 3, which is the core of the paper, we define CVEEEloo stability in terms
of three leave-one-out stability conditions: crossvalidation (CVloo) stability, ex-
pected error (Eloo) stability and empirical error (EEloo) stability. Of the three
leave-one-out stability conditions, CVloo stability is the key one, while the other
two are more technical and satisfied by most reasonable algorithms. We prove
that CVEEEloo stability is sufficient for generalization for general algorithms.
We then prove in painful details the sufficiency of CVloo stability for consis-
tency of ERM and the necessity of it. Finally, we prove that CVEEEloo stability
is necessary and sufficient for consistency of ERM. We also discuss alternative
definitions of stability. After the main results of the paper we outline in sec-
tion 4 stronger stability conditions that imply faster rates of convergence and
are guaranteed only for “small” uGC classes. Examples are hypothesis spaces
with finite VC dimension when the target is in the hypothesis space and balls
in Sobolev spaces or RKHS spaces with a sufficiently high modulus of smooth-
ness. We then discuss a few remarks and open problems: they include stability
conditions and associated concentration inequalities that are equivalent to uGC
classes of intermediate complexity – between the general uGC classes charac-
terized by CVloo stability (with arbitrary rate) and the small classes mentioned
above; they also include the extension of our approach to non-ERM approaches
to the learning problem.

8In its distribution-dependent version.
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2 Background: learning and ill-posed problems

For notation, definitions and some results, we will assume knowledge of a
foundational paper [5] and other review papers [11, 17]. The results of [4, 14]
are the starting point for our work. Our interest in stability was motivated by
their papers and by our past work in regularization (for reviews see [11, 20]).

2.1 The supervised learning problem

There is an unknown probability distribution µ(x, y) on the product space Z =
X × Y . We assume X to be a compact domain in Euclidean space and Y to
be a closed subset of IRk. The measure µ defines an unknown true function
T (x) =

∫
Y ydµ(y|x) mapping X into Y , with µ(y|x) the conditional probability

measure on Y . There is an hypothesis space H of functions f : X → Y .
We are given a training set S consisting of n samples (thus |S| = n) drawn i.i.d.
from the probability distribution on Zn:

S = (xi, yi)n
i=1 = (zi)n

i=1.

The basic goal of supervised learning is to use the training set S to “learn” a
function fS (in H) that evaluates at a new value xnew and (hopefully) predicts
the associated value of y:

ypred = fS(xnew).

If y is real-valued, we have regression. If y takes values from {−1, 1}, we have
binary pattern classification. In this paper we consider only symmetric learn-
ing algorithms, for which the function output does not depend on the ordering
in the training set.
In order to measure goodness of our function, we need a loss function V . We
denote by V (f, z) (where z = (x, y)) the price we pay when the prediction for
a given x is f(x) and the true value is y. An example of a loss function is the
square loss which can be written

V (f, z) = (f(x) − y)2.

In this paper, we assume that the loss function V is the square loss, though most
results can be extended to many other “good” loss functions. Throughout the
paper we also require that for any f ∈ H and z ∈ Z V is bounded, 0 ≤ V (f, z) ≤
M .
Given a function f , a loss function V , and a probability distribution µ over X ,
we define the generalization error that we call here true error of f as:

I[f ] = IEzV (f, z)

which is also the expected loss on a new example drawn at random from the
distribution. In the case of square loss

I[f ] = IEzV (f, z) =
∫

X,Y

(f(x) − y)2dµ(x, y) = IEµ|f − y|2.

5



The basic requirement for any learning algorithm is generalization: the empir-
ical error must be a good proxy of the expected error, that is the difference
between the two must be “small”. Mathematically this means that for the func-
tion fS selected by the algorithm given a training set S

lim
n→∞ |I[fS ] − IS [fS ]| = 0 in probability.

An algorithm that guarantees good generalization for a given n will predict
well, if its empirical error on the training set is small.
In the following we denote by Si the training set with the point zi removed and
Si,z the training set with the point zi replaced with z. For Empirical Risk Mini-
mization, the functions fS , fSi , and fSi,z are almost minimizers (see Definition
2.1) of IS [f ], ISi [f ], and ISi,z [f ] respectively. As we will see later, this definition
of perturbation of the training set is a natural one in the context of the learning
problem: it is natural to require that the prediction should be asymptotically
robust against deleting a point in the training set. We will also denote by S, z
the training set with the point z added to the n points of S.

2.2 Empirical Risk Minimization

For generalization, that is for correctly predicting new data, we would like to
select a function f for which I[f ] is small, but in general we do not know µ and
cannot compute I[f ].
In the following, we will use the notation IPS and IES to denote respectively
the probability and the expectation with respect to a random draw of the train-
ing set S of size |S| = n, drawn i.i.d from the probability distribution on Zn.
Similar notation using expectations should be self-explanatory.
Given a function f and a training set S consisting of n data points, we can
measure the empirical error (or risk) of f as:

IS [f ] =
1
n

n∑
i=1

V (f, zi)

When the loss function is the square loss

IS [f ] =
1
n

n∑
i=1

(f(xi) − yi)2 = IEµn(f − y)2.

where µn is the empirical measure supported on the set x1, ..., xn. In this nota-
tion (see for example [17]) µn = 1

n

∑n
i=1 δxi , where δxi is the point evaluation

functional on the set xi.

Definition 2.1 Given a training set S and a function space H, we define almost-ERM
(Empirical Risk Minimization) to be a symmetric procedure that selects a function f εE

S

that almost minimizes the empirical risk over all functions f ∈ H, that is for any given
εE > 0:

IS [fεE

S ] ≤ inf
f∈H

IS [f ] + εE . (1)

6



In the following, we will drop the dependence on εE in fεE

S . Notice that the
term “Empirical Risk Minimization” (see Vapnik [25]) is somewhat misleading:
in general the minimum need not exist9. In fact, it is precisely for this reason10

that we use the notion of almost minimizer or ε-minimizer, given in Equation
(1) (following others e.g. [1, 17]), since the infimum of the empirical risk always
exists. In this paper, we use the term ERM to refer to almost-ERM, unless we
say otherwise.
We will use the following notation for the loss class L of functions induced by V
and H. For every f ∈ H, let �(z) = V (f, z), where z corresponds to x, y. Thus
�(z) : X×Y → IR and we define L = {�(f) : f ∈ H, V }. The use of the notation
� emphasizes that the loss function � is a new function of z induced by f (with
the measure µ on X × Y ).

2.3 Consistency of ERM and uGC classes

The key problem of learning theory was posed by Vapnik as the problem of
statistical consistency of ERM and of the necessary and sufficient conditions to
guarantee it. In other words, how can we guarantee that the empirical mini-
mizer of IS [f ] – the distance in the empirical norm between f and y – will yield
a small I[f ]? It is well known (see [1]) that convergence of the empirical error
to the expected error guarantees for ERM its consistency.
Our definition of consistency11 is:

Definition 2.2 A learning map is (universally, weakly) consistent if for any given
εc > 0

lim
n→∞ sup

µ
IP
{

I[fS] > inf
f∈H

I[f ] + εc

}
= 0. (2)

Universal consistency means that the above definition holds with respect to
the set of all measures on Z . Consistency can be defined with respect to a spe-
cific measure on Z . Weak consistency requires only convergence in probability,
strong consistency requires almost sure convergence. For bounded loss func-
tions weak consistency and strong consistency are equivalent. In this paper we
call consistency what is sometimes defined as weak, universal consistency [6].
The work of Vapnik and Dudley showed that consistency of ERM can be en-
sured by restricting sufficiently the hypothesis space H to ensure that a func-
tion that is close to a target T for an empirical measure will also be close with
respect to the original measure. The key condition for consistency of ERM can
be formalized in terms of uniform convergence in probability of the functions �(z)

9When H is the space of indicator functions, minimizers of the empirical risk exist, because
either a point xi is classified as an error or not.

10It is worth emphasizing that ε-minimization is not assumed to take care of algorithm complex-
ity issues (or related numerical precision issues) that are outside the scope of this paper.

11The definition is different from the one given by [6] and should be called universal, uniform
weak consistency.
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induced by H and V . Function classes for which there is uniform convergence
in probability are called uniform Glivenko-Cantelli classes of functions:

Definition 2.3 Let F be a class of functions. F is a (weak) uniform Glivenko-Cantelli
class if

∀ε > 0 lim
n→∞ sup

µ
IP

{
sup
f∈F

|IEµnf − IEµf | > ε

}
= 0. (3)

There may be measurability issues that can be handled by imposing mild con-
ditions on F (see [8, 9]).

When applied to the loss functions �, the definition implies that for all distri-
butions µ and for each εn there exist a δεn,n such that

IP
{

sup
�∈F

|I[�] − IS [�]| > εn

}
≤ δεn,n,

where the sequences εn and δεn,n go simultaneously to zero 12. Later in the
proofs we will take the sequence of εE

n (in the definition of ε-minimizer) to 0
with a rate faster than 1

n , therefore faster than the sequence of εn (eg the εn in
the uGC definition).
We are now ready to state the “classical” necessary and sufficient condition for
consistency of ERM (from Alon et al., Theorem 4.2, part 3 [1], see also [25, 9]).

Theorem 2.1 Assuming that the loss functions � ∈ L are bounded and the collection
of functions {�− infL � : � ∈ L} are uniformly bounded13 , a necessary and sufficient
condition for consistency of ERM (with respect to all measures) is that L is uGC.

We observe that for many “good” loss functions V – in particular the square
loss – with � bounded, the uGC property of H is equivalent to the the uGC
property of L14.
Notice that there is a definition of strong uGC classes where, instead of conver-
gence in probability, almost sure convergence is required.

12This fact follows from the metrization of the convergence of random variables in probability
by the Ky Fan metric and its analogue for convergence in outer probability. The rate can be slow
in general (Dudley, pers. com.).

13These conditions will be satisfied for bounded loss functions 0 ≤ �(z) ≤ M
14Assume that the loss class has the following Lipschitz property for all x ∈ X, y ∈ Y , and

f1, f2 ∈ H:

c1|V (f1(x), y) − V (f2(x), y)| ≤ |f1(x) − f2(x)| ≤ c2|V (f1(x), y) − V (f2(x), y)|,
where 0 < c1 < c2 are Lipschitz constants that upper and lower-bound the functional difference.
Then L is uGC iff H is uGC because there are Lipschitz constants that upper and lower bound the
difference between two functions ensuring that the cardinality of H and L at a scale ε differ by at
most a constant. Bounded Lp losses have this property for 1 ≤ p < ∞.
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Definition 2.4 Let F be a class of functions. F is a strong uniform Glivenko-Cantelli
class if

∀ε > 0 lim
n→∞ sup

µ
IP

{
sup
m≥n

sup
f∈F

|IEµmf − IEµf | > ε

}
= 0. (4)

For bounded loss functions weak uGC is equivalent to strong uGC (see Theo-
rem 6 in [9]) and weak consistency is equivalent to strong consistency in Theo-
rem 2.1. In the following, we will speak simply of uGC and consistency, mean-
ing – strictly speaking – weak uGC and weak consistency.

2.4 Inverse and Well-posed problems

2.4.1 The classical case

Hadamard introduced the definition of ill-posedness. Ill-posed problems are
often inverse problems.
As an example, assume g is an element of Z and u is a function in H, with Z
and H metric spaces. Then given the operator A, consider the equation

g = Au. (5)

The direct problem is to compute g given u; the inverse problem is to compute
u given the data g. The inverse problem of finding u is well-posed when

• the solution exists,

• is unique and

• is stable, that is depends continuously on the initial data g. In the example
above this means that A−1 has to be continuous. Thus stability has to be
defined in terms of the relevant norms.

Ill-posed problems (see [10]) fail to satisfy one or more of these criteria. In the
literature the term ill-posed is often used for problems that are not stable, which
is the key condition. In Equation (5) the map A−1 is continuous on its domain
Z if, given any ε > 0, there is a δ > 0 such that for any z′, z′′ ∈ Z

||z′ − z′′|| ≤ δ

with the norm in Z , then

||A−1z′ − A−1z′′|| ≤ ε,

with the norm in H.
The basic idea of regularization for solving ill-posed problems is to restore ex-
istence, uniqueness and stability of the solution by an appropriate choice of
H (the hypothesis space in the learning framework). Usually, existence can be
ensured by redefining the problem and uniqueness can often be restored in

9



simple ways (for instance in the learning problem we choose randomly one of
the several equivalent almost minimizers). However, stability of the solution is
usually much more difficult to guarantee. The regularization approach has its
origin in a topological lemma15 that under certain conditions points to the com-
pactness of H as sufficient for establishing stability and thus well-posedness16.
Notice that when the solution of Equation (5) does not exist, the standard ap-
proach is to replace it with the following problem, analogous to ERM,

min
u∈H

‖Au − g‖ (6)

where the norm is in Z . Assuming for example that Z and H are Hilbert spaces
and A is linear and continuous, the solutions of Equation (6) coincide with the
solutions of

Au = Pg (7)

where P is the projection onto R(A).

