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JOSEPHSON JUNCTION TRIANGULAR PRISM
QUBITS COUPLED TO A RESONANT LC BUS

Qubits and gates for a holonomic quantum computer

S. P. Yukon
Air Force Research Laboratory, Electromagnetics Technology Division, Hanscom AFB,
MA 01731, USA

Abstract: We investigate the properties of Josephson junction triangular prism qubits coupled by
mutual inductance to a resonant LC bus. We show how the symmetries of the qubit potential may be
used to implement the Duan Cirac Zoller scheme for holonomic quantum computation.

Keywords: Josephson junction qubit, Geometric gates, Holonomic quantum computation

1. INTRODUCTION

A geometric approach for achieving quantum computation using non-Abelian
holonomic gate operations has been recently proposed by Pachos er al. [1]. An
implementation of (non-Abelian) holonomic quantum computation using a trapped ion
quantum computer [2] has subsequently been proposed by L. M. Duan, J. 1. Cirac, and
P. Zoller (DCZ) [3]. We propose here an alternative physical implementation of
holonomic quantum computation based on a previously described quantum computer
employing Josephson junction (IJ) triangular prism qubits coupled to a resonant LC bus
[4]. For the ion trap system the excitation of different transitions can be distinguished by
polarization or by frequency. For qubits based on the symmetric potential well of a JJ
triangular prism, symmetric and antisymmetric excitations of prism’s two JJ triangles
using external magnetic flux take the place of laser pulse polarization. Because the qubit
potential well and qubit’s interaction with external flux are defined by Bohm Aharonov
vector potential integrals around each cell circuit (yielding an Abelian holonomy or Berry
phase), the basis for both qubit and gate properties can be said to be of geometric origin.

The DCZ qubits are atomic ions that have the desirable feature that all of the qubits
possess identical properties when they are isolated from local environmental perturbations.
The JJ qubits that we propose to employ have inherent fabrication errors and no two qubits
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will be exactly identical. To overcome this variability, the local microwave rf sources that
provide the gate pulses at each qubit need to have their frequencies adjusted to match the
transition frequencies needed for that particular qubit. A desirable aspect of holonomic
quantum computing for such nonidentical qubits is that once the local rf source frequencies
have been adjusted, it is possible to carry out a set of global (or multi-local) logic operations
as the holonomic gates depend only on relative phases and amplitudes of the rf gate sources
and not on their absolute amplitudes. Because the gate rotation angle for a holonomic gate
depends on the solid angle subtended by the closed path in parameter space, holonomic gates
should be relatively immune to small random fluctuations in external magnetic flux since the
integral of the fluctuations they induce on a closed path should average to zero.

1.1 Josephson junction triangular prism qubits

In Fig. | we have sketched the three alternative versions of the flattened JJ prism qubit
proposed in Ref. [4]. Of these the four- and five-cell versions have similar properties
except that the five-cell version has an extra constraint condition (on the sum of the fluxes
through the five cells) that gives rise to unwanted combinations of second-order
excitations. Of the two, the simpler four-cell version is thus preferable.

The three- and four-cell versions may be distinguished by the circulating currents in
the outer cells when the system is at a potential well minimum. The expressions for the
effective one-dimensional potential for both the three- and four-cell versions may be
written as V,.(x) = —2 cos(x) + r cos(2y) (shown in Fig. 3 for r = 0.675). The expression
for the phase {* of a (dotted) junction at a potential minimum in one of the triangular cells
may be written as {* = + x* + f(P;) where + x* are the two minima for V,(x), and f(®;)
represents a function of ®;s (where @, is the external flux in the ith cell). The circulating
current in the left- and right-hand JJ triangular cells at the two minima may be represented
as Iypan T AI (left-hand cell) and Iygan F Al (right-hand cell). For the three-cell circuit
(with @, = 0 defined below) Iygan = 0.415, AI = 0415 at r =1, and Iyean = 0.65,
AI=0.32 at r=0.65. For the four-cell circuit (with ®,=2®, defined below)
IMEAN = 00, Al=0.87 at r= 1, and IMEAN — 00, Al = 0.65 at r = 0.65. The four-cell
circuit yields a larger A/ for gradiometer coupling to a SQUID detector and is therefore the
circuit that we choose for the qubit.

