
On Stability and Concentration of Measure

Alexander Rakhlin, Sayan Mukherjee and Tomaso Poggio

Center for Biological Computation and Learning, McGovern Institute, Computer
Science and Artificial Intelligence Lab, Brain Sciences Department, Massachusetts

Institute of Technology

CBCL Paper 239

June 2004



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
JUN 2004 2. REPORT TYPE 

3. DATES COVERED 
  00-06-2004 to 00-06-2004  

4. TITLE AND SUBTITLE 
On Stability and Concentration of Measure 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Massachusetts Institute of Technology,Center for Biological and
Computational Learning,77 Massachusetts Avenue,Cambridge,MA,02139 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

18. NUMBER
OF PAGES 

13 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



Abstract

Stability conditions can be thought of as a way of controlling the variance
of the learning process. Strong stability conditions additionally imply con-
centration of certain quantities around their expected values. It was shown
recently that stability of learning algorithms is closely related to their gen-
eralization and consistency. In this paper we examine stability conditions
from this point of view, complementing the results of [6, 5].
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1 Introduction

This paper is motivated by the results of [5] (see also [6]). Mukherjee et al.
[5], building on work by [2] and by [1], showed that a certain form of double-
sided cross-validation leave-one-out stability is not only necessary and sufficient
for generalization and consistency of ERM but it is also sufficient, when ex-
pected and empirical leave-one-out stability hold, for generalization of any sym-
metric learning algorithm. In this paper, we describe a few additional results
that will hopefully illuminate better the role of stability in generalization. We
work in the change-one framework instead of the leave-one framework. We show
that a weak form of stability called pseudostability (see [5], definition 3.9 for
the leave-one-out case) is not only necessary and sufficient for ERM algorithms
but is also sufficient for generalization, if expected and empirical change-one-out
stability hold with sufficiently fast rates. We also show that by using a stronger
definition of CV stability than [5] we are able to ensure generalization by using
only expected stability, without empirical stability.

2 Extending McDiarmid’s Inequality

McDiarmid’s inequality has been used in the past few years to obtain con-
centration results from stability conditions. These stability conditions can be
thought of as Lipschitz conditions on the map from sets to functions (i.e. a
change in the training set does not affect the output function by more than β =
Lipschitz constant). When the Lipschitz constant can be shown to be decreas-
ing in the number of points faster than O(1/

√
n), concentration results follow

from McDiarmid’s inequality.

Theorem 2.1 (McDiarmid, [4]) Let Ω1, ..., Ωn be probability spaces. Let Ω =
∏n

k=1 Ωk

and let X be a random variable on Ω which is uniformly difference-bounded by βn (i.e
for any k if ω, ω′ ∈ Ω differ only in the k-th coordinate, then |X(ω) − X(ω ′)| ≤ βn),
then for any ε > 0,

IP (X − IEX ≥ ε) ≤ exp
(−2ε2

nβ2
n

)

Kutin and Niyogi [2] extended McDiarmid’s inequality to include a possibility
of a bad event:

Theorem 2.2 (Kutin,Niyogi) Let X be a random variable (|X | ≤ 1) on Ω which
is strongly difference-bounded by (λ

n , exp(−Kn)) (i.e. there is a bad subset B ⊂ Ω
of measure exp(−Kn) s.t. for any k if ω, ω′ ∈ Ω differ only in the k-th coordinate,
then |X(ω) − X(ω′)| is bounded by λ

n if ω /∈ B and by 1 otherwise), then for any
0 ≤ ε ≤ 2λ

√
K and n ≥ max{ 1

λ , 3( 6
K + 3) ln( 6

K + 3)},

IP (X − IEX ≥ ε) ≤ exp
(−ε2n

8λ2

)
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This theorem is a special case of a more general theorem proved by Kutin and
Niyogi [2]:

