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The MCLUST software, with offerings originally limited to model-based hierarchical clus-
tering, was extended to include EM for parameterized Gaussian mixture models, as well as
a clustering strategy in which the model and number of clusters are simultaneously selected
via the Bayesian Information Criterion (BIC) [10]. This manuscript describes a substantial
upgrade to MCLUST, which includes the following among its new features:

EM for four diagonal covariance mixture models.

Density estimation via parameterized Gaussian mixtures.

Simulation from parameterized Gaussian mixtures.

Discriminant analysis via MclustDA.

Methods for one dimensional data.

Enhanced displays, including uncertainty plots and random projections.

A comprehensive treatment of the methods used in MCLUST can be found in [11].

1 Models

In MCLUST, each cluster is represented by a Gaussian model

0r(x | ey ) = (2) 31l Fexp {206 — )T e — ) (1)

where x represents the data, and £ is an integer subscript specifying a particular cluster.
Clusters are ellipsoidal, centered at the means u,. The covariances Y, determine their other
geometric features.

Each covariance matrix is parameterized by eigenvalue decomposition in the form

Y = MDAy Dy,

where D, is the orthogonal matrix of eigenvectors, Ay is a diagonal matrix whose elements
are proportional to the eigenvalues of ¥, and A is a scalar. The orientation of the principal
components of ¥, is determined by Dy, while A, determines the shape of the density con-
tours; A specifies the volume of the corresponding ellipsoid, which is proportional to A4 |4y,
where d is the data dimension. Characteristics (orientation, volume and shape) of distribu-
tions are usually estimated from the data, and can be allowed to vary between clusters, or
constrained to be the same for all clusters [17, 2, 7]. This parameterization includes but is
not restricted to well-known models such as equal-volume spherical variance () = AI) which
gives the sum of squares criterion [21], constant variance [12], and unconstrained variance
[20].

In one dimension, there are just two models: E for equal variance and V for varying
variance. In more than one dimension, the model identifiers code geometric characteristics
of the model. For example, EVI denotes a model in which the volumes of all clusters are
equal (E), the shapes of the clusters may vary (V), and the orientation is the identity (I).
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Clusters in this model have diagonal covariances with orientation parallel to the coordinate
axes. Parameters associated with characteristics designated by E or V are determined from
the data. Table 1 shows the various multivariate model options currently available in MCLUST
for hierarchical clustering (denoted HC) and EM.

Table 1: Parameterizations of the covariance matrix ¥ currently available in MCLUST for hierarchi-
cal clustering (HC) and/or EM for multidimensional data. (‘e’ in the appropriate column indicates
availability).

identifier Model HC | EM | Distribution | Volume Shape Orientation
EII A ° Spherical equal equal NA

VII el ° Spherical | variable equal NA

EEI A ° Diagonal equal equal coordinate axes
VEI MA ° Diagonal |variable equal coordinate axes
EVI AAg ° Diagonal equal variable coordinate axes
VVI M Ag ° Diagonal | variable variable coordinate axes
EEE ADADT e | Ellipsoidal | equal equal equal

VvV A\ D Ap DY ° Ellipsoidal | variable variable variable
EEV ADADF e | Ellipsoidal | equal equal variable
VEV M Dy ADY ) Ellipsoidal | variable equal variable

2 Obtaining and Installing MCLUST

MCLUST can be obtained in one of several ways:
e via the world wide web at http://www.stat.washington.edu/mclust
e via anonymous ftp from ftp.u.washington.edu in the directory public/mclust
e from Statlib; see http://1lib.stat.cmu.edu/S/mclust

Note: The S-PLUS density function has been changed to add a method = "mclust" option
(see Section 11.3). In both UNIX/Linux and Windows, there will be a warning that density
has been masked. However, the default behavior of density remains unaltered.

2.1 Using MCLUST with S-PLUS 6 for UNIX /Linux

The file MCLUST . tar.gz is a packed version of a directory containing all the necessary files
for incorporating MCLUST into S-PLUS on UNIX systems. The commands to unpack it (and
remove the tar file) are:

gunzip MCLUST.tar.gz
tar xvf MCLUST.tar
rm MCLUST.tar



This creates a directory called MCLUST. To run the software in this directory, do the following.

cd MCLUST

Splus CHAPTER

Splus make

Splus TRUNC_AUDIT O

The ‘Splus make’ command

- compiles the Fortran code, which will automatically loaded when S-PLUS is invoked
in this directory.

- sources the S-PLUS functions in mclust.q into the .Data directory
- compiles and loads the help files (file extension .sgml)

The software can now be used by running S-PLUS in directory MCLUST. They can also be
run in a different working directory, using the following S-PLUS commands

> dyn.open(".../MCLUST/S.so")
> attach(".../MCLUST/.Data")

where .../ indicates the path to the directory MCLUST.
2.2 Using MCLUST with S-PLUS 6 for Windows

The file Mclust.zip contains the necessary files for running MCLUST with S-PLUS 6 for
Windows. To install MCLUST on Windows, extract the contents of Mclust.zip to a directory
called mclust. That directory needs to be attached in S-PLUS in order to access the MCLUST
functions. To use the MCLUST help files, either click on the file mclust.chm included in the
folder, or else execute it as a command from a DOS prompt.

3 Hierarchical Clustering

MCLUST provides functions hc for model-based hierarchical agglomeration, and hclass for
determining the resulting classifications. As an example of the use of hc and hclass, consider
Fisher’s iris data [9], which is available as a data set in S-PLUS.? Figure 1 is a pairs plot of
the iris data in which the three species are differentiated by symbol.

We first transform the data from a three-dimensional array to a matrix in which the
species information is lost, then apply the hierarchical clustering algorithm for variable vol-
ume spherical variances (VII):

> irisMatrix <- matrix(aperm(iris,c(1,3,2)),150,4,dimn=dimnames (iris) [1:2])
> hcVIIiris <- hc(modelName = "VII", data = irisMatrix)

3A description of this data set is available in S-PLUS from the command line via help(iris) or from
the S-PLUS help window under ‘datasets’.
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Figure 1: Pairs plot of Fisher’s iris data showing classifcation into species.

The classification produced by hc for various numbers of clusters can be obtained with
hclass. For example, for the classifications corresponding to 2 and 3 clusters:

> ¢l <- hclass(hcVIIiris, 2:3)

The classifications can be displayed with the data using clPairs:

Cl[,IIQIIJ)
Cl[,ll3ll])

> clPairs(data = irisMatrix, classification
> clPairs(data

irisMatrix, classification

More options for displaying clustering and classification results are discussed in Section 9.

The function hc starts by default with every observation of the data in a cluster by itself,
and continues until all observations are merged into a single cluster. Arguments partition
and minclus can be used to initialize the process at a chosen nontrivial partition, and to
stop it before it reaches the final stage of merging.