The computational basis states for the qubit are taken to be the ground and first excited
state of the potential V,(y). Because the ground and first excited states wavefunctions of a
symmetric potential are purely symmetric and antisymmetric, respectively, there is an equal
probability of the current being in the right- or left-hand JJ triangle. To perform a
measurement, a Hadamard gate or a 7r/2 Y-rotation on a qubit in one of the basis states will
lead to a superposed wavefunction that is centered around the left or right potential well

X 3 4 X

(a) (b) (c)

Figure 1. Sketch of three versions of the flattened triangular JJ prism.
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minima. This in turn will lead to one of the previously described current patterns that can then
be measured by a SQUID detector. A measurement performed without the Hadamard gate
would be able to measure symmetric or antisymmetric combinations of the qubit basis states.

While we have used the symmetric properties of the potential V,(y) to define the qubit,
we have used the results of Mooij et al. with regard to the low inductance properties of the
qubit [5—7] and the necessity for suppressing transitions to other charge states [5, 6]. We will
not discuss the aspects of coupling the qubit to detectors and the environment here, but the
results of Refs [5] and [6] have addressed these issues and are applicable to the qubit
proposed here.

The DCZ Hamiltonian employs three ground or metastable states plus a common
excited state for each ion qubit. The Hamiltonian in the rotating frame for the jth ion with
rf sources for each needed transition turned on, is given by

H; = hQle} 0] + r Y |e) 1] + rQsle)b| + h.c. (D

where {}; are the Rabi frequencies for the transition from state |i) to state |e). Transcription
of the DCZ holonomic quantum computation scheme to Josephson junction qubits
requires: (1) qubits with three degenerate states (in the rotating frame) that couple to a
common excited state; (2) a way of exciting each of the three states without exciting the
others (and being able to control the amplitude and relative phase of the separate excitation
modulation envelopes); and (3) a bus having harmonic oscillator energy levels that can
couple to all of the qubits. In the next two sections we demonstrate how this may be
accomplished using four-cell JJ prism qubits coupled to a resonant LC bus.

The Hamiltonian (in units of 2E;) for the four-cell qubit in Fig. 2, derived in Ref. [4],
may be written as

H & b, ba .
QE) = WzMX — {Zn” COS(Z) cos()(+2) + pcos(2y) cos(¢h, + qbq)} 2)
T q)al q)q A (Dq7 /[CI)a
o G e e e iy 8 e e g
l ! ! I
| I I I
1 : ! 1
1 | b 4 !
i 0} Clx e T, - |
1 - [
--- Cx ) / —
i AU S ; I
: Cx i . & :
: : ! i
1 | 1 1
by Sr e e e e e = 2] '
6 control line 00, control line

Figure 2. Flattened Josephson junction prism qubit with 8¢, and 8¢, control lines.
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where we have defined 8 = 8, — ¢,/2 and x = ¢ + (¢, — &,)/2 with ¢,, = (¢, +
¢,2)/2. along with the diagonalizing + combinations; s = ({; — £)/2, i = (&, — £)/2,
0= ({1 + )/2, 6, = (& + &)/2, as well as ¢, = (b1 + ¢,0)/2 with the definitions
bya =27 D, o/ Do, E; = I-Py/27 and @ = h/2e. We have used the zero inductance
limit Bohm—Aharonov phase constraint equations {{} — &> — &= ¢,, & — & — &=
bur. — &+ & = by, i — & = ¢, ) for the gauge invariant {; and & junction phases. For
junctions ¢y, &5, &), and &, the junction capacitances and critical currents have been taken
equal to C and I, respectively. For junctions {3 and &, the junction capacitances and
critical currents have been taken equal to pC and pl- respectively, allowing the mass term
M, to be written as M, = (2E,)M = (1 + 2p) (2E,;)/(4(E-/2)), with E- = ¢ 2/(2C). The
ny term comes from the Hartree replacement cos(f) — (04|cos(6)|04) = my. For the
ground state [04), iy =~ 1. In order to introduce the terms of the Hamiltonian that can be
utilized for qubit gates, we further divide ¢, ¢, and ¢, into constant and small excursion
constituents as ¢, = ¢) + 8¢, b, = ¢, + 8¢, and ¢, = ¢! + 5¢,. We take ¢, = 0 (i.c.
no constant or time-varying antisymmetric component of the flux threading the middle
two cells).