Theorem 2.3 (Kutin,Niyogi) Let X be a random variable (|X | ≤ 1) on Ω which is
strongly difference-bounded by (βn, δ), 1 ≥ βn > 0. Then for any ε,

IP (X − IEX ≥ ε) ≤ 2
(

exp
( −ε2

8nβ2
n

)
+

nδn

βn

)

For the above bound to decrease with n, βn has to decrease faster than O(1/
√

n).
Additionally, δn has to decrease faster than βn/n, i.e. faster than n−3/2.
We now give an example of a random variable which is strongly difference
bounded by (0, n−1/2), but is not concentrated:

Example Let ω = (ω1, ..., ωn) ∈ [0, 1]n. Let X(ω) = 0 if the number of ωi’s
greater than 1/2 is larger than �n/2� and X(ω) = 1 otherwise. In other words,
X takes values 0 or 1 depending on whether the majority of the points falls to
the left or to the right of 1/2. Note that a change of one point does not change
the value of X unless the set ω of points is balanced. The probability of this
event is Θ(1/

√
n). Even though the measure of the “bad event” decreases, X is

not concentrated: IEX = 1/2 by symmetry.

The above example shows that McDiarmid’s inequality cannot be extended to
give a useful result for bad sets of measure δ = O(1/

√
n), while the exten-

sion by Kutin and Niyogi shows that for fast enough rates (δ = o(n−3/2) and
appropriate βn), X is concentrated around its mean.

3 Concentration and Stability

Let S = (z1, ..., zn) and Si,z = (z1, ..., zi−1, z, zi+1, ..., zn). For brevity of nota-
tion, let fS be the loss function when trained on the set S (i.e. V (fS , z) in the
notation of [5]). Assume that such functions are upper bounded by M .
Consider the following stability definitions for change-one that is replacement
of one point (compare with the analog EEloo and Eloo definitions of [5] for the
leave-one-out case):

Definition 3.1 We say that an algorithm is (βemp, δemp) Empirical Error stable if
with probability 1 − δemp (over the choice of S),

∀z,

∣∣∣∣∣∣
1
n

∑
zj∈S

fS(zj) − 1
n

∑
zj∈Si,z

fSi,z(zj)

∣∣∣∣∣∣ ≤ βemp

Definition 3.2 We say that an algorithm is (βexp, δexp) Expected Error stable if with
probability 1 − δexp (over the choice of S),

∀z, |IEufS(u) − IEufSi,z(u)| ≤ βexp
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By the concentration result of the previous section, if βemp = o(1/
√

n), δemp =
o(βemp/n), the empirical errors are concentrated around their expected value
IES

∑
zj∈S fS(zj) = IESfS(z1) and if βexp = o(1/

√
n), δexp = o(βexp/n), the

expected errors are concentrated around their expected value IES,zfS(z):

Proposition 3.1 If an algorithm is (βemp, δemp) Empirical Error stable, then with

probability at least 1 −
(
2 exp

(
− ε2

8nβ2
emp

)
+ nδempM

βemp

)
,

|IESfS(z1) − 1
n

∑
zj∈S

fS(zj)| ≤ ε.

Proposition 3.2 If an algorithm is (βexp, δexp) Expected Error stable, then with prob-

ability at least 1 −
(
2 exp

(
− ε2

8nβ2
exp

)
+ nδexpM

βexp

)
,

|IES,zfS(z) − IEzfS(z)| ≤ ε.

If the above two stability conditions hold,

IET (IEzfT (z) −
∑
zj∈T

fT (zj))2 ≈ IET [IES,zfS(z) − IESfS(z1)]
2

= IET [IES,z (fS(z) − fSi,z(z))]2

and therefore for the second moment to decrease, there must be a condition
forcing

IES,z (fS(z) − fSi,z (z)) → 0.

We will call this condition CV-Pseudostability.

