

Evaluating Co-Array Fortran and Unified Parallel C

by Earlene L. Thompson and Daniel Pressel

ARL-MR-654 November 2006

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so
designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use
thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5067

ARL-MR-654 November 2006

Evaluating Co-Array Fortran and Unified Parallel C

Earlene L. Thompson
Southern Illinois University

Daniel Pressel

Computational and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

 ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

November 2006
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

1 June 2005–1 October 2005
5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

Evaluating Co-Array Fortran and Unified Parallel C

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

6UH7CL
5e. TASK NUMBER

6. AUTHOR(S)

Earlene L. Thompson* and Daniel Pressel

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: AMSRD-ARL-CI-HC
Aberdeen Proving Ground, MD 21005-5067

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-MR-654

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
*Southern Illinois University, Carbondale, IL 62901

14. ABSTRACT

Earlene L. Thompson worked as a summer intern at the U.S. Army Research Laboratory under the auspices of the Programming
Environmental and Training component of the Department of Defense High-Performance Computing Modernization Program.
Mr. Pressel was her mentor. Their project was to evaluate the benefits of two emerging languages for High-Performance
Computing: Co-Array Fortran (CAF) and Unified Parallel C (UPC). Originally, the project consisted of porting a locally
written High-Performance Fortran program to CAF. When it became clear that this project was beyond the intended scope for
this project, another project was selected. The alternate project was to download from the web CAF, UPC, and MPI versions of
the NAS Benchmarks and to run these benchmarks on a Cray X1 located at the U.S. Army High-Performance Computing
Research Center. This report will discuss both parts of Ms. Thompson’s internship.

15. SUBJECT TERMS

high-performance computing (HPC), parallel processing, Unified Parallel C (UPC), Co-Array Fortran (CAF)

16. SECURITY CLASSIFICATION OF:
19a. NAME OF RESPONSIBLE PERSON
Daniel Pressel

a. REPORT
UNCLASSIFIED

b. ABSTRACT
UNCLASSIFIED

c. THIS PAGE
UNCLASSIFIED

17. LIMITATION
OF ABSTRACT

UL

18. NUMBER
OF PAGES

26 19b. TELEPHONE NUMBER (Include area code)

410-278-9151
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

 iii

Contents

List of Figures iv

Acknowledgments v

1. Introduction 1

2. The Choice of Hardware and Related Topics 2

3. Porting COMPOSE to HPF 3

4. The New Project: Running the NAS Benchmarks on the Cray X1 4

5. Procedure 5

6. Results 7

7. Observations and Conclusions 12

8. References 15

Distribution List 16

 iv

List of Figures

Figure 1. A comparison of the performance of different implementations/modes
of running of the NPB 2.4 BT benchmark on the Cray X1. .. 7

Figure 2. A comparison of the performance of different implementations/modes
of running of the NPB 2.4 MG benchmark on the Cray X1. ... 8

Figure 3. Cross-platform performance comparison for the NPB Class B BT benchmark. 9
Figure 4. Cross-platform performance comparison for the NPB Class B CG benchmark. 9
Figure 5. Cross-platform performance comparison for the NPB Class B EP benchmark...... 10
Figure 6. Cross-platform performance comparison for the NPB Class B FT benchmark...... 10
Figure 7. Cross-platform performance comparison for the NPB Class B IS benchmark. 11
Figure 8. Cross-platform performance comparison for the NPB Class B LU benchmark. 11
Figure 9. Cross-platform performance comparison for the NPB Class B MG benchmark. ... 12
Figure 10. Cross-platform performance comparison for the NPB Class B SP benchmark. ... 12
Figure 11. Comparison of the parallel efficiency for different systems for the

NPB 2.4 BT benchmark when using 36 processors... 13
Figure 12. Comparison of the parallel efficiency for different systems for the

NPB 2.4 LU benchmark when using 32 processors. ... 13

 v

Acknowledgments

We wish to thank the Department of Defense High-Performance Computing Modernization
Program (DOD HPCMP) and the U.S. Army High-Performance Computing Research Center
(AHPCRC) for the grant of computer time with which to carry out this project. Additionally, we
thank the DOD HPCMP and the U.S. Army Research Laboratory-Major Shared Resource Center
(ARL-MSRC) for prior grants of computer time used to compile the data used for comparison
purposes. The DOD HPCMP, ARL, MSRC, and the Programming Environment and Training
(PET) component of the DOD HPCMP have provided a combination of financial, logistical, and
personal support for this project. Finally, our thanks go out to the following people from other sites
who helped us in so many ways:

• Paul Muzio, Barbara Bryan, Jeff Dawson, Hung Nguyen, and the entire staff of the AHPCRC.

• Tom Kendall, Phil Matthews, and the entire system staff of the ARL-MSRC.

• Charlie Nietubicz, Raju Namburu, Dale Shires, Nancy Schepleng, and numerous other
employees of and contractors for the High-Performance Computing Division, Computational
and Information Sciences Directorate, ARL.

• The entire PET staff located at the ARL-MSRC.

• Tarek El-Ghazawi of George Washington University.

• Charles Koebel of Rice University.

• Haoqiang Henry Jin of the NAS group at NASA Ames Research Center.