For this Hamiltonian, the time-independent Schrodinger equation is equivalent to the
Whittaker Hill equation, for which exact solutions have been found [8]. The lowest even
and odd solutions are denoted by geo(x). 251(x), gc2(x), and gsz(y) and are defined in terms
of continued fractions. If we identify the computational basis states (x|1} and {x|0) with
gco(x/2) and gs(x/2), the assignment of geo(y/2) and gs3(x/2) to the DCZ auxiliary
states {y|e) and (y|b) will allow all of the DCZ one and two qubit holonomic gates to be
carried out. The two basis states and auxiliary states are shown in the inset of Fig. 3 along

"b"), Vi)

11! n> 3 3k i Tap
» ~ 2 Eﬂ — P
" —— /
\\\ 0 2l —_— /
\ ‘ —— /
3 e e nAn — /
\ " 1 u) 0 >1 W ,»;
0 A ____: {/;’
3 ~2\ ' =/ =i 3 X
&_\\\ 71; — P
*‘M%7_ i

Even Levels

Figure 3. Energy levels and qubit transitions (inset) for V,{x) (in units of 2E,) with r = 0.675.
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with the complete set of bound state levels for the qublt potential of Eq. (2) written as
Vi(x) = cos(x + ¢,/2) — rcos(2y) with r = —p cos(qb + q,')n)/(nH cos((f)”/Z) =0.675.

Since we have chosen to use the excited states gca()(/ 2 and gs;(x/2) as the DCZ
auxiliary states, their energy eigenvalues (and that of gcy(x/2), which is a possible
transition from gs,(x/2)) must lie appreciably below the potential well saddle that
separates unit cells in the two-dimensional periodic potential (in order to prevent the
excitation of different charge states) [5, 6]. There is a range of values of (;’)E, O and ny for
which this is possible. As an example for the choice r = 0.675, M, = 100, the saddle lies
0.74 » (2E;) above the potential minimum, while the ges(x/2) and gss(x/2) states lie
respectively at 0.18 x (2E;) and 0.12 x (2E;) above the minimum.

A second requirement for the potential is that the transition frequencies w, =
(E: —E))/h and wsz = (E4 — E3)/h be separated by at least 10 x £}, where (), is the
Rabi frequency for the gs,(x/2) < gea(y/2) transition, in order not to excite the
gs53(x/2) < gey(x/2) transition.

To model the inclusion of rf forcing and coupling to other qubits, we expand the
potential in a power series around ¢ = 0, d)(] # 0, and q‘)( # 0, keeping &¢b; terms up to
second order. Physically, the f,bo and do mdgnctw flux can be supplied by a uniform
external field. The 8¢, exutdmon can be supplied by a vertical line bisecting the qubit
while the 8¢, excitation can be supplied by two symmetric horizontal control lines
designed to null or minimize concomitant excitation of 8¢, and 8¢, as shown in Fig. 2
(the wanted &¢, excitations will come from the bus). The rf excitations 8¢, , are tuned to
the transition frequency between |e) and |0), [1), or |5). Thus the full expression for 8¢, for
the b <+ e transition is thus given by

5(355'6-5} — B(bff”(r)ei(E“*E”“m +igy, (3)

where Sd)if”(r) is the adiabatically varying modulation of the rf pulse envelope. The time
varying phase ¢,(f) may be introduced as a [requency modulation of the carrier at the
transition frequency (E, — Ep)/h with the FM pulse frequency given by w.,(1) =
(E(, == E.’})/h = dqob(f)/df.

