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Abstract

Scoring rules assess the quality of probabilistic forecasts, by assigning a numerical
score based on the forecast and on the event or value that materializes. A scoring rule is
strictly proper if the forecaster maximizes the expected score for an observation drawn
from the distribution F if she issues the probabilistic forecast F , rather than any G 6= F .
In prediction problems, strictly proper scoring rules encourage the forecaster to make
careful assessments and to be honest. In estimation problems, strictly proper scoring
rules provide attractive loss and utility functions that can be tailored to the scientific
problem at hand.

This paper characterizes strictly proper scoring rules on general probability spaces,
and proposes and discusses examples of such. In the case of categorical and binary vari-
ables, a rigorous version of the Savage representation is established. Examples of scoring
rules for probabilistic forecasts in the form of predictive densities include the spherical,
pseudospherical, logarithmic and quadratic score. The continuous ranked probability
score applies to probabilistic forecasts that take the form of predictive cumulative dis-
tribution functions; it generalizes the absolute error and forms a special case of a new
and very general type of score, the energy score. Proper scoring rules for quantile and
interval forecasts are also discussed. We relate proper scoring rules to Bayes factors and
to cross-validation, and show that a particular form of cross-validation, random-fold
cross-validated likelihood, corresponds to a proper scoring rule. This also allows us to
define proper scoring rules when parameters defining the rule are estimated from the
data.

A case study on probabilistic weather forecasts in the North American Pacific North-
west illustrates the importance of strict propriety. Optimum score approaches to point
estimation are noted, and the intuitively appealing interval score is proposed as a utility
function in interval estimation that addresses width as well as coverage.
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1 Introduction

One of the major purposes of statistical analysis is to make forecasts for the future, and to
provide suitable measures of the uncertainty associated with them. Consequently, forecasts
should be probabilistic in nature, taking the form of probability distributions over future
events (Dawid 1984). Indeed, over the past two decades probabilistic forecasting has become
routine in applications such as weather prediction (Palmer 2002; Gel, Raftery and Gneiting
2004) and macroeconomic forecasting (Garratt, Lee, Pesaran and Shin 2003). Gneiting,
Raftery, Balabdaoui and Westveld (2003) contend that the goal of probabilistic forecasting
is to maximize sharpness subject to calibration. Calibration refers to statistical consistency
between the distributional forecasts and the observations and is a joint property of the
forecasts and the events that materialize. Sharpness refers to the concentration of the
predictive distributions and is a property of the forecasts only.

Scoring rules provide summary measures for the evaluation of probabilistic forecasts, by
assigning a numerical score based on the forecast and on the event or value that materializes.
In terms of elicitation, the role of scoring rules is to encourage the assessor to make careful
assessments and to be honest. In terms of evaluation, scoring rules measure the quality of
the probabilistic forecasts and reward assessors for forecasting jobs. In a Bayesian context,
scores are frequently referred to as utilities, thereby emphasizing the Bayesian principle of
maximizing the expected utility of a predictive distribution (Bernardo and Smith 1994). We
take scoring rules to be positively oriented rewards that a forecaster wishes to maximize.
Specifically, if the forecaster quotes the predictive distribution P and the event x materi-
alizes, her reward is S(P, x). The function S(P, · ) takes values in the extended real line
R = [−∞,∞], and we write S(P,Q) for the expected value of S(P, · ) under Q. Suppose,
then, that the forecaster’s best judgement is the distributional forecast Q. The forecaster
has no incentive to predict any P 6= Q, and is encouraged to quote her true belief, P = Q, if
S(Q,Q) ≥ S(P,Q) with equality if and only if P = Q. A scoring rule with this property is
said to be strictly proper. If S(Q,Q) ≥ S(P,Q) for all P and Q the scoring rule is said to be
proper. Propriety is essential in scientific and operational forecast evaluation, and the case
study in Section 7 below provides a striking example of some of the difficulties resulting
from the use of intuitively appealing but improper scoring rules.

In estimation problems, strictly proper scoring rules provide attractive loss and utility
functions that can be tailored to a scientific problem. To fix the idea, suppose that we
wish to fit a parametric model Pθ based on a sample X1, . . . , Xn. To estimate θ, we might
measure the goodness-of-fit by the mean score

Sn(θ) =
1

n

n∑

i=1

S(Pθ, Xi),

where S is a strictly proper scoring rule. If θ0 denotes the true parameter, asymptotic
arguments indicate that arg maxθ Sn(θ) → θ0 as n→ ∞. This suggests a general approach
to estimation: choose a strictly proper scoring rule that is tailored to the problem at
hand, maximize Sn(θ) over the parameter space, and take θ̂n = arg maxθ Sn(θ) as the
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optimum score estimator based on the scoring rule S. Pfanzagl (1969) and Birgé and
Massart (1993) studied this approach under the heading of minimum contrast estimation.
Maximum likelihood estimation forms a special case of optimum score estimation, and
optimum score estimation forms a special case of M -estimation (Huber 1964) in that the
function to be optimized derives from a strictly proper scoring rule. The appeal of optimum
score estimation lies in the potential adaptation of the scoring rule to the problem at hand.
Apparently, this approach has only very recently been explored (Buja, Stuetzle and Shen
2004; Gneiting, Westveld, Raftery and Goldman 2004).

The remainder of the paper is organized as follows. In Section 2 we prove a fundamental
characterization theorem for strictly proper scoring rules on general probability spaces.
Section 3 turns to scoring rules for categorical variables. The landmark paper of Savage
(1971, p. 793) gave an elegant characterization of proper scoring rules that Savage described
as “figurative.” Theorem 3.2 provides a rigorous version thereof, and Theorem 3.4 relates
to a more recent representation of Schervish (1989). Bremnes (2004, p. 346) noted that the
literature on scoring rules for probabilistic forecasts of continuous variables is sparse. We
address this issue in Section 4 and discuss the spherical, pseudospherical, logarithmic and
quadratic score. The continuous ranked probability score has lately attracted the attention of
meteorologists and forms a special case of a novel and very general class of scoring rules, the
energy score. Section 5 studies scoring rules for quantile and interval forecasts. We show the
class of proper scoring rules for quantile forecasts to be larger than conjectured by Cervera
and Muñoz (1996) and introduce the interval score, a scoring rule for central prediction
intervals that is proper and has intuitive appeal. In Section 6 we relate proper scoring rules
to Bayes factors and to cross-validation, and show that a particular form of cross-validation,
random-fold cross-validated likelihood, corresponds to a proper scoring rule. This provides
one way of defining proper scoring rules when parameters are being estimated. Section
7 presents the aforementioned case study that concerns the use of scoring rules in the
assessment of probabilistic weather forecasts. Section 8 turns to optimum score estimation
and closes the paper. We discuss both point estimation and interval estimation and propose
the use of the interval score as a utility function that addresses width as well as coverage.

2 Characterization of strictly proper scoring rules

This section introduces notation and characterizes strictly proper scoring rules. The discus-
sion is technical and readers with more applied interests might skip ahead without significant
loss of continuity. We consider probabilistic forecasts on a general sample space Ω. Let A be
a σ-algebra of subsets of Ω, and let P be a convex class of probability measures on (Ω,A). A
function on Ω is P-quasiintegrable if it is measurable with respect to A and quasiintegrable
with respect to all P ∈ P (Bauer 2001, p. 64). A probabilistic forecast is any probability
measure P ∈ P. A scoring rule is any extended real-valued function S : P × Ω → R such
that S(P, ·) is P-quasiintegrable for all P ∈ P. Hence, if the forecast is P and ω materializes,
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the forecaster’s reward is S(P, ω). We define

S(P,Q) =

∫
S(P, ω) dQ(ω)

as the expected score under Q when the probabilistic forecast is P . The scoring rule S is
proper relative to P if

S(Q,Q) ≥ S(P,Q) for all P,Q ∈ P. (1)

It is strictly proper relative to P if (1) holds with equality if and only if P = Q, thereby
encouraging honest quotes by the forecaster.