Finally, Mr. Pressel would like to thank Earlene Thompson for perseverance during a project that
proved to be a bit tougher than first expected.

 vi

INTENTIONALLY LEFT BLANK.

 1

1. Introduction

Every year, the U.S. Army Research Laboratory (ARL) in conjunction with the Programming
Environment and Training (PET) component of the Department of Defense High-Performance
Computing Modernization Program (DOD HPCMP) hosts several interns. These interns are
always college students, most of whom are either juniors or seniors. Their principal duties
involve carrying out research involving high-performance computing (HPC) and/or the related
disciplines of high-performance networking and scientific visualization. This report is based on
the work and experiences of Earlene L. Thompson during her internship in the summer of 2005.

The goal of this topic was to perform preliminary work with regard to Unified Parallel C (UPC)
and/or Co-Array Fortran (CAF). Neither of us had any background in either of these languages
although both of us had experience using C. Additionally, the mentor had significant
experience using Fortran, parallelizing programs, and UNIX/LINUX-based systems. The
rationale for choosing these languages has to do with the Defense Advanced Research and
Projects Agency (DARPA). They have a project called High Productivity Computing Systems
(HPCS) whose goal is to develop PetaFLOP computers. There are currently three vendors
working on this project. In addition to developing hardware for this project, the vendors are
required to develop new programming environments to facilitate the use of the emerging
platforms. One of the vendors is Cray, Inc., and they have selected these two languages as part
of their proposal. While the languages have not been finalized (adopted by a national/
international standards-setting body), they appeared to have matured to the point that this would
be a viable project.

With this background, it was decided that the project would consist of porting a meaningful
program to one of the two languages. At the time, porting from High-Performance Fortran
(HPF) to CAF seemed to be an obvious match. An early version of a workhorse program
developed within our branch seemed to be a reasonable, if not perfect, choice. This program is
called COMPOSE and was written by Ram Mohan and Dale Shires. COMPOSE is a
composites manufacturing simulation code used to optimize the fabrication process. The HPF
version of the code consists of ~3000 lines of Fortran code, including 130 lines specific to HPF.
The assumption was that most of the effort in porting this program to CAF would center around
these 130 lines (primarily declaration statements). When it was shown that this assumption was
incorrect and that all 3000 lines would probably need to be modified (to provide access to
shared arrays), it was decided that this was beyond the scope of this project. Therefore, a new
project needed to be quickly selected.

Attempting to maintain the spirit of the original project, it was decided to measure the
performance of the NAS benchmarks on the Cray X1. This project was selected since these are
widely reported and highly respected benchmarks (1). Of equal importance, references on the

 2

web indicated that a message passing interface (MPI) version of these benchmarks could be
downloaded from NASA Ames Research Center, a UPC version of some of these benchmarks
could be downloaded from George Washington University (GWU), and a CAF version of these
benchmarks could be downloaded from Rice University. Therefore, it was expected that, given
the limited amount of time remaining, we would be able to run all of these benchmarks for a
range of processor counts for at least some of the smaller benchmark sizes (e.g., W, A, and B).
Our results, conclusions, and the problems we ran into will comprise the bulk of this report.

2. The Choice of Hardware and Related Topics

When selecting a platform on which to carry out this research, the obvious choice was a Cray
X1 or the newer Cray X1E. The U.S. Army High-Performance Computing Research Center
(AHPCRC), which is supported by both the U.S. Army and the DOD HPCMP, has a small
Cray X1 and a much larger Cray X1E. We requested and received access to the Cray X1 which
is reserved primarily for educational purposes. The compilers on this system support both UPC
and CAF. The system consists of 4 nodes, each with 16 SSP processors and 16 GB of main
memory. Each SSP processor has a scalar unit rated at 400 MFLOPS and a vector unit rated at
3.2 GFLOPS. Jobs may either request processors in terms of SSPs or MSPs. In the later case,
each MSP consists of four tightly coupled SSPs, with the compiler being called on to split the
work among as many of the SSPs in each MSP as it can. Additional information on the design
of the Cray X1 can be found on the Cray website http://www.cray.com.

It should also be noted that the processors are grouped into nodes, with each node consisting of
16 SSPs (4 MSPs). Ordinarily, one of these nodes is reserved for use as an Input/Output
node/Login node, which can also be used to run interactive jobs using up to 16 SSPs (4 MSPs).
The batch system has dedicated access to the other three nodes. We were given special access
to this system to run 49 processor jobs, but were unable to run 64 processor jobs. The main
concern here is that it is very difficult to show high levels of performance when using all of the
processors in a system (almost any system). There is enough interference from system
daemons, which even if everyone is asked to logout, rarely will one show anything approaching
linear speedup. In fact, most large systems have dedicated I/O nodes that may not even be
mentioned when discussing the system’s size.