2.4.2 Classical framework: regularization of the learning problem

For the learning problem it is clear, but often neglected, that ERM is in general
ill-posed for any given Sn. ERM defines a map L which maps any discrete data
S = ((x1, y1), . . . , (xn, yn)) into a function f , that is

LS = fS .

In Equation (5) L corresponds to A−1 and g to the discrete data S. In general,
the operator L induced by ERM cannot be expected to be linear. In the rest
of this subsection, we consider a simple, “classical” case that corresponds to
Equation (7) and in which L is linear.
Assume that the x part of the n examples (x1, ..., xn) is fixed; then L as an
operator on (y1, ..., yn) can be defined in terms of a set of evaluation functionals
Fi on H, that is yi = Fi(u). If H is a Hilbert space and in it the evaluation
functionals Fi are linear and bounded, then H is a RKHS and the Fi can be written
as Fi(u) = (u, Kxi)K where K is the kernel associated with the RKHS and we
use the inner product in the RKHS. For simplicity we assume that K is positive
definite and sufficiently smooth [5, 26]. The ERM case corresponds to Equation
(6) that is

min
f∈BR

1
n

n∑
i=1

(f(xi) − yi)2. (8)

Compactness is ensured by enforcing the solution f – which has the form
f(x) =

∑n
1=1 ciK(xi,x) since it belongs to the RKHS – to be in the ball BR

15Lemma (Tikhonov, [23]) If operator A maps a compact set H ⊂ H onto Z ⊂ Q, H and Q metric
spaces, and A is continuous and one-to-one, then the inverse mapping is also continuous.

16In learning, the approach underlying most algorithms such as RBF and SVMs is in fact regular-
ization. These algorithms can therefore be directly motivated in terms of restoring well-posedness
of the learning problem.
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of radius R in H (eg ‖f‖K ≤ R). Then H = IK(BR) is compact – where
IK : HK ↪→ C(X) is the inclusion and C(X) is the space of continuous func-
tions with the sup norm [5]. In this case the minimizer of the generalization er-
ror I[f ] is well-posed. Minimization of the empirical risk (Equation (8)) is also
well-posed: it provides a set of linear equations to compute the coefficients c
of the solution f as

Kc = y (9)

where y = (y1, ..., yn) and (K)i,j = K(xi,xj).
A particular form of regularization, called Tikhonov regularization, replaces
ERM (see Equation (8)) with

min
f∈H

1
n

n∑
i=1

(f(xi) − yi)2 + γ‖f‖2
K, (10)

which gives the following set of equations for c (with γ ≥ 0)

(K + nγI)c = y, (11)

which for γ = 0 reduces to Equation (9). In this RKHS case, stability of the
empirical risk minimizer provided by Equation (10) can be characterized us-
ing the classical notion of condition number of the problem. The change in the
solution f due to a variation in the data y can be bounded as

‖∆f‖
‖f‖ ≤ ‖K + nγI‖

∥∥∥(K + nγI)−1
∥∥∥‖∆y‖

‖y‖ , (12)

where the condition number ‖K + nγI‖∥∥(K + nγI)−1
∥∥ is controlled by nγ. A

large value of nγ gives condition numbers close to 1, whereas ill-conditioning
may result if γ = 0 and the ratio of the largest to the smallest eigenvalue of K
is large.

REMARKS:

1. Equation (8) for any fixed n corresponds to the set of well-posed, linear
equations (9), even without the constraint ‖f‖2

K ≤ R: if K is symmetric
and positive definite and the xi are distinct then K−1 exists and ‖f‖2

K

is automatically bounded (with a bound that increases with n). For any
fixed n, the condition number is finite but typically increases with n.

2. Minimization of the functional in Equation (10) with γ > 0 implicitly
enforces the solution to be in a ball in the RKHS, whose radius can be
bounded “a priori” before the data set S is known (see [18]).

11



2.4.3 Stability of learning: a more general case

The approach to defining stability described above for the RKHS case cannot
be used directly in the more general setup of the supervised learning problem
introduced in section 2.1. In particular, the training set Sn is drawn i.i.d. from
the probability distribution on Z , the xi are not fixed and we may not even
have a norm in H (in the case of RKHS the norm in H bounds the sup norm).

The probabilistic case for H with the sup norm
A (distribution-dependent) definition of stability that takes care of some of the
issues above was introduced by [4] with the name of uniform stability:

∀S ∈ Zn, ∀i ∈ {1, . . . , n} sup
z∈Z

|V (fS , z) − V (fSi , z)| ≤ β, (13)

Kutin and Niyogi [14] showed that ERM does not in general exhibit Bousquet
and Elisseeff’s definition of uniform stability. Therefore they extended it in a
probabilistic sense with the name of (β, δ)-hypothesis stability, which is a natural
stability criterion for hypothesis spaces equipped with the sup norm. We give
here a slightly different version:

IPS

{
sup
z∈Z

|V (fS , z) − V (fSi , z)| ≤ β

}
≥ 1 − δ, (14)

where β and δ go to zero with n → ∞.
Interestingly, the results of [4] imply that Tikhonov regularization algorithms
are uniformly stable (and of course (β, δ)-hypothesis stable) with β = O( 1

γn).
Thus, this definition of stability recovers the key parameters for good condi-
tioning number of the regularization algorithms. As discussed later, we con-
jecture that in the case of ERM, (β, δ)-hypothesis stability is related to the com-
pactness of H with respect to the sup norm in C(X).

A more general definition of stability
The above definitions of stability are not appropriate for hypothesis spaces for
which the sup norm is not meaningful, at least in the context of the learning
problem (for instance, for hypothesis spaces of indicator functions). In addi-
tion, it is interesting to note that the definitions of stability introduced above –
and in the past – are not general enough to be equivalent to the classical neces-
sary and sufficient conditions on H for consistency of ERM. The key ingredient
in our definitions of stability given above is some measure on |�fS − �fSi |, eg
a measure of the difference between the error made by the predictor obtained
by using ERM on the training set S vs. the error of the predictor obtained
from a slightly perturbed training set Si. Since we want to deal with spaces
without a topology, we propose here the following definition17 of leave-one-out
cross-validation (in short, CVloo) stability, which is the key part in the notion of
CVEEEloo stability introduced later:

17The definition is given here in its distribution-dependent form.
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∀i ∈ {1, . . . , n} IPS {|V (fS , zi) − V (fSi , zi)| ≤ βCV } ≥ 1 − δCV ,

Here we measure the difference between the errors at a point zi which is in the
training set of one of the predictors but not in the training set of the other. No-
tice that the definitions of stability we discussed here are progressively weaker:
a good condition number (for increasing n) implies good uniform stability18.
In turns, uniform stability implies (β, δ)-hypothesis stability which implies CVloo sta-
bility. For the case of supervised learning all the definitions capture the basic
idea of stability of a well-posed problem: the function “learned” from a train-
ing set should, with high probability, change little in its pointwise predictions
for a small change in the training set, such as deletion of one of the examples.

REMARKS:

1. In the learning problem, uniqueness of the solution of ERM is always
meant in terms of uniqueness of � and therefore uniqueness of the equiv-
alence class induced in H by the loss function V . In other words, multiple
f ∈ H may provide the same �. Even in this sense, ERM on a uGC class is
not guaranteed to provide a unique “almost minimizer”. Uniqueness of
an almost minimizer therefore is a rather weak concept since uniqueness
is valid modulo the equivalence classes induced by the loss function and by
ε- minimization.

2. Stability of algorithms is almost always violated, even in good and use-
ful algorithms (Smale, pers. comm.). In this paper, we are not concerned
about stability of algorithms but stability of problems. Our notions of stabil-
ity of the map L are in the same spirit as the condition number of a linear
problem, which is independent of the algorithm to be used to solve it. As
we discussed earlier, both CVloo stability and uniform stability can be re-
garded as extensions of the notion of condition number (for a discussion
in the context of inverse ill-posed problems see [2]).

3 Stability, generalization and consistency of ERM

3.1 Probabilistic preliminaries

The following are easy consequences of our definitions and will be used with-
out further mention throughout the paper:

IES [I[fS ]] = IES,z[V (fS , z)]

∀i ∈ {1, . . . , n} IES [IS [fS ]] = IES [V (fS , zi)]

18Note that nγ which controls the quality of the condition number in regularization also controls
the rate of uniform stability.
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∀i ∈ {1, . . . , n} IES [I[fSi ] = IES [V (fSi , zi)]

3.2 Leave-one-out stability properties

This section introduces several definitions of stability – all in the leave-one-
out form – and show the equivalence of two of them. The first definition of
stability of the learning map L, is Cross-Validation Leave-One-Out stability which
turns out to be the central one for most of our results. This notion of stability is
based upon a variation of a definition of stability introduced in [14].

3.2.1 CVloo stability

Definition 3.1 The learning map L is distribution-independent, CVloo stable if for
each n there exists a β

(n)
CV and a δ

(n)
CV such that

∀i ∈ {1, . . . , n} ∀µ IPS

{
|V (fSi , zi) − V (fS , zi)| ≤ β

(n)
CV

}
≥ 1 − δ

(n)
CV ,

with β
(n)
CV and δ

(n)
CV going to zero for n → ∞.

Notice that our definition of the stability of L depends on the pointwise value
of |V (fS , zi) − V (fSi , zi)|. This definition is much weaker than the uniform
stability condition [4] and is implied by it.
A definition which turns out to be equivalent was introduced by [4] (see also
[12]) under the name of pointwise hypothesis stability or PH stability, which we
give here in its distribution-free version:

Definition 3.2 The learning map L has distribution-independent, pointwise hypoth-
esis stability if for each n there exists a β

(n)
PH

∀i ∈ {1, ..., n} ∀µ IES [|V (fS , zi) − V (fSi , zi)|] ≤ β
(n)
PH ,

with β
(n)
PH going to zero for n → ∞.

We now show that the two definitions of CVloo stability and PH-stability are
equivalent (in general, without assuming ERM).

Lemma 3.1 CVloo stability with βloo and δloo implies PH stability with βPH =
βloo + Mδloo; PH stability with βPH implies CVloo stability with (α, βPH

α ) for any
α < βPH .

PROOF:We give the proof for a given distribution. The result extends trivially
to the distribution-free (∀µ) case. From the definition of CVloo stability and the
bound on the loss function it follows

∀i ∈ {1, ..., n} IES [|V (fS , zi) − V (fSi , zi)|] ≤ βloo + Mδloo.
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This proves CVloo stability implies PH stability.

From the definition of PH stability, we have

IES [|V (fSi , zi) − V (fS , zi)|] ≤ βPH

Since |V (fSi , zi) − V (fS , zi)| ≥ 0, by Markov’s inequality, we have

IP[|V (fSi , zi) − V (fS , zi)| > α] ≤ IES [|V (fSi , zi) − V (fS , zi)|]
α

≤ βPH

α

From this it is immediate that the learning algorithm is (α, βPH

α ) CVloo stable.
�

3.2.2 Eloo and EEloo stability

We now introduce two rather weak and natural stability conditions which, un-
like CVloo stability, are not pointwise and should be satisfied by most reason-
able algorithm. The first one – introduced and used by [12] – is leave-one-out
stability of the expected error; the second one – which is similar to the overlap
stability of Kutin and Niyogi – is leave-one-out stability of the empirical error.
They are both very reasonable from the point of view of wellposedness of the
problem. In particular, for ERM it would be indeed inconsistent if stability of
the expected and empirical error were not true. Notice that uniform stability,
which is the ’normal” definition of continuity for stability (stability in the L∞
norm), implies both Eloo and EEloo stability. In fact (β, δ)-hypothesis stability
immediately gives CVloo stability, hypothesis stability, Eloo stability, and EEloo

stability.

Definition 3.3 The learning map L is distribution-independent, Error stable – in
short Eloo stable – if for each n there exists a β

(n)
Er and a δ

(n)
Er such that for all i = 1...n

∀µ IPS

{
|I[fSi ] − I[fS ]| ≤ β

(n)
Er

}
≥ 1 − δ

(n)
Er ,

with β
(n)
Er and δ

(n)
Er going to zero for n → ∞.