A function G : P → R is convex if

G((1 − λ)P0 + λP1) ≤ (1 − λ)G(P0) + λG(P1) for all λ ∈ (0, 1), P0, P1 ∈ P. (2)

It is strictly convex if (2) holds with equality if and only if P0 = P1. A function G∗(P, · ) :
Ω → R is a subtangent of G at the point P ∈ P if it is P-quasiintegrable and

G(Q) ≥ G(P ) +

∫
G∗(P, ω) dQ(ω) −

∫
G∗(P, ω) dP (ω) (3)

for all Q ∈ P. The following theorem generalizes previous results by McCarthy (1956) and
Hendrickson and Buehler (1971).

Theorem 2.1 The scoring rule S : P×Ω → R is (strictly) proper if and only if there exists
a (strictly) convex function G : P → R such that G(P ) = S(P, P ) for P ∈ P and

S(P, ω) = G∗(P, ω) (4)

for P ∈ P and ω ∈ Ω, where G∗(P, · ) : Ω → R is a subtangent of G at the point P ∈ P.

Proof. If S(P, ω) = G∗(P, ω) is of the stated form the subtangent inequality (3) implies
(1), that is, propriety. Conversely, suppose that S is a proper scoring rule. Define G : P → R

by G(P ) = S(P, P ). Then the subtangent inequality (3) holds with G∗(P, ω) = S(P, ω),
which is a P-quasiintegrable function. Furthermore,

G(P ) = supQ∈P S(Q,P )

is the pointwise supremum over a class of convex functions and therefore convex on P. This
proves the claim for propriety. In analogy to an argument of Hendrickson and Buehler
(1971), strict inequality in (1) is equivalent to no subtangent of G at P being a subtangent
of G at Q, for P,Q ∈ P and P 6= Q, and this is equivalent to G being strictly convex on P.

Expressed slightly differently, the scoring rule S is (strictly) proper if and only if the
expected score functionG(P ) = S(P, P ) is (strictly) convex on P and S(P, · ) is a subtangent
of G at the point P , for all P ∈ P. A comparison of Theorem 2.1 to a more direct extension
of the McCarthy (1956) and Hendrickson and Buehler (1971) characterization is given in
the appendix.
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3 Scoring rules for categorical variables

We now discuss the representations of Savage (1971) and Schervish (1989) that characterize
scoring rules for probabilistic forecasts of categorical and binary variables, respectively.

3.1 Savage representation

We consider probabilistic forecasts of a categorical variable. Hence, the sample space Ω =
{1, . . . ,m} consists of a finite number m of mutually exclusive events, and a probabilistic
forecast is a probability vector (p1, . . . , pm). Using the notation of Section 2, we take P = Pm

where
Pm =

{
p = (p1, . . . , pm−1) : p1, . . . , pm−1 ≥ 0, p1 + · · · + pm−1 ≤ 1

}

denotes the unit simplex in R
m−1. A scoring rule S can then be identified with a collection

of m functions
S( · , i) : Pm → R, i = 1, . . . ,m;

that is, if the forecaster quotes the probability vector p and the event i materializes, her
reward is S(p, i). Theorem 3.2 provides a rigorous version of the Savage (1971) representa-
tion of (strictly) proper scoring rules on finite sample spaces. Our contribution lies in the
rigorous treatment and in the introduction of appropriate tools of convex analysis. We recall
from Rockafellar (1970, Sections 23–25) that any nonconstant convex function G : Pm → R

that is bounded above is bounded below, and is continuous except possibly at the boundary
of Pm. A vector G′(p) = (G′

1(p), . . . , G
′
m−1(p)) ∈ R

m−1 is said to be a subgradient of G at
the point p ∈ Pm if

G(q) ≥ G(p) + 〈G′(p), q − p〉 (5)

for all q ∈ Pm, where 〈· , ·〉 denotes a scalar product. The value of the subgradient G′(p)
is unique and equals the gradient at every point p in the interior of Pm at which G is
differentiable.

Definition 3.1 A scoring rule S for categorical forecasts is regular if S(· , i) is bounded
above and real-valued for i = 1, . . . ,m, except possibly that if i ≤ m − 1 and pi = 0 then
S(p, i) = −∞, and if p1 + · · · + pm−1 = 1 then S(p,m) = −∞.

Theorem 3.2 (Savage) A regular scoring rule S for categorical forecasts is (strictly) proper
if and only if

S(p, i) = G(p) − 〈G′(p), p〉 +G′
i(p) for i = 1, . . . ,m− 1, (6)

and
S(p,m) = G(p) − 〈G′(p), p〉, (7)

where G : Pm → R is a bounded (strictly) convex function and G′(p) is a subgradient of G
at the point p, for all p ∈ Pm.
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Proof. If the scoring rule S admits the representation (6) and (7) with a bounded convex
function G, the subgradient inequality (5) implies propriety and S is regular. Conversely,
suppose that S is a regular proper scoring rule. By Theorem 2.1, S(p, · ) = G∗(p, · ) where
G∗(p, · ) is a subtangent of the bounded convex function

G(p) = S(p, p) =
m−1∑

j=1

pj S(p, j) +


1 −

m−1∑

j=1

pj


S(p,m). (8)

The subtangent inequality (3) implies that G(q) ≥ G(p) + 〈G′(p), q − p〉 for all p, q ∈ Pm,
thereby showing that G′

i(p) = S(p, i) − S(p,m) is the ith component of a subgradient of G
at p, for i = 1, . . . ,m − 1 and for all p ∈ Pm. Summing over i = 1, . . . ,m − 1, we obtain
the representation (7) and then (6), and this proves the claim for propriety. The claim for
strict propriety is immediate from Theorem 2.1.

Corollary 3.3 A regular scoring rule S for categorical forecasts is (strictly) proper if and
only if the expected score function G(p) = S(p, p) is (strictly) convex on Pm, and the vector
with components S(p, i) − S(p,m) for i = 1, . . . ,m− 1 is a subgradient of G at the point p,
for all p ∈ Pm.

In view of Theorem 3.2, every bounded strictly convex function G : Pm → R generates
a strictly proper scoring rule. We put pm = 1−∑m−1

j=1 pj and note a number of examples. If
G(p) = −∑m

j=1 pj(1−pj) then (6) and (7) yield the Brier score or quadratic score, S(p, i) =
2pi−1−∑m

j=1 p
2
j . The negative of the entropy function, G(p) =

∑m
j=1 pj log pj, corresponds

to the logarithmic score, S(p, i) = log pi. These scores are classical and were proposed by
Brier (1950) and Good (1952), respectively. Another well-known scoring rule is the spherical
score which corresponds to the expected score function G(p) = (p2

1 + · · · + p2
m)1/2, so that

S(p, i) = pi/(p
2
1+· · ·+p2

m)1/2. The quadratic, logarithmic and spherical score are symmetric
in the sense that

S ((p1, . . . , pm−1), i) = S
(
(pπ1

, . . . , pπm−1
), πi

)

for all p ∈ Pm, for all permutations π on m elements and for all events i = 1, . . . ,m. Win-
kler (1994) argued that symmetric rules do not always appropriately reward forecasting
skill and called for asymmetric ones. Asymmetric scoring rules can be generated by ap-
plying Theorem 3.2 to strictly convex functions G that are not invariant under coordinate
permutation.