4 EM for Mixture Models

MCLUST provides iterative EM (Expectation-Maximization) methods for maximum likelihood
clustering with parameterized Gaussian mixture models. In this application, an iteration of
EM consists of an ‘E’-step, which computes a matrix z such that z;;, is an estimate of the
conditional probability that observation ¢ belongs to group £k given the current parameter
estimates, and an ‘M-step’, which computes maximum likelihood parameter estimates given
z. In the limit, the parameters usually converge to the maximum likelihood values for the
Gaussian mixture model o

I D 7 de(xi | pws B,

i=1k=1
and the sums of the columns of z converge to n times the mixing proportions 75, where n is
the number of observations in the data. Here G is the number of groups in the data, which
is fixed in the EM algorithm. The parameterizations of ¥; currently available for EM in
MCLUST are listed in Table 1. They are a subset of the parameterizations discussed in [7],
which gives details of the EM algorithm for these models.

MCLUST functions em, me (iterated M-step followed by E-step), estep and mstep imple-
ment EM for the parameterized Gaussian mixtures. Given the data, an initial estimate of z,
and the model specification, me produces the values of z associated with maximum likelihood
parameters. Initial estimates of z may be obtained from a discrete classification, that is, a
matrix of indicator variables with exactly one 1 per row. For example, me can be started
with a classification produced by hc:

> hcVVViris <- hc( modelName "YVV", data = irisMatrix) # unconstrained model
> cl <- hclass(hcVVViris, 3) # 3-group hc classification
> meVVViris <- me( modelName = "VVV", data = irisMatrix, z = unmap(cl))

The function unmap converts a discrete classification into the corresponding indicator vari-
ables. In general, the models used in hc and me need not be the same. It may in some cases
be desirable to use one of the faster methods in he (e. g. spherical or unconstrained models),
followed by specification of a more complex model for EM.

For any matrix z of conditional probabilities, there is a corresponding discrete classifica-
tion assigning each observation to the group represented by the column in which the z value
for that observation (row) is maximized. MCLUST provides a function map for coverting z to
this ‘nearest’ classification. The following call to c1Pairs plots the iris data along with its
classification obtained from me in the above example:

> clPairs( irisMatrix, map(meVVViris$z))

Besides initial values, other parameters can influence the outcome of em or me. These
include:

tol Iteration convergence tolerance. The default is .Mclust$tol=c(1.e-5,1.e-5), where
the first value is the tolerance for relative convergence of the loglikelihood in the EM
algorithm, and the second value is the relative parameter convergence tolerance for the
M-step for those models that have an iterative M-step ("VEI", "VEE", "VVE", "VEV").
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eps A tolerance for terminating iterations due to ill-conditioning, such as near singularity
in covariance matrices. The default is .Mclust$eps which is the relative machine
precision 2.220446e-16 in the release.

Although these are in some sense hidden by the defaults, they may have a significant affect
on results and should be taken into consideration in analysis. An example in which tol =
1.e-4 and tol = 1.e-5 give quite different results is given in Section 8.

4.1 Uncertainty

The uncertainty in the classification associated with z can be obtained by subtracting the
probability of the most likely group for each observation from 1:

> uncer <- 1 - apply( meVVViris$z, 1, max)

The S-PLUS function quantile applied to the uncertainty gives a measure of the quality of
the classification.

> quantile(uncer)
0% 25% 50% 75% 100%
0 0 1.949809e-08 0.001384177 0.3378195

In this case the indication is that the majority of observations are well classified. Note,
however, that when groups intersect, uncertain classifications would be expected in the
overlapping regions.

When a true classification is known, the relative uncertainty of misclassified observations
can be displayed by the function uncerPlot, as is done below for the iris example (see
Figure 2):

> irisClass <- rep(dimnames(iris) [[3]], rep(50,3))

> uncerPlot(z = meVVViris$z, truth = irisClass)

Plotting an uncertainty surface is also possible for two-dimensional data (see Section 9.1).

4.2 Individual E and M Steps

MCLUST includes functions estep and mstep implementing the individual steps of the EM
iteration. Conditional probabilities z and the log likelihood can be recovered from parameters
via estep, while parameters can be recovered from conditional probabilities z using mstep:

> ms <- mstep( modelName = "VVV", data = irisMatrix, z = meVVViris$z)
> ms
> es <- estep( modelName = "VVV", data = irisMatrix,

mu = ms$mu, sigma = ms$sigma, pro = ms$pro)
> es
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Figure 2: Uncertainty plot for the the 3-cluster classification of Fisher’s iris data via EM based on
unconstrained Gaussian mixtures. The plot was created with uncerPlot, and shows the relative
uncertainty of misclassified observations.

It is often useful in applications to invoke estep by an indirect or list call using the S-PLUS
function do.call, in which the output of e.g. mstep is passed as a list without the need to
explicitly identify individual parameters.

> es <- do.call("estep", c(list(data = irisMatrix), ms))
> es

In Section 10.1, we show how to use mstep and estep for discriminant analysis.

5 Bayesian Information Criterion

MCLUST provides a function bic to compute the Bayesian Information Criterion (BIC) [19]
given the maximized loglikelihood for model and the data dimensions. The BIC is the value
of the maximized loglikelihood with a penalty for the number of parameters in the model,
and allows comparison of models with differing parameterizations and/or differing numbers
of clusters. In general the larger the value of the BIC, the stronger the evidence for the
model and number of clusters (see, e.g. [11]). The following shows the BIC calculation in
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MCLUST for the 3-cluster classification Fisher’s iris data with the varying variance spherical
model:

> hcEIIiris <- hc(modelName = "EII", data = irisMatrix)

> ¢l <- hclass(hcEIIiris, 3)

> emEst <- me(modelName = "VII", data = irisMatrix, z = unmap(cl))
> n <- nrow(irisMatrix)

> d <- ncol(irisMatrix)

> bic( modelName = "VII", loglik = emEst$loglik, n =n, d =d, G = 3)
[1] -853.8133

> do.call("bic", emEst)
[1] -853.8133

The next section describes functions that combine hierarchical clustering, EM, and BIC in
a comprehensive model-based clustering strategy.

6 Cluster Analysis

MCLUST provides two functions, Mclust and EMclust, for cluster analysis combining hierar-
chical clustering, EM, and BIC. In both functions, hierarchical clustering is used to initialize
EM for various parameterizations of the Gaussian model. Mclust is intended to be a sim-
plified function for one-step model-based clustering, with reasonable defaults. EMclust has
more options and more flexibility, although it may be more complicated to use.

