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Abstract

With the global proliferation of wind power, accurate short-term forecasts of wind resources
at wind energy sites are becoming paramount. Regime-switching space-time (RST) models
merge meteorological and statistical expertise to obtain accurate and calibrated, fully proba-
bilistic forecasts of wind speed and wind power. The model formulation is parsimonious, yet
takes account of all the salient features of wind speed: alternating atmospheric regimes, tempo-
ral and spatial correlation, diurnal and seasonal non-stationarity, conditional heteroscedasticity,
and non-Gaussianity. The RST method identifies forecast regimes at the wind energy site and
fits a conditional predictive model for each regime. Geographically dispersed meteorological
observations in the vicinity of the wind farm are used as off-site predictors.

The RST technique was applied to 2-hour ahead forecasts of hourly average wind speed at the
Stateline wind farm in the US Pacific Northwest. In July 2003, for instance, the RST forecasts
had root-mean-square error (RMSE) 28.6% less than the persistence forecasts. For each month
in the test period, the RST forecasts had lower RMSE than forecasts using state-of-the-art
vector time series techniques. The RST method provides probabilistic forecasts in the form of
predictive cumulative distribution functions, and those were well calibrated and sharp. The
RST prediction intervals were substantially shorter on average than prediction intervals derived
from univariate time series techniques. These results suggest that quality meteorological data
from sites upwind of wind farms can be efficiently used to improve short-term forecasts of wind
resources. It is anticipated that the RST technique can be successfully applied at wind energy
sites all over the world.

KEY WORDS: Conditional heteroscedasticity; Continuous ranked probability score (CRPS);
Minimum CRPS estimation; Predictive distribution; Spatio-temporal; Weather prediction

∗Tilmann Gneiting is Associate Professor and Eric Aldrich is Ph.D. Student, both at the Department of Statistics,
University of Washington, Box 354322, Seattle, WA 98195-4322. Kristin Larson is Senior Research Meteorologist
and Kenneth Westrick is Founder and CEO, both at 3 Tier Environmental Forecast Group, Inc., 2825 Eastlake
Avenue East, Suite 330, Seattle, WA 98102. Marc G. Genton is Associate Professor, Department of Statistics, Texas
A&M University, College Station, TX 77843-3143. In Academic Year 2004/05, Tilmann Gneiting is on sabbatical
leave at the Soil Physics Group, Universität Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany. The authors
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1 Introduction

Wind power is the fastest-growing energy source today. Globally, wind energy has seen an annual
average growth rate exceeding 30% during the past decade. Domestically, wind power is a plentiful
energy source, particularly in the upper Midwest and in the mountainous Western United States.
The rapid recent growth can be chiefly attributed to advances in wind turbine design – that have
significantly reduced the cost of wind energy – as well as federally mandated tax credits. Estimates
are that within the next 15 years wind energy will fill about 6% of the electricity supply in the
United States. In Denmark, wind energy already meets 20% of the country’s total energy needs.†

However, arguments against higher penetration rates of wind energy have been put forth, often
focusing on the perceived inability to forecast wind resources with any degree of accuracy. The
development of advanced forecast methodologies helps address these concerns. Increases in the
accuracy of wind energy forecasts reduce the requirement for backup energy resulting in increased
power grid reliability and monetary savings. One requirement is for the development of improved
prediction techniques on the 0- to 3-hour forecast horizon, the typical lead time for transmission
scheduling, resource allocation, and generation dispatch. Throughout the paper, the term short-
range forecast will refer to the 0- to 3-hour forecast horizon.

Traditionally, short-range forecasts have utilized on-site observations with various persistence
based statistical forecast models, including autoregressive time series techniques (Brown, Katz and
Murphy 1984) and neural network methodologies (Kretzschmar, Eckert, Cattani and Eggimann
2004). Giebel (2003) surveys the literature on short-range wind speed and wind power forecasting.
Forecasts based on numerical weather prediction models outperform statistical forecasts at larger
lead times, but they are not competitive at the 2-hour horizon that we consider here. Our paper
introduces the regime-switching space-time (RST) method that merges meteorological and statis-
tical expertise to obtain accurate and calibrated, fully probabilistic short-term forecasts of wind
energy. The model formulation is parsimonious, yet takes account of all the salient features of wind
speed: alternating atmospheric regimes, temporal and spatial correlation, diurnal and seasonal
non-stationarity, conditional heteroscedasticity, and non-Gaussianity. The RST method identifies
atmospheric regimes at the wind energy site and fits a conditional predictive model for each regime
or state. The approach is akin to the nonlinear gated experts technique of Weigend, Mangeas and
Srivastava (1995); however, the model selection process is guided by expert knowledge of the local
meteorological conditions. The RST method also relates to the space-time model for daily rainfall
developed by Bardossy and Plate (1992) that uses multivariate time series models with parameters
depending on the atmospheric circulation pattern, and to the non-homogeneous hidden Markov
model of Hughes and Guttorp (1994) and Hughes et al. (1999), which postulates an unobserved,
discrete-valued weather state.

Whenever appropriate and feasible, the RST method utilizes geographically dispersed meteo-
rological observations in the vicinity of the wind farm. Since changes in wind often propagate with
the wind, it is possible to use upwind observations to detect precursors to changes in wind speeds
at the wind energy site. The RST technique introduces a new generation of forecast algorithms: it
conditions on the forecast regime, makes use of off-site predictors, and provides fully probabilistic
forecasts in the form of predictive cumulative distribution functions (CDFs). Alexiadis, Dokopoulos
and Sahsamanoglou (1999) considered forecasts of wind speed and wind power at the Thessaloniki
Bay, Greece and showed that the use of off-site predictors can improve forecast accuracy. However,

†Up-to-date information on the domestic and global status of wind energy is available at the American Wind
Energy Association website, www.awea.org.
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they did not build a physically interpretable model and did not consider probabilistic forecasts.
Kretzschmar et al. (2004, p. 733) refuted the use of off-site observations for forecasts of wind speed
in Switzerland, pointing out that upwind may refer to distinct geographic locations in dependence
on the atmospheric regime. The RST approach conditions the predictive model on the atmospheric
regime and thereby addresses these concerns.

The remainder of the paper is organized as follows. Section 2 gives a concise introduction to
probabilistic forecasts, as opposed to deterministic-style or point forecasts. We describe diagnostic
tools and scoring rules for the assessment of probabilistic forecasts, and we propose the use of
cut-off normal predictive distributions for nonnegative predictands. Section 3 introduces the data
used in our case study. We describe hourly time series of wind speed and wind direction at the
meteorological towers at Vansycle, Kennewick and Goodnoe Hills in the US Pacific Northwest. The
Vansycle tower is adjacent to the Stateline wind energy center at the eastern end of the Columbia
River Gorge, right on the border between the states of Oregon and Washington. The Stateline
project as-is has 300 MW of wind power capacity although there have been talks of expansion. It
is currently the world’s largest single wind energy project. Section 4 describes the various versions
of the RST model for 2-hour ahead forecasts of hourly average wind speed at Vansycle. The
observations from the towers at Kennewick and Goodnoe Hills are used as off-site predictors. We
consider forecasts of wind speed rather than wind power, both because the wind power data are
proprietary and because wind speed is of more fundamental scientific interest. Forecasts of wind
speed can be transformed into forecasts of wind power using the methods described by Brown et
al. (1984). The 2-hour forecast horizon is the shortest that allows for real-time forecasts at the
hourly aggregation level.