3.2 Schervish representation

The classical case m = 2 of binary “yes” or “no” forecasts calls for further discussion. We
follow the literature in considering the sample space Ω = {1, 0}. A probabilistic forecast is a
quoted probability p ∈ [0, 1] for “yes,” or 1, and a scoring rule S can be identified with a pair
of functions S( · , 1) : [0, 1] → R and S( · , 0) : [0, 1] → R. Hence, S(p, 1) is the forecaster’s
reward is she quotes p and the event materializes, and S(p, 0) is the compensation if she
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quotes p and the event does not materialize. By Theorem 3.2, every regular (strictly) proper
scoring rule for binary variables is of the form

S(p, 1) = G(p) + (1 − p)G′(p), S(p, 0) = G(p) − pG′(p) (9)

where G : [0, 1] → R is a bounded (strictly) convex function and G′(p) is a subgradient of
G at the point p, for all p ∈ [0, 1]. If G is differentiable at an interior point p ∈ (0, 1) then
G′(p) is simply the derivative of G at p. Putting G(p) = −2p(1 − p) and G(p) = p log p+
(1−p) log(1−p) in (9) recovers the Brier score and the logarithmic score, respectively. The
expected score function G(p) = −p1/2(1− p)1/2 has been associated with boosting (Buja et
al. 2004). Any strictly proper scoring rule for binary variables is regular. Furthermore, any
proper binary scoring rule that is not regular satisfies either max{S(p, 1), S(p, 0)} = +∞ for
all p ∈ (0, 1), or min{S(p, 1), S(p, 0)} = −∞ for all p ∈ (0, 1), and therefore is uninteresting.

The Savage representation (9) implies various interesting properties of (strictly) proper
regular scoring rules. For instance, Theorem 24.2 of Rockafellar (1970) implies that

S(p, 1) = lim
q→1

G(q) −
∫ 1

p

(
G′(q) −G′(p)

)
dq (10)

for p ∈ (0, 1), and since G′(p) is (strictly) increasing, S(p, 1) is (strictly) increasing, too.
Similarly, S(p, 0) is (strictly) decreasing, as one intuitively expects. Alternative proofs of
these and other results can be found in the appendix of Schervish (1989).

Schervish (1989, p. 1861) suggested that his Theorem 4.2 generalizes the Savage repre-
sentation. Given Savage’s (1971, p. 793) assessment of his representation (9.15) as “figu-
rative,” the claim can well be justified. However, in the rigorous form of Theorem 3.2 the
representation of Savage applies to a larger class of scoring rules than that of Schervish.

Theorem 3.4 (Schervish) Suppose S is a regular scoring rule. Then S is proper and
such that S(0, 1) = limp→0 S(p, 1), S(0, 0) = limp→0 S(p, 0) and both S(p, 1) and S(p, 0) are
left continuous if and only if there exists a measure ν on (0, 1) such that

S(p, 1) = S(1, 1) −
∫

[p,1)
(1 − q) ν(dq), S(p, 0) = S(0, 0) −

∫

[0,p)
q ν(dq) (11)

for all p ∈ [0, 1]. The scoring rule is strictly proper if and only if ν assigns positive measure
to every open interval.

Proof. Suppose S satisfies the assumptions of the theorem. To prove that S(p, 1) is of
the form (11) consider the representation (10), identify the increasing function G ′(p) with
the left continuous distribution function of a measure ν on (0, 1), and apply the partial
integration formula. The proof of the representation for S(p, 0) is analogous. For the
proof of the converse and the statement for strict propriety we refer to Schervish (1989,
pp. 1876–1877).

Schervish (1989) proposed a general method for comparing binary forecasters within
the framework of two-decision problems. A two-decision problem can be characterized by
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a cost-loss ratio q ∈ [0, 1] that reflects the relative costs of the two possible types of inferior
decision. The measure ν(dq) in the representation (11) assigns relevance to distinct cost-loss
ratios. For instance, the Brier score corresponds to a uniform measure, and the logarithmic
score corresponds to the infinite measure with Lebesgue density (q(1 − q))−1. Buja et
al. (2004) took this approach a major step further. They suggested a taxonomy of scores
and introduced a parametric family of strictly proper scoring rules that includes the Brier
score, the logarithmic score and the aforementioned scoring rule that underlies boosting.

4 Scoring rules for continuous variables

Bremnes (2004, p. 346) noted that the literature on scoring rules for probabilistic forecasts
of continuous variables is sparse. We address this issue in the following.

4.1 Scoring rules for density forecasts

Let µ be a σ-finite measure on the measurable space (Ω,A). For α > 1, let Lα denote the
class of probability measures on (Ω,A) that are absolutely continuous with respect to µ
and have µ-density p such that

‖p‖α =

(∫
(p(ω))α µ(dω)

)1/α

is finite. We identify a probabilistic forecast P ∈ Lα with its µ-density p and call p a
predictive density or density forecast. Predictive densities are defined only up to a set of µ-
measure zero. Whenever appropriate, we follow Bernardo (1979, p. 689) and use the unique
version defined by p(ω) = limρ→0 P (Sρ(ω))/µ(Sρ(ω)) where Sρ(ω) is a sphere of radius ρ
centered at ω.

Good (1971) proposed the pseudospherical score,

PseudoS(p, ω) =
1

α− 1

((
p(ω)

‖p‖α

)α−1

− 1

)
, (12)

that reduces to the spherical score when α = 2. He described original and generalized
versions of the score — a distinction that in a measure-theoretic framework is obsolete.
The pseudospherical score is strictly proper relative to Lα, as noted by Good, and the
representation (4) holds where

G(p) =
1

α− 1

(
‖p‖α − 1

)
.

The strict convexity of G and the associated subtangent inequality follow from the Hölder
and Minkowski inequalities, respectively. Taking the limit as α → 1 in (12) yields the
logarithmic score, LogS(p, ω) = log p(ω), which was proposed by Good (1952) and has
been widely used since. Roulston and Smith (2002) gave an information theoretic perspec-
tive and an interpretation in terms of gambling returns. The logarithmic score is strictly
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proper relative to the convex class L1 of the probability measures that are dominated by
µ. The associated expected score function is negative entropy. Well-known properties of
the Kullback-Leibler divergence imply its strict convexity and the associated subtangent
inequality. Bernardo (1979, p. 689) argued that “when assessing the worthiness of a scien-
tist’s final conclusions, only the probability he attaches to a small interval containing the
true value should be taken into account.” This seems subject to debate, and atmospheric
scientists have argued otherwise, putting forth scoring rules that are sensitive to distance
(Epstein 1969, Staël von Holstein 1970). That said, Bernardo (1979) studied local scoring
rules S(p, ω) that depend on the predictive density p only through its value at the event
ω that materializes. Assuming regularity conditions, he showed that every proper local
scoring rule is of the form S(p, ω) = a log p(ω) + f(ω) for some constant a ≥ 0 and some
function f .