The Hamiltonian for the jth qubit in the rotating frame with all 1f sources on, may thus
be expressed as the DCZ Hamiltonian of Eq. (1) with the Rabi frequencies for the three
needed transitions given by

Qo = n,(Olsin(y)|e)cos()/2)8,,” (4a)

Q1 = p(1|cos(2y)|e)sin(p + q52)8(;b_£.” (4b)
and

Q= my(blsin()|e)cos(d) /2)5¢ (4c)
1.2 Coupling the resonant LC bus to the qubits

To enable two-qubit gates to be carried out, each of the qubits is coupled to a resonant
LC bus by mutual inductance coupling between a loop in the bus and the two inner cells of
the qubit as shown in Fig. 5. The bus is based on the trapped ion bus scheme of Refs.
[3,9,10] and is similar to the resonant LC bus coupling of qubits in Refs. [11—13]. The
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operators for flux and charge in an LC oscillator with resonant frequency w = 1/+/LC, can
be written in terms of creation and annihilation operators {a+, a}l as

D= 1} “@+ah, 0=i 4(a—3) (5)

If there are N qubits coupled to the bus, and a fraction f,@® is available for coupling to the
qubits, the amount of flux coupled to each qubit will be fo®/N. The second-order terms in
the Hamiltonian expansion will then yield interaction terms for even—even (or odd—odd)
transitions Q’ o" (a+at) and even—odd transitions Q{)of,o(a +a') and Q’l)o“ (a+a’),
where

o)t = ¢ |e)(u| + h.c. Hermitian conjugate (6)
and
= —(%)sln(¢rl)<0|sm<x)1e>2nﬁ,% (7a)
¥, = peos(d! + d)1|cosy)le)2f, % (7b)
&, = —("2)sin (qbg)wsm(xneﬁm% (7¢)

Adopting the Sgrensen and Mglmer [5, 6] bichromatic bus scheme used by DCZ, which
requires only virtual bus excitations, the effective Hamiltonian for a pair {/, k} of qubits
coupled by the resonant LC bus may be written as

H; 1
51% = (6)[(60) 1Y 1| o il sl 1119 lof of + Y, ||Q,,| a,\,,} (8)

This expressions differs from those in DCZ and Refs. [5, 6] due to the fact that we have
taken into account the slightly different parameters of each qubit, and have allowed for a
third detuning frequency offset &, in addition to the DCZ frequency offset &.

The total capacitance C will consist of the capacitance between the wires forming the
bus and any additional capacitance added. The bus frequency @ = 1/+/LC is chosen to
avoid direct excitation of transitions in the qubit and to optimize the number of qubits in
the system. To remain within the quasi-static limit, the maximum extent of the bus is
~0.1A,, where A, is the substrate wavelength. Assuming a bus frequency of 3 GHz, and a
substrate refractive index n;=3.0 yields A,/10=0.33 mm. Assuming (2£,)/
h = 200 GHz, with r=0.675, M, = 100 the expressions (4c) and (7c) with 8¢, =
0.001 x 27 yield €,/27=0. 152 GHz and () /2m=0.627/+/NMHz. The Rabi
frequencies for two-qubit gates given in Eq. (8) may be increased from this value by
taking the offset frequencies & and &, to be small fractions of Q’b, and by choosing n such
that the rf frequency wy = (F2 — Ey)/h +n - w is distant from any allowed transition
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frequency so that the value of 8¢, could be increased. An example would be to choose n
such that @y ~ (E7 — E|)/h.

We note that by setting ¢, = 0, the middle cells in Fig. 1 may be eliminated and
their junctions combined. The bus for these two-cell versions should then be moved to
the right (or left) cell. From Eqs (4) and (7) we see that for Fig. 1(b), all one-qubit
terms would survive but only the even two-qubit term (7b) would survive for ¢, = 0.
This would still allow a universal set of gates to be formed but without the extra degree
of control from the even—odd transition terms (7a) and (7¢). The two-cell version of
Fig. 1(a) would have similar losses. For Fig. 1(c), all even transition terms vanish [14].
For one-qubit gates, an even term could be fashioned for |1) — |e) by using second-
order odd transitions since the energy denominator for the intermediate state transition
[1) — |0) is small.