Another issue is the unusual approach that Cray takes to scheduling jobs on their systems. Jobs
of higher priority may actually cause a lower priority job to lose its processors for an extended
period of time. Even when dealing with jobs of equal priority, various forms of time sharing
seem to be taking place. This can range from having a job stream rolled out when a new job
starts up, to having two or more jobs actually time sharing their processors with varying time
quanta (probably ranging from under a second to many minutes in duration). The
documentation indicated that this could result in widely varying run times, but should not

 3

significantly affect the CPU time. In some cases, the operating system left hints in the output
file as to ways to improve the run time. In some cases, we took advantage of these hints and
reran the jobs. In other cases, the effect seemed to be small enough that the hint was ignored
and work continued on with other runs. In most cases, these effects were most pronounced
when using small numbers of processors (e.g., 1–4 SSPs or 1 MSP).

It should be noted at this point that our principal goal was getting our feet wet when using
either CAF and/or UPC. It was not anticipated that there would be sufficient time to worry
about modifying the code, or even putting in a modest number of compiler directives designed
to improve either vectorization or the performance of the code when running in MSP mode.
Therefore, it was expected that our runs would be made with the highest levels of optimization
(scalar, vector, and MSP) supported by the compiler, and we would just have to hope for the
best.

3. Porting COMPOSE to HPF

Since HPF and CAF are both extensions to the Fortran standard, it was assumed/hoped that
only modest changes would be required to port a program from HPF into CAF. This would
possibly be the case when dealing with a program using structured grids. However,
COMPOSE uses unstructured grids and was difficult to parallelize using HPF in the first place.
After spending several weeks working on this project, we developed serious misgivings about
it. From our slightly naïve perspective, it appeared as though it would be necessary to use full
Co-Array syntax for virtually all of the array references in order to support a mix of local and
remote memory accesses on a seamless basis. In contrast, HPF had largely done that
automatically based on distribution statements in the declaration section of each program unit.

This was significantly more work than we had anticipated. Since parallelization is normally an
all or nothing proposition—some forms of shared memory parallelism (e.g., OpenMP) being
the principal exception—it was decided to look for another project to work on. It is possible
that it might have been easier to parallelize COMPOSE using UPC, but we did not look into
that possibility. Even if the parallelization had been straightforward, using UPC would have
had two distinct disadvantages. The first is that translating 3000 lines of Fortran code into C
code by hand is nontrivial (there are automatic Fortran-to-C translators, but their output is so
cryptic as to make the translated code unmaintainable). The second issue is that it can be
difficult to obtain a reasonable level of performance on a vector processor when using C code.
Therefore, it was decided to look for an entirely new project.

 4

4. The New Project: Running the NAS Benchmarks on the Cray X1

It was desirable that any new project have the following characteristics:

• Use CAF and/or UPC,

• Have another version parallelized using either MPI and/or OpenMP available for
comparison purposes, and

• Fit into the remaining time frame given the available human and computer resources.

Based on these criteria and Mr. Pressel’s prior experience running the MPI version of the NAS
Parallel Benchmarks at the U.S. Army Research Laboratory – Major Shared Resource Center
(ARL-MSRC), it was decided to try and run these benchmarks. A search of the web showed
that researchers at George Washington University (GWU) and elsewhere had already ported
several of the NAS benchmarks to UPC. A copy of these benchmarks was freely available from
a website at GWU. Similarly, a copy of a CAF version of the NAS benchmarks was freely
available from a website at Rice University. While the latter was based on a slightly older
version of the NAS benchmarks (version 2.3 while the most recent MPI version is 2.4), this did
not appear to be much of a problem.

An important reason for selecting this project is that the original software was developed by the
NAS Division at NASA Ames Research Center and is one of the most highly respected and
widely used set of benchmarks for parallel computers (1). These benchmarks are based on the
needs of computational fluid dynamics applications, but appear to have relevance to other
disciplines as well. In Pressel and Jelani (2), a subset of the NAS benchmarks (BT, CG, lower
uppercase decomposition [LU], and SP) were compared to the Linpack Parallel benchmark (3),
STREAM benchmark (4), and peak processor speed (in MFLOPS). It was found that,
collectively, the subset of the NAS benchmarks were the best predictors of the performance of
applications in Computational Chemistry and Material Science, Climate/Weather/Ocean
Modeling and Simulation, Computational Fluid Dynamics, and Computational Structural
Mechanics when using 1–1152 processors on 15 different system types from six different
vendors.

The UPC versions of the NAS benchmarks (NAS-UPC) were easily downloaded from the
GWU site, and Mr. Pressel had previously downloaded the MPI versions of the NAS
Benchmarks (NAS-MPI) (version 2.4) for another project. Efforts to download the CAF
version of the benchmarks (NAS-CAF) from the website failed. However, with help from
Charles Koebel, we were able to obtain a copy of those benchmarks as well. It would be nice to
report that our troubles ended there, but unfortunately, this is not the case. Even though both of
us made a serious effort to compile and link both NAS-UPC and NAS-CAF, we kept meeting

 5

with failure. Jeff Dawson of the AHPCRC provided additional guidance, but we just could not
get those jobs to compile and link no matter what we tried (including renaming the files, and
making simple changes to code in response to compiler error messages).