Consequently, the linear score, LinS(p, ω) = p(ω), is not a proper scoring rule, despite
its intuitive appeal. For instance, if (Ω,A) = (R,B), where B is the σ-algebra of Borel
sets and µ is Lebesgue measure, let φ and uε denote the density of the standard normal
distribution and the uniform distribution on (−ε, ε), respectively. If ε <

√
log 2 then

LinS(uε, φ) =
1

(2π)1/2

1

2ε

∫ ε

−ε
e−x2/2 dx >

1

2π1/2
= LinS(φ, φ),

in violation of propriety. Essentially, the linear score encourages overprediction at the
modes of an assessor’s true predictive density. Alternatives to the linear score that are
strictly proper relative to the class L2 include the spherical score, defined above, and the
quadratic score,

QS(p, ω) = 2 p(ω) −
∫

(p(·))2 dµ(·),

which has expected score function G(p) = ‖p‖2
2 and corresponds to the Brier score when

Ω is finite. The probability score of Wilson, Burrows and Lanzinger (1999) integrates the
predictive density over a neighborhood of the observed, real-valued quantity. This resembles
the linear score and is not a proper score either.

4.2 Continuous ranked probability score

The restriction to absolutely continuous predictive distributions is frequently impractical.
Probabilistic quantitative precipitation forecasts, for instance, involve distributions with
a point mass at zero (Krzysztofowicz and Sigrest 1999; Bremnes 2004). This could be
handled by considering densities with respect to a mixed dominating measure rather than
Lebesgue measure, but the resulting scores seem difficult to interpret. Furthermore, the
scores discussed in Section 4.1 are not sensitive to distance, meaning that no credit is given
for assigning high probabilities to values near but not identical to the one materializing.
Sensitivity to distance seems particularly desirable when the predictive distribution is mul-
timodal.

To address this situation, let P consist of all probability measures on (Ω,A) = (R,B).
We identify a probabilistic forecast, that is, a member of the class P, with its cumulative
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distribution function F , and we use standard notation for the elements of the sample space
R. Let 1{y ≥ x} denote the function that attains the value 1 if y ≥ x and the value 0
otherwise. The continuous ranked probability score is defined as

CRPS(F, x) = −
∫ ∞

−∞
(F (y) − 1{y ≥ x})2 dy (13)

and corresponds to the integral of the Brier scores for the associated binary probabilistic
forecasts at all real-valued thresholds (Matheson and Winkler 1976; Hersbach 2000). Appli-
cations of the continuous ranked probability score have been hampered by a lack of analytic
expressions, and the use of numerical quadrature rules for the evaluation of (13) has been
proposed instead (Staël von Holstein 1977; Unger 1985). By Proposition 1 of Székely (2003),

CRPS(F, x) =
1

2
EF

∣∣X −X ′
∣∣−EF |X − x| , (14)

where X and X ′ are independent copies of a random variable with distribution function F
and finite first moment. When the predictive distribution is normal, N (µ, σ2), it follows
readily from (13) or (14) that

CRPS
(
N (µ, σ2), x

)
=

σ√
π

(
1 −√

π
x− µ

σ
erf

(
x− µ√

2σ2

)
−

√
2 exp

(
−(x− µ)2

2σ2

))
,

where erf denotes the error function (Gneiting et al. 2004). Similarly, analytical expressions
can be derived for many other distributions. If a closed form expression is not available
but random numbers with distribution F can be generated, the right-hand side of (14)
can be evaluated by Monte Carlo techniques. The continuous ranked probability score is
proper but not strictly proper relative to P. It is strictly proper relative to the class P1 of
probability measures on (R,B) that have finite first moment.

The continuous ranked probability score has lately found renewed interest in the atmo-
spheric sciences community (Hersbach 2000; Gneiting et al. 2004). It is typically used in
negative orientation, say CRPS∗(F, x) = −CRPS(F, x). The representation (14) can then
be written as

CRPS∗(F, x) = EF |X − x| − 1

2
EF

∣∣X −X ′
∣∣ ,

which sheds new light on the score. In negative orientation, the continuous ranked probabil-
ity score can be reported in the same unit as the observations, and it generalizes the absolute
error to which it reduces if F is a deterministic forecast — that is, a point measure. Thus
the continuous ranked probability score provides a direct way of comparing deterministic
and probabilistic forecasts.

Matheson and Winkler (1976) proposed a univariate generalization of the continuous
ranked probability score. We generalize further and propose a multivariate version thereof.
If P denotes the class of probability measures on (Rm,Bm), we identify a probabilistic
forecast P ∈ P with its cumulative distribution function F . The multivariate continuous
ranked probability score is defined as

CRPS(F, x) = −
∫

R
m

(F (y) − 1{y ≥ x})2 dW (y),

10



where the integral is taken with respect to some measureW on (Rm,Bm). This is a weighted
integral of the Brier scores at all m-variate thresholds, and the measure W can be chosen
to encourage the forecaster to concentrate her efforts on the important ones. In analogy to
Eq. (24) of Matheson and Winkler (1976),

CRPS(F, F0) = −
∫

R
m

(F (y) − F0(y))
2 dW (y) −

∫

R
m
F (y) (1 − F (y)) dW (y).

The multivariate continuous ranked probability score is proper relative to P. If W is a finite
measure that dominates Lebesgue measure, the expected score function is real-valued and
strictly convex, and the score is strictly proper relative to P.

4.3 Energy score

This section introduces another generalization of the continuous ranked probability score
that draws on Székely’s (2003) statistical energy perspective. Let Pα, α ∈ (0, 2), denote
the class of probability measures P on (Ω,A) = (Rm,Bm) which are such that EP ‖X‖α is
finite, where ‖ · ‖ denotes the Euclidean norm. We define the energy score

ES(P, x) =
1

2
EP

∥∥X −X ′
∥∥α −EP ‖X − x‖α , (15)

where X and X ′ are independent copies of an m-variate random vector with distribution P .
This generalizes the univariate continuous ranked probability score, to which (15) reduces
when α = 1 and m = 1, by allowing for an index α ∈ (0, 2) and by applying to distributional
forecasts of a vector-valued quantity. The evaluation of (15) is straightforward using Monte
Carlo techniques. To prove that the energy score is strictly proper relative to Pα, recall
Theorem 2.1 and note from Theorem 1 of Székely (2003) that ES(P, x) is a subtangent of

G(P ) = −1

2
EP

∥∥X −X ′
∥∥α
,

which is a strictly convex function on Pα. The score has the potentially desirable property
of invariance under joint translation and/or rotation of P and x. In negative orientation,
it can be interpreted as a generalization of the absolute error of order α.

The energy score applies to the class P0 of all probability measures on (Rm,Bm), by
defining

ES(P, x) = − α2α−2 Γ(m
2 + α

2 )

πm/2 Γ(1 − α
2 )

∫

R
m

|ϕ(y) − ei〈x,y〉|
‖y‖m+α

dy, (16)

where ϕ denotes the characteristic function of P . Essentially, the score computes a weighted
distance between the characteristic function of P and the characteristic function of the
point measure at the value that materializes. This is akin to the metric studied by Eaton,
Giovagnoli and Sebastiani (1996, p. 124). If P belongs to Pα, Theorem 1 of Székely (2003)
implies the equality of the right-hand sides in Eqs. (15) and (16), respectively. Relative to
the full class P0, the energy score is proper but not strictly proper.
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4.4 Predictive model choice criterion

The predictive model choice criterion of Laud and Ibrahim (1995) and Gelfand and Ghosh
(1998) has lately attracted the attention of the statistical community. Suppose that we
fit a predictive model to observed data x1, . . . , xn. The predictive model choice criterion
(PMCC) assesses the model fit through the quantity

PMCC =
n∑

i=1

(µi − xi)
2 +

n∑

i=1

σ2
i ,

where µi and σ2
i denote the expected value and the variance, respectively, of a replicate

variable Xi, given the model and the observations. Within the framework of scoring rules,
the PMCC corresponds to the positively oriented score

S(P, x) = − (EPX − x)2 − VarP (X),

where X is a random variable with distribution P , which is not a proper scoring rule: If the
forecaster’s true belief is P and if she wishes to maximize the expected score, she will quote
the point measure at EPX — that is, a deterministic forecast — rather than the predictive
distribution P .