Definition 3.3 We say that an algorithm has βps CV-Pseudostability if

|IES,z (fS(z) − fSi,z(z)) | ≤ βps

This is the analog of the leave-one-out pseudostability defined by [5] in defi-
nition 3.9, which is weaker than their CVloo stability because because fS(z) −
fSi,z(z) has to be small only on average.
Now note that Empirical Error Stability for the removal case implies Empirical
Error Stability for replacement (with appropriate rates), and the same holds
for the Expected Error. Therefore, CV-Pseudostability gives a weak condi-
tion which together with Error Stability and Empirical Stability with the rates
βn = o(1/

√
n), δn = o(βn/n), imply convergence of the empirical error to the

expected error for any symmetric algorithm.
To elaborate more on this point, assume the Error Stability (removal) and the
empirical Stability (removal). Because of the Error Stability, IES,zfS(z) ≈ IESfSi(zi).
Also, IES,zfSi,z(z) = IESfS(zi). Therefore, translated into the removal case, the
CV-Pseudostability condition becomes

IES (fSi(zi) − fS(zi)) → 0.
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This is exactly CVloo stability without absolute values and was called pseu-
doPH stability in definition 3.9 of [5]. We therefore conclude that for the re-
moval case, Error Stability together with Empirical Stability (with rates βn =
o(1/

√
n), δn = o(βn/n)) and pseudoPH stability are enough for generaliza-

tion. This result should be compared with Theorem 3.1 of [5]): here we also
obtain generalization by assuming a weaker CV stability but stronger empirical
and expected stability.

4 Lower Bounds Using Stability

In this section we will lower-bound the second moment

IES(IEzfS(z) −
∑
zj∈S

fS(zj))2.

Clearly,

IES(IEzfS(z) −
∑
zj∈S

fS(zj))2 ≥ (IES,zfS(z) − IES

∑
zj∈S

fS(zj))2

= [IES,z (fS(z) − fS(z1))]
2

= [IES,z (fS(z) − fSi,z (z))]2

Therefore, convergence of IES,z (fS(z) − fSi,z(z)) to zero (CV-Pseudostability)
is a necessary condition for the convergence of the empirical to the expected.
For ERM, this condition is also sufficient (see next section).
We now examine the question of necessity of all three stability conditions posed
by [5], but with CV-Pseudostability instead of CVloo as the first condition. As-
sume that CV-Pseudostability holds (βps → 0). Assume additionally that Error

Stability holds (βerr = o
(

1√
n

)
, δerr = o(βerr/n)). Then

IEzfS(z) −
∑
zj∈S

fS(zj) = (IEzfS(z) − IES,zfS(z))

+ (IES,zfS(z) − IES,zfSi,z(z))

+


IES,zfSi,z (z) −

∑
zj∈S

fS(zj)




The first term is bounded by the concentration of expected values around their
mean (follows from Expected Stability and the results of the previous section).
The second term is bounded by CV-Pseudostability. Therefore,

IEzfS(z) −
∑
zj∈S

fS(zj) ≈ IES,zfSi,z(z) −
∑
zj∈S

fS(zj)

= IET

∑
zj∈T

fT (zj) −
∑
zj∈S

fS(zj)
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Therefore, for the empirical to converge to expected, we must require concen-
tration of empiricals around their mean. Empirical Stability does imply this
concentration, but it might be possible to have a weaker requirement. Simi-
larly, if we have CV-Pseudostability and Empirical Stability, we must require
a concentration of expected values around their mean. This is implied by Ex-
pected Stability, but, again, there might be a weaker condition.

5 Empirical Risk Minimization

Proposition 5.1 CV-Pseudostability is necessary and sufficient for consistency and
generalization of any Emprical Risk Minimization algorithm.

PROOF:Empirical Risk Minimization searches in the function class F for a func-
tion which minimizes (or ε-minimizes) empirical risk. Assume f∗ is the loss
function with the smallest expected error, i.e. IEzf

∗(z) ≤ infg∈F IEzg(z). Con-
sider the shifted loss class G = F −f∗ = {g′ = f −f∗|f ∈ F}. Let gS = fS −f∗.
Note that if fS is an empirical minimizer in F w.r.t. set S, then gS is the empir-
ical minimizer in G w.r.t. S.

