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1. Introduction 

Every year, the U.S. Army Research Laboratory (ARL) in conjunction with the Programming 
Environment and Training (PET) component of the Department of Defense High-Performance 
Computing Modernization Program (DOD HPCMP) hosts several interns.  These interns are 
always college students, most of whom are either juniors or seniors.  Their principal duties 
involve carrying out research involving high-performance computing (HPC) and/or the related 
disciplines of high-performance networking and scientific visualization.  This report is based on 
the work and experiences of Earlene L. Thompson during her internship in the summer of 2005. 

The goal of this topic was to perform preliminary work with regard to Unified Parallel C (UPC) 
and/or Co-Array Fortran (CAF).  Neither of us had any background in either of these languages 
although both of us had experience using C.  Additionally, the mentor had significant 
experience using Fortran, parallelizing programs, and UNIX/LINUX-based systems.  The 
rationale for choosing these languages has to do with the Defense Advanced Research and 
Projects Agency (DARPA).  They have a project called High Productivity Computing Systems 
(HPCS) whose goal is to develop PetaFLOP computers.  There are currently three vendors 
working on this project.  In addition to developing hardware for this project, the vendors are 
required to develop new programming environments to facilitate the use of the emerging 
platforms.  One of the vendors is Cray, Inc., and they have selected these two languages as part 
of their proposal.  While the languages have not been finalized (adopted by a national/ 
international standards-setting body), they appeared to have matured to the point that this would 
be a viable project. 

With this background, it was decided that the project would consist of porting a meaningful 
program to one of the two languages.  At the time, porting from High-Performance Fortran 
(HPF) to CAF seemed to be an obvious match.  An early version of a workhorse program 
developed within our branch seemed to be a reasonable, if not perfect, choice.  This program is 
called COMPOSE and was written by Ram Mohan and Dale Shires.  COMPOSE is a 
composites manufacturing simulation code used to optimize the fabrication process.  The HPF 
version of the code consists of ~3000 lines of Fortran code, including 130 lines specific to HPF.  
The assumption was that most of the effort in porting this program to CAF would center around 
these 130 lines (primarily declaration statements).  When it was shown that this assumption was 
incorrect and that all 3000 lines would probably need to be modified (to provide access to 
shared arrays), it was decided that this was beyond the scope of this project.  Therefore, a new 
project needed to be quickly selected. 

Attempting to maintain the spirit of the original project, it was decided to measure the 
performance of the NAS benchmarks on the Cray X1.  This project was selected since these are 
widely reported and highly respected benchmarks (1).  Of equal importance, references on the 
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web indicated that a message passing interface (MPI) version of these benchmarks could be 
downloaded from NASA Ames Research Center, a UPC version of some of these benchmarks 
could be downloaded from George Washington University (GWU), and a CAF version of these 
benchmarks could be downloaded from Rice University.  Therefore, it was expected that, given 
the limited amount of time remaining, we would be able to run all of these benchmarks for a 
range of processor counts for at least some of the smaller benchmark sizes (e.g., W, A, and B).  
Our results, conclusions, and the problems we ran into will comprise the bulk of this report. 

2. The Choice of Hardware and Related Topics 

When selecting a platform on which to carry out this research, the obvious choice was a Cray 
X1 or the newer Cray X1E.  The U.S. Army High-Performance Computing Research Center 
(AHPCRC), which is supported by both the U.S. Army and the DOD HPCMP, has a small 
Cray X1 and a much larger Cray X1E.  We requested and received access to the Cray X1 which 
is reserved primarily for educational purposes.  The compilers on this system support both UPC 
and CAF.  The system consists of 4 nodes, each with 16 SSP processors and 16 GB of main 
memory.  Each SSP processor has a scalar unit rated at 400 MFLOPS and a vector unit rated at 
3.2 GFLOPS.  Jobs may either request processors in terms of SSPs or MSPs.  In the later case, 
each MSP consists of four tightly coupled SSPs, with the compiler being called on to split the 
work among as many of the SSPs in each MSP as it can.  Additional information on the design 
of the Cray X1 can be found on the Cray website http://www.cray.com. 