5 Scoring rules for quantile and interval forecasts

Occasionally, full predictive distributions are difficult to specify, and the forecaster might
quote predictive quantiles or prediction intervals instead. Bremnes (2004) gave an example
of this type of situation. That said, specifying a predictive distribution is equivalent to
specifying all predictive quantiles; and we can build scoring rules for predictive distributions
from scoring rules for quantiles. Matheson and Winkler (1976) and Cervera and Muñoz
(1996) suggested ways of doing this. For instance, we might sum the interval score (19),
introduced below, over prediction intervals with equidistant or representative probability
content.

5.1 Proper scoring rules for quantiles

We consider probabilistic forecasts of a continuous quantity that take the form of predictive
quantiles. Specifically, suppose that the quantiles at the levels α1, . . . , αk ∈ (0, 1) are sought.
If the forecaster quotes the quantiles r1, . . . , rk and x materializes, she will be rewarded by
the score S(r1, . . . , rk;x). We define

S(r1, . . . , rk;P ) =

∫
S(r1, . . . , rk;x) dP (x)

as the expected score under the probability measure P when the forecaster quotes the
quantiles r1, . . . , rk. To avoid technical complications, we suppose that P belongs to the
convex class P of probability measures on (R,B) that have finite moments of all orders and
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whose distribution function is strictly increasing on R. For P ∈ P, let q1, . . . , qk denote the
true P -quantiles at levels α1, . . . , αk. Following Cervera and Muñoz (1996), we say that a
scoring rule S is proper if

S(q1, . . . , qk;P ) ≥ S(r1, . . . , rk;P )

for all real numbers r1, . . . , rk and for all probability measures P ∈ P. If S is proper, the
forecaster who wishes to maximize the expected score is encouraged to be honest and to
volunteer her true beliefs.

To avoid technical overhead, we tacitly assume P-integrability whenever appropriate.
Essentially, we require that the functions s(x) and h(x) in (17) grow at most polynomially
in x. We write 1{x ≤ r} for the function that attains the value 1 if x ≤ r and the value 0
otherwise. Theorem 5.1 addresses the prediction of a single quantile; Corollary 5.2 turns to
the general case.

Theorem 5.1 If s is nondecreasing and h is arbitrary, the scoring rule

S(r;x) = αs(r) + (s(x) − s(r)) 1{x ≤ r} + h(x) (17)

is proper for predicting the quantile at level α ∈ (0, 1).

Proof. Let q be the unique α-quantile of the probability measure P ∈ P. We identify P
with the associated distribution function so that P (q) = α. If r < q then

S(q, P ) − S(r, P ) =

∫

(r,q)
s(x) dP (x) + s(r)P (r) − αs(r)

≥ s(r)(P (q) − P (r)) + s(r)P (r) − αs(r) = 0,

as desired. If r > q an analogous argument applies.

Corollary 5.2 If si is nondecreasing for i = 1, . . . , k and h is arbitrary the scoring rule

S(r1, . . . , rk;x) =
k∑

i=1

(
αisi(r) + (si(x) − si(ri)) 1{x ≤ ri}

)
+ h(x) (18)

is proper for predicting the quantiles at levels α1, . . . , αk ∈ (0, 1).

Cervera and Muñoz (1996, pp. 515 and 519) proved Corollary 5.2 in the special case in
which each si is linear. They asked whether the resulting rules are the only proper ones for
quantiles. Our results give a negative answer; that is, the class of proper scoring rules for
quantiles is considerably larger than anticipated by Cervera and Muñoz. We do not know
whether or not (17) and (18), respectively, provide the general form of proper scoring rules
for quantiles.
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5.2 Interval score

Interval forecasts form a crucial special case of quantile prediction. We consider the classical
case of the central (1 − α) × 100% prediction interval, whose lower and upper endpoints
are given by the predictive quantile at level α

2 and 1 − α
2 . We denote a scoring rule for the

associated interval forecast by Sα(l, u;x), where l and u stand for the quoted α
2 and 1 − α

2
quantile, respectively. Hence, if the forecaster quotes the (1−α)× 100% central prediction
interval [l, u] and x materializes, her score will be Sα(l, u;x). Putting α1 = α

2 , α2 = 1 − α
2 ,

s1(x) = s2(x) = 4x and h(x) = −2x in (18) yields the interval score,

Sα(l, u;x) =






− 2α(u− l) − 4(l − x) if x ≤ l,

− 2α(u− l) if l ≤ x ≤ u,

− 2α(u− l) − 4(x− u) if x ≥ u.

(19)

This scoring rule has intuitive appeal and — in the form of a utility function — can be
traced back at least to Dunsmore (1968) and Winkler (1972). The forecaster is rewarded for
narrow prediction intervals, and she avoids a penalty if the interval covers the observation.
In the particular case α = 0.50, Hamill and Wilks (1995, p. 622) used a score that is
negatively oriented but equivalent to the interval score. They noted that “a strategy for
gaming [. . . ] was not obvious” which is confirmed by the propriety of the score.

5.3 Prediction intervals for a conditionally heteroscedastic process

Kabaila (1999) called for rigorous ways of specifying prediction intervals for conditionally
heteroscedastic processes and proposed a relevance criterion in terms of conditional coverage
and width dependence. We contend that the notion of proper scoring rules provides a
simpler, more general and more rigorous paradigm. The prediction intervals that we deem
appropriate derive from the true conditional distribution, as implied by the data generating
mechanism, and thereby maximize the expected value of all proper scores.

To fix the idea, consider the stationary bilinear process {Xt : t ∈ Z} defined by

Xt =
1

2
Xt−1 +

1

2
Xt−1εt + εt (20)

where the εt are independent standard normal random variates. Kabaila and He (2001)
studied central one-step ahead prediction intervals at the 95% level. The process is Marko-
vian, and the conditional distribution of Xt+1 given Xt, Xt−1, . . . is Gaussian with mean
1
2Xt and variance (1 + 1

2Xt)
2, thereby suggesting the prediction interval

I =

[
1

2
Xt − c

∣∣∣∣1 +
1

2
Xt

∣∣∣∣ ,
1

2
Xt + c

∣∣∣∣1 +
1

2
Xt

∣∣∣∣
]
, (21)

where c = Φ−1(0.975). This interval satisfies the relevance property of Kabaila (1999),
and Kabaila and He (2001) adopted I as the standard prediction interval. We agree with
this choice, but we prefer the aforementioned more direct justification: the prediction in-
terval I is the standard interval because its lower and upper endpoints are the 2.5% and
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Table 1: One-step ahead 95% prediction intervals for the stationary bilinear process (20).
Results of a simulation study using 100,000 interval forecasts each.