6.1 Mclust

The input to Mclust is the data and the minimum and maximum numbers of groups to
consider. Mclust compares BIC values for parameters optimized via EM for the models EIT,
VII, EEI, VVI, EEE, VVV. All models are initialized with the classification from hierarchical
clustering based on the unconstrained VVV model. The output includes the parameters of
maximum-BIC model, and the corresponding classification and uncertainty. The following
is an example of the use of Mclust with Fisher’s iris data:

> irisMclust <- Mclust(irisMatrix)
> summary(irisMclust)

best model: ellipsoidal, unconstrained with 2 groups

An S-PLUS object produced by Mclust has the following components:

11



> names (irisMclust)

[1] "BIC" "bic" "classification" "uncertainty"
[5] ||n|| "d" ||G|| uzu
[9] "mu" "sigma" "pI‘O" ”10glik"

[13] "modelName"
Mclust has an associated plot method for displaying its results.

> plot(irisMclust,irisMatrix)

make a plot selection (0 to exit):

1: plot: BIC

2: plot: Pairs

3: plot: Classification (2-D projection)
4: plot: Uncertainty (2-D projection)

5: plot: All

Selection:

Figure 3 shows BIC, classification, and uncertainty plots corresponding to the model fit to
the iris data.

12
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Figure 3: Plots associated with the Mclust function. Top: BIC. Lower Left: Projection of the
optimal classfication. Lower Right: Projection of the uncertainty of the optimal classification (see

Section 9).
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6.2 EMclust

EMclust has more flexibilty than Mclust for clustering, by allowing choice of hierarchical
clustering (which need not be model-based) as input to initialize EM and choice of models
for EM. Users can obtain parameters and clustering results through summary for any model
or number of mixture components specified, rather than just the maximum-BIC model as in
Mclust.

The input to EMclust is the data, a list of models to apply in the EM phase, the desired
numbers of groups to consider, and as hierarchical clustering tree in the same format as
produced by the function hec for model-based hierachical clustering (the default is to apply
hc for the unconstrained model VVV to the data). It returns the BIC values for all of the
chosen models and number of clusters, together with auxiliary information that is used by
the corresponding summary method for recovering parameter values. The following is an
example of the use of EMclust with Fisher’s iris data:

> irisBIC <- EMclust(irisMatrix)

> irisBIC
BIC:

EII VII EEI VEI EVI VVI EEE
1 -1804.0854 -1804.0854 -1527.1308 -1527.1308 -1527.1308 -1527.1308 -829.9782
2 -1123.4115 -1012.2352 -1047.9786 -961.2929 -1017.3295 -867.5728 -688.0972
3 -878.7652 -853.8133 -818.0635 -784.1658 -812.8672 -759.6687 -632.9658
4 -784.3098 -783.8263 -740.4955 -721.5350 -752.5491 -725.1132 -591.4097
5 -734.3863 -746.9928 -699.4019 -708.0611 -720.7265 -725.9635 -604.9287
6 -715.7147 -705.7813 -698.8104 -680.5938 -752.2155 -726.9666 -621.8183
7 -700.3690 -705.0659 -688.4205 -664.6910 -749.2664 -729.2289 -613.4585
8 -686.0964 -710.5799 -666.0947 -662.2667 -743.7443 -741.9637 -622.4215
9 -694.5239 -703.3490 -683.6092 -672.0079 -782.4065 -772.4925 -638.2063

EEV VEV VvV
-829.9782 -829.9782 -829.9782
-644.5997 -561.7285 -574.0178
-617.7022 -562.5519 -580.8400
-613.4447 -603.9274 -628.9642
-621.6908 -635.2096 -683.8194
-669.7087 -681.3057 -711.5716
-682.3451 -707.9405 -752.7982
-722.7178 -735.8582 -790.7023
-772.5045 -790.6323 -824.8824

O 00 ~NO O WN -

> plot(irisBIC)
EIT VII EEI VEI EVI VVI EEE EEV VEV VVV
||A|| llBll ||C|| llDll ||Ell ||F|| ||Gll ||H|| ||Ill ||J||

The BIC values for this example are shown in Figure 4, with the key to symbols returned by
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the plot method. Application of the summary function to this result gives a classification as
well as model parameters (not printed):

> irisSummary <- summary(irisBIC, irisMatrix)

uncertainty (quartiles):
0% 25% 50% 75% 100%
0 0 0 8.91745e-12 0.0002025613

best BIC values:
VEV, 2 VEV,3 Vv, 2
-561.7285 -562.5519 -574.0178

best model: ellipsoidal, equal shape

The best model among those fitted by EMclust is the equal-shape model VEV, with 2 clusters.
The same model with 3 clusters has a BIC value that is little different from the maximum:;
the conclusion is that there are either 2 or 3 clusters in the data under these models. The 2
cluster EMclust result separates one species from the other while the 3 cluster result nearly
separates the three species (there are 5 misclassifications out of 150).

Optimal parameter and z values are available through the summary function associated
with EMclust objects, which has arguments allowing the summarizing information to be
restricted to a subset of the number of clusters and models. The summary function requires
the data to be supplied as an argument in addition to the output from EMclust. The best
classification (according to the BIC) is recovered from summary by default. The next best
classification is the 3 group classification with the unconstrained model VVV. Parameters
associated with this classification can be recovered via summary as follows:

> iris3 <- summary(irisBIC, irisMatrix, G = 3, modelNames = "VEV")

uncertainty (quartiles):
0% 25% 50% 75% 100%

15
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Figure 4: BIC values from EMclust for the models A - EII, B - VII, C - EEI, D - VEI, E - EVL, F
- VVI, G - EEE, H - EEV, I - VEV, J - VVV applied to Fisher’s iris data.

0 0 1.048137e-06 0.002528291 0.4058713

best BIC value:
VEV,3
-562.5519

best model: ellipsoidal, equal shape

For a complete analysis, it may be desirable to try varying models, initialization strategies
for EM and values for the convergence tolerance, as well as using permutations or subsets of
the observations, and/or perturbations the data, to see if the classification remains stable.
Scaling or otherwise transforming the data may also affect the results. It is advisable to
examine the data beforehand, in case (for example) the dimensions can be reduced due to
highly correlated variables.

Finally, it is important to take into account numerical issues in cluster analysis. The
EM computations break down when the covariance corresponding to one or more compo-
nents becomes ill-conditioned (singular or nearly singular). In general they cannot proceed
if clusters contain only a few observations or if the observations they contain are very nearly
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colinear. If EM for a model having a certain number of components is applied to a mixture
in which there are actually fewer groups, then it may fail due to ill-conditioning. For more
information about ill-conditioned matrices and the resulting consequences for computation,
see [14]. The EM functions in MCLUST compute and monitor the conditioning of the covari-
ances, and an error condition is issued when the associated covariance appears to be nearly
singular, as determined by a threshold with the default value .Mclust$eps.

6.3 Clustering with Noise and Outliers

MCLUST uses mixture model which has a single term representing noise as a first order Poisson
process to handle noisy data:

K

IL |5 + 20 e (xi | 6)] (2)
i=1 k=1

in which V is the hypervolume of the data region, and 7, > 0; EkG:o 7 = 1. This model
has been used successfully in a number of applications [2, 8, 5, 6].