In Section 5 we assess the predictive performance of the RST method, as compared to more
conventional forecast techniques that we use as benchmarks, including the persistence forecast, the
reference forecast proposed by Nielsen et al. (1998), forecasts based on univariate time series tech-
niques, and forecasts using state-of-the-art vector time series methods. In July 2003, for instance,
the RST forecasts had root-mean-square error (RMSE) 28.6% less than the persistence forecasts.
The forecasts based on univariate time series techniques utilized on-site information only and re-
duced the persistence RMSE by up to 16.0%. In November 2003, the RST and the univariate time
series forecasts had RMSE 11.3% and 1.9% lower than the persistence forecasts, respectively. For
each month in the test period, the RST forecasts had lower RMSE than the forecasts using vector
time series techniques. The RST method yields probabilistic forecasts in the form of predictive dis-
tributions, and the predictive CDFs were well calibrated and sharp. The RST prediction intervals
were substantially shorter on average than prediction intervals derived from univariate time series
techniques. The paper closes with a discussion in Section 6.

2 Probabilistic forecasts

2.1 The case for probabilistic forecasting

Non-probabilistic or deterministic-style forecasts provide a single numerical value for the predic-
tand, say hourly average wind speed at the wind energy site two hours ahead. Deterministic-style
forecasts provide the classical predictive framework and they can be assessed using well-known
criteria such as the root-mean-square error (RMSE) and the mean absolute error (MAE). However,
deterministic-style forecasts have limited use unless they are accompanied by suitable measures of
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the uncertainty associated with them. Consequently, Dawid (1984) argues that forecasts should be
probabilistic in nature, taking the form of probability distributions over future events. Indeed, over
the past two decades probabilistic forecasts have become routine in applications such as weather
prediction (Palmer 2002; Gel, Raftery and Gneiting 2004) and macroeconomic forecasting (Garrat,
Lee, Pesaran and Shin 2003). A probabilistic forecast for a real-valued quantity, such as wind speed
or wind power, takes the form of a predictive cumulative distribution function (CDF), or simply
predictive distribution, say F , where

F (x) = prob (X ≤ x), x ∈ �
,

denotes the forecaster’s belief that the predictand will not exceed the threshold x. Interval forecasts
form a special case of probabilistic forecasts, and the construction of prediction intervals from the
predictive CDF is straightforward. For instance, F (0.05) and F (0.95) form the lower and upper
end points of the 90% central prediction interval, respectively. Brown et al. (1984) pioneered the
development of wind energy forecasts and applied time series methods to obtain interval forecasts
for wind speed and wind power. More recently, there has been a surge of interest in probabilistic
forecasts for wind resources. Roulston, Kaplan, Hardenberg and Smith (2003) and Bremnes (2004)
studied probabilistic forecasts of wind power at the medium-range, that is, at lead times between
one and ten days. Pinson and Kariniotakis (2004) proposed a resampling approach that attaches
prediction intervals to deterministic-style forecasts of wind resources.

2.2 Assessing probabilistic forecasts

In assessing the quality of probabilistic forecasts, we are guided by the paradigm that probabilistic
forecasts strive to maximize the sharpness of the predictive distributions under the constraint of
calibration (Gneiting, Raftery, Balabdaoui and Westveld 2003). Calibration refers to the statistical
consistency between the predictive distributions and the observations, and is a joint property of
the forecasts and the values or events that materialize. Sharpness refers to the spread of the pre-
dictive distributions, and is a property of the forecasts only. The more concentrated the predictive
distribution, the sharper the forecast, and the sharper the better, subject to calibration.

First, we describe the probability integral transform (PIT) histogram. The probability integral
transform is defined as the value that the predictive cumulative distribution function F attains at
the observation x, that is, a number between 0 and 1. Rosenblatt (1952) studied the probability
integral transform and Dawid (1984) proposed its use in assessing calibration. Diebold, Gunther
and Tay (1998) introduced the PIT histogram – that is, the histogram of the PIT values – as a
diagnostic tool in the evaluation of probabilistic forecasts. Approximately uniform PIT histograms
indicate calibration and correspond to prediction intervals that have close to nominal coverage at
all levels. For a PIT histogram with 20 equally spaced bins, for instance, the coverage of the central
90% prediction interval corresponds to the area under the 18 central bins and can be read off the
histogram. To assess sharpness, we report the average width of the 90% central prediction interval;
the shorter, the sharper.

Scoring rules assign numerical scores to forecasts, based on the predictive distribution F and
the value x that materializes. We take scores to be penalties that a forecaster wishes to minimize.
Let 1(y ≥ x) denote the function that attains the value 1 when y ≥ x and the value 0 otherwise. If
F is the predictive CDF and x materializes, the continuous ranked probability score is defined as

crps(F, x) =

∫ ∞

−∞
(F (y) − 1(y ≥ x))2 dy, (1)
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which equals the integral of the Brier scores for binary probabilistic forecasts at all real-valued
thresholds (Hersbach 2000). Gneiting and Raftery (2004) used a result of Székely (2003) to show
that

crps(F, x) = EF |X − x| − 1

2
EF

∣∣X − X ′
∣∣ ,

where X and X ′ are independent copies of a random variable with distribution function F and
finite first moment. Hence, the continuous ranked probability score generalizes the absolute error,
to which it reduces if F is a deterministic-style or point forecast, and can be reported in the same
unit as the observations. For a normal predictive distribution, N (µ, σ2), with mean µ and standard
deviation σ it is straightforward to show that

crps
(
N (µ, σ2), x

)
= σ

(
x − µ

σ

(
2Φ

(
x − µ

σ

)
− 1

)
+ 2φ

(
x − µ

σ

)
− 1√

π

)
,

where φ and Φ denote the probability density function (PDF) and the CDF of the standard normal
distribution, respectively. The continuous ranked probability score is proper in the sense that
the forecaster maximizes the expected score for an observation drawn from F if she issues the
probabilistic forecast F , rather than G 6= F . The logarithmic score (Good 1952; Bernardo 1979;
Roulston and Smith 2002) is a proper scoring rule, too, but it is highly sensitive to outliers and
difficult to interpret for mixed discrete-continuous predictive distributions. Therefore, we assess
probabilistic forecasts by comparing the average value,

CRPS =
1

n

n∑

i=1

crps(Fi, xi), (2)

of the continuous ranked probability score over the test set. If each Fi is a deterministic-style
forecast, the CRPS value reduces to the mean absolute error (MAE), and the CRPS and the MAE
can be directly compared. Clearly, the smaller the CRPS, the better.

2.3 Cut-off normal predictive distributions

Predictive distributions are frequently taken to be Gaussian even though the predictand is a non-
negative quantity, such as wind speed, precipitation or pollutant concentrations, or a nonnegative
transformation thereof. Brown et al. (1984), Haslett and Raftery (1989) and Carroll et al. (1997),
for instance, used normal distributions to model the square root of wind speed and atmospheric
ozone concentration, respectively. To address the nonnegativity of the predictand, we replace the
normal predictive distribution, N (µ, σ2), by the cut-off normal predictive distribution, N 0(µ, σ2),
with cumulative distribution function

F 0(x) =





0 if x < 0,

Φ

(
x − µ

σ

)
if x ≥ 0.