Eventually, guidance was received from GWU that the version of the NAS-UPC benchmarks
that is on their web site is based on a later version of the UPC standard than that supported by
the Cray compilers we had access to, and that it would be impossible to run these benchmarks
on the Cray X1 (5). Apparently, another version of the NAS-UPC benchmarks does exist, but
was not currently available for downloading. There were many problems with NAS-CAF
benchmarks. Unfortunately, the source of several of those problems remains a mystery.
Fortunately, the NAS-MPI benchmarks all compiled on the first try. Unfortunately, we were
unable to get the LU benchmark to run properly on the Cray X1, even when all optimizations
were disabled using the –O0 option.

5. Procedure

In general, Cray seems to recommend using MSP mode. While it may be possible that for
well-tuned code that will normally be the best choice, there were serious concerns that the
compiler would have trouble using all of the SSPs per MSP when running untuned code in MSP
mode. Therefore, it was decided that initially we would concentrate on running in SSP mode.
Eventually MSP mode runs were also made, but in many cases they were considerably slower
than SSP mode runs using a comparable number of processors (remember, 4 SSPs = 1 MSP, so
an example of a comparable number of processors is 4 MSPs vs. 16 SSPs).

In order to be as fair as possible, without actually adding compiler directives or in some other
manner tuning the benchmarks, it was decided to use the highest level of optimization possible.
The documentation for the Fortran compiler indicates that –O3 may in fact not be the highest
level of optimization possible. Therefore, the Fortran runs were compiled using –O scalar3,
vector3, ssp for SSP mode runs, and –O scalar3,vector3 for MSP mode runs. For MSP mode
runs, -O scalar3, vector3, stream3, aggress was also tried. However, it seemed to make little or
no difference in performance, and some jobs actually ran slightly slower with this combination
of options.

It was observed that the embarrassingly parallel (EP) benchmark ran substantially slower on the
Cray X1 than on other systems Mr. Pressel had previously benchmarked. Since the EP
benchmark spends almost all of its time calculating random numbers, it was assumed that the
compiler had failed to vectorize the random number generator. After carefully rereading the
documentation, it was found that the benchmarks come with several alternative random number
generators. One of the alternative random number generators (randdpvec) is computationally
less efficient than the default random number generator. However, since it is written in a

 6

manner that supports automatic vectorization by the compiler, it was expected to significantly
improve the performance of the EP benchmark, and probably to a lesser extent the performance
of some of the other benchmarks as well. Therefore, all of the SSP and MSP runs were made
one more time.

The documentation for the C compiler indicated that –O3 was the maximum level of
optimization. Therefore, the only other option that was required was –h SSP, which specifies
SSP mode. Historically, C code has not performed well on vector processors. Furthermore, it is
not clear which sorting algorithms would be the best match for a vector processor. However, it
is likely that, as with the random number generator, it would not be the best choice for a scalar
processor. Therefore, we did not expect particularly good performance for the IS benchmark on
the Cray X1, and unfortunately our expectations were met.

Ms. Thompson made her runs using the 16 processes (SSP) interactive partition, while Mr.
Pressel worked with Hung Nguyen of the AHPCRC to work out the details of how to submit
batch jobs. For both the interactive and batch jobs, there were a number of problems associated
with the way the memory system works. In particular, most jobs are limited to using 1 GB of
main memory per process when running in SSP mode (4 GB in MSP mode), and there is no
virtual memory. For interactive jobs, one can easily override this using either the –c or –m
options for mpirun (up to the limits of available memory on the interactive node – 16 GB in this
case). However, for batch jobs, the only solution to the problem is to use the –m exclusive
option in combination with the –N option. This specifies how many processes will run on each
node, and allows the processes to use as much memory as they need (up to the available limits
on the node, 16 GB in this case). Unfortunately, it frequently meant that a dedicated node was
required, when a more flexible system might have been able to make better use of the resources.

An associated problem is that one must place a power of 2 number of processes on each node.
In some cases, this meant that more nodes were needed than would have been required with a
more flexible system. In other cases, it actually prevented us from running some Class D (over
time several problem sizes, called classes, have been defined for the NAS benchmarks—W, A,
B, C, and D) jobs. They simply could not be scheduled on this system, even though with a
more flexible system it should have been possible to run some of these jobs. An example of this
is when scheduling a 25 processor job on the three nodes of the batch partition, the ideal
schedule would be to place 8 processes on each of two nodes, and 9 processes on the third node.
Instead, the best that could be done using only three of the nodes was to schedule 16 processes
on one node, and the remaining 9 processes on a second node. While it might have been
possible to run the Class D BT benchmark with the ideal schedule, the less-than-ideal schedule
lacked sufficient memory with which to run this job. It should be noted that in order to use
more than 1 GB of memory/SSP, one needs to request exclusive nodes when running in batch
mode. There was no way in which to run this job using all four nodes.

 7

Since we were unable to run NPB-CAF and NPB-UPC, a literature search was conducted using
Google. Several papers were found that provided additional results for these benchmarks (6–8).
Results excerpted from those papers have been used to supplement our own results. Both
sources of results will be used in the remainder of this work.

6. Results

This project was intended to concentrate on learning as much as possible in the short time
available about CAF and/or UPC. Unfortunately, as was previously mentioned, we were unable
to get any of the available NAS benchmarks written in either of these languages to run on the
Cray X1. However, others with more time/expertise have faired better. Therefore, the
following two charts will compare the performance of NPB-MPI based on our measurements, to
those reported for NPB-CAF and NPB-UPC as reported in the literature.