It should also be noted that the processors are grouped into nodes, with each node consisting of 
16 SSPs (4 MSPs).  Ordinarily, one of these nodes is reserved for use as an Input/Output 
node/Login node, which can also be used to run interactive jobs using up to 16 SSPs (4 MSPs).  
The batch system has dedicated access to the other three nodes.  We were given special access 
to this system to run 49 processor jobs, but were unable to run 64 processor jobs.  The main 
concern here is that it is very difficult to show high levels of performance when using all of the 
processors in a system (almost any system).  There is enough interference from system 
daemons, which even if everyone is asked to logout, rarely will one show anything approaching 
linear speedup.  In fact, most large systems have dedicated I/O nodes that may not even be 
mentioned when discussing the system’s size. 

Another issue is the unusual approach that Cray takes to scheduling jobs on their systems.  Jobs 
of higher priority may actually cause a lower priority job to lose its processors for an extended 
period of time.  Even when dealing with jobs of equal priority, various forms of time sharing 
seem to be taking place.  This can range from having a job stream rolled out when a new job 
starts up, to having two or more jobs actually time sharing their processors with varying time 
quanta (probably ranging from under a second to many minutes in duration).  The 
documentation indicated that this could result in widely varying run times, but should not 
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significantly affect the CPU time.  In some cases, the operating system left hints in the output 
file as to ways to improve the run time.  In some cases, we took advantage of these hints and 
reran the jobs.  In other cases, the effect seemed to be small enough that the hint was ignored 
and work continued on with other runs.  In most cases, these effects were most pronounced 
when using small numbers of processors (e.g., 1–4 SSPs or 1 MSP). 

It should be noted at this point that our principal goal was getting our feet wet when using 
either CAF and/or UPC.  It was not anticipated that there would be sufficient time to worry 
about modifying the code, or even putting in a modest number of compiler directives designed 
to improve either vectorization or the performance of the code when running in MSP mode.  
Therefore, it was expected that our runs would be made with the highest levels of optimization 
(scalar, vector, and MSP) supported by the compiler, and we would just have to hope for the 
best. 

3. Porting COMPOSE to HPF 

Since HPF and CAF are both extensions to the Fortran standard, it was assumed/hoped that 
only modest changes would be required to port a program from HPF into CAF.  This would 
possibly be the case when dealing with a program using structured grids.  However, 
COMPOSE uses unstructured grids and was difficult to parallelize using HPF in the first place.  
After spending several weeks working on this project, we developed serious misgivings about 
it.  From our slightly naïve perspective, it appeared as though it would be necessary to use full 
Co-Array syntax for virtually all of the array references in order to support a mix of local and 
remote memory accesses on a seamless basis.  In contrast, HPF had largely done that 
automatically based on distribution statements in the declaration section of each program unit. 

This was significantly more work than we had anticipated.  Since parallelization is normally an 
all or nothing proposition—some forms of shared memory parallelism (e.g., OpenMP) being 
the principal exception—it was decided to look for another project to work on.  It is possible 
that it might have been easier to parallelize COMPOSE using UPC, but we did not look into 
that possibility.  Even if the parallelization had been straightforward, using UPC would have 
had two distinct disadvantages.  The first is that translating 3000 lines of Fortran code into C 
code by hand is nontrivial (there are automatic Fortran-to-C translators, but their output is so 
cryptic as to make the translated code unmaintainable).  The second issue is that it can be 
difficult to obtain a reasonable level of performance on a vector processor when using C code.  
Therefore, it was decided to look for an entirely new project. 
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4. The New Project:  Running the NAS Benchmarks on the Cray X1 

It was desirable that any new project have the following characteristics: 

• Use CAF and/or UPC, 

• Have another version parallelized using either MPI and/or OpenMP available for 
comparison purposes, and 

• Fit into the remaining time frame given the available human and computer resources. 