1.3 Non-Abelian holonomic gates

The basic set of DCZ smg]e qubit gates UY = 100l 1) = ¢ iy and the two-
qubit gate UVF = einlV1X00 1 are sufficient tor all of the operatlom needed to carry out
holonomic quantum computations. The DCZ Berry phases ¢, ¢y, and ¢, are given by
their implicit dependence on # and ¢ as:

1
¢, =—5§sin(6)d9 de (C)]
with
’ . 6 1 " 9
Qy=0, O =-—'sin 3 e?, O, =" cos 5
d)y:c};sin(ﬂ)dﬂ di (10)
with

0y = Osin(B)cos(p), O = O sin(Msin(e), ), = 1'cos(H)
with (0 = ' = Q" and

o =—%+sin(9)d9dqﬁ (11)

with

[N (e) ¢
(lu=0,—,\—ﬂ—'f‘=taﬂ*,¢|f@b:*
Ao 2 -

The minimal set of gates for quantum computation (two single-qubit gates and one two-
qubit gate) must form a noncommuting set, which implies that their geometric phases must
be generated by non-Abelian holonomies [1]. The computational basis during an adiabatic
evolution cycle rotates into “dark™ states that maintain zero eigenvalues. An example of
dark states for the UU & gate Hamiltonian would be |Dy) = cos(ﬂ)(cos(rp){O) -
sin(@)|1);) — sin(¢)|b); and |Dy2) = cos(¢)|0); — sin(¢)|1);. Since the gate Harm]tomans
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have zero eigenvalues for these states, there is no dynamical phase contribution from the
gates to the computational basis states [1].

Using expressions for the geometric phase in [1], the DCZ set can be completed with
the single-qubit X rotation and two-qubit X, g and Y,p g rotations where o and o, are

replaced by {|aB)a/B| + |aBXa'B|} and {—ilaB)Xa’'B| + ilo’ B)Xapl}, respectively,
and |aB) (and |&/B")) is one of the two-qubit states {10;0¢), 10;15), | 1,0, [1;14}}. The
expression for the X rotation is given by U)((” = ¢ where

by = ii;sin(ﬂ)dﬂ do (12)
with
Qo = Qsin(@)cos(e), O = Q' sin(0)sin(@)e™?, U, = Q" cos(0)

For Y,p .p rotation the two-qubit Hamiltonian can be written as

Yoo 1 o ” 2 " o !
1 = (5)| () 0l Obploz el = 10101 o

+ 10104 |05 02?;} (13)
The Y, 4. p rotation is then given by
U‘#t)ﬂ I LA CEACEY
with
t;by"ﬁ:u,ﬁ, = ﬁ) sin()df de and Q.5 = D sin(6 )cos(e), (14)
with

Qup = Q' sin(0)sin(e), L, = 0" cos(@)

The X, p rotation can be similarly derived following the pattern of the single-qubit X
and Y rotations.

1.4 Fault tolerance of Uy and Uy, and Uy and Uy, . holonomic gates

Assuming that it will not be possible to adjust the three microwave sources at each
qubit to obtain equal basic Rabi frequencies () for the three needed transitions, we have
looked at the effect of unequal basic Rabi frequencies {{}, )/, ()"} on the value of the
resulting gate rotation angle. We define an “input” gate rotation angle ¢, as the Berry
angle given in Egs (9), (10), or (11) for a perfectly adjusted system with a three-step pulse
sequence: {6=0— 7/2, =0}, {#=7/2, ¢=0— @}, {0= m/[2—> 0, o=
@inat}. The pulse envelope used is 6(f) = O(tanh(A(r + fp)) — tanh(A(r — t0)))/2,
@(t) = @(tanh(Az + 1)/2, with A = 1/2, 1, =20, 6 =m/2, (1=, =27 The gate
rotations presented below are calculated in the restricted Hilbert space
Ho = {|0), 1), |€), |b)}. In Fig. 4(a) we have plotted the resulting gate rotation angle
ou for the U, gate for {Q, O, Q"} = 0,{0, 1.0, 1.0}, ,(0, 1.0, 1.2}, and (,{0, 1.0,
1.4}. Since all of the gate rotation angles lie on a straight line for a given set of basic Rabi
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Figure 4. (a) Output vs. input rotation angle for basic Rabi frequency error sets 0, 1, 2; (b) Output
vs. input rotation angle for basic Rabi frequency error sets 0, 1, 2, 3.

frequencies, measurement of a single pair of input and output rotation angles will then
determine the needed input angle for any desired output rotation angle. The behavior of all
gates like U, that have {}, = 0 will be similar.