The basic model-based clustering method needs to be modified when the data contains
noise. First, a good initial noise estimate must be obtained. Some possible methods for
denoising include a Voronoi method [1] and a nearest-neighbor method [4]. Next, hierarchical
clustering is applied to the denoised data. Finally, EM based on the Gaussian model with
the added noise term (2) is applied to the entire data set, with the data removed in the
denoising process as the initial noise estimate.

MCLUST provides a function EMclustN for model-based clustering with noise. In the
following example, Poisson noise is added to Fisher’s iris data, with a random initial estimate
for the noise.

irisMatrix <- matrix(aperm(iris, c(1,3,2)), 150, 4)
dimnames (irisMatrix) <- 1list(NULL, dimnames(iris) [[2]]1)

b <- apply( irisMatrix, 2, range)
n <- 450
set.seed(0)
poissonNoise <- apply(b, 2, function(x, n=n)
runif(n, min = x[1]-0.1, max = x[2]+.1), n = n)
set.seed(0)
noiseInit <- sample(c(T,F),size=150+450,replace=T,prob=c(3,1))
Bic <- EMclustN(data=rbind(irisMatrix, poissonNoise), noise = noiselnit)

The data and classification are show in Figure 5.
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Figure 5: Cluster analysis of Fisher’s iris data with added Poisson noise. Upper Left: A projection

Fisher’s iris data (circles) with 450 Poisson noise points (small dots). Upper Right: EMclustN
classification. Lower: BIC from EMclustN.

18



7 Simulation from Mixture Densities

Because the cluster analysis strategy described in Section 6 is a model-fitting procedure, it
has uses other than grouping observations. Given the parameters for a mixture model, data
can be simulated from that model for evaluation and verification. The function sim allows
simulation from mixture models generated by MCLUST functions. Besides the model, sim
allows a seed as input for reproducibility. As an example, below we simulate from the 2 and
3 class equal-shape models produced by EMclust in Section 6.2:

A\

model2 <- summary( irisBIC, irisMatrix, G=2, modelName="VEV")
> sim2 <- do.call("sim", c(list( n=1000, seed=0), model2))

> model3 <- summary( irisBIC, irisMatrix, G=3, modelName="VEV")
> sim3 <- do.call("sim", c(list( n=1000, seed=0), model3))

> par(pty = "s") # square plotting surface

> coordProj(data=sim2, mu = model2$mu, sigma = model2$sigma)

> coordProj(data=sim3, mu = model3$mu, sigma = model3$sigma)

A projection of each of these simulations is shown in Figure 6, along with the same projection
of Fisher’s iris data.
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8 Density Estimation

The clustering capabilities of MCLUST can also be viewed as a general strategy for multivariate
density estimation.

As an example, we focus on density estimation for the location of maple trees in the
Lansing Woods [13, 15] (see Figure 7).

Lansing Woods Maple Trees

o
— ] L] . e . b
. [ ... o
% .
. e 3 X
@ | « o, °
o Qe® [ ] [
. o ® e %% 08 e 3%

Ll S sl .
© ° .....’ .... ..o.:. * .....
© ¢ o-l..\ .... & . * .~..o .;

o o0 o o0°° [ . o
°® . : e ) R °
> ® 2 o. e "o * *g.. .
g | . ..o '.. : ..o. . .
s o.... . L o.... *® .S. '.
@ ° o .: - .:g . .« 9
N h Y ° o ® . * s o. ° S ..‘ % o
o '......’ ..o ‘.oo o ° % ° .. .":u.
° ®  oe - See ’ At . ° e o
[] ...} ¢ (1] * e e o... ‘
e ...oo oo °8® s °« ® : ." ® e ... ° ° ...I. .
C>. 4 te ¢ .o ) .:o' .. .::.. ' .. o‘ ° * e : o.'. ]
o
0.0 0.2 0.4 0.6 0.8 1.0
X

Figure 7: Lansing Woods maple trees.

MCLUST can be used for density estimation as follows: First, use EMclust to get a model
for the Lansing Woods maples:

> maples <- lansinglas.character(lansing[,"species"]) == "maple", -3]
> maplesBIC <- EMclust(maples)
> maplesModel <- summary(maplesBIC,maples)

Next, use dens to get the density of a given point relative to that model. The following
computes the density on a 100 x 100 grid. The function grid1 forms a one dimensional grid
of a given size over a given range of values, while grid2 forms a two dimensional grid given
two sequences of values.
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> x <- gridi1( 150, range
> y <- gridi( 100, range
> xy <- grid2(x,y)

> xyDens <- do.call("dens", c(list(data = xy), maplesModel))

c(0,1))
c(0,1))

The result can be plotted using S-PLUS functions contour, persp, or image.

> par(pty = "s")

> Z <- matrix(log(xyDens), nrow = length(x), ncol = length(y))
> contour(x = x, y =y, z = Z, nlevels = 20)
>
>

persp(x = x, y =y, z = Z)
image(x = x, y =y, z = Z)

Figure 8 shows the density estimate for both the default convergence tolerance .Mclust$tol = 1.e-5
and a relaxed convergence tolerance 1.e-4 in EMclust. For information on creating classifi-
cation and density displays for model-based clustering results, see Section 9.
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Figure 8: Density estimation for the Lansing Woods maples. Left: relaxed convergence tolerance
tol = 1.e-4. Right: default convergence tolerance tol = 1.e-5. First Row: BIC from model-
based clustering. Second Row: EMclust classification with circles/ellipses indicating the standard
deviation of each component. Third Row: Density contours with the location of the maples super-
imposed. 923



Standard Gaussian kernel density estimates for this data are shown in Figure 9. The
kernel densities and bandwidths were computed using the sm software (Bowman and Azzalini

1997).

Gaussian kernel / cross-validated bandwidth Gaussian kernel / normal optimal smoothing

Figure 9: Gaussian kernel density estimates for the Lansing Woods maples. Left: Cross-validated
bandwidth. Right: Normal optimal bandwidth.

Probably the most common application for density estimation is discriminant analysis,
for which a detailed discussion is given in Section 10.

9 Displays

Once parameters values are available, projections of the data showing the means and stan-
dard deviations of the corresponding clusters may be plotted. In the two-dimensional case,
density and uncertainty surfaces may also be plotted.

9.1 Plotting Two-Dimensional Results

The function mclust2Dplot may be used for displaying the classification, uncertainty, or
classification errors for MCLUST models of two-dimensional data. In the following example,
classification and uncertainty plots are produced for the Lansing Woods maples example of
Section 8. We have defined a function plotMaplesl that calls mclust2Dplot to facilitate
plotting the results already obtained for Fisher’s iris data.