Definition 3.4 The learning map L is distribution-independent, Empirical error sta-
ble – in short EEloo stable – if for each n there exists a β

(n)
EE and a δ

(n)
EE such that for all

i = 1...n
∀µ IPS

{
|ISi [fSi ] − IS [fS ]| ≤ β

(n)
EE

}
≥ 1 − δ

(n)
EE ,

with β
(n)
EE and δ

(n)
EE going to zero for n → ∞.
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Since the loss function is bounded by M an equivalent definition of EEloo stability
is: for each n there exists a β

(n)
EE and a δ

(n)
EE such that for all i = 1...n

∀µ IPS

{
|IS [fSi ] − IS [fS ]| ≤ β

(n)
EE

}
≥ 1 − δ

(n)
EE ,

with β
(n)
EE and δ

(n)
EE going to zero for n → ∞.

The β
(n)
EE in the two variants of the definition are within M

n of each other.

3.2.3 CVEEEloo stability

As we will show, the combination of CVloo, Eloo and EEloo stability is sufficient
for generalization for generic, symmetric algorithms and is necessary and suf-
ficient for consistency of ERM. The following definition will be useful

Definition 3.5 When a learning map L exhibits CVloo, Eloo and EEloo stability, we
will say that it has CVEEEloo stability.

Notice that uniform stability implies CVEEEloo stability but is not implied by
it.

3.3 CVEEEloo stability implies generalization

In this section we prove that CVEEEloo stability is sufficient for generalization
for general learning algorithms.
We first prove the following useful Lemma.

Lemma 3.2 Given the following expectation

IEx[Ax(Bx − Cx)],

with the random variables 0 ≤ Ax, Bx, Cx ≤ M and random variables 0 ≤ A′
x, B′

x, C′
x ≤

M where

IPx(|A′
x − Ax| > βA) ≤ δA

IPx(|B′
x − Bx| > βB) ≤ δB

IPx(|C′
x − Cx| > βC) ≤ δC ,

then

IEx[Ax(Bx − Cx)] ≤ IEx[A′
x(B′

x − C′
x)] +

3MβA + 3M2δA + MβB + M2δB + MβC + M2δC .
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PROOF:
We first define the following three terms

∆A,x = Ax − A′
x

∆B,x = Bx − B′
x

∆C,x = C′
x − Cx.

We now rewrite the expectation and use the fact that the random variables are
nonnegative and bounded by M

IEx[Ax(Bx − Cx)] = IEx[(A′
x + ∆A,x)(B′

x + ∆B,x − C′
x + ∆C,x)]

≤ IEx[A′
x(B′

x − C′
x)] + 3M IEx|∆A,x| + M IEx|∆B,x| + 2M IEx|∆C,x|.

By the assumptions given

|∆A,x| ≤ βA with probability 1 − δA

|∆B,x| ≤ βB with probability 1 − δB

|∆C,x| ≤ βC with probability 1 − δC .

Sets of x for which |∆A,x| ≤ βA are called G (the fraction of sets for which this
holds is 1 − δA) while the complement is called Gc

IEx|∆A,x| = IEx∈G|∆A,x| + IEx∈Gc |∆A,x|
≤ (1 − δA)βA + MδA

≤ βA + MδA.

Therefore,

IEx|∆A,x| + IEx|∆B,x| + IEx|∆C,x| ≤ βA + MδA + βB + MδB + βC + MδC . �

We now prove that CVEEEloo stability implies generalization for symmetric
algorithms.

Theorem 3.1 If the symmetric learning map is CVEEEloo stable then with probability
1 − δgen

|I[fS ] − IS [fS ]| ≤ βgen,

where

δgen = βgen = (2MβCV +2M2δCV +3MβEr+3M2δEr +5MβEE+5M2δEE)1/4.

PROOF:
We first state the properties implied by the assumptions. In all cases the prob-
ability is over S, z′.
CV stability: with probability 1 − δCV

|V (fS , z′) − V (fS,z′ , z′)| ≤ βCV .
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Error stability: with probability 1 − δEr

|IEzV (fS , z′) − IEzV (fS,z′ , z)| ≤ βEr.

Empirical error stability: with probability 1 − δEE∣∣∣∣∣∣
1
n

∑
zj∈S

V (fS , zj) − 1
n + 1

∑
zj∈S,z′

V (fS,z′ , zj)

∣∣∣∣∣∣ ≤ βEE .

Let us consider

IES(I[fS ] − IS [fS ])2 = IES(I[fS ]2 + IS [fS ]2 − 2I[fS]IS [fS ])
= IES [I[fS ](I[fS ] − IS [fS])] + IES [IS [fS](IS [fS ] − I[fS ])].

We will only upper bound the two terms in the expansion above since a trivial
lower bound on the above quantity is zero.

We first bound the first term

IES


IEzV (fS , z)


IEz′V (fS , z′) − 1

n

∑
zj∈S

V (fS , zj)






= IES,z′


IEzV (fS , z)


V (fS , z′) − 1

n

∑
zj∈S

V (fS , zj)




 .

Given the stability assumptions and Lemma 3.2

IES,z′


IEzV (fS , z)


V (fS , z′) − 1

n

∑
zj∈S

V (fS , zj)






≤ IES,z′


IEzV (fS,z′ , z)


V (fS,z′ , z′) − 1

n + 1

∑
zj∈S,z′

V (fS,z′ , zj)






+3MβEr + 3M2δEr + MβCV + M2δCV + MβEE + M2δEE

= IES,z,z′


V (fS,z′ , z)


V (fS,z′, z′) − 1

n + 1

∑
zj∈S,z′

V (fS,z′ , zj)






+3MβEr + 3M2δEr + MβCV + M2δCV + MβEE + M2δEE

By symmetry

IES,z,z′


V (fS,z′, z)


V (fS,z′ , z′) − 1

n + 1

∑
zj∈S,z′

V (fS,z′, zj)




 = 0,
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since the expectation of the two terms in the inner parentheses is identical: both
are measuring the error on a training sample from datasets of n + 1 samples
drawn i.i.d. This bounds the first term as follows

IES [I[fS ](I[fS ]− IS [fS])] ≤ M(βCV +MδCV +3βEr + 3MδEr + βEE +MδEE).

We now bound the second term

IES


IS [fS ]


 1

n

∑
zj∈S

V (fS , zj) − IEzV (fS , z)






= IES,z


IS [fS ]


 1

n

∑
zj∈S

V (fS , zj) − V (fS , z)




 .

Given the stability assumptions and Lemma 3.2

IES,z


IS [fS ]


 1

n

∑
zj∈S

V (fS , zj) − V (fS , z)






≤ IES,z


IS,z[fS,z]


 1

n + 1

∑
zj∈S,z

V (fS,z, zj) − V (fS,z, z)




+ 4MβEE + 4M2δEE + MβCV + M2δCV

= IES,z


V (fS,z, z)


 1

n + 1

∑
zj∈S,z

V (fS,z, zj) − V (fS,z, z)




+ 4MβEE + 4M2δEE + MβCV + M2δCV

By symmetry and the Cauchy-Schwarz inequality

IES,z


V (fS,z, z)


 1

n + 1

∑
zj∈S,z

V (fS,z, zj) − V (fS,z, z)




 ≤ 0.

This upper-bounds the second term

IES [IS [fS ](IS [fS] − I[fS ])] ≤ M(βCV + MδCV + 4βEE + 4MδEE).

Combining the above terms gives

IES(I[fS ] − IS [fS ])2 ≤ B,

where

B = 2MβCV + 2M2δCV + 3MβEr + 3M2δEr + 5MβEE + 5M2δEE .
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By the Bienaymé-Chebyshev inequality it follows that

IP(|I[fS ] − IS [fS ]| > δ) ≤ B

δ2

for nonnegative δ, implying that, with probability 1 − δ,

|I[fS ] ≤ IS [fS ]| +
√

B

δ
.

Setting δ =
√

B gives us the result, eg with probability 1 − δgen

|I[fS ] − IS [fS ]| ≤ βgen,

where
δgen = βgen = B1/4. �

REMARKS:

1. CVloo, Eloo and EEloo stability together are strong enough to imply gen-
eralization for general algorithms, but neither condition by itself is suffi-
cient.

2. CVloo stability by itself is not sufficient for generalization, as the following
counterexample shows. Let X be uniform on [0, 1]. Let Y ∈ {−1, 1}. Let
the ”target function” be f ∗(x) = 1, and the loss-function be the (0, 1)-loss.

Given a training set of size n, our (non-ERM) algorithm ignores the y
values and produces the following function:

fS(x) =
{ −1n if n is a training point

−1n+1 otherwise.

Now consider what happens when we remove a single training point to
obtain fSi . Clearly,

fSi(x) =
{

fS(x) if x = xi

−fS(x) otherwise.

In other words, when we remove a training point, the value of the output
function switches at every point except that training point. The value
at the training point removed does not change at all, so the algorithm is
(βC , δC) CVloo stable with βC = δC = 0. However, this algorithm does
not generalize at all; for every training set, depending on the size of the
set, either the training error is 0 and the testing error is 1, or vice versa.

3. Eloo and EEloo stability by themselves are not sufficient for generalization,
as the following counterexample shows. Using the same setup as in the
previous remark, consider an algorithm which returns 1 at every train-
ing point, and -1 otherwise. This algorithm is EEloo and Eloo stable (and
hypothesis stable), but is not CVloo stable and does not generalize.
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4. In [4], Theorem 11, Elisseef and Bousquet claim that PH stability (which
is equivalent to our CVloo stability, by Lemma 3.1) is sufficient for gen-
eralization. However, there is an error in their proof. The second line of
their theorem, translated into our notation, states correctly that

IES,z[|V (fS , zi) − V (fSi,z , zi)|] ≤ IES [|V (fS , zi) − V (fSi , zi)|]
+ IES [|V (fSi , zi) − V (fSi,z , zi)|].

Bousquet and Elisseef use PH stability to bound both terms in the ex-
pansion. While the first term can be bounded using PH stability, the sec-
ond term involves the difference in performance on zi between functions
generated from two different test sets, neither of which contain zi; this
cannot be bounded using PH stability. The Elisseef and Bousquet proof
can be easily “fixed” by bounding the second term using the more gen-
eral notion of (non-pointwise) hypothesis stability; this would then prove
that the combination of CVloo stability and hypothesis stability are suffi-
cient for generalization, which also follows directly from proposition 3.1.
Hypothesis stability is a strictly stronger notion than error stability and
implies it. Elooerr stability (see later) does not imply hypothesis stability
but is implied by it19.

5. Notice that hypothesis stability and CVloo stability imply generalization.
Since hypothesis stability implies Eloo stability it follows that CVloo sta-
bility together with hypothesis stability implies EEloo stability (and gen-
eralization).

3.4 Alternative stability conditions

Our main result is in terms of CVEEEloo stability. There are however alternative
conditions that together with CVloo stability are also sufficient for generaliza-
tion and necessary and sufficient for consistency of ERM. One such condition
is Expected-to-Leave-One-Out Error, in short Elooerr condition.

19There is an unfortunate confusing proliferation of definitions of stability. The hypothesis sta-
bility of Elisseef and Bousquet is essentially equivalent to the L1 stability of Kutin and Niyogi
(modulo probabilistic versus non-probabilistic and change-one versus leave-one-out differences);
similarly, what Kutin and Niyogi call (β, δ)-hypothesis stability is a probabilistic version of the
(very strong) uniform stability of Elisseef and Bousquet. It is problematic that many versions of
stability exist in both change-one and leave-one-out forms. If a given form of stability measures
error at a point that is not in either training set, the change-one form implies the leave-one-out
form (for example, Bousquet and Elisseef’s hypothesis stability implies Kutin and Niyogi’s weak-
L1 stability), but if the point at which we measure is added to the training set, this does not hold
(for example, our CVloo stability does not imply the change-one CV stability of Kutin and Niyogi;
in fact, Kutin and Niyogi’s CV stability is roughly equivalent to the combination of our CVloo

stability and Elisseef and Bousquet’s hypothesis stability).
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Definition 3.6 The learning map L is Elooerr stable in a distribution-independent
way, if for each n there exists a β

(n)
EL and a δ

(n)
EL such that

∀i ∈ {1, . . . , n} ∀µ IPS

{ ∣∣∣∣∣I[fS ] − 1
n

n∑
i=1

V (fSi , zi)

∣∣∣∣∣ ≤ βEL

}
≥ 1 − δ

(n)
EL,

with β
(n)
EL and δ

(n)
EL going to zero for n → ∞.