Based on these criteria and Mr. Pressel’s prior experience running the MPI version of the NAS 
Parallel Benchmarks at the U.S. Army Research Laboratory – Major Shared Resource Center 
(ARL-MSRC), it was decided to try and run these benchmarks.  A search of the web showed 
that researchers at George Washington University (GWU) and elsewhere had already ported 
several of the NAS benchmarks to UPC.  A copy of these benchmarks was freely available from 
a website at GWU.  Similarly, a copy of a CAF version of the NAS benchmarks was freely 
available from a website at Rice University.  While the latter was based on a slightly older 
version of the NAS benchmarks (version 2.3 while the most recent MPI version is 2.4), this did 
not appear to be much of a problem. 

An important reason for selecting this project is that the original software was developed by the 
NAS Division at NASA Ames Research Center and is one of the most highly respected and 
widely used set of benchmarks for parallel computers (1).  These benchmarks are based on the 
needs of computational fluid dynamics applications, but appear to have relevance to other 
disciplines as well.  In Pressel and Jelani (2), a subset of the NAS benchmarks (BT, CG, lower 
uppercase decomposition [LU], and SP) were compared to the Linpack Parallel benchmark (3), 
STREAM benchmark (4), and peak processor speed (in MFLOPS).  It was found that, 
collectively, the subset of the NAS benchmarks were the best predictors of the performance of 
applications in Computational Chemistry and Material Science, Climate/Weather/Ocean 
Modeling and Simulation, Computational Fluid Dynamics, and Computational Structural 
Mechanics when using 1–1152 processors on 15 different system types from six different 
vendors. 

The UPC versions of the NAS benchmarks (NAS-UPC) were easily downloaded from the 
GWU site, and Mr. Pressel had previously downloaded the MPI versions of the NAS 
Benchmarks (NAS-MPI) (version 2.4) for another project.  Efforts to download the CAF 
version of the benchmarks (NAS-CAF) from the website failed.  However, with help from 
Charles Koebel, we were able to obtain a copy of those benchmarks as well.  It would be nice to 
report that our troubles ended there, but unfortunately, this is not the case.  Even though both of 
us made a serious effort to compile and link both NAS-UPC and NAS-CAF, we kept meeting 
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with failure.  Jeff Dawson of the AHPCRC provided additional guidance, but we just could not 
get those jobs to compile and link no matter what we tried (including renaming the files, and 
making simple changes to code in response to compiler error messages). 

Eventually, guidance was received from GWU that the version of the NAS-UPC benchmarks 
that is on their web site is based on a later version of the UPC standard than that supported by 
the Cray compilers we had access to, and that it would be impossible to run these benchmarks 
on the Cray X1 (5).  Apparently, another version of the NAS-UPC benchmarks does exist, but 
was not currently available for downloading.  There were many problems with NAS-CAF 
benchmarks.  Unfortunately, the source of several of those problems remains a mystery.  
Fortunately, the NAS-MPI benchmarks all compiled on the first try.  Unfortunately, we were 
unable to get the LU benchmark to run properly on the Cray X1, even when all optimizations 
were disabled using the –O0 option. 

5. Procedure 

In general, Cray seems to recommend using MSP mode.  While it may be possible that for 
well-tuned code that will normally be the best choice, there were serious concerns that the 
compiler would have trouble using all of the SSPs per MSP when running untuned code in MSP 
mode.  Therefore, it was decided that initially we would concentrate on running in SSP mode.  
Eventually MSP mode runs were also made, but in many cases they were considerably slower 
than SSP mode runs using a comparable number of processors (remember, 4 SSPs = 1 MSP, so 
an example of a comparable number of processors is 4 MSPs vs. 16 SSPs). 

