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Abstract
EXPECT provides an environment for developing
knowledge-based systems that allows end-users to add
new knowledge without needing to understand the
details of system organization and implementation.
The key to EXPECT's approach is that it understands
the structure of the knowledge-based system being
built: how it solves problems and what knowledge it
needs to support problem-solving. EXPECT uses this
information to guide users in maintaining the knowl-
edge-based system. We have used EXPECT to develop
a tool for evaluating transportation plans.

1. Introduction
To successfully attack the large scale, real world domains
targeted by the ARPA/Rome Labs Planning Initiative col-
laboration is required.  People and machines must work
together to solve problems, each contributing what they do
best. In addition to planning systems, other computerized
tools are needed to support that collaboration—such as
tools for evaluating and cr itiquing plans.

In this paper we describe the EXPECT knowledge acqui-
sition framework which we have used to construct a plan
evaluation tool, the COA Evaluator. This application
evaluates alternative military transportation plans for
moving personnel and materiel from bases to crisis situa-
tions.  It takes a high-level description of a possible plan,
or course-of-action (COA),  and produces an evaluation of
the plan from a logistics perspective.  The evaluation indi-
cates, for example, how many logistic personnel will be
required to execute it, and how long the plan will take (the
closure date). Using the evaluator, planners can decide
which COA looks most attractive.

In complex, crisis planning domains, the knowledge
based systems that are developed to support planning (like
the COA Evaluator) must be adaptable to meet the par-
ticulars of a given situation: no one can envision all the
situations in which these tools might be used, or the
knowledge that would be needed to support them.  Because
these tools will be used in crisis situations, we cannot rely
on a phalanx of experienced knowledge engineers to per-
form the modifications.  Instead, we must empower end-

users so that they will be able to adapt the tools to their
needs.

EXPECT is the framework for knowledge based systems
that we are developing to support knowledge acquisition
and explanation.  A central idea behind EXPECT is the no-
tion that more powerful acquisition and explanation tools
can be constructed if acquisition and explanation concerns
are reflected in the structure of the knowledge based sys-
tems we create.  That is, rather than developing tools that
operate on conventional knowledge based systems, it is
first necessary to modify the architecture of the target
knowledge based systems so that they will be structured in
a way that provides better support for knowledge acquisi-
tion and explanation.  It is then possible to build tools that
exploit this additional information to provide enhanced
capabilities.

In prior work on the EES framework [Neches et al,
1985; Swartout et al., 1991] we explored the architectural
modifications that are needed to support explanation.
EXPECT extends the EES framework to support knowledge
acquisition.  In this paper, we discuss the architectural
features that support knowledge acquisition.

There are several knowledge acquisition capabilities that
we seek to support with the EXPECT architecture:
1. Users should be able to modify both factual knowledge
and problem solving knowledge.  Although many acquis i-
tion systems provide good support for modifying factual
knowledge, support for modifying problem solving knowl-
edge is more limited.  In early acquisition systems (such as
MORE [Eshelman 1988], SALT [Marcus and McDermott
1989], and ROGET [Bennett 1985]), a single problem
solving strategy (e.g. heuristic classification) was built into
the tool.  As a result, when one selected a tool, one also
determined the problem-solving strategy.  However, many
realistically-sized knowledge-based systems use several
problem solving strategies, so a tool that only supports a
single strategy won’t be much help.  Additionally, if the
user changes his mind about which problem-solving strat-
egy is appropriate, he may also have to change tools, po-
tentially losing a lot of work in re-configuring the domain
knowledge.  Recent knowledge acquisition work [Klinker
et al. 1991; Musen and Tu 1993] has partially addressed
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these problems by creating tools that can use multiple
problem-solving methods.  In PROTÉGÉ II [Musen and
Tu, 1993], problem solving methods are composed of pre-
encoded building blocks.   PROTÉGÉ II permits modifica-
tions to problem solving by substituting one building block
for another, however, users cannot modify the building
blocks themselves.  By constraining the user’s options to
just those that have been pre-encoded, he may not be able
to make the modification he wants.
2. Internal models (based on the knowledge based system
being modified) should guide knowledge acquisition rather
than external ones (based on the acquisition tool).   Current
acquisition systems cannot allow much modification to
problem solving knowledge because they use external
models of problem solving that are built into the acquisi-
tion tool. By understanding what factual knowledge is
needed to support problem solving the acquisition tool can
form expectations about what additional knowledge is re-
quired when the user adds or modifies the system’s knowl-
edge base.  In early acquisition tools, these expectations
were built, by hand, into the tool itself.  In more recent
work, such as PROTÉGÉ II, the interdependencies be-
tween factual knowledge and problem solving building
blocks are represented, but they are still entered by hand.