Thinking of the Elooerr property as a form of stability may seem somewhat of
a stretch (though the definition depends on a “perturbation” of the training set
from S to Si). It may be justified however by the fact that the Elooerr property
is implied – in the general setting – by a classical leave-one-out notion of stabil-
ity called hypothesis stability20, which was introduced by DeVroye and Wagner
[7] and later used by [12, 4] (and in a stronger change-one form by [14]).
Intuitively, the Elooerr condition seems both weak and strong. It looks weak
because the leave-one-out error 1

n

∑n
i=1 V (fSi , zi) seems a good empirical proxy

for the expected error IEzV (fS , z) and it is in fact routinely used in this way for
evaluating empirically the expected error of learning algorithms.

Definition 3.8 When a learning map L exhibits both CVloo and Elooerr stability, we
will say that it has LOO stability.

3.4.1 LOO stability implies generalization

We now prove that CVloo and Elooerr stability together are sufficient for gen-
eralization for general learning algorithms. We will use the following lemma
mentioned as Remark 10 in [4], of which we provide a simple proof21.

Lemma 3.3 Decomposition of the generalization error

IES(I[fS ]−IS [fS ])2 ≤ 2IES

(
I[fS ] − 1

n

n∑
i=1

V (fSi , zi)

)2

+2M IES |V (fS , zi)−V (fSi , zi)|.

20Our definition of hypothesis stability – which is equivalent to leave-one-out stability in the L1

norm – is:

Definition 3.7 The learning map L has distribution-independent, leave-one-out hypothesis stability if for
each n there exists a β

(n)
H

∀µ IESIEz [|V (fS , z) − V (fSi , z)|] ≤ β
(n)
H ,

with β
(n)
H going to zero for n → ∞.

21Bousquet and Elisseeff attribute the result to Devroye and Wagner.
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PROOF:
By the triangle inequality and inspection

IES(I[fS ]−IS [fS ])2 ≤ 2IES


I[fS] − 1

n

n∑
j=1

V (fSj , zj)




2

+2IES


IS [fS ] − 1

n

n∑
j=1

V (fSj , zj)




2

.

We now bound the second term

IES


IS [fS] − 1

n

n∑
j=1

V (fSj , zj)




2

= IES


 1

n

n∑
j=1

V (fS , zj) − 1
n

n∑
j=1

V (fSj , zj)




2

= IES
1
n

∣∣∣∣∣∣
n∑

j=1

[V (fS , zj) − V (fSj , zj)]

∣∣∣∣∣∣
2

≤ M IES
1
n

∣∣∣∣∣∣
n∑

j=1

[V (fS , zj) − V (fSj , zj)]

∣∣∣∣∣∣
≤ M IES

1
n

n∑
j=1

|V (fS , zj) − V (fSj , zj)|

= M
1
n

n∑
j=1

IES |V (fS , zj) − V (fSj , zj)|

= M IES |V (fS , zi) − V (fSi , zi)| .
Using the decomposition of the generalization error I[fS]− IS [fS ] provided by
the lemma it is clear that

Proposition 3.1 LOO stability implies generalization.

REMARKS:

1. Elooerr stability by itself is not sufficient for generalization, as a previous
example showed (consider an algorithm which returns 1 for every train-
ing point, and -1 for every test point. This algorithm is Elooerr stable, as
well as hypothesis stable, but does not generalize).

2. The converse of Theorem 3.1 is false. Considering the same basic setup
as the example in the previous remark, consider an algorithm that, given
a training set of size n, yields the constant function f(x) = −1n. This
algorithm possesses none of CVloo or Elooerr (or Eloo or EEloo) stability,
but it will generalize.

3. CVEEEloo stability implies convergence of 1
n

∑n
j=1 V (fSj , zj)) to I , be-

cause we can use the decomposition lemma “in reverse”, that is (I −
1
n

∑n
j=1 V (fSj , zj))2 ≤ (I − IS)2 +(IS − 1

n

∑n
j=1 V (fSj , zj))2 and then use

CVloo stability to bound the second term.
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We now turn (see section 3.5) to the question of whether CVEEEloo stability
(or LOO stability) is general enough to capture the fundamental conditions
for consistency of ERM and thus subsume the “classical” theory. We will in fact
show in the next subsection (3.5) that CVloo stability alone is equivalent to con-
sistency of ERM. To complete the argument, we will also show in subsection 3.5
that Eloo, EEloo stability (as well as Elooerr) are implied by consistency of ERM.
Thus CVEEEloo stability (as well as LOO stability) is implied by consistency of
ERM.

3.5 CVEEEloo stability is necessary and sufficient for consis-
tency of ERM

We begin showing that CVloo stability is necessary and sufficient for consis-
tency of ERM.

3.5.1 Almost positivity of ERM

We first prove a lemma about the almost positivity22 of V (fS , zi) − V (fSi , zi),
where |S| = n, as usual.

Lemma 3.4 (Almost-Positivity) Under the assumption that ERM finds a εE-minimizer,

∀i ∈ {1, ..., n} V (fSi , zi) − V (fS , zi) + 2(n − 1)εE ≥ 0

PROOF:By the definition of almost minimizer (see Equation (1)), we have

1
n

∑
zj∈S

V (fSi , zj) − 1
n

∑
zj∈S

V (fS , zj) ≥ −εE
n (15)

1
n

∑
zj∈Si

V (fSi , zj) − 1
n

∑
zj∈Si

V (fS , zj) ≤ n − 1
n

εE
n−1 (16)

We can rewrite the first inequality as
 1

n

∑
zj∈Si

V (fSi , zj) − 1
n

∑
zj∈Si

V (fS , zj)


+

1
n

V (fSi , zi) − 1
n

V (fS , zi) ≥ −εE
n .

The term in the bracket is less than or equal to n−1
n εE

n−1 (because of the second
inequality) and thus

V (fSi , zi) − V (fS , zi) ≥ −nεE
n − (n − 1)εE

n−1

22Shahar Mendelson’s comments prompted us to define the notion of almost positivity.
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Because the sequence of n εN
n is a decreasing sequence of positive terms, we

obtain
V (fSi , zi) − V (fS , zi) ≥ −2(n− 1)εE

n−1. �
The following lemma will be key in the proof of our main theorem.

Lemma 3.5 For any i ∈ {1, 2, . . . , n}, under almost ERM with εE
n > 0 chosen such

that limn→∞ nεE
n = 0, the following (distribution free) bound holds

IES [|V (fSi , zi) − V (fS , zi)|] ≤ IESI[fSi ] − IESIS [fS ] + 4(n − 1)εE
n−1

PROOF:We note that

IES [|V (fSi , zi) − V (fS , zi)|] = IES [|V (fSi , zi) − V (fS , zi) + 2(n − 1)εE
n−1 − 2(n − 1)εE

n−1|]
≤ IES [|V (fSi , zi) − V (fS , zi) + 2(n − 1)εE

n−1|] + 2(n − 1)εE
n−1

Now we make two observations. First, under the assumption of almost ERM,
by Lemma 3.4,

∀i ∈ {1, . . . , n} V (fSi , zi) − V (fS , zi) + 2(n − 1)εE
n−1 ≥ 0, (17)

and therefore

IES [|V (fSi , zi)−V (fS , zi)+2(n−1)εE
n−1|] = IES [V (fSi , zi)−V (fS , zi)]+2(n−1)εE

n−1.

Second, by the linearity of expectations,

IES [V (fSi , zi) − V (fS , zi)] = IESI[fSi ] − IESIS [fS ], (18)

and therefore

IES [|V (fSi , zi) − V (fS , zi)|] ≤ IESI[fSi ] − IESIS [fS ] + 4(n − 1)εE
n−1. �

REMARKS:

1. From exact positivity it follows that the leave-one-out error error is greater
than or equal to the training error

1
n

n∑
i=1

V (fSi , zi) ≥ IS [fS ].

2. CVloo stability implies that the leave-one-out error converges to the train-
ing error in probability.
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3.5.2 CVloo stability is necessary and sufficient for consistency of ERM

In the next two theorems we prove first sufficiency and then necessity.

Theorem 3.2 If the map induced by ERM over a class H is distribution independent
PH stable, and L is bounded, then ERM over H is universally consistent.

PROOF:Given a sample S = (z1, . . . , zn) with n points and a sample Sn+1 =
(z1, . . . , zn+1) with an additional point then by distribution independent PH
stability of ERM, the following holds for all µ:

IESn+1 [V (fS , zn+1) − V (fSn+1 , zn+1)] ≤ IESn+1 [|V (fS , zn+1) − V (fSn+1 , zn+1)|]
≤ (βPH)n+1, (19)

where (βPH)n+1 is associated with Sn+1 and |Sn+1| = n + 1.
The following holds for all µ:

IESI[fS ] − IESn+1ISn+1 [fSn+1] = IESn+1 [V (fS , zn+1) − V (fSn+1 , zn+1)]. (20)

From Equations (19) and (20), we therefore have

∀µ IESI[fS ] ≤ IESn+1ISn+1 [fSn+1 ] + (βPH)n+1. (21)

Now we will show that

lim
n→∞ sup

µ
(IESI[fS ] − inf

f∈H
I[f ]) = 0.

Let ηµ = inff∈H I[f ] under the distribution µ. Clearly, for all f ∈ H, we have
I[f ] ≥ ηµ and so IESI[fS ] ≥ ηµ. Therefore, we have (from (21))

∀µ ηµ ≤ IESI[fS ] ≤ IESn+1ISn+1 [fSn+1 ] + (βPH)n+1. (22)

For every εc > 0, there exists fεc,µ ∈ H such that I[fεc,µ] < ηµ + εc. By the
almost ERM property, we also have

ISn+1 [fSn+1] ≤ ISn+1 [fεc,µ] + εE
n+1

Taking expectations with respect to Sn+1 and substituting in eq. (22), we get

∀µ ηµ ≤ IESI[fS ] ≤ IESn+1ISn+1 [fεc,µ] + εE
n+1 + (βPH)n+1.

Now we make the following observations. First, limn→∞ εE
n+1 = 0. Second,

limn→∞(βPH)n = 0. Finally, by considering the fixed function fεc,µ, we get

∀µ IESn+1ISn+1 [fεc,µ] =
1

n + 1

n+1∑
i=1

IESn+1V (fεc,µ, zi) = I[fεc,µ] ≤ ηµ + εc
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Therefore, for every fixed εc > 0, for n sufficiently large,

∀µ ηµ ≤ IESI[fS ] ≤ ηµ + εc

from which we conclude, for every fixed εc > 0,

0 ≤ lim inf
n→∞ sup

µ
(IESI[fS ] − ηµ) ≤ lim sup

n→∞
sup

µ
(IESI[fS ] − ηµ) ≤ εc.

From this it follows that limn→∞ supµ(IESI[fS ]−ηµ) = 0. Consider the random
variable XS = I[fS ] − ηµ. Clearly, XS ≥ 0. Also, limn→∞ supµ IESXS = 0.
Therefore, we have (from Markov’s inequality applied to XS):
For every α > 0,

lim
n→∞ sup

µ
IP[I[fS ] > ηµ + α] = lim

n→∞ sup IP[XS > α] ≤ lim
n→∞ sup

IES [XS ]
α

= 0.

This proves distribution independent convergence of I[fS ] to ηµ (consistency),
given PH stability. �

Theorem 3.3 Consistency of ERM (over H) implies PH stability of ERM (over H).

PROOF:To show PH stability, we need to show that

lim
n→∞ sup

µ
IES [|V (fSi , zi) − V (fS , zi)|] = 0

From Lemma 3.5,

∀µ IES [|V (fSi , zi) − V (fS , zi)|] ≤ IESI[fSi ] − IESIS [fS ] + 4(n − 1)εE
n−1 (23)

Given (universal) consistency, Theorem 2.1 implies that L is a uGC class. Be-
cause L is uGC, I[fSi ] is close to IS [fSi ]. Because we are performing ERM,
IS [fSi ] is close to IS [fS ]. Combining these results, I[fSi ] − IS [fS ] is small.
We start with the equality

IES [I[fSi ] − IS [fS ]] = IES [I[fSi ] − IS [fSi ]] + IES [IS [fSi ] − IS [fS ]]. (24)

Since L is uGC, we have (∀µ) with probability at least 1 − δn(εn),

|I[fSi ] − IS [fSi ]| ≤ εn (25)

and therefore

∀µ IES [I[fSi ] − IS [fSi ]] ≤ IES [|I[fSi ] − IS [fSi ]|] ≤ εn + Mδn(εn). (26)

From Lemma 3.6, we have

∀µ IES [IS [fSi ] − IS [fS ]] ≤ M

n
+ εE

n−1. (27)
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Combining Equation (24) with inequalities (26) and (27), we get

∀µ IES [I[fSi ] − IS [fS ]] ≤ εn + Mδn(εn) +
M

n
+ εE

n−1.