The normal distribution and the cut-off normal distribution assign the same probability mass to any
Borel subset of the positive half-axis. However, the cut-off normal distribution is concentrated on
the nonnegative half-axis and assigns point mass Φ(−µ/σ) to zero. The cut-off normal distribution,
N 0(µ, σ2), with parameters µ and σ > 0 has median

µ+ = max (µ, 0) (3)
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and mean

µ0 = µΦ

(
µ

σ

)
+ σ φ

(
µ

σ

)
, (4)

where, again, φ and Φ denote the PDF and the CDF of the standard normal distribution, respec-
tively. The continuous ranked probability score (1) for the cut-off normal distribution N 0(µ, σ2)
and an observation x ≥ 0 is

crps
(
N 0(µ, σ2), x

)
= crps

(
N (µ, σ2), x

)

− 2σ φ

(
µ

σ

)
Φ

(
−µ

σ

)
+

σ√
π

Φ

(
−
√

2
µ

σ

)
+ µ

(
Φ

(
−µ

σ

))2

. (5)

Tobin (1958) proposed the use of cut-off normal predictive distributions, and the associated tobit
model has been widely used in econometric applications since. Cut-off normal distributions can
also be interpreted in terms of latent Gaussian variables (Sansó and Guenni 2000; Allcroft and
Glasbey 2003).

3 Data

We introduce and describe the data on which our case study is based.

3.1 The meteorological towers at Vansycle, Kennewick and Goodnoe Hills

The meteorological data used hereinafter were collected by Oregon State University for the United
States government, represented by the Department of Energy and the Bonneville Power Adminis-
tration.‡ We obtained time series of wind speed and wind direction at three meteorological towers
in the US Pacific Northwest: Vansycle in northeastern Oregon, in the immediate vicinity of the
Stateline wind energy center, and Kennewick and Goodnoe Hills in southern Washington. Data
from all three stations simultaneously have been available since August 2002. Figure 1 shows the
locations of the three sites along the Columbia River Gorge and the Oregon–Washington border.
Goodnoe Hills lies 146 km west of Vansycle, and the meteorological tower at Kennewick is situated
39 km northwest of the Vansycle tower. Table 1 provides further information about the sites. A
typical view at the Stateline wind farm is shown in Larson and Gneiting (2004).

The raw data record at the three sites is largely but not entirely complete. We imputed a
minimal amount of isolated missing data (less than 0.03% for calendar year 2003) and adopted
the quality assurance procedures proposed by Shafer et al. (2000) and Fiebrich and Crawford
(2001). Specifically, we applied range, step and persistence tests to the raw data at the 10-minute
aggregation level. The persistence test checks whether a parameter undergoes little or no variation,
and we performed manuals checks for plausibility if three or more subsequent observations of 10-
minute average wind speed or wind direction were identical. This test detects anemometer readings
that are stuck near zero, typically as a result of freezing rain which is a common hazard in the
region. During the cool season, we had to discard various stretches of data that did not pass the
persistence test. We aggregated the remaining 10-minute averages of wind speed to obtain hourly
averages of wind speed at Vansycle, Kennewick and Goodnoe Hill, and we created hourly series of
wind direction at the three sites. For the wind direction series we did not aggregate; we rather used

‡The data are available online at me.oregonstate.edu/ERRL/data.
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Figure 1: Locations of the meteorological towers at Vansycle, Kennewick and Goodnoe Hills along
the Columbia Gorge and the Oregon–Washington border in the US Pacific Northwest. The to-
pography is indicated by different shading: light shading indicates low altitude, and dark shading
indicates high altitude.

the value for 9:50am–10:00am to represent the 9:00am–10:00am interval, say. All work reported
below is based on the hourly series of wind speed and wind direction. The longest continuous
records at all three sites jointly comprise 55 and 279 days and range from 4 September 2002 to 28
October 2002, and from 25 February 2003 to 30 November 2003, respectively. This record spans
the range of weather experienced in the region, from strongly synoptically-forced weather systems,
prevalent during the winter, to thermally-driven flows – primarily a summer season phenomenon.

3.2 Patterns of wind speed

We now describe patterns of wind speed at Vansycle, Kennewick and Goodnoe Hills. Table 2 shows
the monthly average wind speed at the three sites in calendar year 2003. Any seasonal effects are
weak, although during the summer season there is a much stronger diurnal cycle observed in the
wind record. Brown et al. (1984) modeled wind speed at Goodnoe Hills as a square root Gaussian
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Table 1: Site information for the meteorological towers at Vansycle, Kennewick and Goodnoe Hills.
Latitude and longitude are given in degrees and minutes; elevation and anemometer height are
given in meters.

Site Latitude Longitude Elevation Anemometer Data Record
Height Starting

Vansycle 45◦ 18’ N 118◦ 41’ W 543 m 31 m August 2002
Kennewick 46◦ 06’ N 119◦ 08’ W 671 m 26 m June 1976
Goodnoe Hills 45◦ 48’ N 120◦ 34’ W 774 m 59 m May 1980

Table 2: Monthly average wind speed at Vansycle, Kennewick and Goodnoe Hills in calendar year
2003, in m· s−1.

Site Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Vansycle 6.65 6.74 9.41 7.51 7.10 7.13 7.04 6.63 6.36 7.14 8.55 6.34
Kennewick 7.85 7.65 11.26 9.07 7.80 7.34 6.56 6.78 7.04 8.89 10.59 7.53
Goodnoe Hills 5.22 6.36 8.07 6.65 6.98 7.66 6.79 5.91 5.28 5.81 5.92 4.29

variable. This does not appear to be a defendable assumption at Vansycle. A more detailed analysis
shows that the marginal distribution of wind speed at Vansycle is bimodal and can be approximated
by a mixture of two square root Gaussian distributions. The mixture components can be physically
interpreted, as described below. That said, the predictive distributions that we employ are cut-
off Gaussian; this works well, because the conditional forecast errors are approximately normally
distributed, as opposed to the wind speed values themselves.

Figure 2 shows the wind speed series at Vansycle, Kennewick and Goodnoe Hills for the period
between 3 August 2002 and 9 August 2002. These were the first seven days with a complete record
of observations at Vansycle. Temporal and spatial correlation as well as a diurnal trend component
can be observed. Figure 3 shows the autocorrelation and cross-correlation functions of wind speed
at the three sites, as observed in August–December 2002. The autocorrelation functions show a
steady decline with the temporal lag, except for local maxima at lags that are multiples of 24. The
local maxima correspond to the diurnal pattern that is more pronounced at Vansycle and Goodnoe
Hills than at Kennewick. A noteworthy feature is the asymmetry of the cross-correlation function
between Vansycle and Goodnoe Hills, which peaks at lags of two and three hours, and not at lag
zero. The asymmetry can be interpreted in terms of the prevailing westerly wind. Goodnoe Hills
lies 146 km west of Vansycle, and it therefore seems plausible that wind speeds at Goodnoe Hills
tend to lead those at Vansycle. The wind speed series in Figure 2 suggest this, too. Gneiting (2002),
de Luna and Genton (2003) and Stein (200x) described similar patterns in the Irish wind data of
Haslett and Raftery (1989); and Wan, Milligan and Parsons (2003) reported similar asymmetries
and similar lead times in the cross-correlation functions of wind power for wind plants in Minnesota
and Iowa.
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Figure 2: Wind speed at Vansycle (solid line), Kennewick (broken line) and Goodnoe Hills (dotted
line) between 3 August 2002 and 9 August 2002, in m· s−1.