These limitations could be overcome and a wider range
of modifications and problem solving methods could be
supported if we could use an internal model for acquisi-
tion, that is, if the expectations for acquisition could be
derived from the system itself.  Furthermore, because the
interdependencies would be derived from the system rather
than entered by hand, they would change as the system
changed, and would be more likely to be correct and con-
sistent.
3. KA tools should support modifications at a semantic (or
knowledge) level rather than  just at a syntactic level.  KA
tools should help ensure that the knowledge a user adds
makes sense, that is, that it is coherent and consistent with
the rest of the knowledge base—not just that it is syntact i-
cally correct.  In addition, we want to facilitate the addition
of new knowledge by reducing the distance between what
the user understands and way the system represents it. The

system must be able to represent and manipulate concep-
tual entities that are meaningful to users and that are used
to describe the domain.  To further facilitate acquisition, a
KA tool should allow users to make modifications locally,
and guide them in resolving the global implications of the
changes. Providing assistance at the conceptual level and
allowing greater flexibility in the use of terminology will
free users to focus on what matters: getting the knowledge
right.

This paper describes several features of EXPECT’S ar-
chitecture that directly support the acquisition goals we
outlined above. Most of the examples in this paper are
based on the COA evaluator, but some are from another
domain we have used which is concerned with the diagno-
sis of faults in local area networks.

2. EXPECT Architecture Overview
A diagram of the overall EXPECT architecture appears in
Figure 1.  As we describe in the next section, EXPECT pro-
vides explicit and separate representations for different
kinds of knowledge that go into a knowledge based system.
EXPECT distinguishes domain facts, domain terminology
and problem solving knowledge.  These different sources
of knowledge are integrated together by a program instan-
tiator to produce a domain-specific knowledge based sys-
tem.  While the domain-specific system is being created,
the program instantiator also creates a design history.  The
design history records the interdependencies among the
different kinds of knowledge, such as what factual infor-
mation is used by the problem solving methods.  This in-
formation is used by the knowledge acquisition routines to
form the expectations that guide the knowledge acquisition
process.

3. Representing Knowledge in EXPECT
EXPECT represents different types of knowledge separately
and explicitly.  After describing the kinds of knowledge
that are represented in EXPECT we present in detail our
approach to representing goals.  This explicit representa-
tion of goals provides EXPECT with a better understanding
of the problem solving process.

3.1 Separation of Knowledge
It is well established that a major source of difficulties in
understanding, modifying and augmenting first generation
knowledge based systems stemmed from the use of low-
level knowledge representations that failed to distinguish
different kinds of knowledge (see [Chandrasekaran and
Mittal, 1982; Clancey, 1983b; Swartout, 1983]).  In a first
generation system, domain facts, problem solving knowl-
edge, and terminological definitions were all expressed in
rules.  A single rule might mix together clauses concerned
with the user interface, the system’s problem solving strat-
egy and internal record-keeping. Because none of these
different concerns were distinguished, it was often difficult
to understand exactly what the rule was supposed to do,
and when modifying a rule, it was difficult to see what the
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effect of the modification might be. Although early cr i-
tiques of these representations focused on their failure to
provide good explanations, these architectural flaws create
problems for acquisition as well.

A number of second generation expert system frame-
works have emerged in recent years (see [Chandrasekaran,
1986; Clancey, 1983a; Hasling et al., 1984; Neches et al,
1985; Swartout, 1983; Swartout et al., 1991; Wielinga and
Breuker, 1986]).  A common theme among these frame-
works is that they encourage a more abstract representation
of domain knowledge and problem solving knowledge that
makes distinctions between different kinds of knowledge
explicit.

By moving toward architectures that allow a system
builder to distinguish different kinds of knowledge and
represent them separately and more abstractly, second gen-
eration frameworks increased the modularity of an expert
system. This modularity facilitates KA by making systems
easier to understand and augment.