In order to be as fair as possible, without actually adding compiler directives or in some other 
manner tuning the benchmarks, it was decided to use the highest level of optimization possible.  
The documentation for the Fortran compiler indicates that –O3 may in fact not be the highest 
level of optimization possible.  Therefore, the Fortran runs were compiled using –O scalar3, 
vector3, ssp for SSP mode runs, and –O scalar3,vector3 for MSP mode runs.  For MSP mode 
runs, -O scalar3, vector3, stream3, aggress was also tried.  However, it seemed to make little or 
no difference in performance, and some jobs actually ran slightly slower with this combination 
of options. 

It was observed that the embarrassingly parallel (EP) benchmark ran substantially slower on the 
Cray X1 than on other systems Mr. Pressel had previously benchmarked.  Since the EP 
benchmark spends almost all of its time calculating random numbers, it was assumed that the 
compiler had failed to vectorize the random number generator.  After carefully rereading the 
documentation, it was found that the benchmarks come with several alternative random number 
generators.  One of the alternative random number generators (randdpvec) is computationally 
less efficient than the default random number generator.  However, since it is written in a 
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manner that supports automatic vectorization by the compiler, it was expected to significantly 
improve the performance of the EP benchmark, and probably to a lesser extent the performance 
of some of the other benchmarks as well.  Therefore, all of the SSP and MSP runs were made 
one more time. 

The documentation for the C compiler indicated that –O3 was the maximum level of 
optimization.  Therefore, the only other option that was required was –h SSP, which specifies 
SSP mode.  Historically, C code has not performed well on vector processors.  Furthermore, it is 
not clear which sorting algorithms would be the best match for a vector processor.  However, it 
is likely that, as with the random number generator, it would not be the best choice for a scalar 
processor.  Therefore, we did not expect particularly good performance for the IS benchmark on 
the Cray X1, and unfortunately our expectations were met. 

Ms. Thompson made her runs using the 16 processes (SSP) interactive partition, while Mr. 
Pressel worked with Hung Nguyen of the AHPCRC to work out the details of how to submit 
batch jobs.  For both the interactive and batch jobs, there were a number of problems associated 
with the way the memory system works.  In particular, most jobs are limited to using 1 GB of 
main memory per process when running in SSP mode (4 GB in MSP mode), and there is no 
virtual memory.  For interactive jobs, one can easily override this using either the –c or –m 
options for mpirun (up to the limits of available memory on the interactive node – 16 GB in this 
case).  However, for batch jobs, the only solution to the problem is to use the –m exclusive 
option in combination with the –N option.  This specifies how many processes will run on each 
node, and allows the processes to use as much memory as they need (up to the available limits 
on the node, 16 GB in this case).  Unfortunately, it frequently meant that a dedicated node was 
required, when a more flexible system might have been able to make better use of the resources. 

An associated problem is that one must place a power of 2 number of processes on each node.  
In some cases, this meant that more nodes were needed than would have been required with a 
more flexible system.  In other cases, it actually prevented us from running some Class D (over 
time several problem sizes, called classes, have been defined for the NAS benchmarks—W, A, 
B, C, and D) jobs.  They simply could not be scheduled on this system, even though with a 
more flexible system it should have been possible to run some of these jobs.  An example of this 
is when scheduling a 25 processor job on the three nodes of the batch partition, the ideal 
schedule would be to place 8 processes on each of two nodes, and 9 processes on the third node.  
Instead, the best that could be done using only three of the nodes was to schedule 16 processes 
on one node, and the remaining 9 processes on a second node.  While it might have been 
possible to run the Class D BT benchmark with the ideal schedule, the less-than-ideal schedule 
lacked sufficient memory with which to run this job.  It should be noted that in order to use 
more than 1 GB of memory/SSP, one needs to request exclusive nodes when running in batch 
mode.  There was no way in which to run this job using all four nodes. 
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Since we were unable to run NPB-CAF and NPB-UPC, a literature search was conducted using 
Google.  Several papers were found that provided additional results for these benchmarks (6–8).  
Results excerpted from those papers have been used to supplement our own results.  Both 
sources of results will be used in the remainder of this work. 