3.3 Forecast regimes

The winds at Vansycle, Kennewick and Goodnoe Hills are generally dictated by large scale pressure
differences between the Pacific Ocean and the interior of Oregon and Washington, and by the
channeling effects of the Columbia River Gorge. The Columbia Gorge is the sole near-sea-level
passage through the Cascade Mountains and forms the prominent, largely east-west oriented feature
in Figure 1. Air movement through gaps and passes due to surface pressure gradients is known as
gap flow. The Columbia Gorge gap flow plays a profound role in defining the weather and climate
within and near the Gorge, which is one of the windiest places in the Pacific Northwest (Sharp and
Mass 2002, 200x). When the surface pressure is higher to the west, the flow within the gorge is
normally westerly; conversely, when there is higher pressure to the east, the wind is usually easterly.
Westerly winds are more frequent and more persistent in the warm season when the subtropical
ridge over the eastern Pacific Ocean moves north, resulting in higher surface pressure offshore.
Easterly gap flow is more common during the winter season when high pressure often develops east
of the Cascades and low pressure systems frequently approach from the west (Sharp and Mass 2002,
200x). The alternation of westerly and easterly gap flow suggests the postulation of two forecast
regimes, a westerly regime and an easterly regime.

Given our goal of 2-hour forecasts of hourly average wind speed at Vansycle, how do we identify
the regimes? The Vansycle ridge is located near the easterly end of the Columbia Gorge, where
westerly winds prevail. This suggests that the wind direction at the most westerly tower, Goodnoe
Hills, is a more useful indicator of the forecast regime than the wind direction at Vansycle. Figure
4 provides strong evidence in favor of this hypothesis. The boxplots on the left-hand side compare
wind speeds at Vansycle in August–December 2002, two hours after observing westerly and easterly
winds at Goodnoe Hills, respectively. The separation between the two groups is striking and much
sharper than the separation based on the on-site flow at Vansycle, which is shown in the right-
hand graph. Hence, we distinguish the westerly and the easterly forecast regime based on the
current, westerly or easterly, wind direction at Goodnoe Hills. In both regimes, the distribution
of wind speed is approximately square root normal, thereby justifying the aforementioned mixture
representation for the unconditional marginal distribution. Table 3 shows the seasonal variation
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Figure 3: Autocorrelation and cross-correlation functions of hourly average wind speed at Vansycle,
Kennewick and Goodnoe Hills in August–December 2002. Goodnoe Hills lies west of Kennewick,
and Kennewick is located west of Vansycle. Positive lags indicate observations at the westerly
station leading those at the easterly site.

in the relative frequencies of the two regimes during calendar year 2003. In the warm season the
westerly regime was clearly dominant. The easterly regime was more common during the cool
season, but still occurred less frequently than the westerly regime.

Table 4 illustrates the differences in the spatio-temporal dependence structures between the
forecast regimes. Let Vt, Kt and Gt denote the hourly average wind speed at Vansycle, Kennewick
and Goodnoe Hills at time (hour) t, respectively. The table shows the correlations between wind
speed at Vansycle two hours ahead, Vt+2, and present and past wind speeds at the three sites; for
all data in August–December 2002, for the westerly regime only, and for the easterly regime only.
The correlations associated with the westerly forecast regime were computed from the patterns

xt = (Vt+2, Vt, Vt−1, Vt−2,Kt,Kt−1,Kt−2, Gt, Gt−1, Gt−2) (6)

at the times t with westerly flow at Goodnoe Hills, and similarly for the easterly regime. The spatio-
temporal dependence structures in the two forecast regimes were clearly distinct. The westerly
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Table 3: Relative frequencies of the westerly and easterly forecast regime, and of rejected or missing
data at Goodnoe Hills, in calendar year 2003. The “rejected or missing” category refers to missing
values in the raw data record or values rejected by the quality assurance procedures.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Westerly regime .35 .60 .88 .78 .83 .75 .92 .81 .65 .66 .59 .54
Easterly regime .32 .40 .12 .22 .17 .25 .08 .19 .35 .34 .41 .46
Rejected or missing .32 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

Table 4: Correlations between hourly average wind speed at Vansycle two hours ahead and present
and past values of hourly average wind speed at Vansycle, Kennewick and Goodnoe Hills; for all
data in August–December 2002, for the westerly regime only, and for the easterly regime only.

Vt+2 Vt Vt−1 Vt−2 Kt Kt−1 Kt−2 Gt Gt−1 Gt−2

Unconditional .90 .84 .79 .76 .73 .70 .60 .60 .59
Westerly regime .86 .79 .72 .72 .69 .66 .61 .62 .60
Easterly regime .91 .86 .82 .74 .70 .67 .30 .28 .27
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Figure 4: Boxplots for hourly average wind speed at Vansycle in August–December 2002, in de-
pendence on the wind direction at Goodnoe Hills (left) and Vansycle (right) two hours before, in
m· s−1, respectively.
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Figure 5: Diurnal component of the wind speed at Vansycle for the westerly regime in September
2002 (left) and December 2002 (right), in m· s−1, respectively. The graphs show the average wind
speed observed during the given month and hour of the day, conditional on the wind direction at
Goodnoe Hills being westerly two hours before.

regime showed substantially higher correlations between future wind speed at Vansycle and present
and past wind speeds at Goodnoe Hills, respectively.

As noted above, the wind record shows a diurnal cycle, particularly in the westerly forecast
regime and during the warm season. Figure 5 shows the diurnal component of wind speed at
Vansycle for the westerly forecast regime in September 2002 (left) and December 2002 (right),
respectively. The circles represent the average wind speed at the given hour of the day in Pacific
Standard Time (PST), conditional on the wind direction at Goodnoe Hills being westerly two
hours before. There was a pronounced diurnal component in September 2002, with wind speeds
that peaked at night. Based on real-time mesoscale weather simulations conducted at 3 Tier
Environmental Forecast Group, Inc., the evening peak is at least partially attributable to drainage
winds – from the north side of the Blue Mountains in northeastern Oregon – interacting with the
mean westerly flow. This nighttime drainage flow was only found in a relatively shallow layer
extending a few hundreds of meters in to the atmosphere. Staley (1959) explored the diurnal cycle
of surface winds in the Columbia Basin of eastern Washington and Oregon in July and August and
found flow away from the lowlands of the Columbia Basin (the north east corner of Figure 1, near
Moses Lake, Washington) during the daytime and flow towards the basin at night. Observations at
Vansycle ridge were not used in the analysis, though the summer time diurnal cycle shown here is
consistent with Staley’s analysis. This type of wind regime is predominant primarily in the warm
season, when the absence of strong synoptic weather systems, coupled with much stronger daytime
solar heating in the Columbia Basin, allows for the development of the phenomenon. For this
reason, we do not see the diurnal signal during December 2002. In the easterly forecast regime the
wind speeds tended to be much lower, and both in the warm and in the cool season there was little
evidence of a clear-cut diurnal trend component.
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4 The regime-switching space-time (RST) method

Regime-switching space-time (RST) models merge meteorological and statistical expertise to ob-
tain probabilistic forecasts of wind resources at wind energy sites. The RST approach relies on
two key ideas, the identification of distinct forecast regimes, and the use of geographically dis-
persed meteorological observations as off-site predictors. The regime switches address conditional
spatio-temporal dependence structures that cannot be modeled by conventional vector time se-
ries techniques or geostatistical space-time methods, with the notable exception of the Huang and
Hsu (2004) extension of the space-time model derived by Wikle and Cressie (1999) that allows
for flow-dependent, non-stationary covariance structures. The computational requirements of the
RST method are modest, and the technique can readily be implemented in real time. The model
formulation is parsimonious and physically interpretable.

4.1 Overview

We now give an overview of the RST approach to 2-hour forecasts of hourly average wind speed at
Vansycle. In Section 3.3, we identified two forecast regimes depending on the current wind direction
at Goodnoe Hills, the westerly regime and the easterly regime. This was a natural choice: the
regional climatology in the Pacific Northwest is well documented, and the literature distinguishes
westerly and easterly flow regimes in the Columbia Gorge (Sharp and Mass 2002, 200x). At other
wind energy sites, the identification of two or more forecast regimes might be less straightforward,
and may involve substantial amounts of exploratory data analysis as well as local meteorological
expertise.