> plotMaplesi

function(type)

{

out <- do.call( "mclust2Dplot", c(list(data = maples, type = type),
maplesModel))

invisible()

}
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Figure 10: Classification (left) and uncertainty (right) for the EMclust modeling of the Lansing
Woods maples created with mclust2Dplot. The circles shown are the standard deviations of each
mixture component. In the classification plot, points in different classes are indicated by different
symbols. In the uncertainty plot, the symbols have the following meaning: large filled symbols, 95%
quantile of uncertainty; smaller open symbols, 75-95% quantile; small dots, first three quartiles of
uncertainty.

> par(pty = "s", mfrow = c(1,2)) ## plotting parameters

> plotMaplesi(type = '"classification")
> title("Classification", cex = 0.75)

> plotMaplesli(type = '"uncertainty")
> title("Uncertainty", cex = 0.75)

The resulting plots are displayed in Figure 10.

The function surfacePlot may be used for displaying the density or uncertainty for
MCLUST models of two-dimensional data. It also returns the grid coordinates and corre-
sponding surface values. The following example shows how to display density and uncertainty
surfaces for the Lansing Woods maples models.

> plotMaples2
function(type, what, transformation)

{

out <- do.call( "surfacePlot", c(maplesModel,

list(data = maples, type = type, what = what, transformation = transformation))
invisible()

}
> par(pty = "s", mfrow = c(3,2)) ## plotting parameters
> plotMaples2(type = "contour", what = "density", transformation = "log")
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> plotMaples2(type = '"contour", what = "uncertainty", transformation = "log")
> plotMaples2(type = "persp", what = "density", transformation = "log")

> plotMaples2(type = "persp", what = "uncertainty", transformation = "log")
> plotMaples2(type = "image", what = "density", transformation = "log")

> plotMaples2(type = "image'", what = "uncertainty", transformation = "log")

The resulting plots are displayed in Figure 11. Note that a gray scale or color scheme may
need to be specified on the display device in order to view the image plots.
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Figure 11: Density (left column) and uncertainty (right column) surfaces for the Lansing Woods
maples. Contour, perspective, and image plots are displayed in the first, second, and third rows
respectively. A logarithmic scale was used for the contour plots.
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9.2 Plotting Multidimensional Results

9.2.1 Coordinate Projections

To plot coordinate projections in MCLUST, use the function coordProj. In what follows we
have defined a function coordIris that calls coordProj to facilitate plotting the results
already obtained for the iris data. Note that truth is used only for the errors plot. If the
plot type isn’t specified, coordProj will offer a menu of options if there is more than one

possibility.

> coordIris

function(dimens, type)

{
out <- do.call("coordProj", c(list(data = irisMatrix, truth = irisClass,

dimens = dimens, type =

invisible()

}

> par(pty = "s", mfrow = c(2,3))

> coordIris( dimens = c(1,2), type = '"classification")

> title("3 Group Classification, Unconstrained Model")

> coordIris( dimens = c(1,2), type = "uncertainty")

> title("Uncertainty")

> coordIris( dimens = c(1,2), type = "errors")

> title("Classification Errors")

Plots for dimens = c¢(1,2) and dimens = c¢(3,4) are displayed in Figure 12.
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Figure 12: Coordinate projections of Fisher’s iris data created with coordProj. Plots show the
3-cluster classification with associated uncertainty and classification errors for the unconstrained
Gaussian mixture model (VVV).
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9.2.2 Random Projections

To plot random projections in MCLUST, use the function randProj. In what follows we have
defined a function randIris that calls randProj to facilitate plotting the results already
obtained for Fisher’s iris data.

> randIris
function(seed, type)
{

out <- do.call("randProj", c(list(data = irisMatrix, truth = irisClass,

seed = seed, type = type), meVVViris))
invisible()
}
> par(pty = "s", mfrow = c(2,3))
> randIris( seed = 646, type = "classification")

> title("3 Group Classification, Unconstrained Model")

> randIris( seed = 646, type = "uncertainty")
> title("Uncertainty")

> randIris( seed = 646, type = "errors")
> title("Classification Errors")

Plots for seed = 646 and seed = 666 are displayed in Figure 13.
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Figure 13: Random projections of Fisher’s iris data created with randProj. Plots show the 3-
cluster classification with associated uncertainty and classification errors for the unconstrained
Gaussian mixture model (VVV).
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10 Discriminant Analysis

In discriminant analysis, observations of known classification are used to classify others.
MCLUST provides a number of functions that can be used for discriminant analysis. We
demonstrate some possible methods applied to the Lansing Woods data [13, 15], which gives
the spatial location of maple and hickory trees (see Figure 14).

Lansing Woods Hickory and Maple Trees
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Figure 14: Location of Hickory and Maple Trees in the Lansing Woods. There are 703 hickories
(triangles) and 514 maples (squares) in the data set.
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10.1 Discriminant Analysis using mstep and estep

MCLUST functions mstep and estep implementing the individual steps of the EM algorithm
for Gaussian mixtures can be used for discriminant analysis. The idea is to produce a density
estimate for the training data which is a mixture model, in which each known class is modeled
by a single Gaussian term.

First, the parameterization giving the best model fit to the training data must be chosen.
Most commonly, this would be done by leave-one-out cross validation. Leaving out one
training observation at a time, MCLUST function cviEMtrain fits each model using mstep,
then classifies the observation that was left out using estep. The output of cviEMtrain is
the error rate for each model; that is, the fraction of left-out observations correctly classified
by the model fit to the remaining observations.

Using the odd numbered observations in the Lansing Woods data as a training set, the
result is:

> odd <- seq(from=1, to=nrow(lansing), by=2)

> round(cviEMtrain(data = lansingl[odd,-3], labels = lansingl[odd,3]),3)
EIT VII EET VEI EVI VVI EEE EEV VEV VVV

0.351 0.355 0.345 0.353 0.34 0.358 0.345 0.333 0.35 0.35

The equal shape, equal volume, varying orientation model EEV would be selected as the best
model, although the error rates do not vary much among the models. When there are two
training classes, the EEE model corresponds to linear discriminant analysis, while the VVV
model corresponds to quadratic discriminant analysis (e.g. [16]).

To classify the even data points, we first compute the parameters corresponding to the EEV
model for the odd data points using mstep, then use estep to get conditional probabilities
z and a classification:

> cviModd <- mstepEEV(data=lansing[odd,-3], z=unmap(lansing[odd,3]))

> cviZodd <- do.call("estepEEV", c(cviModd, list(data=lansinglodd,-31)))$z
> compClass (map(cviZodd), lansingl[odd,3])$error

[1] 0.3316913

> even <- seq(from=2, to=nrow(lansing), by=2)

> cvlZeven <- do.call("estepEEV", c(cviModd, list(data=lansingleven,-3])))$z
> compClass(map(cviZeven), lansing[even,3])$error

[1] 0.3125

The error rate for the training [odd-numbered] data is 33%, while for the test [even-numbered]
data it is 31%. The results for this analysis are displayed in the left hand plot of Figure 15.