Figure 1 shows that for the BT benchmark of version 2.4 of NPB-MPI (Class B), it vectorized
poorly, if at all, on the Cray X1. This was a surprise since Saini and Bailey (9) clearly indicate
that an earlier version of this benchmark was able to achieve 20% of peak on the Cray C90.
After consulting with the NPB group at NAS, we were given access to a specially written
version of NPB-MPI. Clearly it performs much better. On the other hand, it is important to
note how poorly the UPC version of this benchmark performed. One should also note that, in
some cases, the MSP runs appear to have been using only one of the four SSPs per MSP,
resulting in their poor showing.

Cray X1 Comparsion for the NPB Class B BT
Benchmark

0
2000
4000
6000
8000

10000
12000
14000
16000

0 10 20 30 40

Number of Processors

To
ta

l P
er

fo
rm

an
ce

M

FL
O

PS MPI - SSP
MPI - MSP
CAF - SSP
CAF - MSP
UPC - SSP
UPC - MSP
MPI-SSP-3.1

Figure 1. A comparison of the performance of different implementations/modes of running of
the NPB 2.4 BT benchmark on the Cray X1.

 8

Similarly, figure 2 shows the results for the MG benchmark of NPB version 2.4 (Class B).
However, in this case, the compiler was able to achieve a significant level of vectorization for
NPB-MPI. Furthermore, the compiler was able to make efficient use of all four SSPs per MSP.
It is interesting to note that the per-SSP performance when running in MSP mode actually
exceeded that of runs done in SSP mode by a slight amount. The performance of NPB-CAF
(based on version 2.3 of NPB-MPI) appears to be competitive with that of the NPB-MPI in this
case. The NPB-UPC benchmark when running in MSP mode was almost as good, although it
appears to be running into scalability problems. It is surprising how poorly the SSP mode run
for the NPB-UPC benchmark performed.

Unfortunately, for most of the other benchmarks, we were unable to find sufficient results for
NPB-CAF and/or NPB-UPC to make it worthwhile to make comparisons. Figures 3–10 will
compare the results for each of the eight NPB-MPI version 2.4 (Class B) benchmarks on a cross
platform basis (10). It should be noted that on a per benchmark basis, the SSP and MSP runs
were compared and whichever set of runs showed the best performance at 32 processors (36 in
the cases of BT and SP), that set was used for this set of comparisons. These charts will stop at
32 (36) processors since that was the limit of what could be run on the Cray X1 we were using.
In general, all of the remaining systems continued to show scaling for these benchmarks when
using larger numbers of processors. Presumably, the same would be true when using a larger
Cray X1.

Cray X1 Comparison for the NPB Class B MG
Benchmark

0

2000
4000

6000
8000

10000

12000
14000

16000

0 10 20 30 40

Number of Processors

To
ta

l P
er

fo
rm

an
ce

 M
FL

O
PS

MPI-SSP
MPI-MSP
CAF-SSP
CAF-MSP
UPC-SSP
UPC-MSP

Figure 2. A comparison of the performance of different implementations/modes of running of
the NPB 2.4 MG benchmark on the Cray X1.

 9

Cross Platform Performance Comparsion
 for the NPB Class B BT Benchmark

0
2000
4000
6000
8000

10000
12000
14000
16000

0 10 20 30 40

Number of Processors

To
ta

l P
er

fo
rm

an
ce

M

FL
O

PS
SGI O3K 512 PE 400 MHz

IBM SP Power3 375 MHz (NH2)
single rail Colony Switch

IBM SP Power4 1.7 GHz dual rail
Federated Switch

Intel Pentium 4 Cluster Myrinet
2000 PGI Compiler

IBM SP Power4 1.3 GHz dual rail
colony switch

SGI Altix Itanium2 1.5 GHz

Air Cooled Cray X1 400 MHz

Air Cooled Cray X1 400 MHz -
NPB3.1-pre-release

Figure 3. Cross-platform performance comparison for the NPB Class B BT benchmark.

Cross Platform Performance Comparison
 for the NPB Class B CG Benchmark

0

1000

2000

3000

4000

5000

0 10 20 30 40

Number of Processors

To
ta

l P
er

fo
rm

an
ce

M

FL
O

PS

SGI O3K 512 PE 400 MHz

IBM SP Power3 375 MHz (NH2)
single rail Colony Switch
IBM SP Power4 1.7 GHz dual rail
Federated Switch
Intel Pentium 4 Cluster Myrinet 2000
Intel Compiler
IBM SP Power4 1.3 GHz dual rail
Colony Switch
SGI Altix Itanium2 1.5 GHz

Air Cooled Cray X1 400 MHz - MSP
Mode (SSP equivalents)

Figure 4. Cross-platform performance comparison for the NPB Class B CG benchmark.