From inequality (23), we obtain

∀µ IES [|V (fSi , zi) − V (fS , zi)|] ≤ εn + Mδn(εn) +
M

n
+ εE

n−1 + 4(n − 1)εE
n−1.

Note that εE
n and εn may be chosen independently. Also, since we are guar-

anteed arbitrarily good ε-minimizers, we can choose εE
n to be a decreasing se-

quence such that limn→∞(4n − 3)εE
n = 0.

Further, by Lemma 3.7, it is possible to choose a sequence εn such that εn → 0
and δn(εn) → 0. These observations taken together prove that

lim
n→∞ sup

µ
IES [|V (fSi , zi) − V (fS , zi)|] = 0

This proves that universal consistency implies PH hypothesis stability. �.

Lemma 3.6 Under almost ERM,

IS [fSi ] − IS [fS ] ≤ M

n
+ εE

n−1

that is ERM has EEloo stability.

PROOF:

IS [fSi ] =
(n − 1)ISi [fSi ] + V (fSi , zi)

n

≤ (n − 1)(ISi [fS ] + εE
n−1) + V (fSi , zi)

n
(by almost ERM)

=
(n − 1)ISi [fS ] + V (fS , zi) − V (fS , zi) + V (fSi , zi)

n
+

n − 1
n

εE
n−1

≤ IS [fS ] +
M

n
+ εE

n−1 since 0 ≤ V ≤ M. �

Lemma 3.7 If L is uGC, there exists a sequence εn > 0 such that:
(1) limn→∞ εn = 0
(2) limn→∞ δn(εn) = 0.

PROOF:Because L is uGC,

sup
µ

IP

(
sup
f∈H

|I[f ] − IS [f ]| > ε

)
≤ δn(ε)

where limn→∞ δn(ε) = 0.
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For every fixed ε we know that limn→∞ δn( 1
k ) = 0 for every fixed integer k.

Let Nk be such that for all n ≥ Nk, we have δn( 1
k ) < 1

k . Note, that for all i > j
Ni ≥ Nj .
Now choose the following sequence for εn. We take εn = 1 for all n < N2;
εn = 1

2 for N2 ≤ n < N3 and in general εn = 1
k for all Nk ≤ n < Nk+1.

Clearly εn is a decreasing sequence converging to 0. Further, for all Nk ≤ n <
Nk+1, we have

δn(εn) = δn

(
1
k

)
≤ 1

k
.

Clearly δn(εn) also converges to 0.�

REMARKS:

1. Convergence of the empirical error to the expected error follows from
either CVEEEloo or LOO stability without assuming ERM (see Theorem
3.1 and Proposition 3.1).

2. In general the bounds above are not exponential in δ. However, since for
ERM CVloo stability implies that L is uGC, the standard uniform bound
holds, which for any given ε is exponential in δ

sup
µ

IP

{
sup
f∈H

|I[f ] − IS [f ]| > ε

}
≤ CN

(
ε(n)

8
,H
)

e−
nε2

8M2 .

Notice that the covering number can grow arbitrarily fast in 1
ε resulting

in an arbitrarily slow rate of convergence between IS [f ] and I[f ].

Pseudostability: a remark

It is possible to define a one-sided version of PH stability, called here pseudoPH
stability:

Definition 3.9 The learning map L has distribution-independent, pseudo pointwise
hypothesis stability if for each n there exists a β

(n)
pPH

∀i ∈ {1, ..., n} ∀µ IES [V (fSi , zi) − V (fS , zi)] ≤ β
(n)
pPH ,

with β
(n)
pPH going to zero for n → ∞.

PseudoPH stability is also necessary and sufficient for universal consistency of ERM.
PseudoPH stability is weaker than PH stability. The proof of its equivalence to
consistency of ERM is immediate, following directly from its definition. How-
ever, for general (non-ERM) algorithms pseudoPH stability is not sufficient in
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our approach to ensure convergence in probability of the empirical to the ex-
pected risk (eg generalization), when combined with Eloo and EEloo (or Elooerr)
stability.23.
Theorems 3.2 and 3.3 can be stated together with the remark on pseudoPH
stability to yield

Theorem 3.4 Either PH or pseudoPH stability of ERM (over H) is necessary and
sufficient for consistency of ERM (over H).

If we make specific assumptions on the loss function V (see a previous foot-
note), then the above theorem can be stated in terms of H being uGC.

A short summary of the argument

The proof just given of necessity and sufficiency of CVloo stability for consis-
tency of ERM has a simple structure, despite the technical details. We sum-
marize it here in the special case of exact minimization of the empirical risk
and existence of the minima of the true risk (which we do not assume in the
full proof in the previous section) to expose the essence of the proof24. In this
short summary, we only show that CVloo stability (as well as pseudoPH stabil-
ity) is necessary and sufficient for consistency of ERM; because ERM on a uGC
class is always Eloo, EEloo (and Elooerr) stable, the necessity and sufficiency of
CVEEEloo (and LOO) stability follows directly.

Theorem 3.5 Under exact minimization of empirical of the empirical risk and exis-
tence of the minima of the true risk, distribution independent (β, δ) CVloo is equivalent
to the convergence I[fS ] → I[f∗] in probability, where f∗ ∈ argminf∈H I[f ].

PROOF:By the assumption of exact ERM, positivity (instead of almost positiv-
ity, see Lemma 3.4) holds, that is

V (fSi , zi) − V (fS , zi) ≥ 0.

Then the following equivalences hold:

(β, δ) CVloo stability ⇔ lim
n→∞ IES [|V (fSi , zi) − V (fS , zi)|] = 0,

⇔ lim
n→∞ IES [V (fSi , zi) − V (fS , zi)] = 0,

⇔ lim
n→∞ IESI[fSi ] − IESIS [fS] = 0,

⇔ lim
n→∞ IESI[fSi ] = lim

n→∞ IESIS [fS ].

23With pseudoPH stability alone, we are unable to bound the second term in the decomposition
of Lemma 3.3.

24This short version of the proof could be made shorter by referring to known results on ERM.
The argument for almost ERM can be made along similar lines.
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Now, I[f∗] ≤ I[fSi ] and IS [fS] ≤ IS [f∗]. Therefore,

I[f∗] ≤ lim
n→∞ IESI[fSi ] = lim

n→∞ IESIS [fS ] ≤ lim
n→∞ IESIS [f∗] = I[f∗],

resulting in
lim

n→∞ IESI[fSi ] = lim
n→∞ IESI[f∗] = I[f∗],

which implies that in probability,

lim
n→∞ I[fSi ] = I[f∗].

The last step is to show that

lim
n→∞ IESI[fSi ] = I[f∗], (28)

is equivalent to the statement that I[fSi ] → I[f∗] in probability.
Since 0 ≤ I[f ] ≤ M for all f , convergence in probability implies equation (28).
The other direction of the statement follows from the fact that

I[fSi ] − I[f∗] ≥ 0

because of the definition of f∗. Therefore,

IES [I[fSi ] − I[f∗]] ≥ 0, (29)

which, together with equation (28), implies that in probability

lim
n→∞ I[fSi ] = I[f∗]. (30)

Finally we note that the convergence in probability of I[fSi ] to I[f∗] is equiv-
alent to consistency. If the draw Sd of the training set has n + 1 elements, the
convergence of I[fSi

d
] to I[f∗] in probability is equivalent to the convergence of

I[fS ] to I[f∗] in probability. �

3.5.3 Consistency of ERM implies Eloo and EEloo (and also Elooerr) stability

ERM is EEloo stable (even when H is not a uGC class) as shown by Lemma 3.6.
Consistency of ERM implies Eloo stability as shown by the following Lemma:

Lemma 3.8 If almost ERM is consistent then

lim
n→∞ IES |I[fSi ] − I[fS]| = 0
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The lemma follows immediately from the following condition (because of Jensen
inequality)

IES |I[fS ] − I[fSi ]| ≤ IES |I[fS ] − IS [fS ]| + IES |IS [fS ] − I[fSi ]|
≤ IES |I[fS ] − IS [fS ]| + IES |IS [fSi ] − I[fSi ]| + IES |IS [fSi ] − IS [fS ]|

which implies Eloo stability (using consistency to bound the first two terms in
the right hand side and EEloo stability to bound the last term). Thus consistency
of ERM implies CVEEEloo stability.
We now show that consistency of ERM implies Elooerr stability.

Lemma 3.9 ERM on a uGC class implies

IES

(
I[fS ] − 1

n

n∑
i=1

V (fSi , zi)

)2

≤ βn,

where limn→∞ βn = 0.

PROOF:
By the triangle inequality and inspection

IES

(
I[fS ] − 1

n

n∑
i=1

V (fSi , zi)

)2

≤ 2IES (I[fS ] − IS [fS ]))2+2IES

(
IS [fS ] − 1

n

n∑
i=1

V (fSi , zi)

)2

.

We first bound the first term. Since we have are performing ERM on a uGC
class we have with probability 1 − δ1

|IS [fS ] − I[fS ]| ≤ β1.

Therefore,
IES (I[fS ] − IS [fS ]))2 ≤ Mβ1 + M2δ1.

The following inequality holds for the second term (see proof of Lemma 3.3)

IES

(
IS [fS ] − 1

n

n∑
i=1

V (fSi , zi)

)2

≤ M IES |V (fS , zi) − V (fSi , zi)| .

Since ERM is on a uGC class (β2, δ2) CVloo stability holds, implying

M IES |V (fS , zi) − V (fSi , zi)| ≤ Mβ2 + M2δ2.

Therefore we obtain

IES

(
IS [fS] − 1

n

n∑
i=1

V (fSi , zi)

)2

≤ Mβ2 + M2δ2
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leading to

IES

(
I[fS ] − 1

n

n∑
i=1

V (fSi , zi)

)2

≤ 2Mβ1 + 2M2δ1 + 2Mβ2 + 2M2δ2.

�

3.5.4 Main result

We are now ready to state the main result of section 3.5.

Theorem 3.6 Assume that fS , fSi ∈ H are provided by ERM and L is bounded.
Then distribution independent CVEEEloo stability (as well as LOO stability) is neces-
sary and sufficient for consistency of ERM. Therefore, the following are equivalent
a) the map induced by ERM is distribution independent CVEEEloo stable
a’) the map induced by ERM is distribution independent LOO stable
b) almost ERM is universally consistent.
c) L is uGC

PROOF:The equivalence of (b) and (c) is well-known (see Theorem 2.1). We
showed that CVloo stability is equivalent to PH stability and that PH stability
implies (b). We have also shown in that almost ERM exhibits CVEEEloo stabil-
ity (and that almost ERM exhibits LOO stability). The theorem follows. �

REMARK:

1. In the classical literature on generalization properties of local classifi-
cation rules ([7]) hypothesis stability was proven (and used) to imply
Elooerr stability. It is thus natural to ask whether we could replace Elooerr

stability with hypothesis stability in theorem 3.6. Unfortunately, we have
been unable to either prove that ERM on a uGC class has hypothesis sta-
bility or provide a counterexample. The question remains therefore open.
It is known that ERM on a uGC class has hypothesis stability when either a)
H is convex, or b) the setting is realizable25, or c) H has a finite number of
hypotheses.

3.5.5 Distribution-dependent stability and consistency

Our main result is given in terms of distribution-free stability and distribution-
free consistency. In this distribution-free framework consistency of ERM is
equivalent to L being uGC. Inspection of the proof suggests that it may be
possible to reformulate our theorem (see also 3.5) in a distribution dependent
way: for ERM, CVloo stability with respect to a specific distribution is necessary and
sufficient for consistency with respect to the same distribution.26 Of course, in this

25We say that the setting is realizable when there is some f0 ∈ H which is consistent with the
examples.

26It should be possible to reformulate the definitions of distribution-dependent consistency and
CVloo stability appropriately, to avoid the case of trivial consistency (following [25]).
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distribution-dependent framework L may not be uGC.

4 Stability conditions, convergence rates and size of
uGC classes

The previous section concludes the main body of the paper. This section con-
sists of a few “side” observations. It is possible to provide rates of convergence
of the empirical risk to the expected risk as a function of CVloo stability using
theorem 3.2. In general these rates will be very slow, also in the case of ERM.
In this section we outline how CVloo stability can be used to control the expec-
tation and error stability can be used to control the variance. The two notions of
stability together will be called strong stability when the rate of convergence of
error stability is fast enough. Strong stability yields faster rates of convergence
of the empirical error to the expected error. In this section we define strong
stability and list several “small” hypothesis spaces for which ERM is strongly
stable.
The following definition of the continuity of the learning map L is based upon
a variation of two definitions of stability first introduced in [14].