6. Results 

This project was intended to concentrate on learning as much as possible in the short time 
available about CAF and/or UPC.  Unfortunately, as was previously mentioned, we were unable 
to get any of the available NAS benchmarks written in either of these languages to run on the 
Cray X1.  However, others with more time/expertise have faired better.  Therefore, the 
following two charts will compare the performance of NPB-MPI based on our measurements, to 
those reported for NPB-CAF and NPB-UPC as reported in the literature. 

Figure 1 shows that for the BT benchmark of version 2.4 of NPB-MPI (Class B), it vectorized 
poorly, if at all, on the Cray X1.  This was a surprise since Saini and Bailey (9) clearly indicate 
that an earlier version of this benchmark was able to achieve 20% of peak on the Cray C90.  
After consulting with the NPB group at NAS, we were given access to a specially written 
version of NPB-MPI.  Clearly it performs much better.  On the other hand, it is important to 
note how poorly the UPC version of this benchmark performed.  One should also note that, in 
some cases, the MSP runs appear to have been using only one of the four SSPs per MSP, 
resulting in their poor showing. 

Cray X1 Comparsion for the NPB Class B BT 
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Figure 1.  A comparison of the performance of different implementations/modes of running of 
the NPB 2.4 BT benchmark on the Cray X1.   
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Similarly, figure 2 shows the results for the MG benchmark of NPB version 2.4 (Class B).  
However, in this case, the compiler was able to achieve a significant level of vectorization for 
NPB-MPI.  Furthermore, the compiler was able to make efficient use of all four SSPs per MSP.  
It is interesting to note that the per-SSP performance when running in MSP mode actually 
exceeded that of runs done in SSP mode by a slight amount.  The performance of NPB-CAF 
(based on version 2.3 of NPB-MPI) appears to be competitive with that of the NPB-MPI in this 
case.  The NPB-UPC benchmark when running in MSP mode was almost as good, although it 
appears to be running into scalability problems.  It is surprising how poorly the SSP mode run 
for the NPB-UPC benchmark performed. 

Unfortunately, for most of the other benchmarks, we were unable to find sufficient results for 
NPB-CAF and/or NPB-UPC to make it worthwhile to make comparisons.  Figures 3–10 will 
compare the results for each of the eight NPB-MPI version 2.4 (Class B) benchmarks on a cross 
platform basis (10).  It should be noted that on a per benchmark basis, the SSP and MSP runs 
were compared and whichever set of runs showed the best performance at 32 processors (36 in 
the cases of BT and SP), that set was used for this set of comparisons.  These charts will stop at 
32 (36) processors since that was the limit of what could be run on the Cray X1 we were using.  
In general, all of the remaining systems continued to show scaling for these benchmarks when 
using larger numbers of processors.  Presumably, the same would be true when using a larger 
Cray X1.   

Cray X1 Comparison for the NPB Class B MG 
Benchmark
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Figure 2.  A comparison of the performance of different implementations/modes of running of 
the NPB 2.4 MG benchmark on the Cray X1. 
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Cross Platform Performance Comparsion
 for the NPB Class B BT Benchmark
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Figure 3.  Cross-platform performance comparison for the NPB Class B BT benchmark. 
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Figure 4.  Cross-platform performance comparison for the NPB Class B CG benchmark. 
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Cross Platform Performance Comparison
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Figure 5.  Cross-platform performance comparison for the NPB Class B EP benchmark. 
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Figure 6.  Cross-platform performance comparison for the NPB Class B FT benchmark. 