Another option for model selection that is quicker to compute than crossvalidation is to
select the best fitting model via BIC after using mstep to fit each model to the training data.
A function bicEMtrain is provided in MCLUST for this purpose. For the Lansing Woods data,
BIC for the models fitted to the odd-numbered observations is:

> round(bicEMtrain(lansing[odd,-3], labels = lansing[odd,31),1)
EII VII EEI VEI EVI VVI EEE EEV VEV VVV
-512.1 -526.5 -520 -533.7 -539.5 -554.7 -519.7 -534.3 -549.7 -553.4
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Figure 15: Discriminant analysis using mstep and estep. The plots show the ellipses corresponding
to the standard deviation of each of the two Gaussians used to fit the training data, as well as
the discriminant curve (hatched line) where the two groups contribute equally to the mixture
density. Filled symbols represent misclassied training [odd-numbered] and test [even-numbered]
observations. Left: Model EEV selected by leave-one-out crossvalidation. Right: Model EIT selected
via BIC.

According to BIC, the spherical model with equal volume EIT is the best model. The error
rate for the training data is about 35%, while for the test data it is 33%:

> bicModd <- mstepEII(data=lansing[odd,-3], z=unmap(lansinglodd,3]))

> bicZodd <- do.call("estepEII", c(bicModd, list(data=lansingl[odd,-3])))$z
> compClass(map(bicZodd), lansingl[odd,3])$error

[1] 0.3513957

> even <- seq(from = 2, to = nrow(lansing), by = 2)

> bicZeven <- do.call("estepEII", c(bicModd, list(data=lansingl[even,-31)))$z
> compClass(map(bicZeven), lansing[even,3])$error

[1] 0.3305921

The results for this analysis are displayed in the right hand plot of Figure 15.

Although the error rate for the test data is somewhat higher for BIC than for crossvali-
dation, it should be noted that it took more than 10 minutes to execute cviEMtrain on this
training data, while bicEMtrain executed in about half a second.*

10.2 Mixture Discriminant Analysis via MclustDA

In Section 10.1, discriminant analysis was accomplished modeling the training data by a
mixture density with a single Gaussian component for each class. That section also showed

4This is not a precise algorithmic timing comparison because crossvalidation can be accomplished more
efficiently for these models using updating schemes, and because the interpreted language S-PLUS is used
for parts of the training code.
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how to choose the appropriate cross-cluster constraints to give the lowest training error rate
using either leave-one-out crossvalidation or BIC. Better discriminant analysis results can
often be obtained by using model-based clustering to fit a Gaussian mixture model as a
density estimate for each class in the training set.

10.2.1 mclustDA

If both training and test sets are given in advance, the function mclustDA can be used for
discriminant analysis. Its input is the training data and associated class labels, and the test
data. Six candidate models are considered in the training phase: EII, VII, EEI, VVI, EEE
and VVV. The output of mclustDA includes the mixture models for the training data, the
classification of both the test data and training data under the model, posterior probabilities
for the test data, and the training error rate.

> discrim <- mclustDA(trainingData = lansing[odd,-3], labels = lansing[odd,3],
testData = lansing[even,-3])
> discrim

trainClass mclustModel numGroups
hickory hickory EII 4
maple maple EEE 4

training error rate: 0.228

> compClass(discrim$testClassification, lansingleven,3])S$error
[1] 0.2450658

The error rates for mclustDA classification of the Lansing Woods data are about 23% and
25% for the training [odd-numbered] and test [even-numbered| data, respectively.
The associated plot method offers a selection of coordinate projection plots.

> par(pty = "s", mfrow = c(2,2)) ## plotting parameters

> plot(discrim, trainingData = lansing[odd,-3], labels = lansinglodd,3],
testData = lansing[even,-3], identify = T)

make a plot selection (0 to exit):

: plot: Training and Test Data

: plot: Training Data - known classification

: plot: Test Data - mclustDA classification

plot: Training Data - misclassified observations
plot: All

Selection: 5

gD WwWN e

Figure 16 shows the result of selecting A11. Figure 17 shows the training models for the
two classes, as well as the discriminant curve and the misclassified (training and test) data
points.

35



1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

Test and Training Data

Training Data - known classification

o
i Ahan
A LM o oatit
abp A? 4 e £
A A
I P S L
ol M 4 ML 9 oo YR
A‘A‘A £ A, .0 A %‘A .
%D 4 a0 a0 Eé A a aoa g
A o8 oA Y
oa m Akl
© th“ N EF% [u[u} O O, R,
S} At . 5 O Aaa L)
0y g ge 0 Ui g
A o a4 o
> . { “ O f‘DDG Ak
A A A O A A a A
s Lot ol o N
F3 o A 0 Lt 4a
0 A O Aa am
“A‘ 2ao 0P e B A‘?“
oo A4 pa Doy Ha
~ g 6 =B AT A A
o =] 00 o &P 2 OO ia
oa o S fdugio B Ba
PR=I £, sl A W o QP
IS 5 ot g o° fo ‘E\E%QDDD
o] atPHamiPRow o o By B0
IS}
0.0 0.2 0.4 0.6 0.8 1.0
X
Training Error
3 A
A,
o oa%a M}M - :;A w8 AAMA
A, - N
» B %AA n &§ iD B G0 2e
© £ NN Lat 4 AAAAA
Sl M & a 0 g & 5 m
A T2 ﬁA AL an A %% A
%‘%\ a0, ahe EQ%A A " AAA
b, B Rt
© &y ol DD% oo B 04 E&'A-a\
Nal A A ]
48 . P qu%\l a M 'AAA"-A!
> 0 n
A g s DI:D 0 iy
< W A Anp ‘%D o AT A A b0 £
=) . A A =R “a
A AA
VN A D m 28 Am
%AA L AA‘ od’ & % AA%AA
o0 & 04 Booy %A &
~ o B SDA% PN
5 A
S| .. Ay D@uﬁnuﬂu N o o@od
AD A% 4 m @ A T Yy o ﬁp
%D A Aﬂ DD e o AE\EE DDD
o
o 2A980a 0 gm0 o #a Fao
o
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
X

Figure 16: Plots associated with mclustDA. Upper Left: the training [odd-numbered/circles] and
test [even-numbered/crosses] Lansing Woods data. Upper Right: the training data with known
classification. Lower Left: the mclustDA classification of the data. Lower Right: the errors (filled
symbols) in using the mclustDA model to classify the training data.
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Figure 17: mclustDA models and discriminant curve for the Lansing Woods data. Upper Left:
Model for the training [odd-numbered| hickories. Upper Right: Model for the training [odd-
numbered] maples. Lower: discriminant curve with training and test errors (filled symbols). Note
the small piece of the curve in the lower left-hand corner.