Definition 4.1 The learning map L is strongly stable if
a. it has (βloo, δloo) CVloo stability
b. it has error stability with a fast rate, eg for each n there exists a β

(n)
error and a δ

(n)
error

such that

∀i ∈ {1, ..., n} ∀µ IPS {|I[fS ] − I[fSi ]| ≤ βerror} ≥ 1 − δerror,

where βerror = O(n−α) where α > 1/2 and δerror = e−Ω(n).

Our definition of strong stability depends on CVloo stability and on the differ-
ence in the expected values of the losses (I[fS ] − I[fSi ]).
The following theorem is similar to theorem 6.17 in [14].

Theorem 4.1 If the learning map is strongly stable then, for any ε > 0,

IPS {|IS [fS ] − I[fS ]| ≥ ε + βloo + Mδloo + βerror + Mδerror} ≤

2
(

exp
( −ε2n

8(2nβerror + M)2

)
+

n(n + 1)2Mδerror

2nβerror + M

)

where M is a bound on the loss.

The above bound states that with high probability the empirical risk converges
to the expected risk at the rate of the slower of the two rates βloo and βerror. The
probability of the lack of convergence decreases exponentially as n increases.
The proof of the above theorem is in Appendix 6.2 and is based on a version of
McDiarmid’s inequality.
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For the empirical risk to converge to the expected risk in the above bound
βerror must decrease strictly faster than O(n−1/2). For ERM the rate of con-
vergence of βerror is the same rate as the convergence of the empirical error to
the expected error.
Error stability with a fast rate of convergence is a strong requirement. In gen-
eral, for a uGC class the rate of convergence of error stability can be arbitrarily
slow because the covering number associated with the function class can grow
arbitrarily fast 27 with ε−1. Even for hypothesis spaces with VC dimension d
the rate of convergence of error stability is not fast enough, with probability
1 − e−t

I[fS ] − I[fSi ] ≤ O

(√
d log n

n
+

√
t

n

)
.

Fast rates for error stability can be achieved for ERM with certain hypothesis
spaces and settings:

• ERM on VC classes of indicator functions in the realizable setting 28;

• ERM with square loss function on balls in Sobolev spaces Hs(X), with
compact X ⊂ IRd, if s > d (this is due to Proposition 6 in [5]);

• ERM with square loss function on balls or in RKHS spaces with a kernel
K which is C2s with s > d (this is can be inferred from [26]);

• ERM on VC-subgraph classes that are convex with the square loss.

A requirement for fast rates of error stability is that the class of functions H
is “small”: hypothesis spaces with with empirical covering numbers N (H, ε)
that are polynomial in ε−1 (VC classes fall into this category) or exponential
in in ε−p with p < 1 (the Sobolev spaces and RKHS spaces fall into this cat-
egory). Simply having a “small” function class is not enough for fast rates:
added requirements such as either the realizable setting or assumptions on the
convexity of H and square loss are needed.
There are many situations where convergence of the empirical risk to the ex-

pected risk can have rates of the order of O

(√
d
n

)
using standard VC or cover-

ing number bounds, here d is the metric entropy or shattering dimension of the
class H. For these cases we do not have stability based bounds that allow us
to prove rates of convergence of the empirical error to the expected error faster

27Take a compact set K of continuous functions in the sup norm, so that N(ε, K) is finite for all
ε > 0. The set is uniform Glivenko-Cantelli. N(ε, K) can go to infinity arbitrarily fast as ε → 0 in
the sup norm (Dudley, pers. com.).

28This case was considered in [14] theorem 7.4
Theorem: Let H be a space of ±1-classifiers. The following are equivalent

1. There is a constant K such that for any distribution ∆ on Z and any f0 ∈ H, ERM over H is
(0, e−Kn) CV stable with respect to the distribution on Z generated by ∆ and f0.

2. The VC dimension of H is finite.
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than the polynomial bound in theorem 3.1 which gives suboptimal rates that

are much slower than O

(√
d
n

)
. The following cases fall into the gap between

general uGC classes that have slow rates of convergence29 and those classes
that have a fast rate of convergence30:

• ERM on convex hulls of VC classes.

• ERM on balls in Sobolev spaces Hs(X) if 2s > d, which is the condition
that ensures that functions in the space are defined pointwise – a neces-
sary requirement for learning. In this case the standard union bounds
give rates of convergence Ω(( 1

n )b): for the general case b = 1/4 and for
the convex case b = 1/3.

• ERM on VC classes of indicator functions in the non-realizable setting.

5 Discussion

The results of this paper are interesting from two quite different points of view.
From the point of view (A) of the foundations of learning theory, they provide
a condition – CVEEEloo stability – that extends the classical conditions beyond
ERM and subsumes them in the case of ERM. From the point of view (B) of
inverse problems, our results show that the conditions of well-posedness of the
algorithm (specifically stability), and the condition of predictivity (specifically
generalization) that played a key but independent role in the development of
learning theory and learning algorithms respectively, are in fact closely related:
well-posedness (defined in terms of CVEEEloo stability) implies predictivity
and it is equivalent to it for ERM algorithms.

• (A): Learning techniques start from the basic and old problem of fitting
a multivariate function to measurement data. The characteristic feature
central to the learning framework is that the fitting should be predictive,
in the same way that cleverly fitting data from an experiment in physics
can uncover the underlying physical law, which should then be usable in
a predictive way. In this sense, the same generalization results of learn-
ing theory also characterize the conditions under which predictive and
therefore scientific “theories” can be extracted from empirical data (see
[25]). It is surprising that a form of stability turns out to play such a key
role in learning theory. It is somewhat intuitive that stable solutions are
predictive but it is surprising that our specific definition of CVloo stabil-
ity fully subsumes the classical necessary and sufficient conditions on H for
consistency of ERM.

29Obtained using either standard covering number bounds or theorem 3.1.
30Obtained using either standard covering number bounds or strong stability.
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CVEEEloo (or LOO) stability and its properties may suggest how to de-
velop learning theory beyond the ERM approach. It is a simple observa-
tion that CVEEEloo (or LOO) stability can provide generalization bounds
for algorithms other than ERM. For some of them a “VC-style” analysis
in terms of complexity of the hypothesis space can still be used; for oth-
ers, such as k-Nearest Neighbor, such an analysis is impossible because
the hypothesis space has unbounded complexity or is not even defined,
whereas CVloo stability can still be used.

• (B): Well-posedness and, in particular, stability are at the core of the study
of inverse problems and of the techniques for solving them. The notion
of CVloo stability may be a tool to bridge learning theory and the broad
research area of the study of inverse problems in applied math and en-
gineering (for a review see [10]). As we mentioned in the introduction,
while predictivity is at the core of classical learning theory, another mo-
tivation drove the development of several of the best existing algorithms
(such as regularization algorithms of which SVMs are a special case):
well-posedness and, in particular, stability of the solution. These two
requirements – consistency and stability – have been treated so far as “de
facto” separate and in fact there was no a priori reason to believe that they
are related (see [20]). Our new result shows that these two apparently dif-
ferent motivations are closely related and actually completely equivalent
for ERM.

Some additional remarks and open questions are:

1. It would be interesting to analyze CVEEEloo and LOO stability proper-
ties – and thereby estimate bounds on rate of generalization – of several
non-ERM algorithms. Several observations can be already inferred from
existing results. For instance, the results of [3] imply that regularization
and SVMs are CVEEEloo (and also LOO) stable; a version of bagging with
the number k of regressors increasing with n (with k

n → 0) is CVloo sta-
ble and has hypothesis stability (because of [7]) and EEloo stability and is
thus CVEEEloo (and LOO) stable; similarly k-NN with k → ∞ and k

n → 0
and kernel rules with the width hn → 0 and hnn → ∞ are CVEEEloo (and
LOO) stable. Thus all these algorithms satisfy Theorem 3.1 and Proposi-
tion and 3.1 and have the generalization property, that is IS [fS ] converges
to I[fS ] (and some are also universally consistent).

2. The rate of convergence of the empirical error to the expected error for
the empirical minimizer for certain hypothesis spaces differ, depending
on whether we use the stability approaches or measures of the complex-
ity of the hypothesis space, for example VC dimension or covering num-
bers. This discrepancy is illustrated by the following two gaps.

(a) The hypothesis spaces in section 4 that have a fast rate of error stabil-
ity have a rate of convergence of the empirical error of the minimizer
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to the expected error at a rate of O
(

d
n

)
, where d is the VC dimension

or metric entropy. This rate is obtained using VC-type bounds. The
strong stability approach, which uses a variation of McDiarmid’s in-
equality, gives a rate of convergence of O(n−1/2). It may be possible
to improve these rates using inequalities of the type in [19].

(b) For the hypothesis spaces described at the end of section 4 standard
martingale inequalities cannot be used to prove convergence of the
empirical error the expected error for the empirical minimizer.

It is known that martingale inequalities do not seem to yield results of
optimal order in many situations (see [22]). A basic problem in the mar-
tingale inequalities is how variance is controlled. Given a random vari-
able Z = f(X1, ..., Xn) the variance of this random variable is controlled
by a term of the form of

Var(Z) ≤ IE

[
n∑

i=1

(Z − Z(i))2
]

,

where Z(i) = f(X1, ..., X
′
i, ...Xn). If we set Z = IS [fS ] − I[fS ] then for a

function class with VC dimension d the upper bound on the variance is a
constant since

IE[(Z − Z(i))2] = K
d

n
.

However, for this class of functions we know that

Var(IS [fS ] − I[fS]) = Θ

(√
dlnn

n

)
.

It is an open question if some other concentration inequality can be used
to recover optimal rates.

3. We have a direct proof of the following statement for ERM: If H has infi-
nite VC dimension, then ∀n, (βPH)n > 1

8 . This shows that distribution-free
βPH does not converge to zero if H has infinite VC dimension and there-
fore provides a direct link between VC and CVloo stability (instead of via
consistency).

4. Our results say that for ERM, distribution-independent CVloo stability
is equivalent to the uGC property of L. What can we say about com-
pactness? Compactness is a stronger constraint on L than uGC (since
compact spaces are uGC but not vice versa). Notice that the compactness
case is fundamentally different because a compact H is a metric space,
whereas in our main theorem we work with spaces irrespectively of their
topology. The specific question we ask is whether there exists a stability
condition that is related to compactness – as CVloo stability is related to
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the uGC property. Bousquet and Elisseeff showed that Tikhonov regular-
ization (which enforces compactness but is NOT empirical risk minimiza-
tion) gives uniform stability (with fast rate). Kutin and Niyogi showed
that Bousquet and Elisseeff’s uniform stability is unreasonably strong for
ERM and introduced the weaker notion of (β, δ)-hypothesis stability in
equation 14 . It should also be noted (observation by Steve Smale) that
both these definitions of stability effectively require a hypothesis space
with the sup norm topology. The following theorems illustrate some re-
lations. For these theorems we assume that the hypothesis space H is a
bounded subset of C(X) where X is a closed, compact subset X ∈ IRk

and Y is a closed subset Y ∈ IR.

Theorem 5.1 Given (β, δ)-hypothesis stability for ERM with the square loss,
the hypothesis space H is compact.

Theorem 5.2 If H is compact and convex then ERM with the square loss is
(β, δ)-hypothesis stable under regularity conditions of the underlying measure.

The proof is sketched in the Appendix 6.3. The theorems are not sym-
metric, since the second requires convexity and constraints on the mea-
sure. Thus they do not answer in a satisfactory way the question we
posed about compactness and stability. In fact it can be argued on gen-
eral grounds that compactness is not an appropriate property to consider
in connection with hypothesis stability (Mendelson, pers. com.).

Finally, the search for “simpler” conditions than CVEEEloo stability is open. Ei-
ther CVEEEloo or LOO stability answer all the requirements we need: each one
is sufficient for generalization in the general setting and subsumes the classical
theory for ERM, since it is equivalent to consistency of ERM. It is quite possible,
however, that CVEEEloo stability may be equivalent to other, even “simpler”
conditions. In particular, we conjecture that CVloo and EEloo stability are suffi-
cient for generalization for general algorithms (without Eloo stability). Alterna-
tively, it may be possible to combine CVloo stability with a “strong” condition
such as hypothesis stability. We know that hypothesis stability implies Elooerr

stability; we do not know whether or not ERM on a uGC class implies hypoth-
esis stability, though we conjecture that it does.