IEzfS(z) − 1
n

∑
zj∈S

fS(zj) = IEzgS(z) − 1
n

∑
zj∈S

gS(zj)

+ IEzf
∗(z) − 1

n

∑
zj∈S

f∗(zj)

The second term tends to zero by Hoeffding’s inequality. Therefore, gener-
alization over class F is equivalent to generalization over G. Moreover, note
that 1

n

∑
zj∈S gS(zj) ≤ 0 because the zero function is in the class G and that

IEzgS(z) ≥ 0 because f ∗ attains the smallest expected error. Therefore, IEzgS(z)−
1
n

∑
zj∈S gS(zj) ≥ 0 and so convergence IEzgS(z) − 1

n

∑
zj∈S gS(zj) → 0 is

equivalent to

IES


IEzgS(z) − 1

n

∑
zj∈S

gS(zj)


→ 0.

Rewriting,

IES


IEzgS(z) − 1

n

∑
zj∈S

gS(zj)


 = IES,z (gS(z) − gS(z1))

= IES,z (gS(z) − gSi,z (z))
= IES,z (fS(z) − fSi,z (z))

As shown in Theorem 3.4 of [5], CVloo-Pseudostability is also equivalent to
generalization and consistency of ERM (for ERM CVloo pseudostability and
CVloo stability are equivalent).
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6 Bounding Generalization Error without Strong Con-
centration Results

Mukherjee et al [5] showed that for the replacement case, CVloo stability to-
gether with Expected and Empirical stabilities, is sufficient for generalization.
Their method (similar to that of Devroye and Wagner [3]) bounds the second
moment of the difference of the expected and empirical errors. No concen-
tration of the errors around their average values is required for this method.
We now prove a similar result for the replacement case and show that by us-
ing a somewhat stronger definition of CV stability (which is different from but
consistent with our definition of pseudostability) we can prove sufficiency for
generalization using only the expected stability (without empirical stability).

Definition 6.1 We say that an algorithm is (βcv, δcv) strongly CV stable when

IP (∀i, |fS(z) − fSi,z(z)| > βcv) ≤ δcv

Alternative form (by symmetry):

IP (∀i, |fSi,z(zi) − fS(zi)| > βcv) ≤ δcv

It is crucial that the quantifier ∀i is inside of the probability. Thus this definition
is stronger than CVloo stability (or its change-one analog). Also note that the
probabilities can be taken over n + 1 points or over n points with a fixed z.

Proposition 6.1 For any i �= j, with probability at least 1 − δcv,

|fS(zj) − fSi,z(zj)| ≤ 2βcv.

PROOF:

|fS(zj) − fSi,z (zj)| ≤ |fS(zj) − fSj,z(zj)| + |fSj,z(zj) − fSi,z (zj)|

Both terms above are bounded by CV stability. Indeed, in the first term, we’re
starting with the set Sj,z which does not contain zj and replacing it by the set
(Sj,z)j,zj = S which contains it. In the second term, we’re starting with the
set Sj,z which does not contain zj and replacing it by the set (Sj,z)i,zj = Si,z

which contains it.

Proposition 6.2 Strong CV stability implies that∣∣∣∣∣ 1n
∑
zi∈S

fS(zi) − 1
n

∑
zi∈S

fSi,z(zi)

∣∣∣∣∣ ≤ βcv

with probability 1 − δcv.
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PROOF:∣∣∣∣∣ 1n
∑
zi∈S

fS(zi) − 1
n

∑
zi∈S

fSi,z(zi)

∣∣∣∣∣ ≤ 1
n

∑
zi∈S

|fS(zi) − fSi,z(zi)| ≤ βcv

The reason the probability of this event does not increase is due to the way we
defined strong CV stability. The pair S, z is ”good” with probability 1− δcv and
then any coordinate i can be changed.