In Fig. 4(b) we have plotted the output rotation angle for the Uy,,,, gate for {{}, (V'
Q" =0,{1.0, 1.0, 1.0}, Q,{1.0, 1.22, 0.83}, 0,{1.00, 1.44, 0.66}, and €2,{1.00, 0.66,
1.34}. For this gate all of the output rotation angles for a given set of basic Rabi
frequencies lie on a 45° rotated sine curve. Measurement of a single pair of input and
output rotation angles can then determine the needed input angle for any desired output
rotation angle. The behavior of all gates like Uy, Uy, and Uy, . that have adiabatic
envelopes similar to Eq. (10) will have behavior similar to that of Uy, .. Unlike the Uy,
and U, gates, there are also two points at + /2 where the output rotation angle perfectly
matches the input rotation angle. Thus any of the gates Uy, Uy, warf.u'ﬁ*’ or Uy“ﬁlu, 5 at
rotation angle =+ 77/2 will be fault tolerant with respect to microwave pulse amplitude
errors. Investigation of the fault tolerance properties of gates when the Hilbert space is not
restricted to Hj requires optimizing the potential, the resonant pulses, and bus parameters
to minimize leakage out of Hy, and will be addressed in a future paper.

1.5 Connecting buses into a network

It is also possible to connect groups of buses in an open branching network as first
described in Ref. [4]. To transcribe this feature to the holonomic qubits and gates
described above requires distinguishing a particular qubit (or qubits) that is to be assigned
the sole task of transferring gate excitations from one bus to a second and vice versa. This
is shown schematically in Fig. 5. Since the Uy, ,, is fault tolerant at rotation angle + /2,
we shall employ it to connect buses and define it as

Ucy, (£) = {10,040,0| + 10,160 1k F [1;1eX1,06] £ 11,06X 11} (15)

To carry out a two-qubit Ucy,, ( +) gate between a control qubit j on bus 1 and a target qubit
k on bus 2 via the common transfer qubit 7 (assumed to be in its ground state), it is necessary
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Bus 1 Bus 2

§
4
[

Figure 5. Schematic of two coupled buses and transfer (center) qubit.

to first carry out a Uy, (—) gate with qubit j the control qubit and qubit 7 the target qubit. A
second Ucy, , (—) gate with qubit ¢ the control and qubit k the target and a final Ucy;,(—) gate
with qubit j the control qubit and qubit 7 the target qubit achieve the desired result with
control qubit 7 returned to its original ground state. While they are not perfectly fault
tolerant, three control-not gates, between ( j, ), (¢, k), and ( j, t) would also have the overall
effect of a control-not between j and k with ¢ reset to its original ground state.

To carry out a control-y over a number of buses, it is necessary to first carry out a
sequence of Ucy, (—) starting from the control qubit, through all of the intervening transfer
qubits to the target qubit, followed by a final sequence of Ucy, (—) from the original qubit
to the last transfer qubit in order to reset the transfer qubits to their original ground states.
The sequence involving two transfer qubits would thus be Ucy, (=) between ( j, 1),
(t1, k), (12, k) followed by resetting transfer qubits with Ucy, (—) applied to (1, 1) and
(j t1). The maneuvers described in the preceding paragraph may be chained across as
many coupled buses as required (given an environment where perfect coherence is
possible). This allows open branching networks of coupled buses to be formed, enlarging
the possible number of interacting qubits in a single quantum computer.

2. CONCLUSIONS

We have shown that it is possible to design a system comprised of Josephson junction
prism qubits coupled inductively to a resonant LC bus that is capable of carrying out
holonomic quantum computations. The effective Hamiltonian is zero throughout an entire
computation, so there is no dynamical evolution of the system. In the restricted Hilbert
space H;, one- and two-qubit X and ¥ rotation gates are shown to be tolerant of pulse
amplitude errors for rotation angles of + /2. The behavior of one- and two-qubit gates at
arbitrary rotation angles, when pulse amplitude errors are present, can be predicted if one
measurement can be made to determine an appropriate input/output curve.
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