Interval Empirical Average Average
Forecast Coverage Width Interval Score

I (21) 95.01% 4.00 −0.48
J (22) 95.08% 5.45 −0.79
K (23) 94.98% 3.79 −0.52

97.5% percentiles of the true conditional distribution function, respectively. Kabaila and
He considered two alternative prediction intervals, namely

J =
[
F−1(0.025), F−1(0.975)

]
, (22)

where F denotes the unconditional, stationary distribution function of the Xt, and

K =

[
1

2
Xt − γ

(∣∣∣∣1 +
1

2
Xt

∣∣∣∣
)
,
1

2
Xt + γ

(∣∣∣∣1 +
1

2
Xt

∣∣∣∣
)]

, (23)

where

γ(y) =






(
2 log

(
7.36
y

))1/2
y if 0 < y ≤ 7.36.

0 if y ≥ 7.36.

This choice of γ minimizes the expected width of the prediction interval under the constraint
of nominal coverage. However, the interval forecast (23) seems misguided; it collapses to a
point forecast when the conditional predictive variance is highest.

We generated a sample path of length 100,001 from the bilinear process (20) and consid-
ered the interval forecasts (21), (22) and (23), respectively. Table 1 summarizes the results
of this experiment. All three interval forecasts showed close to nominal coverage, and the
prediction interval (23) showed the smallest average width. Nevertheless, the classical pre-
diction interval (21) showed the largest value of the interval score.

6 Scoring rules, Bayes factors and random-fold cross-validation

6.1 Proper scoring rules and Bayes factors

Probabilistic forecasting rules are often generated by probabilistic models, and the standard
Bayesian approach to comparing probabilistic models is by Bayes factors. Suppose we have a
sampleX = (X1, . . . , Xn) of values to be forecast. Suppose also that we have two forecasting
rules, based on probabilistic models H1 and H2. So far in this paper we have concentrated
on the situation where the forecasting rule is completely specified before any of the Xi is
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observed, i.e. there are no parameters to be estimated from the data being forecast. In that
situation, the Bayes factor for H1 against H2 is

B =
P (X|H1)

P (X|H2)
, (24)

where P (X|Hk) =
∏n

i=1 P (Xi|Hk) (k = 1, 2) (Jeffreys 1939; Kass and Raftery 1995).
Thus if the log score is used, the log Bayes factor is the difference of the scores for the

two models,
log(B) = LogS(H1, X) − LogS(H2, X). (25)

This was pointed out by Good (1952), who called the log Bayes factor the weight of evidence.
It establishes two connections. First, the Bayes factor is equivalent to the log score in this
“no parameter” case. Second, it shows that the Bayes factor applies more generally than
just to the comparison of parametric probabilistic models, but also to the comparison of
probabilistic forecasting rules of any kind.

So far in this paper we have taken probabilistic forecasts to be fully specified, but often
they are specified only up to unknown parameters estimated from the data. Now suppose
that the forecasting rules considered are specified only up to unknown parameters, θk for
Hk, to be estimated from the data. Then the Bayes factor is still given by (24), but now
P (X|Hk) is the integrated likelihood,

P (X|Hk) =

∫
p(X|θk,Hk) p(θk|Hk) dθk,

where p(X|θk,Hk) is the (usual) likelihood under model Hk and p(θk|Hk) is the prior dis-
tribution of the parameter θk.

Dawid (1984) showed that when the data come in a particular order, such as time order,
the integrated likelihood can be reformulated in predictive terms:

P (X|Hk) =
n∏

t=1

P (Xt|Xt−1,Hk), (26)

where X t−1 = {X1, . . . , Xt−1}, and P (Xt|Xt−1,Hk) is the predictive distribution of Xt

given the past values under Hk, namely

P (Xt|Xt−1,Hk) =

∫
p(Xt|θk,Hk)P (θk|Xt−1,Hk) dθk,

with P (θk|Xt−1,Hk) being the posterior distribution of θk given the past observations X t−1.
Let us denote by Sk,B the log integrated likelihood, viewed now as a scoring rule. It

helps to view it as a scoring rule to rewrite it as

Sk,B =
n∑

t=1

log P (Xt|Xt−1,Hk).
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This is a proper score with respect to the Bayesian predictive density

Qk(X) =

∫
p(X|θk,Hk) p(θk|Hk) dθk.

Dawid (1984) showed that Sk,B is an approximation to the plug-in maximum likelihood
prequential score

Sk,D =
n∑

t=1

log P (Xt|Xt−1, θ̂t−1
k ), (27)

where θ̂t−1
k is the maximum likelihood estimator (MLE) of θk based on the past observations,

Xt−1, in the sense that Sk,D/Sk,B → 1 as n → ∞. He also showed that Sk,B is an
approximation to the BIC score,

Sk,BIC =
n∑

t=1

log P (Xt|Xt−1, θ̂n
k ) − dk

2
log n,

where dk = dim(θk), in the same sense, namely Sk,BIC/Sk,B → 1 as n → ∞. This justi-
fies the use of BIC for comparing forecasting rules, extending the previous justification of
Schwarz (1978), which related only to comparing models.

These results have two limitations, however. First, they assume that the data come in
a particular order. Second, they use only the log score, and not other scores that might
be more appropriate for the task at hand. We now briefly consider how these limitations
might be addressed.

6.2 Scoring rules and random-fold cross-validation

Suppose now that the data are unordered. Then equation (26) holds for any ordering of
the data. We can replace (26) by

Sk,B = S∗
k,B =

n∑

t=1

ED[log p(Xt|X(D),Hk], (28)

where D is a random sample from {1, . . . , t−1, t+1, . . . , n}, whose size is a random variable
that has a discrete uniform distribution on {0, 1, . . . , n − 1}. Dawid’s result (27) implies
that this is asymptotically equivalent to the plug-in maximum likelihood version,

S∗
k,D =

n∑

t=1

ED[log p(Xt|X(D), θ̂
(D)
k ,Hk], (29)

where θ̂
(D)
k is the MLE of θk based on X(D).

The formulations (28) and (29) may be useful because they turn a score that was a
sum of non-identically distributed terms into one that is a sum of identically distributed
exchangeable terms. This opens the possibility of evaluating S∗

k,B or S∗
k,D by Monte Carlo,

which would be a form of cross-validation. In this cross-validation, the amount of data left
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out would be random rather than fixed, leading us to call it random-fold cross-validation.
Smyth (2000) used the log-likelihood as the criterion function in cross-validation, as here,
calling the resulting method cross-validated likelihood, but used a fixed holdout sample size.

These results suggest that random-fold cross-validation corresponds to a proper scoring
rule, asymptotically as the amount of simulation gets large. One issue in cross-validation
generally is how much data to leave out, and different choices lead to different versions of
cross-validation, such as leave-one-out, 10-fold, and so on. Considering versions of cross-
validation as scoring rules may shed some light on this issue, for example by determining
whether or not they are proper. We are not aware of results showing that other versions of
cross-validation correspond to proper scoring rules.

We have seen by (25) that when there are no parameters being estimated, the Bayes
factor is equivalent to the log score. Thus one could replace the log score by another proper
score, and the difference in scores could be viewed as a kind of “predictive Bayes factor”
with a non-log score. In Sk,B, Sk,D, Sk,BIC, S∗

k,B, and S∗
k,D, we could replace the terms

in the sums (each of which has the form of a log score) by another proper score, such as
the continuous ranked probability score, and we conjecture that the resulting scores are
also proper. Then we would have a way of generating proper scoring rules when there are
parameters being estimated.

7 Case study: Probabilistic forecasts of sea-level pressure

over the North American Pacific Northwest

Operational probabilistic weather forecasts are based on ensemble prediction systems. En-
semble systems typically generate a set of perturbations of the best estimate of the current
state of the atmosphere, run each of them forward in time using a numerical weather predic-
tion model, and use the resulting set of forecasts as a sample from the predictive distribution
of future weather quantities (Palmer 2002).