 10

Cross Platform Performance Comparison
 for the NPB Class B EP Benchmark

0

100

200

300

400

500

600

0 10 20 30 40

Number of Processors

To
ta

l P
er

fo
rm

an
ce

M

O
PS

SGI O3K 512 PE 400 MHz

IBM SP Power3 375 MHz (NH2) single rail
Colony Switch
IBM SP Power4 1.7 GHz dual rail Federated
Switch
Intel Pentium 4 Cluster Myrinet 2000 Intel
Compiler
IBM SP Power4 1.3 GHz dual rail Colony Switch

SGI Altix Itanium2 1.5 GHz

Air Cooled Cray X1 400 MHz

Figure 5. Cross-platform performance comparison for the NPB Class B EP benchmark.

Cross Platform Performance Comparison

 for the NPB Class B FT Benchmark

0
2000
4000
6000
8000

10000
12000

0 10 20 30 40

Number of Processors

To
ta

l P
er

fo
rm

an
ce

M

FL
O

PS

SGI O3K 512 PE 400 MHz

IBM SP Power3 375 MHz (NH2)
single rail Colony Switch
IBM SP Power4 1.7 GHz dual rail
Federated switch
Intel Pentium 4 Cluster Myrinet
2000 PGI Compiler -Mvect2
IBM SP Power4 1.3 GHz dual rail
Colony Switch
Air Cooled Cray X1 400 MHz

Figure 6. Cross-platform performance comparison for the NPB Class B FT benchmark.

Reviewing figures 3–10, there are some concerns over the scalability of these benchmarks on
the Cray X1. In general, given a fixed problem size, for large numbers of processors, one will
normally see issues with scalability. However, for 32–36 processors and the Class B NPB-MPI
benchmarks, one rarely observes these problems. There are two ways to interpret this data.
Cray could still have problems with the implementation of MPI on the Cray X1 (something that
they have previously warned about in their training classes). Alternatively, when going to
larger numbers of processors, the available parallelism for use in vectorizing the code may be
sufficiently limited as to result in suboptimal vector lengths (normally referred to as short
vectors).

 11

Cross Platform Perform ance Com parison
 for the NPB Class B IS Benchmark

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35

Number of Processors

To
ta

l P
er

fo
rm

an
ce

M

O
PS

SGI O3K 512 PE 400 MHz

IBM SP Power3 375 MHz (NH2)
single rail Colony Switch

IBM SP Power4 1.7 GHz dual rail
Federated Switch

Intel Pentium 4 Cluster Myrinet
2000 Intel Compiler

IBM SP Power4 1.3 GHz dual rail
Colony Switch

SGI Altix Itanium2 1.5 GHz

Air Cooled Cray X1 400 MHz

Figure 7. Cross-platform performance comparison for the NPB Class B IS benchmark.

Cross Platform Performance Comparison
 for the NPB Class B LU Benchmark

0

5000

10000

15000

20000

25000

0 10 20 30 40

Number of Processors

To
ta

l P
er

fo
rm

an
ce

M

FL
O

PS

SGI O3K 512 PE 400 MHz

IBM SP Power3 375 MHz (NH2)
single rail Colony Switch
IBM SP Power4 1.7 GHz dual rail
Federated Switch
Intel Pentium 4 Cluster Myrinet
2000 Intel Compiler
IBM SP Power4 1.3 GHz dual rail
Colony Switch
SGI Altix Itanium2 1.5 GHz

Cray X1 Air Cooled 400 MHz
NPB3.1 - pre-release

Figure 8. Cross-platform performance comparison for the NPB Class B LU benchmark.

Figures 11 and 12 show the parallel efficiency of the Cray X1 and three other systems for the
BT and LU benchmarks as a function of the problem size (Class). Ideally, the parallel
efficiency should be close to 1.0, and numbers below 0.70 (70%) are generally considered to be
undesirable. It is interesting to note that, regardless of the cause, the Cray X1 has a significantly
lower level of parallel efficiency than the other three systems. This helps to explain why, in
general, when looked at on a per-SSP basis, the Cray X1 is at best a good performer.

 12

Cross Platform Performance Comparison
 for the NPB Class B MG Benchmark

0

5000

10000

15000

20000

0 10 20 30 40

Number of Processors

To
ta

l P
er

fo
rm

an
ce

M

FL
O

PS
SGI O3K 512 PE 400 MHz (SSP
Equivalents)

IBM SP Power3 375 MHz (NH2)
single rail Colony Switch

IBM SP Power4 1.7 GHz dual rail
Federated Switch

Intel Pentium 4 Cluster Myrinet
2000 PGI Compiler -Mvect2

IBM SP Power4 1.3 GHz dual rail
Colony Switch

SGI Altix Itanium2 1.5 GHz

Air Cooled Cray X1 400 MHz -
MSP Mode

Figure 9. Cross-platform performance comparison for the NPB Class B MG benchmark.

Cross Platform Performance Comparsion
 for the NPB Class B SP Benchm ark

0
2000
4000
6000
8000

10000
12000
14000

0 10 20 30 40

Number of Processors

To
ta

l P
er

fo
rm

an
ce

M

FL
O

PS

SGI O3K 512 PE 400 MHz

IBM SP Power3 375 MHz (NH2)
single rail Colony Switch

IBM SP Power4 1.7 GHz dual rail
Federated Switch

Intel Pentium 4 Cluster Myrinet
2000 PGI Compiler -Mvect2

IBM SP Power4 1.3 GHz dual rail
Colony Switch

SGI Altix Itanium2 1.5 GHz

Air Cooled Cray X1 400 MHz -
MSP Mode (SSP Equivalents)

Figure 10. Cross-platform performance comparison for the NPB Class B SP benchmark.