Proposition 6.3 Strong CV stability and Expected Error stability imply generaliza-
tion. More precisely,

IES(IEzfS(z) − 1
n

∑
zi∈S

fS(zi))2 ≤ M(4βcv + 3Mδcv + 3βexp + 2Mδexp + 1/n)

PROOF:

IES(IEzfS(z) − 1
n

∑
zi∈S

fS(zi)))2 = IES [IEzfS(z)IEz′fS(z′)] − IES

[
IEzfS(z)

(
1
n

∑
zi∈S

fS(zi)

)]

+ IES

[(
1
n

∑
zi∈S

fS(zi)

)(
1
n

∑
zi∈S

fS(zi)

)]
− IES

[
(IEzfS(z))

(
1
n

∑
zi∈S

fS(zi)

)]

First,

IES

[
IEzfS(z)

(
1
n

∑
zi∈S

fS(zi)

)]
= IESIEz

(
fS(z)

1
n

∑
zi∈S

fS(zi)

)

= IES,z (fS(z)fS(zi))

Second,

IESIEzfS(z)IEz′fS(z′) = IES (IEzfS(z)IEz′fS(z′)) − IES (IEzfS(z)IEz′fSi,z′ (z′))
+ IES (IEzfS(z)IEz′fSi,z′ (z′)) − IES,z′ (IEzfSi,z′ (z)fSi,z′ (z′))
+ IES,z′,z (fSi,z′ (z)fSi,z′ (z′))
≤ M(βcv + Mδcv) + M(βexp + Mδexp) + IESfS(z)fS(zi)

We bound the first term using CV stability, second using Expected Error stabil-
ity, and use symmetry at the last step.
Finally, by Proposition 6.2

IES

[(
1
n

∑
zi∈S

fS(zi)

)(
1
n

∑
zi∈S

fS(zi)

)]
≤ M(βcv+Mδcv)+IES

[(
1
n

∑
zi∈S

fSi,z(zi)

)(
1
n

∑
zi∈S

fS(zi)

)]
.
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Furthermore, for i �= j by symmetry,

IES

[(
1
n

∑
zi∈S

fSi,z(zi)

)(
1
n

∑
zi∈S

fS(zi)

)]
=

n2 − n

n2
IES,z (fSi,z(zi)fS(zj)) +

n

n2
IES (fSi,z (zi)fS(zi))

≤ IES,z (fSi,z (zi)fS(zj)) + M/n.

Now, by symmetry IES,zfSi,z(zi)fS(zj) = IES,zfS(z)fSi,z(zj). By Proposition
6.1, with probability 1 − δcv, |fSi,z (zj) − fS(zj)| ≤ 2βcv. Therefore,

IES,z (fSi,z(zi)fS(zj)) ≤ M(2βcv + Mδcv) + IES (fS(z)fS(zj)) .

Putting it together,

IES

(
IES

[(
1
n

∑
zi∈S

fS(zi)

)(
1
n

∑
zi∈S

fS(zi)

)])
≤ IES,z (fS(z)fS(zj))+M(3βcv+2Mδcv)+M/n

The grand total is:

IES(IEzfS(z) − 1
n

∑
zi∈S

fS(zi))2 ≤ M(4βcv + 3Mδcv + 3βexp + 2Mδexp + 1/n)

7 Remarks

This paper clarifies a few questions left open by previous work on stability and
specifically by [6, 5]. In particular, it clarifies that if pseudostability holds nei-
ther empirical nor expected error alone is sufficient to ensure generalization.
More importantly, it shows that there exist several alternative stability condi-
tions which are sufficient for generalization in general and are all equivalent to
generalization and consistency of ERM.
Acknowledgments We would like to thank Shie Mannor and Shahar Mendelson for useful
discussions.
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