Grimit and Mass (2002) described the University of Washington ensemble prediction
system over the Pacific Northwest which covers Oregon, Washington, British Columbia,
and parts of the Pacific Ocean. This is a five-member ensemble that consists of distinct
runs of the MM5 numerical weather prediction model with initial conditions taken from
distinct national and international weather centers. We consider 48-hour ahead forecasts
of sea-level pressure in January–June 2000, the same period as that on which the work of
Grimit and Mass was based. The unit used is the millibar (mb). Our analysis builds on a
verification data base of 16 015 records scattered over the North American Pacific North-
west and the aforementioned six-month period. Each record consists of the five ensemble
member forecasts and the associated verifying observation. The root-mean-square error of
the ensemble mean forecast was 3.30 mb, and the square root of the average variance of the
five-member forecast ensemble was 2.13 mb, resulting in a ratio of 1.55.

The underdispersive behavior — observed errors that tend to be larger on average than
suggested by the ensemble spread — is typical of ensemble systems and seems unavoidable,
given that ensembles capture only part of the sources of uncertainty (Raftery, Balabdaoui,

18



1 2 3 4 5

0
2

4
6

8
10

INFLATION FACTOR R

LI
N

E
A

R
LY

 T
R

A
N

S
F

O
R

M
E

D
 S

C
O

R
E

LogS

SphS

QS

CRPS

LinS

PS

Figure 1: Probabilistic sea-level pressure forecasts over the North American Pacific North-
west in January–July 2000. The scores are shown as a function of the inflation factor r,
where the predictive density is taken to be normal, centered at the ensemble mean fore-
cast, and with predictive standard deviation equal to r times the standard deviation of the
forecast ensemble. The scores were subject to linear transformations as detailed in Table 2.

Gneiting and Polakowski 2003, p. 4). To obtain calibrated predictive probability distri-
butions, it thus seems necessary to carry out some form of statistical postprocessing. One
natural approach is to take the predictive distribution for sea-level pressure at any given site
as normal, centered at the ensemble mean forecast, and with predictive standard deviation
equal to r times the standard deviation of the forecast ensemble. Density forecasts of this
type were proposed by Déqué, Royer and Stroe (1994) and Wilks (2002). Following Wilks,
we refer to r as an inflation factor.

7.1 Evaluation of density forecasts

In the aforementioned approach the predictive density is Gaussian, say φµ,rσ: its mean,
µ, is the ensemble mean forecast, and its standard deviation, rσ, is the product of the
inflation factor, r, and the standard deviation of the five-member forecast ensemble, σ. We
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Table 2: Probabilistic sea-level pressure forecasts over the North American Pacific North-
west in January–July 2000. The predictive density is taken to be normal, centered at
the ensemble mean forecast, and with predictive standard deviation equal to r times the
standard deviation of the forecast ensemble.

Score arg maxr s(r) Linear Transformation
in Eqn. (30) in Figure 1

Logarithmic score (LogS) 2.41 s+ 13
Spherical score (SphS) 1.84 108s+ 86
Quadratic score (QS) 2.18 40s+ 6
Continuous ranked probability score (CRPS) 1.62 10s+ 8

Linear score (LinS) 0.05 105s− 5
Probability score (PS) 0.02 60s− 5

considered various scoring rules S and computed the average score,

s(r) =
1

16 015

16 015∑

i=1

S(φµi,rσi
, xi) , r > 0, (30)

as a function of the inflation factor r. The index i refers to the i-th record in the verification
data base, and xi denotes the value that materialized. Given the underdispersive character
of the ensemble system, we expect s(r) to be maximized at some r > 1, possibly near the
observed ratio r = 1.55 of the root-mean-square error of the ensemble mean forecast over
the square root of the average ensemble variance.

We computed the mean score (30) for inflation factors r ∈ (0, 5) and for the logarithmic
score (LogS), spherical score (SphS), quadratic score (QS), continuous ranked probability
score (CRPS), linear score (LinS), and probability score (PS), as defined in Sections 4.1 and
4.2. Briefly, if p denotes the predictive density and x stands for the observed value, then

LogS(p, x) = log p(x),

SphS(p, x) =
p(x)

(
∫∞
−∞(p(y))2 dy)1/2

− 1,

QS(p, x) = 2 p(x) − ∫∞−∞(p(y))2 dy,

CRPS(p, x) = 1
2 Ep|X −X ′| −Ep|X − x|,

LinS(p, x) = p(x),

PS(p, x) =
∫ x+1
x−1 p(y) dy.

Figure 1 and Table 2 summarize the results of this experiment. The scores shown in the
figure are linearly transformed, and the transformations are listed in the right-hand column
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of the table. In the case of the spherical score, for instance, we plotted the sum of 108
times the value in (30) and 86. Clearly, propriety is preserved under the transformation.
The logarithmic score, spherical score, quadratic score, and continuous ranked probability
score were maximized at values of r that were larger than 1, thereby confirming the un-
derdispersive character of the ensemble. These scores are proper. The linear score and the
probability score were maximized at r = 0.05 and r = 0.02, respectively, thereby suggesting
ignorable forecast uncertainty and almost deterministic forecasts. The latter two scores
have intuitive appeal, and the probability score has been used to assess forecast ensembles
(Wilson, Burrows and Lanzinger 1999). However, they are improper and their use may
result in misguided scientific inferences, as in this experiment.

It is interesting to observe that the logarithmic score gave the highest maximizing value
of r. The logarithmic score is strictly proper but involves a harsh penalty for low probability
events and therefore is highly sensitive to extreme cases. Our verification data base includes
a number of low spread cases for which the ensemble variance implodes. The logarithmic
score penalizes the resulting predictions, unless the inflation factor r is large. Weigend and
Shi (2000, p. 382) noted similar concerns and considered the use of trimmed means when
computing the logarithmic score. In our experience, the continuous ranked probability score
is less sensitive to extreme cases or outliers and provides a more resistant alternative.

7.2 Evaluation of interval forecasts

The aforementioned predictive densities also provide interval forecasts. We considered the
central (1 − α) × 100% prediction interval where α = 0.50 and α = 0.10, respectively. The
associated lower and upper prediction bounds li and ui are the α

2 and 1 − α
2 quantiles of

the normal distribution with mean µi and standard deviation rσi, as described above. We
assessed the resulting interval forecasts in their dependence on the inflation factor r in two
ways, by computing the empirical coverage of the prediction intervals, and by computing

sα(r) =
1

16 015

16 015∑

i=1

Sα(li, ui;xi), r > 0, (31)

where Sα denotes the interval score (19). This scoring rule assesses both calibration and
sharpness — the latter by rewarding narrow prediction intervals, and the former by penal-
izing prediction intervals that do not cover the observation. Figure 2(a) shows the empirical
coverage of the prediction intervals. Clearly, the coverage increased with r. If α = 0.50
and α = 0.10 the nominal coverage was obtained at r = 1.78 and r = 2.11, respectively.
This confirms the underdispersive character of the ensemble. Figure 2(b) shows the interval
score (31) as a function of the inflation factor r. If α = 0.50 and α = 0.10 the score was
maximized at r = 1.56 and r = 1.72, respectively.
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Figure 2: Interval forecasts of sea-level pressure over the North American Pacific Northwest
in January–July 2000: (a) Nominal and actual coverage, and (b) the interval score (31), for
50% central prediction intervals (α = 0.50, broken line) and 90% central prediction intervals
(α = 0.10, solid line). The predictive density is Gaussian, centered at the ensemble mean
forecast, and with predictive standard deviation equal to r times the standard deviation of
the forecast ensemble. 22



8 Optimum score estimation

Strictly proper scoring rules are also of interest in estimation problems, where they provide
attractive loss and utility functions that can be adapted to the problem at hand.