7. Observations and Conclusions

Compared to HPF, CAF is not a simple extension to the Fortran programming language. UPC
is still an evolving target, which makes it difficult to write programs that are portable between
compilers. UPC, CAF, and HPF all appear to suffer from the same limitation; they are likely to
generate a large number of short messages. This makes programs written in those languages

 13

Comparison of the Parallel Efficiency for Different Systems for
the NPB 2.4 BT Benchmark When Using 36 Processors

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

W A B C

CLASS

Pa
ra

lle
l E

ffi
ci

en
cy

SGI O3K 400 M Hz

IBM Power4+ 1700 M Hz
SP Federated Switch

Linux Cluster Pentium 4
3.06 GHz M yrinet 2000

Air Cooled Cray X1 400
M Hz - NPB 3.1 pre-
release

Figure 11. Comparison of the parallel efficiency for different systems for the NPB 2.4 BT benchmark
when using 36 processors.

Comparison of the Parallel Efficiency for Different Systems for
the NPB 2.4 LU Benchmark When Using 36 Processors

0

0.2

0.4

0.6

0.8

1

1.2

1.4

W A B C

CLASS

Pa
ra

lle
l E

ffi
ci

en
cy

SGI O3K 400 M Hz

IBM Power4+ 1700 M Hz
SP Federated Switch

Linux Cluster Pentium 4
3.06 GHz M yrinet 2000

Air Cooled Cray X1 400
M Hz - NPB 3.1 pre-
release

Figure 12. Comparison of the parallel efficiency for different systems for the NPB 2.4 LU benchmark when
using 32 processors.

 14

much more dependent on the latency of the message passing system. On the Cray X1, the UPC
and CAF compilers are able to take advantage of the same low-latency hardware support as
used by calls to SHMEM. However, many competing systems are optimized for bandwidth, not
latency, and would be poor choices for use with these languages. Additionally, as the processor
speeds increase, even a low-latency interface may appear to be expensive when measured in
much more dependent on the latency of the message passing system. On the Cray X1, the UPC
terms of missed opportunities to start floating point operations. Therefore, the long-term
viability of these languages is uncertain. Additionally, since it is difficult to vectorize C code,
running UPC on the Cray X1 would appear to be a questionable proposition.

For some of the benchmarks when using NPB-MPI (CG, MG, and SP), MSP mode was the best
choice. For the remaining five benchmarks, SSP mode was a strong winner. We believe that,
regardless of which mode one chooses to use, it is best to use the equivalent number of SSPs as
the processor count when comparing performance with other systems on a per-processor basis.
It should be noted that this approach to reporting performance will in no way affect efforts to
report peak performance for a code, or related metrics.

As was seen when the NPB-MPI version 3.1 (pre-release) BT benchmark was run, tuning for a
new class of computer architecture can significantly affect performance. It is likely that
additional tuning of the BT, CG, EP, and IS benchmarks could improve their performance on
the Cray X1. In some cases, this tuning might hurt the performance on nonvector systems, in
which case one might need to consider the desirability of supporting alternative versions of the
code. In other cases, it is likely that a single code base could be maintained, but that provisions
for additional parameters in either the make.def file or one of the include files would be required
to support customization of the implementation for the widest possible range of hardware.
Recommendations for some of these changes have been passed on to Haoqiang Henry Jin of the
NAS group at NASA Ames Research Center.

 15

8. References

1. The NAS Benchmark (NPB) home page. http://www.nas.nasa.gov.

2. Pressel, D. M.; Jelani, C. Benchmarking the Benchmarks; ARL-TR-2805; U.S. Army
Research Laboratory: Aberdeen Proving Ground, MD, September 2002.

3. Dongara, J. Linpack Benchmark-Parallel Table for the Linpack Benchmark. Published
electronically at http://www.netlib.org.

4. McCalpin, J. Equivalent MFLOPS Table for the STREAM Benchmark. Published
electronically at http://www.cs.virginia.edu/stream.

5. El-Ghazawi, T. Private correspondence dated 18 August 2005.

6. Bell, C.; et al. Evaluating Support for Global Address Space Languages on the Cray X1.
Published in the conference proceedings for ICS’04, Malo, France, 26 June–1 July 2004.

7. Dunigan, T.; et al. ORNL Cary X1 Evaluation (Dunigan). Published electronically at
http://www.csm.ornl.gov/~dunigan/cray, 21 April 2005.

8. El-Ghazawi, T. A.; et al. « Evaluation of UPC on the Cray X1 ». Published in the
Proceedings of the 2005 Cray Users Group Meeting, May 2005.

9. Saini, S.; Bailey, D. The NAS Parallel Benchmark Results 11-96, Version l.0, Report NAS-
96-018, November 1996. Published electronically at http://www.nas.nasa.gov/news/
techreports/1996/PDF/nas-96-018.pdf.