10.2.2 mclustDAtrain and mclustDAtest

Often more flexibility is required in discriminant analysis. For example, a suitable training
set may need to be chosen and/or it may be desirable to test additional data after a training
density has already been established. Since training takes much more time that testing, it can
be advantageous to separate training and testing computations. In contrast to mclustDA,
mclustDAtrain also allows users to choose training model parameterizations, and selects
from among all available models as a default. The output of mclustDAtrain is a list, each
element being the model for each class.

In the simplest case, a single Gaussian could be fit to each training class. This is similar
to the discriminant analysis procedure of Section 10.1, except that in MclustDA a model in
for each class of the training data is chosen separately, instead of choosing a parameterized
mixture model (which may have cross-cluster constraints) for the training data. In discrim-
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inant analysis via M-step and E-step (Section 10.1) restricted to the unconstrained (VVV)
model, the maximum likelihood Gaussian is fitted to each component. MclustDA uses BIC,
which adds a penalty term to the maximized loglikelihood that increases with the number
of parameters, to select the model.

> trainl <- mclustDAtrain(data=lansingl[odd,-3], labels=lansingl[odd,3], G=1)
EEE EII
1 1

The best model for the hickories has an ellipsoidal covariance, while the best model for the
maples has a spherical covariance, with error rates as follows:

> testlodd <- mclustDAtest(data = lansingl[odd,-3], models = trainl)

> names (summary(testlodd))
[1] "classification" "z"

> compClass (summary(testlodd)$classification, lansinglodd,3])$error
[1] 0.3513957

> testleven <- mclustDAtest(data = lansing[even,-3], models = trainl)

> compClass(summary(testleven)$classification, lansing[even,3])$error
[1] 0.3618421

Prior probabilities for each class can be supplied to the summary function for mclustDAtest.
For example, the proportions of the known classes in the training set could be used as prior
probabilites. In the Lansing Woods example, the error rates are somewhat improved with
these prior probabilities:

> Hodd <- as.character(lansing[odd, 3]) == "hickory"

> pr0dd <- length(odd[Hodd])/length(odd)
> pr0dd
[1] 0.5779967

> probs <- c(prOdd, 1-pr0dd)

> compClass (summary(testlodd, pro=probs)$classification, lansinglodd,3])$error
[1] 0.3497537

> compClass (summary(testleven,pro=probs)$classification, lansing[even,3])$error
[1] 0.3388158

These discriminant analysis results are displayed in Figure 18.
By default, mclustDAtrain will fit up to nine components for each possible model. Re-
sults for the odd-numbered observations in the Lansing Woods data are as follows:
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Figure 18: MclustDA with one component per training class. The plots show one standard de-
viation of the Gaussians used to fit each class of the training data, as well as the discriminant
curve (hatched line) where the two groups have equal posterior density. Filled symbols represent
misclassied training [odd-numbered| and test [even-numbered] observations. Left: Assumes equal
prior probabilties. Right: Assumes training prior probabilties.

> train <- mclustDAtrain(data = lansing[odd,-3], labels = lansing[odd,3])
EEV EEE
7 4

> summary(train)
$hickory:
$hickory$model:
[1] "EEV,7"

$hickory$classification:
[1] 11333333
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[334]
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$maple:
$maple$model:
[1] "EEE,4"

$maple$classification:
1] 1112111
[38]
[75]
[112]
[149]
[186]
[223]
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In this case mclustDAtrain chooses the 7-class EEV model for the hickory training class and
the 4-class EEE model (the same model chosen by mclustDA) for the maple training class.

The density of the test data under the training models can be obtained using mclustDAtest,

while the classification and posterior probabilities of the test data can be recovered from the
summary function for mclustDAtest:

> testTrain <- mclustDAtest(models = train, data = lansing[odd,-3])

> names (summary (testTrain))
[1] "classification" "z"

> compClass (summary(testTrain)$classification, lansing[odd,3])$error
[1] 0.2249589

> testTest <- mclustDAtest(models = train, data = lansing[even,-3])

> compClass (summary(testTest)$classification, lansing[even,3])$error
[1] 0.2450658

The error rates are about 23% and 25% for the training [odd-numbered] and test [even-
numbered| data, respectively, in this case about the same as mclustDA which restricts the
class of models. Figure 19 shows the 7-group EEV model for the hickory training class, as
well as the discriminant curve and the misclassified (training and test) data points.
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Model for Odd-Numbered Hickories Discriminant Curve and Misclassified Data
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Figure 19: mclustDAtrain models and discriminant curve for the Lansing Woods data. Left: the
hickory training [odd-numbered] class with its 7-group EEV model. Right: discriminant curve with
training and test errors (filled symbols).
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11 One Dimensional Data

The MCLUST functions for clustering, density estimation and discriminant analysis can be
applied to one-dimensional as well as multidimensional data. Analysis is somewhat simplified
since there are only two possible models — equal variance (denoted E) or varying variance
(denoted V).

11.1 Clustering

As an example, we use simulated data consisting of two clusters with variance 1 centered at
—9 and 9, respectively, and one cluster with variance 4 centered at 0:

> set.seed(999)
> x <= c(rnorm(300, -9), rnorm(400, 0, sd = 2), rnorm(300, 9))

Cluster analysis for one-dimensional data can be carried out as for two and higher di-
mensions, except that there is a special plotting function mclust1Dplot:

> par(mfrow = c(2,2))
> xBIC <- EMclust(x)
> plot(xBIC)
E \')
|l1l| ll2|l
> xModel <- summary(xBIC,x)

> do.call("mclustiDplot", c(list(data = x), xModel))

mclust1Dplot: make a plot selection (0 to exit):

1: classification
2: uncertainty

3: density

4: all

Selection:

Figure 20 shows the BIC, classification, uncertainty, and density for this simulated example.

11.2 Discriminant Analysis

To illustrate discriminant analysis on one-dimensional data, we use the simulated data set
x from the previous section as a training set, with the group centered at the origin as one
class and the remaining groups as another.

> set.seed(999)
> x <= c(rnorm(300, -9), rnorm(400, 0, sd = 2), rnorm(300, 9))
> xClass <- c(rep(1,300),rep(2,400),rep(1,300))
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Figure 20: Model-based clustering of one-dimensional data. Clockwise from upper left: BIC,
classification, uncertainty, and density from EMclust applied to the simulated one-dimensional
example. In the classification plot, all of the data is displayed at the bottom, with the separated

classes shown different levels above.