Recent work by Campbell and Diebold (2003) and Cripps and Dunsmuir (2003) suggests the
presence of conditional heteroscedasticity, that is, high frequency changes of predictability, in me-
teorological time series. To investigate this, we consider homoscedastic as well as conditionally
heteroscedastic versions of the RST model. We also noted seasonal and flow-dependent changes in
the strength of the diurnal component of wind speed, and this suggests non-diurnal as well as diur-
nal versions of the predictive model. To summarize, we distinguish four variants of the RST model.
The RST-N and RST-N-CH techniques do not attempt to model the diurnal component, and
they use variance structures that are homoscedastic and conditionally heteroscedastic, respectively.
The RST-D and RST-D-CH techniques fit a diurnal trend component, but do so only in the
westerly regime. The variance structures are homoscedastic and conditionally heteroscedastic, re-
spectively. We generally do not model the diurnal component in the easterly regime; we considered
approaches of this type, and they did not result in improved predictive performance.

4.2 The RST-N and RST-N-CH techniques

We now describe the RST-N and RST-N-CH techniques for 2-hour forecasts of hourly average wind
speed at Vansycle. Both methods employ a cut-off Gaussian predictive distribution with parameters
µt+2 and σt+2 > 0, in symbols,

N 0
(
µt+2, σ

2
t+2

)
. (7)

We recall from (3) and (4) that the true predictive median, µ+
t+2, is given by µ+

t+2 = max(µt+2, 0),
and that the predictive mean, µ0

t+2, is found as

µ0
t+2 = µt+2 Φ

(
µt+2

σt+2

)
+ σt+2 φ

(
µt+2

σt+2

)
. (8)
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During our evaluation period, May–November 2003, we obtained nonnegative estimates of µt+2

for 5,134 of the 5,136 predictive distributions. Clearly, the true predictive median, µ+
t+2, and the

predictive mean, µ0
t+2 ≥ µ+

t+2, are always nonnegative. The point mass at zero was mostly but
not always very small, and the predictive median and predictive mean were mostly but not always
nearly indistinguishable. Hereinafter, we refer to the parameters µt+2 and σt+2 of the cut-off
normal distribution (7) as the predictive median and the predictive spread, respectively, with the
tacit assumption that µt+2 is nonnegative.

We model µt+2 as a linear function of past and present observations of wind speed at the
meteorological towers. In the westerly forecast regime, we put

µt+2 = a0 + a1Vt + a2Vt−1 + a3Kt + a4Kt−1 + a5Gt, (9)

where Vt, Kt, and Gt denote the wind speed at Vansycle, Kennewick and Goodnoe Hills at time
t, respectively. This is akin to a vector autoregressive time series model (Brockwell and Davis
1991, Chapter 11; de Luna and Genton 2003) or an autoregressive distributed lag scheme (Zivot
and Wang 2003, Section 6.4). However, the predictive distribution is cut-off Gaussian, and the
model applies in the westerly regime only; so, conventional time series techniques do not apply.
In the easterly forecast regime, we exclude information from the tower at Goodnoe Hills, which is
downwind in this regime, and model the predictive median as

µt+2 = a0 + a1Vt + a2Vt−1 + a3Kt. (10)

As noted above, we distinguish the forecast regimes by the current, westerly or easterly, wind di-
rection at Goodnoe Hills. The model selection process for the conditional linear models in (9) and
(10) was guided by the regime characteristics, by the parsimonity principle and by an exploratory
analysis of the wind speed series in August–December 2002. For both forecast regimes, we consid-
ered multiple linear regression models for Vt+2 on the predictor variables in Table 4. We started
from the simplest model and added predictor variables until the decrease in the root-mean-square
error (RMSE) became negligible, when compared to the persistence RMSE. Clearly, there are more
formal, automated approaches to model selection that may or may not be appropriate here. We
return to this point in Section 6 below.

It remains to model the predictive spread, σt+2. The homoscedastic RST-N technique assumes
that the predictive spread is constant over time. The RST-N-CH method allows for conditional
heteroscedasticity, by modeling

σt+2 = b0 + b1vt (11)

as a linear function of the volatility value, vt, with coefficients that are constrained to be nonnega-
tive. The volatility value,

vt =

(
1

6

1∑

i=0

(
(Vt−i − Vt−i−1)

2 + (Kt−i − Kt−i−1)
2 + (Gt−i − Gt−i−1)

2
))1/2

, (12)

reflects the magnitudes of recent changes in wind speed at the three sites. Note that we use (12)
to define volatility both in the westerly and in the easterly regime. It may surprise that we include
information from Goodnoe Hills in the volatility values for the easterly regime. However, while
volatility is flow-dependent it is also a diurnal effect. We attempted to model the diurnal variation
of predictability directly, as suggested by Campbell and Diebold (2003), but this did not result in
improved predictive performance.
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We turn to the estimation of the conditional statistical models. The literature argues that
maximum likelihood plug-in estimates may be suboptimal when the goal is prediction (Copas 1983;
Friedman 1989). Gneiting, Westveld, Raftery and Goldman (2004) proposed the novel technique of
minimum continuous ranked probability score (CRPS) estimation for estimating predictive distri-
butions. In minimum CRPS estimation, we express the continuous ranked probability score for the
training data as a function of the model parameters, and minimize that function with respect to
the parameter values. This technique is tailored to probabilistic forecasting and can be interpreted
within the framework of robust M-estimation (Gneiting and Raftery 2004). Here the predictive dis-
tributions are cut-off normal and we minimize the CRPS value (2), where each term is computed
from (5). For RST-D-CH forecasts in the easterly regime, for instance, we find the minimum of the
CRPS value as a function of the parameters in (10) and (11). This needs to be done numerically,
and we use the Broyden-Fletcher-Goldfarb-Shanno algorithm (Press et al. 1992, Section 10.7) as
implemented in the R language and environment (www.cran.r-project.org). The algorithm is it-
erative, and starting values based on past experience usually give good solutions. Convergence to
a global maximum cannot be guaranteed, and the solution reached can be sensitive to the initial
values.

4.3 Modeling the diurnal component: The RST-D and RST-D-CH techniques

The RST-D and RST-D-CH techniques fit diurnal trend components to the wind speed series at
Vansycle, Kennewick and Goodnoe Hills. This is done in the westerly regime only; in the easterly
forecast regime, the RST-D and RST-D-CH techniques do not differ from the RST-N and RST-N-
CH approaches, respectively.