10. Faulkner, S. A. Performance of the NAS Parallel Benchmarks on an Origin3000 System.
Published electronically at http://people.nas.nasa.gov/~faulkner/o3k_npb_benchmarks.html.

NO. OF
COPIES ORGANIZATION

 16

 1 DEFENSE TECHNICAL
 (PDF INFORMATION CTR
 ONLY) DTIC OCA
 8725 JOHN J KINGMAN RD
 STE 0944
 FORT BELVOIR VA 22060-6218

 1 US ARMY RSRCH DEV &
 ENGRG CMD
 SYSTEMS OF SYSTEMS
 INTEGRATION
 AMSRD SS T
 6000 6TH ST STE 100
 FORT BELVOIR VA 22060-5608

 1 DIRECTOR
 US ARMY RESEARCH LAB
 IMNE ALC IMS
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

 3 DIRECTOR
 US ARMY RESEARCH LAB
 AMSRD ARL CI OK TL
 2800 POWDER MILL RD
 ADELPHI MD 20783-1197

ABERDEEN PROVING GROUND

 1 DIR USARL
 AMSRD ARL CI OK TP (BLDG 4600)

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 17

 1 PROG DIR
 C HENRY
 1010 N GLEBE RD
 STE 510
 ARLINGTON VA 22201

 1 DEP PROG DIR
 L DAVIS
 1010 N GLEBE RD
 STE 510
 ARLINGTON VA 22201

 1 DEP PROG DIR
 S SCHNELLER
 1010 N GLEBE RD
 STE 510
 ARLINGTON VA 22201

 1 HPC CTRS PROJ MGR
 J BAIRD
 1010 N GLEBE RD
 STE 510
 ARLINGTON VA 22201

 1 CHSSI PROJ MGR
 L PERKINS
 1010 N GLEBE RD
 STE 510
 ARLINGTON VA 22201

 1 NAVAL RSRCH LAB
 J OSBURN
 CODE 5594
 BLDG A49 RM 15
 WASHINGTON DC 20375-5340

 1 NAVAL RSRCH LAB
 R RAMAMURTI
 CODE 6410
 OVERLOOK AVE SW
 WASHINGTON DC 20375-5344

 1 NAVAL RSRCH LAB
 J MCCAFFREY
 HEAD OCEAN DYNAMICS
 PREDICTION BR
 CODE 7320
 STENNIS SPACE CTR MS 39529

 2 US AIR FORCE WRIGHT LAB
 J SHANG
 WL FIM
 2645 FIFTH ST
 STE 6
 WRIGHT PATTERSON AFB OH
 45433-7912

 1 USAF PHILIPS LAB
 S WIERSCHKE
 OLAC PL/RKFE
 10 E SATURN BLVD
 EDWARDS AFB CA 93524-7680

 1 NVL RSRCH LAB
 D PAPCONSTANTOPOULOS
 WASHINGTON DC 20375-5000

 1 AIR FORCE RSRCH LAB/DEHE
 R PETERKIN
 3550 ABERDEEN AVE SE
 KIRTLAND AFB NM 87117-5776

 1 NAVAL RSRCH LAB
 G HEBURN
 RSCH OCEANOGRAPHER CNMOC
 BLDG A491020 RM 178
 STENNIS SPACE CTR MS 39529

 1 AIR FORCE RSRCH LAB
 INFORMATION DIR
 R LINDERMAN
 26 ELECTRONIC PKWY
 ROME NY 13441-4514

 1 SPAWARSYSCEN (D4402)
 R WASILAUSKY
 BLDG 33 RM 0071A
 53560 HULL ST
 SAN DIEGO CA 92152-5001

 1 USAE WATERWAYS
 EXPERIMENT ST
 J HOLLAND
 CEWES HV C
 3909 HALLS FERRY RD
 VICKSBURG MS 39180-6199

NO. OF
COPIES ORGANIZATION

 18

 1 US ARMY CRD&ED
 B PERLMAN
 AMSEL RD C2
 FT MONMOUTH NJ 07703

 1 SPACE & NVL WRFR SYS CTR
 K BROMLEY
 CODE D7305
 BLDG 606 RM 325
 53140 SYSTEMS ST
 SAN DIEGO CA 92152-5001

 1 US ARMY HIGH PERFORMANCE
 COMPUTING RSRCH CTR
 B BRYAN
 1200 WASHINGTON AVE
 S MINNEAPOLIS MN 55415

 1 NAVAL CMD CNTRL &
 OCEAN SURVEILLANCE CTR
 L PARNELL
 HPC COORDINATOR 7 DIR
 NCCOSC RDTE DIV D3603
 49590 LASSING RD
 SAN DIEGO CA 92152-6148

 1 ASSOCIATE DIR
 S MOORE
 INNOVATIVE CMPTG LAB
 CMPTR SCI DEPT
 1122 VOLUNTEER BLVD STE 203
 KNOXVILLE TN 37996-3450

ABERDEEN PROVING GROUND

 11 DIR USARL
 AMSRD ARL CI HC
 J CLARKE
 P CHUNG
 J GOWENS
 B HENZ
 R NAMBURU
 C NIETUBICZ
 D PRESSEL
 D SHIRES
 R VALISETTY
 C ZOLTANI
 S BOGGAN