Reviewing figures 3–10, there are some concerns over the scalability of these benchmarks on 
the Cray X1.  In general, given a fixed problem size, for large numbers of processors, one will 
normally see issues with scalability.  However, for 32–36 processors and the Class B NPB-MPI 
benchmarks, one rarely observes these problems.  There are two ways to interpret this data.  
Cray could still have problems with the implementation of MPI on the Cray X1 (something that 
they have previously warned about in their training classes).  Alternatively, when going to 
larger numbers of processors, the available parallelism for use in vectorizing the code may be 
sufficiently limited as to result in suboptimal vector lengths (normally referred to as short 
vectors). 
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Cross Platform  Perform ance Com parison
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Figure 7.  Cross-platform performance comparison for the NPB Class B IS benchmark. 
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Figure 8.  Cross-platform performance comparison for the NPB Class B LU benchmark. 

Figures 11 and 12 show the parallel efficiency of the Cray X1 and three other systems for the 
BT and LU benchmarks as a function of the problem size (Class).  Ideally, the parallel 
efficiency should be close to 1.0, and numbers below 0.70 (70%) are generally considered to be 
undesirable.  It is interesting to note that, regardless of the cause, the Cray X1 has a significantly 
lower level of parallel efficiency than the other three systems.  This helps to explain why, in 
general, when looked at on a per-SSP basis, the Cray X1 is at best a good performer. 
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Cross Platform  Performance Comparison
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Figure 9.  Cross-platform performance comparison for the NPB Class B MG benchmark. 
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Figure 10.  Cross-platform performance comparison for the NPB Class B SP benchmark. 

7. Observations and Conclusions 

Compared to HPF, CAF is not a simple extension to the Fortran programming language.  UPC 
is still an evolving target, which makes it difficult to write programs that are portable between 
compilers.  UPC, CAF, and HPF all appear to suffer from the same limitation; they are likely to 
generate a large number of short messages.  This makes programs written in those languages 
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Comparison of the Parallel Efficiency for Different Systems for 
the NPB 2.4 BT Benchmark When Using 36 Processors
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Figure 11.  Comparison of the parallel efficiency for different systems for the NPB 2.4 BT benchmark 
when using 36 processors. 
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Figure 12.  Comparison of the parallel efficiency for different systems for the NPB 2.4 LU benchmark when 
using 32 processors. 
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much more dependent on the latency of the message passing system.  On the Cray X1, the UPC 
and CAF compilers are able to take advantage of the same low-latency hardware support as 
used by calls to SHMEM.  However, many competing systems are optimized for bandwidth, not 
latency, and would be poor choices for use with these languages.  Additionally, as the processor 
speeds increase, even a low-latency interface may appear to be expensive when measured in 
much more dependent on the latency of the message passing system.  On the Cray X1, the UPC 
terms of missed opportunities to start floating point operations.  Therefore, the long-term 
viability of these languages is uncertain.  Additionally, since it is difficult to vectorize C code, 
running UPC on the Cray X1 would appear to be a questionable proposition. 

For some of the benchmarks when using NPB-MPI (CG, MG, and SP), MSP mode was the best 
choice.  For the remaining five benchmarks, SSP mode was a strong winner.  We believe that, 
regardless of which mode one chooses to use, it is best to use the equivalent number of SSPs as 
the processor count when comparing performance with other systems on a per-processor basis.  
It should be noted that this approach to reporting performance will in no way affect efforts to 
report peak performance for a code, or related metrics. 

As was seen when the NPB-MPI version 3.1 (pre-release) BT benchmark was run, tuning for a 
new class of computer architecture can significantly affect performance.  It is likely that 
additional tuning of the BT, CG, EP, and IS benchmarks could improve their performance on 
the Cray X1.  In some cases, this tuning might hurt the performance on nonvector systems, in 
which case one might need to consider the desirability of supporting alternative versions of the 
code.  In other cases, it is likely that a single code base could be maintained, but that provisions 
for additional parameters in either the make.def file or one of the include files would be required 
to support customization of the implementation for the widest possible range of hardware.  
Recommendations for some of these changes have been passed on to Haoqiang Henry Jin of the 
NAS group at NASA Ames Research Center. 
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