8.1 Point estimation

We recall the generic estimation problem described in the introduction. Suppose that we
wish to fit a parametric model Pθ based on a sample X1, . . . , Xn of identically distributed
observations. To estimate θ, we can measure the goodness-of-fit by the mean score

Sn(θ) =
1

n

n∑

i=1

S(Pθ, Xi)

where S is a scoring rule that is (strictly) proper with respect to a convex class of probability
measures that contains the parametric model. If θ0 denotes the true parameter value,
asymptotic arguments indicate that

arg maxθ Sn(θ) → θ0 as n→ ∞. (32)

This suggests a general approach to estimation: Choose a strictly proper scoring rule S that
is tailored to the scientific problem at hand and take θ̂n = arg maxθ Sn(θ) as the optimum
score estimator based on the scoring rule S. The first four values of the arg max in Table
2, for instance, refer to the optimum score estimate for the inflation factor r based on
the logarithmic score, spherical score, quadratic score and continuous ranked probability
score, respectively. Pfanzagl (1969) and Birgé and Massart (1993) studied optimum score
estimators under the heading of minimum contrast estimators. This class includes many of
the most popular estimators in various situations such as maximum likelihood estimators,
least squares and other estimators of regression models, and estimators for mixture models
or deconvolution. Pfanzagl (1969) proved rigorous versions of the consistency result (32),
and Birgé and Massart (1993) related rates of convergence to the entropy structure of
the parameter space. Maximum likelihood estimation forms the special case of optimum
score estimation based on the logarithmic score, and optimum score estimation forms a
special case of M -estimation (Huber 1964) in that the function to be optimized derives
from a strictly proper scoring rule. When estimating the location parameter in a normal
population with known variance, for example, the optimum score estimator based on the
continuous ranked probability score amounts to an M -estimator with a ψ-function of the
form ψ(x) = 2Φ(x

c ) − 1, where c is a positive constant and Φ denotes the standard normal
cumulative. This provides a smooth version of the ψ-function for Huber’s (1964) robust
minimax estimator; see Huber (1981, p. 208). Asymptotic results for M -estimators, such as
the consistency theorems of Huber (1967) and Perlman (1972), then apply to optimum scores
estimators, too. Wald’s (1949) classical proof of the consistency of maximum likelihood
estimates relies heavily on the strict propriety of the logarithmic score, which is proved in
his Lemma 1.
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The appeal of optimum score estimation lies in the potential adaption of the scoring rule
to the problem at hand. This approach has, apparently, only very recently been explored.
Gneiting et al. (2004) estimated a predictive regression model using the optimum score es-
timator based on the continuous ranked probability score — a choice that was motivated by
the meteorological problem at hand. They showed empirically that such an approach can
yield better predictive results than approaches using maximum likelihood plug-in estimates.
This agrees with the results of Copas (1983) and Friedman (1989) who showed that the use
of maximum likelihood and least squares plug-in estimates can be suboptimal in prediction
problems. Buja et al. (2004) proposed the use of strictly proper scoring rules in classifica-
tion and class probability estimation problems and drew links to Bayesian techniques and
boosting.

8.2 Interval estimation

We now turn to interval estimation. Casella, Hwang and Robert (1993, p. 141) pointed out
that

“The question of measuring optimality (either frequentist or Bayesian) of a set
estimator against a loss criterion combining size and coverage does not yet have
a satisfactory answer.”

Their work was motivated by an apparent paradox due to J. O. Berger, which concerns
interval estimators of the location parameter θ in a normal population with unknown scale.
Let 1{·} denote an indicator function. Under the loss function

L(I; θ) = cλ(I) − 1{θ ∈ I}, (33)

where c is a positive constant and λ(I) denotes the Lebesgue measure of the interval estimate
I, the classical t-interval is dominated by a misguided interval estimate that shrinks to the
sample mean in the cases of the highest uncertainty. Casella et al. (1993, p. 145) commented
that “we have a case where a disconcerting rule dominates a time honored procedure. The
only reasonable conclusion is that there is a problem with the loss function.” We concur,
and we propose the use of strictly proper scoring rules to assess interval estimators using a
loss criterion that combines width and coverage.

Specifically, we contend that a meaningful comparison of interval estimators requires
either equal coverage or equal width. The loss function (33) applies to all set estimates,
regardless of coverage and size, which seems unnecessarily ambitious. As an alternative, we
restrict attention to interval estimators with equal nominal coverage and use the (negative
of the) interval score (19). This loss function can be written as

Lα(I; θ) = 2αλ(I) + 4 inf
η∈I

|θ − η|, (34)

and applies to interval estimates with upper and lower exceedance probability α
2 × 100%.

This approach can, again, be traced back to Dunsmore (1968) and Winkler (1972) and

24



avoids paradoxes, as a consequence of the propriety of the interval score. When compared
to (33), the loss function (34) provides a more flexible assessment of the coverage, by taking
account of the distance between the interval estimate and the estimand.

Appendix

In this appendix, we compare Theorem 2.1 to a more direct extension of the McCarthy
(1956) and Hendrickson and Buehler (1971) characterization. The results of McCarthy and
Hendrickson and Buehler differ from Theorem 2.1 by considering functions on the convex
cone D = {λP : P ∈ P, λ > 0}. Furthermore, Hendrickson and Buehler (1971) assumed
that the convex class P is dominated by a σ-finite measure µ on (Ω,A). This assumption
can be disposed of as follows. A function H : D → R is homogeneous if H(λP ) = λH(P )
for all P ∈ D. If there exists a P ∈ D and a P-quasiintegrable function H ∗(P, · ) : Ω → R

such that

H(Q) ≥ H(P ) +

∫
H∗(P, ω) dQ(ω) −

∫
H∗(P, ω) dP (ω)

for all Q ∈ D, then H∗(P, · ) is said to be a subtangent of H relative to D at the point P ∈ D.
Following Hendrickson and Buehler, it is easy to show that a scoring rule S : P ×Ω → R is
(strictly) proper if and only if

S(P, ω) = H∗(P, ω) (35)

for P ∈ P and ω ∈ Ω, where H : D → R is homogeneous, (strictly) convex on P, and such
that H∗(P, · ) is a subtangent of H relative to D at P .

In the case of a finite sample space of sizem, the subtangentH ∗(P, · ) in the Hendrickson-
Buehler characterization (35) can be identified with the subgradient of a convex function
on R

m. The representation (4) suggests the characterization of Savage (1971) who instead
considered convex functions on the unit simplex in R

m−1, as detailed in Section 3. That
said, the representations (4) and (35) are equivalent and closely related. If S is of the form
(4) with an associated convex function G : P → R, define H : D → R by H(λP ) = λG(P )
for P ∈ P. Then (35) holds, since H∗(P, · ) = G∗(P, · ) is a subtangent of H relative to D
at P ∈ P. Conversely, suppose that S is of the form (35) with an associated homogeneous
function H : D → R. Then S(P, P ) = H(P ) for P ∈ D and the representation (4) holds
where G : P → R is the restriction of H to P and G∗(P, · ) = H∗(P, · ) is a subtangent of G
at P ∈ P.
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