The diagram of Figure 1 shows relations between the various properties dis-
cussed in this paper. The diagram is by itself a map to a few open questions.
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6 Appendices

6.1 Some conditions that are necessary and sufficient for the
uGC property

Alon et al. proved a necessary and sufficient conditions for universal (wrt
all distributions) and uniform (over all functions in the class) convergence of
|IS [f ] − I[f ]|, in terms of the finiteness for all γ ≥ 0 of a combinatorial quan-
tity called Vγ dimension of F (which is the set V (x), f(x), f ∈ H), under some
assumptions (such as convexity, continuity, Lipschitz) on V .
Alon’s result is based on a necessary and sufficient (distribution independent)
condition proved by Vapnik and Dudley et al. which uses the (distribution-
independent) metric entropy of F defined as Hn(ε,F) = supxn∈Xn logN (ε,F , xn),
where N (ε,F , xn) is the ε-covering of F with respect to l∞xn

( l∞xn
is the l∞ dis-

tance on the points xn).

Theorem (Dudley et al.) F is a strong uniform Glivenko-Cantelli class iff limn→∞
Hn(ε,F)

n =
0 for all ε > 0.

Notice (see [16]) that the metric entropy may be defined (and used in the above
theorem) with respect to empirical norms other than l∞xn

.
Thus the following equivalences hold:

H is uGC ⇔ lim
n→∞

Hn

n
= 0,

⇔ finite Vγ ∀ γ ≥ 0.

Finite VC dimension is the special case of the latter condition when the func-
tions in H are binary. It is well known that necessary and sufficient condition
for uniform convergence in the case of 0 − 1 functions is finiteness of the VC
dimension (Vapnik). Notice that the Vγ dimension exactly reduces to the VC
dimension for γ = 0.

6.2 Strong stability implies good convergence rates

Proof of Theorem 4.1

This theorem is a variation, using our definition of L-stability, of Theorem 6.17
in [14]. We first give two definitions from [14].

Definition 6.1 Change-one cross-validation (CVco) stability is defined as

IPS,z {|V (fS , z) − V (fSi,z , z)| ≤ βCV } ≥ 1 − δCV ,

where βCV = O(n−α) and δCV = O(n−τ ) for τ, α > 0.
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Definition 6.2 Error stability is defined as

IPS,z {|I[fS] − I[fSi,z ]| ≤ β′
Error} ≥ 1 − δ′Error,

where β′
Error = O(n−α) where α > 1/2 and δ′Error = e−Ω(n).

Notice that both these definitions perturb the data by replacement. In our def-
inition of CVloo stability we use the leave-one-out procedure to perturb the
training set.
Kutin and Niyogi 2002 – Theorem 6.17: If the learning map has CVco stability
(βCV , δCV ), and error stability (β′

Error, δ
′
Error) (where error-stability is defined with

respect to a point being replaced) ), then, for any ε > 0,

IPS{|IS [fS ] − I[fS ]| ≥ ε + βCV + MδCV } ≤

2
(

exp
( −ε2n

8(nβ′
Error + M)2

)
+

n(n + 1)Mδ′Error

nβ′
Error + M

)

where M is a bound on the loss.

The proof of Theorem 6.17 requires two separate steps. It requires first to
bound the mean and, second, to bound the variance of the generalization error.
The variance is bounded by using error stability; the mean is bounded by using
CV stability. Then McDiarmid inequality is used.
Next we will first show (in (a)) that our definition of error stability, with the
leave-one-out perturbation, and Kutin’s and Niyogi’s definition differ by at
most a factor 2 (this relates βError and δError to β′

Error and δ′Error). Then (in
(b)) we will directly bound the mean of the generalization error.

(a) If we have with probability 1 − δError

|I[fS ] − I[fSi ]| ≤ βError,

then with probability 1 − 2δError

|I[fS ] − I[fSi,z ]| ≤ 2β′
Error.

This holds because of the following inequalities

|I[fS] − I[fSi,z ]| = |I[fS ] − I[fSi ] + I[fSi ] − I[fSi,z ]|
≤ |I[fS ] − I[fSi ]| + |I[fSi ] − I[fSi,z ]|.

This allows us to replace our definition of error stability with that used in [14].

( b) In the proof of Theorem 6.17 in [14] the terms βCV and δCV are used to
bound the following quantity

IES,z[V (fS , z) − V (fSi,z , z)] ≤ βCV + MδCV ,
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where M is the upper-bound on the error at a point. We need a similar upper
bound using CVloo stability instead of CVco stability. We rewrite the left-hand
side of the above inequality as

IES,z[V (fS , z) − V (fSi,z , z)] = IES [I[fS ] − IS [fS ]], (31)

which is the expectation with respect to S of the generalization error of fS .
The following inequality holds

IES [I[fS ] − IS [fS ]] = IES [I[fSi ] − I[fSi ] + I[fS ] − IS [fS ]]
|IES [I[fS ] − IS [fS ]]| ≤ |IES [I[fSi ] − IS [fS ]]| + |ES [I[fS ] − I[fSi ]]|

≤ |IES [I[fSi ] − IS [fS ]]| + βError + MδError,

the last step following from error stability.
From CVloo stability the following inequality holds

|IES [I[fSi ] − IS [fS ]]| ≤ IES |V (fSi , zi) − V (fS , zi)| ≤ βLOO + MδLOO.

We have now done steps (a) and (b). We restate the KN theorem in terms of
our definitions of CVloo stability and error stability:

L-stability implies that the bound in Equation 4.1 holds for all ε, δ > 0. Then for any
fS obtained by ERM from a dataset S and for any ε > 0

lim
n→∞ sup

µ
IPS{|IS [fS ] − I[fS ]| > ε} = 0.�

6.3 Compactness and stability

Convexity
In the proofs used here, the convexity of H and V plays a key role. Given any
two functions f1 and f2 in a convex H, their average fA(x) ≡ 1

2 (f1(x) + f2(x))
is also in H. Furthermore, if V is convex, for any z ∈ Z ,

�(fA(z)) ≤ 1
2
(�(f1(x)) + �(f2(x))).

When V is the square loss, and M is a bound on (f(x) − y), we have the fol-
lowing lemma.

Lemma 6.1 • If |�(f1(z)) − �(f2(z))| ≥ d�, then |f1(x) − f2(x)| ≥ √
M −√

M − d�.

• If |f1(x) − f2(x)| = df , then �(fA(z)) +
d2

f

4 = 1
2 (�(f1(z)) + �(f2(z))).

• If |�(f1(z))− �(f2(z))| ≥ d�, then �(fA(z)) + (
√

M−√
M−d�)

2

4 ≤ 1
2 (�(f1(z)) +

�(f2(z))).
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The first part is obvious from inspection of the loss function. The second part is
a simple algebraic exercise. The third part is simply a combination of the first
and second parts.
Proof

• Remark Notice that under our hypotheses the minimizer of the expected
risk exists and is unique when H is convex and appropriate regularity
assumptions on the measure hold [5] (see also [17] p. 5). The minimizer
of the empirical risk is not unique in general, but is unique with respect
to the empirical measure over the training set.

We first sketch a proof of sufficiency, that is compactness and convexity of H im-
plies (β, δ)-hypothesis stability:

PROOF:

Since H is compact and convex given appropriate regularity assumptions on
the measure there is a unique function f∗ that minimizes the expected risk [5].
We first compute the probability that fS and f∗ are close in expected risk:

|I[fS ] − I[f∗]| ≤ ε

|I[fSi ] − I[f∗]| ≤ ε.

Lemma 6.2 With probability 1 − δ

|I[fS ] − I[f∗]| ≤ ε,

where ε =
(

M
n

)1/2−τ
and δ = N (ε,L) e−O(n2τ ), 0 < τ < 1/2.

PROOF:
The function f∗ has error rate I[f ∗] = η. We define the set of functions fg as
follows

fg = {f ∈ F for which |I[f ] − I[f∗]| ≤ ε}.
By Chernoff’s inequality for a function fg

IPS (IS [fg] ≥ η + ε/2) ≤ e−ε2n/8M2
.

We define the set of functions fb as

fb = {f ∈ F for which |I[f ] − I[f∗]| ≥ ε}.
Also by Chernoff’s inequality for a function fb,

IPS (IS [fb] ≤ η + ε/2) ≤ e−ε2n/8M2
.

Thus for fS to not be ε close to f∗, at least one of the following events must
happen:

min
f∈fb

IS [f ] ≤ η + ε

max
f∈fg

IS [f ] ≥ η + ε
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The following uniform convergence bound then holds:

IP(|I[fS ] − I[f∗]| ≥ ε) ≤ N (ε,L) e−O(ε2n),

where N (ε,L) is the covering number. Setting ε =
(

M
n

)1/2−τ
where 0 < τ <

1/2 gives the result stated. �
The above lemma implies that with probability 1 − δ the following inequality
holds:

|I[fS ] − I[f∗]| ≤
(

M

n

)1/2−τ

,

with
δ = N (ε,L) e−O(n2τ ).

We now show (by way of the contrapositive) that under the assumptions of
compactness and convexity, a function that is close to the optimal function in
generalization error is also close in the sup norm:

sup
x

|fS(x) − f∗(x)| ≥ 2ε ⇒ |I[fS ] − I[f∗]| ≥ cε2

2
,

for some constant c.
We will use Arzelà’s theorem [13].
Theorem ( Arzelà and Ascoli): A necessary and sufficient condition for a family of
continuous functions f ∈ F defined on a compact set X to be relatively compact in
C(X) is that F be uniformly bounded and equicontinuous.
Given that

sup
x

|fS(x) − f∗(x)| ≥ 2ε,

we define the following set:

Xε = {x : |fS(x) − f∗(x)| ≥ ε}.
By equicontinuity we know that µ(Xε) ≥ c, where the equicontinuity allows
us to lower bound the measure of the domain over which the functions differ
in the supremum. This constant c will exist for sufficiently regular measures;
when it exists, its value will depend on the measure.
If we define a function fA = 1

2 (fS + f∗), the following holds:

∀x ∈ X : Ix[f ′] ≤ 1
2
(Ix[f ] + Ix[f∗])

∀x ∈ Xε : Ix[f ′] +
ε2

4
≤ 1

2
(Ix[f ] + Ix[f∗])

where Ix[f ] ≡ ∫y V (f(x), y)dµ(y), the expected risk of f at the point x.
Combining the above inequalities over all points x ∈ X , we see that

I[fA] +
cε2

4
≤ 1

2
(I[fS ] + I[f∗]).
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But f∗ is the minimizer of I[f ], so we also have that

I[f∗] +
cε2

4
≤ 1

2
(I[fS ] + I[f∗]).

From the above we have that

I[f∗] +
cε2

4
≤ 1

2
(I[fS ] + I[f∗])

→ I[f∗] +
cε2

2
≤ I[fS ]

→ |I[f ] − I[f∗]| ≥ cε2

2
.

From this we can conclude that if the difference in the loss of a function from
the optimal function is bounded then so is the difference in the sup norm.
Since we know that with probability 1 − δ,

|I[fS ] − I[f∗]| ≤ β,

where β =
(

M
n

)1/2−τ
, then also with probability 1 − δ,

sup
x

|fS(x) − f∗(x)| ≤ 2

√
2β

c
,

and, applying the same argument to fSi (we use the uGC constants associated
with a training set of size n − 1 for both S and Si), with probability 1 − 2δ,

sup
x

|fS(x) − fSi(x)| ≤ 4

√
2β

c
.

Since f ∈ H is bounded and so is Y , the square loss has a Lipschitz property
then

sup
x

|fS(x) − fSi(x)| ≤ 4

√
2β

c

implies

sup
z

|V (fS , z) − V (fSi , z)| ≤ K
√

β

c
,

which is (β, δ)-hypothesis stability.�

• Remark. The proof presented here obviously relies crucially on convex-
ity. It is possible to replace convexity with other assumptions but it seems
that compactness alone will not suffice. For example, consider the simple
case where X consists of a single point x, H consists of the two functions
f(x) = 1 and f(x) = −1, and y(x) takes on the values 1 and −1, each
with probability 1

2 . The minimizer of the true risk is non-unique here —
both functions have identical true risk. However, a simple combinatorial
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argument shows fS and fSi will only be different functions with proba-
bility O(

√
n), so we still have (β, δ)-stability. A possible replacement for

the convexity assumption is to relax our definition of (β, δ)-hypothesis
stability so that it may not hold on sets of measure zero. Another possi-
bility seems to be the assumption that the target function is continuous.

We now prove necessity, that is (β, δ)-hypothesis stability implies compactness of
H.