We use the following simulated data as a test set:

> set.seed(0)

> y <= c(rnorm(100, -9), rnorm(100, 0, sd = 2), rnorm(100, 9))
> yClass <- c(rep(1,100),rep(2,100),rep(1,100))

Discriminant analysis via EM (Section 10.1) is possible in one dimension. Both leave-
one-out crossvalidation and BIC choose the equal variance model E in the training stage:
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> round(cviEMtrain(x,labels=xClass),3)

E Vv
0.4 0.057
> round(bicEMtrain(x,labels=xClass),3)
E vV

-6785.284 -7046.888

The varying variance model V is chosen by cross-validation, while the equal-variance model
is chosen by BIC. The training and test errors for the data with these models are as follows.
Equal variance:

> xEmstep <- mstep(modelName = "E", data = x, z = unmap(xClass))

> xEz <- do.call("estep", c(list(data = x), xEmstep))$z

> compClass(map(xEz) ,xClass)$error ## training error
[1] 0.4

> yEz <- do.call("estep", c(list(data = y), xEmstep))$z
> compClass(map(yEz) ,yClass)$error ## testing error
[1] 0.3333333

Varying variance:

> xVmstep <- mstep(modelName = "V", data = x, z = unmap(xClass))

> xVz <- do.call("estep", c(list(data = x), xVmstep))$z
> compClass(map(xVz) ,xClass)$error ## training error
[1] 0.057

> yVz <- do.call("estep", c(list(data = y), xVmstep))$z
> compClass(map(yVz) ,yClass)$error ## testing error
[1] 0.04333333

For discriminant analysis via MclustDA (Section 10.2):

> xtrain <- mclustDAtrain(x, labels = xClass)
E E

21
> xTest <- summary(mclustDAtest(x,xtrain))

> compClass(xTest$classification,xClass)$error ## training error
(11 0

> yTest <- summary(mclustDAtest(y,xtrain))
> compClass(yTest$classification,yClass)$error ## testing error
[1] 0.003333333
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11.3 "mclust" option for S-PLUS density function

MCLUST includes an augmented version of the S-PLUS function density for computing the
density of a one-dimensional data set. A method argument has been added, with the option
to specify method = "mclust" to have the density computed via model-based clustering,
instead of the default kernel estimate.

> xdens.default <- density(x, n = 100)
> xdens.mclust <- density(x, n = 100, method = "mclust")

The resulting densities for the simulated data used in the previous two sections are dis-
played in Figure 21. A simulation study [18] showed that mixtures of normals with equal

True Density and MCLUST Estimate True Density and Default Kernel Estimate

0.04 0.06 0.08 0.10 0.12

0.02

0.0

Errors in MCLUST and Kernel Estimates
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-0.02
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Figure 21: A comparsion of method = "mclust" and default kernel options for the augmented
S-PLUS density function on the one-dimensional simulated example. Upper Left: The underlying
density (solid line) and the computed density with method = "mclust" (dotted line). Upper Right:
The underlying density (solid line) and the computed density with default kernel method (dotted
line). Lower: Errors for method = "mclust" (solid line) and the default (dotted line).

variance can give substantially better density estimates than kernel-based methods for one-
dimensional data.
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12 Extensions

12.1 Large Data Sets

EMclust includes a provision for using a subsample of the data in the hierarchical clustering
phase before applying EM to the full data set. This strategy is often adequate for large
data sets, although it may miss small groups. Iterative methods for handling such cases are
discussed in section 10.3 of [11]. The following example uses a random sample of size 100 in
the initial hierarchical clustering phase of EMclust applied to the iris data:

> n <- nrow(irisMatrix)

>n

[1] 150

> S <- sample(l:n, size = 100)

> irisBIC <- EMclust(irisMatrix, subset = S)

For very large data sets, the discrimination capability of MCLUST can be used for clas-
sification. First, cluster analysis with the methodolgy of EMclust can be performed on a
subset of the data. Then the remaining data points can then be classified (in reasonable
sized blocks) using one of the discriminant analysis techniques described in section 10.

12.2 High Dimensional Data

Models in which the orientation is allowed to vary between clusters (EEV, VEV, EVV, VVV),
have O(d?) parameters per cluster, where d is the dimension of the data. For this reason,
MCLUST may not work well or may otherwise be inefficient for these models when applied
to high-dimensional data. It may still be possible to analyze such data with MCLUST by
restriction to models with fewer parameters (e.g. spherical or diagonal models), or else by
applying a dimension-reduction technique such as principal components.

Some of the more parsimonious models (e.g. spherical, diagonal, or fixed covariance)
can be applied to datasets in which the number of observations is smaller than the data
dimension.

13 Function Summary

13.1 Hierarchical Clustering

hc Merge sequences for model-based hierarchical clustering.
hclass Classifications corresponding to hc results.

46



13.2 Parameterized Gaussian Mixture Models

em EM algorithm (starting with E-step).
me EM algorithm (starting with M-step).
estep E-step of the EM algorithm.
mstep M-step of the EM algorithm.
mvn  One-component fit.

13.3 Density Computation for Parameterized Gaussian Mixtures

cdens Component density (without mixing proportions).
dens Mixture density.

13.4 Model-based Clustering / Density Estimation

EMclust BIC computation; clusters and models through summary.
Mclust Combines EMclust and its summary (fewer options).
density S-PLUS one-dimensional density function with method = "mclust" option.

13.5 Discriminant Analysis

Class Densities as Mixture Components

cvlEMtrain Training via leave-one-out crossvalidation.
bicEMtrain Training via BIC.

estep E-step of the EM algorithm.

mstep M-step of the EM algorithm.

Parameterized Gaussian Mixture for Class Densities (MclustDA)

mclustDAtrain MclustDA training.
mclustDAtest MclustDA density; classification via summary.
mclustDA Combines mclustDAtrain and mclustDAtest (fewer options).

13.6 Support for Modeling and Classification

.Mclust vector of default values.
mclustOptions set MCLUST options.
map Convert conditional probabilities to a classification.
unmap Convert a classification to indicator variables.
bic BIC for parameterized Gaussian mixture models.
sim Simulate data from a parameterized Gaussian mixture model.
compClass Compare two classifications with equal numbers of classes.
sigma2decomp Convert mixture covariances to decomposition form.
decomp2sigma Convert decomposition form to mixture covariances.
gridl One-dimensional grid.
grid2 Two-dimensional grid.
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13.7 Plotting Functions
13.7.1 One-Dimensional Data

mclust1Dplot Classification, uncertainty, density and/or classification errors.

13.7.2 Two-Dimensional Data

mclust2Dplot Classification, uncertainty, and/or classification errors.

surfacePlot Contour, image, or perspective plot of either density or uncertainty.

13.7.3 More than Two Dimensions

Classification, uncertainty, and/or classification errors.

coordProj coordinate projections
randProj random projections
spinProj random projection followed by reflection or rotation

13.7.4 Other Plotting Functions

clPairs pairs plot showing classifications
uncerPlot relative uncertainty of misclassified observations
plot.Mclust plots associated with Mclust results

plot.mclustDA plots associated with mclustDA results
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