Hence, suppose that the current regime is westerly. We employ the cut-off normal predictive
distribution (7) with predictive median, µt+2, and predictive spread, σt+2, to be specified below.
The predictive mean, µ0

t+2, is found from (8). At each of the three sites, we fit the trigonometric
function

Dt = d0 + d1 sin

(
2πt

24

)
+ d2 cos

(
2πt

24

)
+ d3 sin

(
4πt

24

)
+ d4 cos

(
4πt

24

)
(13)

that uses two pairs of harmonics to regress wind speed, Dt, on the hour of the day, conditionally
on the wind direction at Goodnoe Hills being westerly at time t − 2. We remove the respective
ordinary least squares fit from the wind speed series at Vansycle, Kennewick and Goodnoe Hills,
resulting in residual series that we denote by V r

t , Kr
t and Gr

t , respectively. The predictive median,
µt+2, is then modeled as

µt+2 = Dt+2 + µr
t+2,

where Dt+2 is the ordinary least squares fit for the diurnal component at Vansycle, and where

µr
t+2 = a0 + a1V

r
t + a2V

r
t−1 + a3K

r
t + a4K

r
t−1 + a5G

r
t (14)

is a linear function of present and past values of the residual series at the three sites. The RST-
D technique is homoscedastic and assumes that the predictive spread, σt+2, is constant. The
RST-D-CH approach allows for conditional heteroscedasticity, by modeling the predictive spread,
σt+2 = b0 + b1v

r
t , as a linear function of the volatility value,

vr
t =

(
1

6

1∑

i=0

(
(V r

t−i − V r
t−i−1)

2 + (Kr
t−i − Kr

t−i−1)
2 + (Gr

t−i − Gr
t−i−1)

2
))1/2

,

15



20 30 40 50 60 70

1.
79

1.
81

1.
83

Days in Training Period

R
M

S
E

(a) Root−Mean−Square Error (RMSE)

20 30 40 50 60 70

1.
34

1.
35

1.
36

1.
37

Days in Training Period

M
A

E

(b) Mean Absolute Error (MAE)

20 30 40 50 60 70

0.
96

5
0.

97
5

0.
98

5

Days in Training Period

C
R

P
S

(c) Continuous Ranked Probability Score (CRPS)

20 30 40 50 60 70

5.
20

5.
25

5.
30

5.
35

Days in Training Period

A
ve

ra
ge

 W
id

th

(d) Average Width of 90% Prediction Interval

Figure 6: Measures of predictive performance for the RST-D-CH forecasts in dependence on the
length of the sliding training period for a test period between 8 May 2003 and 30 November 2003,
in m·s−1: (a) Root-mean-square error. (b) Mean absolute error. (c) Continuous ranked probability
score. (d) Average width of 90% prediction interval.

with coefficients b0 and b1 that are constrained to be nonnegative. We use the minimum CRPS
technique to estimate the conditional linear model (14) and the variance parameters, as described
above.

4.4 Choice of training period

What training period should be used to estimate the conditional predictive models? The lack of a
historic meteorological record at Vansycle, which is typical for wind energy sites, suggests the use of
the sliding window technique in which the training period consists of the recent past. Clearly, there
is a trade-off in selecting the length of the sliding training period. Shorter training periods can
adapt rapidly to seasonally varying atmospheric conditions, and thereby take account of seasonal
non-stationarities. On the other hand, longer training periods reduce the statistical variability in
the estimation. Intuitively, the trade-off may suggest training periods between 30 and 60 days.

There is no automatic way of finding the optimal length, and we studied the effect of the different
training periods empirically, similarly to the experiments reported by Raftery, Balabdaoui, Gneiting
and Polakowski (2003) and Gneiting et al. (2004). As noted above, the longest complete segment
of data at Vansycle, Kennewick and Goodnoe Hills consists of the 279-day period between 25
February 2003 and 30 November 2003. We considered sliding training periods consisting of the m
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most recent 24-hour periods, where m = 20, 21, . . . , 70. In other words, the 2-hour forecast for the
hourly average wind speed at time t + 2 was trained on the patterns xs, defined in (6) above, at
time s = t − 2, t − 3, . . . , t − 24m − 1. For comparability, we used the same test set in assessing
all the training periods, that is, the 208-day period between 8 May 2003 and 30 November 2003.
For reasons of computational tractability, we used a two-stage estimator that employs the ordinary
least squares technique to fit the regression coefficients in (9), (10) or (14), respectively, and then
finds the spread parameters using minimum CRPS estimation, with the regression coefficients fixed.
The two-stage procedure is much faster than full minimum CRPS estimation, which optimizes over
the regression coefficients and variance parameters simultaneously. The associated slight loss in
predictive performance is immaterial for evaluating the training periods.

Figure 6 summarizes the results of the experiment for the RST-D-CH approach. The results for
the RST-N, RST-N-CH and RST-D forecasts were similar. Figures 6(a) and 6(b) show the root-
mean-square error (RMSE) and the mean absolute error (MAE) of the deterministic-style forecasts,
respectively. These decrease sharply for training periods less than 30 days, stay about constant for
training periods between 30 and 60 days, and tend to increase thereafter. Figure 6(c) shows the
continuous ranked probability score (CRPS). The pattern is similar to those for the RMSE and the
MAE. The average width of the 90% prediction interval is shown in Figure 6(d). The width increases
with the length of the training period, but is about constant for training periods between 40 and
50 days. To summarize these results, there appear to be substantial gains in increasing the training
period beyond 30 days, and a 45-day training period appeared about best. Hence, we consider
RST forecasts that use a 45-day training period and full minimum CRPS estimation. However, the
predictive performance was insensitive to the length of the training period, and training periods
between 30 and 60 days generally seemed adequate.

5 Predictive performance

We now assess the predictive performance of the RST forecasts. First we describe more conventional
prediction techniques that we use as benchmarks. We evaluate the deterministic-style forecasts and
the probabilistic forecasts, and we give an explicit example of the RST forecasts for the 3-week
period beginning 21 June 2003.

5.1 Reference forecasts

This section describes the reference forecasts: the persistence forecast, the new reference forecast of
Nielsen et al. (1998), forecasts based on univariate autoregressive time series models, and forecasts
using vector autoregressive techniques. We denote wind speed at Vansycle, Kennewick and Goodnoe
Hills at time t by Vt, Kt and Gt, respectively; and we write V̂t+2 for a deterministic-style 2-hour
forecast of hourly average wind speed at Vansycle.

The classical reference forecast in the literature is the persistence forecast, V̂t+2 = Vt, that
utilizes the most recent observation at hand. Clearly, the shorter the forecast lead time, the more
competitive the persistence forecast. Nielsen et al. (1998) proposed a new reference forecast for
wind energy applications that takes the form V̂t+2 = ρVt + (1 − ρ)V̄ , where ρ and V̄ denote the
2-hour lagged correlation and the average wind speed in the historic record, respectively. The new
reference forecast can be interpreted as a forecast based on an autoregressive time series model.
The persistence and the new reference methods provide deterministic-style forecasts only.
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Brown et al. (1984) proposed the use of autoregressive (AR) time series models for wind speed
and wind power forecasts. They applied the square root transform to the series of hourly average
wind speed at Goodnoe Hills, fit and extracted a diurnal trend component, and modeled the residual
component as an AR process. This approach has found widespread use (Giebel 2003). For the
forecasts at Vansycle, we experimented with the square root transform of Brown et al. (1984) and
the more general transform proposed by Allcroft and Glasbey (2003), but found forecasts based on
time series models for the non-transformed wind speed series to perform best. The homoscedastic
AR-N technique utilizes the S-Plus function ar.yw to fit an AR model of order at most 4.
The conditionally heteroscedastic AR-N-CH technique, furthermore, uses the S+FinMetrics

function garch to fit a GARCH(1,1) model for the conditional variance of the innovations (Bollerslev
1986; Zivot and Wang 2003, Chapter 7). The AR-D and AR-D-CH methods estimate and extract
a diurnal trend component of the form (13) and then proceeds as above. To obtain Gaussian
predictive distribution functions from the time series models, we follow Brown et al. (1984) and
Brockwell and Davis (1991, Section 5.4). In our experiments, a sliding 40-day training period
appeared best for the AR forecasts. The results were insensitive to changes in the training period,
and training periods between 30 and 50 days seemed adequate.