PROOF:

Since (β, δ)-hypothesis stability implies CVloo stability, H is a uGC class be-
cause of Theorem 3.2. Suppose that (H, L∞) is not compact. Then, by Arzelà’s
theorem, H is not equicontinuous. In particular, there exists an εH > 0, a se-
quence δi → 0 and a sequence of functions fi ⊂ H satisfying

∀i, ∃x, x′ ∈ X s.t. |x − x′| ≤ δi, |fi(x) − fi(x′)| ≥ εH (32)

We first note that each individual fi, being continuous over a compact domain,
is uniformly continuous, and using this fact, it is easy to show that given fi,
there exists a k such that ∀i′ > k, |fi − fi′ | ≥ εH

2 .
Now, consider (H, L2), the set of functions H equipped with the L2 norm. This
set is totally bounded, because a uGC class is totally bounded in L2 (Shahar
Mendelson, personal communication)31. Therefore, any infinite sequence in
(H, L2) contains a fundamental (Cauchy) subsequence. Using this property,
define the sequence gi to be a subsequence of the fi referred to in Equation 32
which is Cauchy in (H, L2).
The sequence gi converges in measure in the L2 metric to some (possibly dis-
continuous) function f∗, which in turn implies that gi contains a subsequence
hi which converges almost everywhere to f∗ ([13] p. 292, Problem 9).
Next, construct a distribution D that is uniform over the input space X , with
“target” y(x) = f ∗(x). Consider any finite sample S from D. For i sufficiently
large, all hi′ for i′ ≥ i will be ε-empirical risk minimizers, and therefore any of
them may be returned as either fS or fSj .
Consider one such hi. Let Xε

hi
be those x satisfying |f∗(x) − hi(x)| ≥ εH

16 .
Suppose µ(Xε

hi
) ≥ 0. Because the hi are converging almost everywhere to f∗,

there will exist some i′ and some x in this set for which |f∗(x) − h′
i(x)| ≤ εH

32 ;

at this point the losses of hi and h′
i will differ by at least ε2H

1024 , showing we do

not have (β, δ)-hypothesis stability with β ≤ ε2H
1024 and δ → 0. The only other

possibility is that µ(Xε
hi

) = 0, and |f∗(x) − hi(x)| ≤ εH
16 almost everywhere. In

this case, because each hi is continuous over a compact domain and therefore
uniformly continuous, find δ such that

|x − x′| ≤ δ → |hi(x) − hi(x′)| ≤ εH
8

,

31(H, L2) is not (in general) compact, because it is (in general) incomplete.
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which in turn implies that

|x − x′| ≤ δ, x, x′ ∈ X − Xε
hi

→ |f∗(x) − f∗(x′)| ≤ εH
4

.

Choose an h′
i such that

∃x, x′ s.t. |x − x′| ≤ δ

2
, |h′

i(x) − h′
i(x)| ≥ εH.

Because h′
i is uniformly continuous, there will exist sets X+ and X−, both of

positive measure, such that for any x ∈ X+ and any x′ ∈ X−,

|x − x′| ≤ δ, |h′
i(x) − h′

i(x
′)| ≥ εH

2
.

Since these sets both have positive measure, there must exist a pair x and x′ in
X − Xε

hi
where all of the following hold:

• |f∗(x) − hi(x)| ≤ εH
16

• |f∗(x′) − hi(x′)| ≤ εH
16

• |f∗(x) − f∗(x′)| ≤ εH
4

• |h′
i(x) − h′

i(x
′)| ≥ εH

2

Then at at least one of the two points x and x′ referenced in the above (say x),
we have |f∗(x) − hi(x)| ≤ εH

16 but |f∗(x) − h′
i(x)| ≥ εH

8 , again showing that we
do not have (β, δ)-hypothesis stability.
Assuming the combination of (β, δ)-hypothesis stability, uGC property, and
non-compactness led to a contradiction; we therefore conclude that (β, δ)-hypothesis
stability combined with uGC implies compactness. �

• Remark. Although (β, δ)-hypothesis stability is stated as a condition on
the relationship between fS and fSi , under the conditions discussed in
this paper (namely convexity), we find that the key condition is instead
uniqueness of the ERM function fS for large datasets. In particular, it is
possible to show that if H is not compact, then we can construct a situ-
ation where there will be functions with risk arbitrarily close to f∗ that
are far from f ∗ in the sup norm over a set with positive measure. This
leads to a situation where fS and fSi are both sets of functions contain-
ing elements that differ in the sup norm; since any of these functions can
be picked as either fS or fSi , we will not have (β, δ)-hypothesis stability.
In contrast, if we additionally assume compactness and convexity, this
cannot happen — that a function cannot simultaneously be far from f∗

in the sup norm and arbitrarily close to f∗ in risk.

The Realizable Setting
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We say that the setting is realizable when there is some f0 ∈ H which is con-
sistent with the examples. In this case there is a simpler proof of the sufficient
part of the conjecture.

Theorem When the setting is realizable, compactness of H implies (β, δ)-hypothesis
stability).

Proof

Consider the family of functions L consisting of �(z) = (f(x) − y)2. If H is
bounded and compact then L ∈ C(Z) is a compact set of continuous bounded
functions with the norm ‖�‖ = supz∈Z |�(z)|. Let S = (x, y)n

1 with z = {z1, ..., zn}
a set of points in Z . Take a covering of Z defined in terms of a set of n disks
Di(z, ν(z)), where ν(z) is the smallest radius sufficient for the union of the n
disks to cover Z . Taking a hint from a proof by Pontil (manuscript in prepara-
tion) we write the norm in C(Z) in terms of the empirical norm w. r. t. the set
z for � ∈ L:

sup
z∈Z

|�(z)| = max
i=1,...,n

{ sup
z∈Di(z,ν(z))

|�(z)|} (33)

The above equality implies

sup
z∈Z

|�(fS(z)) − �(fSj )(z)| = max
i=1,...,n

{ sup
z∈Di(z,ν(z))

|�(fS(z)) − �(fSj (z))|} (34)

which can be rewritten as

sup
z∈Z

|�(fS(z)) − �(fSj (z))| = max
i=1,...,n

{ sup
z∈Di(z,ν(z))

|�(fS(z)) − �(fS(zi)) +

+�(fS(zi)) − (�(fSj (z)) − �(fSj (zi))) − �(fSj (zi))|},

leading to the following inequality

sup
z∈Z

|�(fS(z)) − �(fSj (z))| ≤ max
i=1,...,n

|�(fS(zi)) − �(fSj (zi))| + O(ε(ν(S))), (35)

in which we bound separately the variation of �(fS) and �(fSj) within each Di

using the equicontinuity of L. We assume that under regularity conditions (see
argument below) on the measure, the radius of the disks ν goes to 0 as n → ∞.
Under the realizable setting assumptions all but one of the n terms in the
max operation on the right-hand side of the inequality above disappear (since
�(fS(x)) = 0 when x ∈ S). (β, δ)-LOO stability (which follows from our main
theorem in the paper since L is uGC because it is compact) can now be used to
bound |�(fS(zi))−�(fSj(zi))| for the only non-zero term (the one corresponding
to j = i, eg the disk centered on the point which is in S but not Sj). Thus
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IPS

{
sup
z∈Z

|�(fS(z)) − �(fSj (z))| ≤ βLOO + O(ε(ν(S)))
}

≥ 1 − δ (36)

with βLOO, ε(ν(S)) and δ all going to 0 as n → ∞. This is (β, δ)-hypothesis
stability. Since L is compact, it is also uGC and thus fast error stability holds.

To show ν(S) → 0, consider an arbitrary radius for the disks a > 0. Call
δi = P (Di, a) the probability of a point in Z to be covered by the disk Di when
the points xi for i = 1, . . . , n are sampled (in general the δi are different from
each other because the measure µ is in general not uniform in X). Consider
δ = mini δi. Notice that δ = O(ak), where k is the dimensionality of Z . Thus an
arbitrary point x ∈ X will be covered by at least one disk with high probability,
p = 1 − ((1 − δ)n). It is easy to see that for n → ∞, the probability of a cover
p → 1, while simultaneously the disk shrinks (a → 0) slowly enough – with a
rate n−α where α > 0, αk < 1 (because limn→∞(1 − nαk)n = 0 if αk < 1).

• Remark. Using the assumption of convexity, this proof can be extended
to the non-realizable (general) case. Suppose that the difference at the left
out training point zi is less than or equal32 to β:

�(fSi(zi)) − �(fS(zi)) ≤ β.

Then we will also be able to bound the difference in loss at all the other
training points. Suppose we have a training point zj for which

|�(fSi(zj)) − �(fS(zj))| ≥ b.

Then, by our convexity lemma, at zj , the loss of the average function
fA = 1

2 (fS + fSi) satisfies

�(fA(zj)) + c(b) ≤ 1
2
(�(fS(zj)) + �(fSi(zj))),

where c(b) = (
√

M−√
M−b)2

4 . Summing over the set Si, we have

ISi [fA] +
c(b)

n − 1
≤ 1

2
(ISi [fS ] + ISi [fSi ])

=⇒ ISi [fSi ] +
2c(b)
n − 1

≤ ISi [fS ],

using the fact that fSi is the minimizer of ISi [·]. But using the fact that fS

32We don’t need an absolute value here, because the loss of fS at the left out point is always less
than the loss of fSi at that point.
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minimizes IS [·],
IS [fS] ≤ IS [fSi ]

=⇒ n − 1
n

ISi [fS ] +
1
n

V (fS(xi), yi) ≤ n − 1
n

ISi [fSi ] +
1
n

V (fSi(xi), yi)

=⇒ ISi [fS ] +
1

n − 1
V (fS(xi), yi) ≤ ISi [fSi ] +

1
n − 1

V (fSi(xi), yi)

=⇒ ISi [fS ] ≤ ISi [fSi ] +
β

n − 1
.

Combining the above derivations, we obtain

ISi [fSi ] +
2c(b)
n − 1

≤ ISi [fSi ] +
β

n − 1
=⇒ 2c(b) ≤ β.

If β is a bound on the difference at the left out point, then at every other
training point, the difference in loss is less than b, where

(
√

M −√
M − b)2

2
≤ β.

As β → 0, b → 0 as well, finishing the proof. Note that we do not provide
a rate.

• Remark. The assumption of realizability (this setup is also called proper
learning) is a strong assumption. Throughout this work, we have essen-
tially used compactness (equicontinuity) to enforce a condition that our
space will not contain functions that approach the minimizer in risk with-
out also approaching it in the sup norm. If we assume realizability, then
we can often get this property without needing compactness. For in-
stance, consider the simple class of functions (from [0, 1] to [0, 1]) where
fi(x) = min(ix, 1). This is a uGC but non-compact class of functions. If
we choose the (non-realizable) target function to be f∗(x) = 1, we find
that we don’t get (β, δ)-hypothesis stability. However, if we require that
the target actually be some fi, we will recover (β, δ)-hypothesis stability;
essentially, the slope of the target fi acts as an equicontinuity constant —
those fj that slope too much more rapidly will not have empirical risk
equivalent to fi for sufficiently large samples. While it is not quite true
in general that realizability plus uGC → (β, δ)-hypothesis stability (in the
above example, if we add f(x) = 1 to H we lose our (β, δ)-hypothesis
stability), we conjecture that a slightly weaker statement holds — if H is
uGC and the target function is in H, then we will get (β, δ)-hypothesis
stability over all of Z except possibly a set of measure 0.

Convex hull
We state a simple application of the previous results, together with an obvious
property of convex hulls.
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Lemma The convex hull Hc of H is compact if and only if H is compact.

Theorem (β, δ)-hypothesis stability of ERM on Hc for any measure with appropriate
regularity conditions is necessary and sufficient for compactness of a uGC H.
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ERM ERM

H is
u GC

ERM

CVloo

stability

For general
symmetric
algorithms

Generalization
+ consistency

Eloo+EEloo

stability

ERM

Generalization

Figure 1: An overall view of some of the properties discussed in this paper and their
relations. Arrows are to be read as implies: for example a ⇒ b means a implies b.
For ERM the classical result is that generalization and consistency imply that H is
uGC and are implied by it. The other relations represent some of the new results of this
paper. In the diagram we can substitute the combination of Eloo and EEloo stability
with Elooerr stability. Notice that for ERM generalization implies consistency. As an
example of a non-ERM algorithm, Tikhonov regularization implies uniform hypothesis
stability which implies both CVEEEloo (ie CVloo, Eloo and EEloo stability) and LOO
stability (ie CVloo and Elooerr). Note that Ivanov regularization in a RKHS is an
example of ERM, whereas Tikhonov regularization is not ERM.
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