In contrast to the univariate time series techniques that rely on on-site predictors, the RST
method utilizes observations from the meteorological towers at Kennewick and Goodnoe Hills,
respectively. Multivariate time series techniques (Brockwell and Davis 1991, Chapter 11) offer
a more traditional way of incorporating information from Kennewick and Goodnoe Hills into the
predictive model. De Luna and Genton (2003) proposed a vector autoregressive (VAR) specification
that is geared to provide time-forward predictions in environmental applications, where there are
as many time series as stations. They introduced a model selection strategy that takes the spatio-
temporal dependence structure into account and borrows its strength from the Box and Jenkins
(1976) strategy for univariate time series. S-Plus and R code for this technique is available;
however, the current implementation does not provide prediction bounds. We implemented the
de Luna and Genton (2003) approach in two variants, using a maximal order of 6 for the vector
autoregression and a sliding 45-day training period. The VAR-N technique fits the vector AR
model directly to the wind speed series at Vansycle, Kennewick and Goodnoe Hills. The VAR-D

technique fits a diurnal trend component of the form (13) at each of the three sites, and applies
the vector autoregression to the residual series.

Vector AR techniques lead to predictive models that resemble the schemes in (9), (10) and
(14), respectively. That said, we note two key differences to the RST method. In contrast to the
RST method, vector AR techniques do not identify and distinguish forecast regimes. However, the
method of de Luna and Genton (2003) applies a model selection strategy for each forecast; hence,
the predictor variables may vary from forecast to forecast. For the RST method, the parameter
estimates vary with the sliding training period, but the predictive models themselves are fixed.

5.2 Assessment of deterministic-style forecasts

We now assess the predictive performance of the various forecasts. As noted before, the longest
continuous data record at Vansycle, Kennewick and Goodnoe Hills ranges from 25 February 2003
through 30 November 2003. The forecasts based on the univariate AR models used a 40-day training
period, and the VAR and RST forecasts were trained on a 45-day period. Our test period ranges
from 1 May 2003 through 30 November 2003, and we report the results month by month. This
allows us to study the consistency of the results and to assess seasonal effects.
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Table 5: Root-mean-square error (RMSE) for deterministic-style 2-hour forecasts of hourly average
wind speed at Vansycle in May–November 2003, in m·s−1. The lowest value in each column is given
in bold fonts.

Forecast May Jun Jul Aug Sep Oct Nov

Persistence 2.14 1.97 2.37 2.27 2.17 2.38 2.11
New reference 2.06 1.93 2.27 2.18 2.12 2.31 2.12

AR-N 2.04 1.92 2.19 2.13 2.10 2.31 2.08
AR-D 2.01 1.85 2.00 2.03 2.03 2.30 2.08

VAR-N 1.95 1.70 1.87 1.90 1.95 2.27 2.03
VAR-D 1.79 1.61 1.72 1.80 1.80 2.13 1.90

RST-N 1.78 1.58 1.80 1.84 1.81 2.08 1.87

RST-D 1.75 1.56 1.70 1.78 1.77 2.07 1.88

Table 6: Mean absolute error (MAE) for deterministic-style 2-hour forecasts of hourly average wind
speed at Vansycle in May–November 2003, in m· s−1. The lowest value in each column is given in
bold fonts.

Forecast May Jun Jul Aug Sep Oct Nov

Persistence 1.60 1.45 1.74 1.68 1.59 1.68 1.51
New reference 1.57 1.44 1.68 1.62 1.59 1.66 1.55

AR-N 1.54 1.42 1.63 1.61 1.56 1.66 1.51
AR-D 1.54 1.38 1.50 1.54 1.53 1.67 1.53

VAR-N 1.52 1.31 1.47 1.44 1.56 1.71 1.50
VAR-D 1.38 1.24 1.36 1.35 1.40 1.57 1.44

RST-N 1.35 1.20 1.40 1.37 1.39 1.50 1.38
RST-D 1.32 1.18 1.33 1.31 1.36 1.48 1.37

In evaluating deterministic-style forecast skill, we ignore the distinction between the homoscedas-
tic and the conditionally heteroscedastic versions of the AR-N, AR-D, RST-N and RST-D forecasts,
respectively. We also avoid a comparison of forecasts using the predictive median and predictive
mean. Typically, the forecasts based on the conditionally heteroscedastic models showed slightly
smaller root-mean-square error (RMSE) than the respective forecasts based on the homoscedastic
models; and forecasts using the predictive mean generally had RMSE slightly lower than forecasts
using the predictive median. However, the differences were mostly negligibly small, and in almost
all cases the respective RMSE or mean absolute error (MAE) values were identical when rounded
to three decimal places.

Table 5 shows the RMSE for the various methods. The RST forecasts had consistently lower
RMSE than the forecasts based on the vector AR techniques; the latter outperformed the forecasts
based on the univariate AR models; and the forecasts based on the univariate AR models had
consistently lower RMSE than the persistence and new reference forecasts. In May through October
2003, the RST-D forecasts outperformed all others and had RMSE 18.3%, 20.9%, 28.6%, 21.6%,
18.7% and 13.2% less than the persistence forecasts, respectively. In November 2003, the RST-N
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Table 7: Continuous ranked probability score (CRPS) for probabilistic 2-hour forecasts of hourly
average wind speed at Vansycle in May–November 2003, in m·s−1. The lowest value in each column
is given in bold fonts.

Forecast May Jun Jul Aug Sep Oct Nov

AR-N 1.13 1.05 1.20 1.17 1.14 1.22 1.12
AR-N-CH 1.12 1.04 1.19 1.16 1.13 1.22 1.10
AR-D 1.12 1.02 1.10 1.11 1.11 1.22 1.13
AR-D-CH 1.11 1.01 1.10 1.11 1.10 1.22 1.10

RST-N 0.99 0.86 1.00 1.00 1.00 1.10 1.01
RST-N-CH 0.98 0.86 1.00 0.99 0.99 1.09 1.00

RST-D 0.97 0.85 0.95 0.96 0.98 1.10 1.01
RST-D-CH 0.96 0.85 0.95 0.95 0.97 1.08 1.00

technique performed best, with an RMSE that was 11.4% lower than the persistence RMSE. The
improved performance of the RST-N forecasts toward the end of the test period is not surprising,
given the lack of a pronounced diurnal trend component during the cool season. The diurnal
vector AR technique, VAR-D, was the closest competitor to the RST forecasts. However, the RST
forecasts had consistently lower RMSE. The results in terms of the mean absolute error (MAE)
are shown in Table 6; they were similar, except that the relative improvement of the RST-D over
the VAR-D forecasts was more pronounced than in terms of the RMSE. The RST-D forecasts had
consistently the lowest MAE.

5.3 Assessment of probabilistic forecasts

To evaluate the probabilistic forecast skill of the univariate AR and the RST techniques, we use
the continuous ranked probability score (CRPS) and the diagnostic tools described in Section 2.2.

Table 7 shows the CRPS for the various techniques. The forecasts that allowed for conditional
heteroscedasticity generally had lower CRPS than their homoscedastic counterparts; and the tech-
niques that fit a diurnal trend component mostly performed better than the respective non-diurnal
methods. The RST predictive CDFs showed substantially lower CRPS than the predictive CDFs
using the AR techniques. For each month in the test period, the RST-D-CH forecasts had the
lowest CRPS. In June 2003 and July 2003 the top performance was tied with the RST-D forecasts,
and in November 2003 it was shared with the RST-N-CH forecasts.

The probability integral transform (PIT) histograms for the predictive CDFs based on the
univariate AR and the RST methods are shown in Figures 7 and 8, respectively. The PIT histograms
for the AR-D and AR-D-CH forecasts were inverse U-shaped, thereby indicating overdispersed
predictive distributions. The effect was slightly less pronounced for the conditionally heteroscedastic
AR-D-CH forecasts, but still was prominent. Gneiting et al. (2004) argue that the use of maximum
likelihood plug-in estimates tends to result in overdispersed predictive distributions; and a similar
argument may apply here, too. The RST techniques use minimum CRPS estimation, and the
PIT histograms were nearly uniform, except for a small spike at the right-most bin. The PIT
histogram for the RST-D-CH forecasts is much more uniform than the histograms typically seen
in the literature and implies close to nominal coverage of the prediction intervals at all levels.

20



Table 8: Average width of the 90% prediction intervals for 2-hour forecasts of hourly average wind
speed at Vansycle in May–November 2003, in m· s−1. The lowest value in each column is given in
bold fonts.

Forecast May Jun Jul Aug Sep Oct Nov

AR-N 7.22 6.41 6.62 6.96 6.69 6.58 6.85
AR-N-CH 6.91 6.16 6.47 6.79 6.53 6.89 6.74
AR-D 6.98 6.22 6.21 6.38 6.37 6.40 6.78
AR-D-CH 6.68 5.95 6.04 6.29 6.24 6.66 6.67

RST-N 6.04 5.02 5.31 5.44 5.28 5.35 5.43
RST-N-CH 5.96 4.92 5.32 5.50 5.34 5.64 5.54
RST-D 5.96 4.91 5.15 5.14 5.07 5.15 5.35

RST-D-CH 5.93 4.83 5.14 5.22 5.15 5.45 5.46
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Figure 7: Probability integral transform (PIT) histograms for AR-D (left) and AR-D-CH (right)
predictive CDFs of hourly average wind speed at Vansycle in May–November 2003.
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Figure 8: Probability integral transform (PIT) histograms for RST-D (left) and RST-D-CH (right)
predictive CDFs of hourly average wind speed at Vansycle in May–November 2003.
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Table 8 shows the average width of the 90% central prediction interval. The prediction intervals
for the diurnal techniques were consistently shorter than the intervals for the respective non-diurnal
approaches. The effect of modeling conditional heteroscedasticity was less clear-cut. The RST
predictive CDFs were substantially sharper than the predictive CDFs derived from the univariate
AR models. On average, the RST-D-CH prediction intervals were about 18% shorter than the
AR-D-CH intervals, while maintaining adequate coverage, thereby achieving significant reductions
in forecast uncertainty.

5.4 Example

To summarize the above results, the RST-D-CH technique outperformed all the others during the
warm season. Our test period did not include the winter months, but the results for November
2003 suggest that during the cool season the RST-N-CH forecasts may perform best.

Figure 9 shows 2-hour forecasts of hourly average wind speed at Vansycle for the 3-week period
beginning on 21 June 2003, using the RST-D-CH approach. The green line shows the mean of
the cut-off normal predictive distribution, and the broken red lines correspond to the lower and
upper end points of the 90% central prediction interval, respectively. The observed values of the
hourly average wind speed are shown as black circles and, indeed, the empirical coverage was close
to nominal. The forecasts issued in the westerly regime are indicated by the blue marks at top.
The westerly regime dominated and showed a pronounced diurnal component, with wind speeds
that peaked at night. In the easterly regime, the wind speeds were generally lower, there was little
evidence of a diurnal trend component, and the prediction intervals were considerably shorter than
in the westerly regime.

6 Discussion

We introduced the regime-switching space-time (RST) method that merges meteorological and sta-
tistical expertise to obtain accurate and calibrated, fully probabilistic forecasts of wind resources.
The model formulation is parsimonious yet takes account of the salient features of wind speed: alter-
nating atmospheric regimes, temporal and spatial correlation, diurnal and seasonal non-stationarity,
range restrictions, and conditional heteroscedasticity. The RST method identifies forecast regimes
at the wind energy site and utilizes geographically dispersed meteorological observations in the
vicinity of the wind farm as off-site predictors.

We applied the RST technique to 2-hour forecasts of hourly average wind speed at the Vansycle
ridge in the US Pacific Northwest. In July 2003, for instance, the RST forecasts had root-mean-
square error (RMSE) 28.6% lower than the persistence forecasts. The RST method provides prob-
abilistic forecasts in the form of predictive distributions, and those were well calibrated and sharp.
The RST prediction intervals were substantially shorter on average than prediction intervals derived
from univariate time series techniques, and still showed adequate coverage, as reflected by a nearly
uniform probability integral transform (PIT) histogram. During the warm season, the RST-D-CH
variant of the RST technique performed best. This method models the diurnal component of wind
speed and takes conditional heteroscedasticity into account. For forecasts in the cool season, we
recommend the use of the RST-N-CH technique that does not model the diurnal component.

We proceed with a discussion of possible extensions as well as limitations of the RST approach.
In its current implementation, the RST technique uses empirical results to select fixed sets of
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Figure 9: 2-Hour RST-D-CH forecasts of hourly average wind speed at Vansycle for the 3-week
period beginning on 21 June 2003, in m· s−1. The mean of the predictive distribution is shown by
the green line, along with the 90% central prediction interval that is bordered by the broken red
lines. The observed wind speeds are shown as black circles, and forecasts issued in the westerly
regime are identified by the blue marks at top.
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predictor variables in the conditional linear models (9), (10) and (14), respectively. In our case
study, the choice of the predictor variables was comparably straightforward, because there were only
three stations and two regimes, and because the local climatology was well studied. In other cases,
there could be more stations and more regimes, and the model selection problem could be more
difficult. The closest competitor for the RST method, the vector autoregressive (VAR) technique
in the implementation of de Luna and Genton (2003), utilizes off-site observations, too, but does
not distinguish forecast regimes, and does not provide predictive distributions. However, the VAR
technique uses a model selection strategy that is geared to provide time-forward predictions in
environmental applications and takes the spatio-temporal dependence structure into account. It
may be possible to combine the strengths of the two approaches, by applying similar automated
model selection strategies to the conditional RST models. The resulting improvements in forecast
skill, if any, are likely to be incremental. That said, even small improvements in forecast accuracy
may result in substantial financial gains.

The conditional linear RST models allow for additional predictor variables. For instance, the
pressure gradient between The Dalles, Oregon in the Columbia Gorge and Portland, Oregon is
commonly used by operational forecasters to predict the strength of the Columbia Gorge gap flow
(Sharp and Mass 200x). Other meteorological variables or numerical weather prediction forecasts
could be considered. The benefits are likely to be small, unless meteorological observations from
stations east of Vansycle were to become available.

As noted in the introduction, numerical weather prediction (NWP) forecasts are not competitive
at the forecast lead time that we consider here. However, NWP forecasts and mesoscale ensemble
prediction systems (Grimit and Mass 2002) may provide independent information that could be
used in the form of additional predictor variables for the conditional linear models, in identifying
the forecast regimes, or in assessing and modeling conditional heteroscedasticity. These are topics
for future research.

To conclude, we anticipate that the RST approach can be successfully applied at wind energy
sites all over the world. The approach borrows its strength from collaborative efforts between
atmospheric scientists and statisticians and yields physically interpretable predictive models. At-
mospheric regimes can be identified globally, and in many parts of the world quality off-site ob-
servations may already be available in real time, although the placement of the sites may or may
not be ideal for wind forecasting applications. The resulting improvements in deterministic-style
and probabilistic forecast skill can contribute to improved wind energy integration, a more reliable
power grid, improved risk management, economic savings, and ultimately a greater acceptance of
wind power and a lesser reliance on non-renewable energy sources throughout the world.
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