In EXPECT, we distinguish three different kinds of
knowledge: domain facts , domain terminology , and prob-
lem solving knowledge.  Domain facts are the relevant facts
about a system’s domain.  For example, the domain facts in
a system for transportation planning might include the fact
that the naval port of Los Angeles is Long Beach and that
the maximum depth of Long Beach berths is 50 feet.

The domain terminology (or ontology) provides the con-
ceptual structures that are used to describe a domain.  In a
transportation planning domain, the domain terminology
would include concepts for various kinds of ports, such as
airports and seaports, and concepts for describing the vari-
ous kinds of movements1 and materiel to be moved, among
other things.  Concepts can be defined in terms of other
concepts. Domain terminology provides a set of terms, or
concepts, that can be used to describe some situation.  The
existence of a concept does not  imply that the object it de-
scribes actually exists—concepts are just descriptions that
may or may not apply in any given situation.  Domain
facts, on the other hand, use domain terminology to repre-
sent what exists.

To represent both domain facts and terminology,
EXPECT uses Loom [MacGregor 1988].  Loom provides a
descriptive logic representation language and a classifier
for inference.  Facts are represented as Loom instances,
while terminology is represented using Loom concepts.
Both instances and concepts are structured, frame-based
representations with slots that indicate relations in which
the object is involved.

Loom’s classifier benefits knowledge acquisition.  Given
a set of defined concepts, the classifier can automatically
organize them into an is-a (or subsumption) hierarchy by
analyzing their definitions.  For example, suppose we de-
fine the following two concepts:
an AIRLIFT-MOVEMENT is a kind of MOVEMENT whose
destination is an AIRPORT

                                    
1In transportation planning, a “movement” specifies what is to be moved
from an origin to a destination at a particular time using some set of veh i-
cles.

an EXPRESS-MOVEMENT is a kind of MOVEMENT whose
duration is less than one DAY and whose desti-
nation is an AIRPORT

The classifier would figure out that an express-
movement is also a kind of airlift-movement, since the
definitions above state that any movement whose destina-
tion is an airport is an airlift-movement, and express-
movement meets that criteria.

Loom provides a declarative foundation for representing
concepts, relations and facts. The classifier helps maintain
the organization of the knowledge base, and as we will
describe, we use it to match problem solving methods with
goals. However, to be able to analyze the interdependen-
cies between the conceptual structure of a system and its
problem solving methods we need a highly declarative rep-
resentation for problem solving knowledge as well.  The
next section describes our representation of problem solv-
ing  knowledge.

3.2 Capturing Intent in Problem Solving
Problem solving knowledge in EXPECT is represented as
strategies (called methods) for achieving particular goals.
Each method has a capability description  associated with
it, which states what the method can do (e.g. “evaluate a
COA”), and a method body that describes how to achieve
the advertised capability of the method.  The steps can post
further subgoals for the system to achieve.  The language
used in the method bodies allows sequences of steps and
conditional expressions.

One of EXPECT’s architectural features that helps users
make modifications to problem solving knowledge is a rich
representation for goals and method capabilities that pro-
vides an explicit representation of intent. This representa-
tion makes it easier for people to understand what a method
is supposed to be doing, and makes it easier for EXPECT to
analyze a system’s structure and hence provide guidance to
a user in making modifications.

In most programming languages, function names have
no real semantics associated with them.  A good program-
mer may indicate what a function is supposed to do by
giving it an appropriate name (e.g. clear-screen) but
as far as the system is concerned, the name is just a string
of characters.  Furthermore, the relationship between the
function name (what is to be done) and the functional pa-
rameters (the things that will be involved in doing it) is
completely implicit. AI systems such as planners provide a
more explicit representation of what is to be done. Usually
the goal is represented as some sort of state expressed in
some form of predicate logic. A problem with this repre-
sentation that affects both acquisition and explanation is
that it is removed from the way people think and talk about
what they are doing, since protocols of people solving
problems show that they use verb clauses to describe what
they are doing rather than state descriptions (see for exam-
ple, [Anzai and Simon 1979]).

To address these difficulties and decrease the distance
between EXPECT’S internal representation and how people
talk about what they do, EXPECT’s representation is based



on a vocabulary of verbs. In EXPECT, we represent both
goals (what is to be done) and method capability descrip-
tions (what a method can do) using a verb clause represen-
tation based on case grammar. Each verb clause consists of
a verb and a set of slots (or “cases”) that are the parame-
ters. For example, the goal of evaluating a particular COA
is represented as a verb clause where the main verb is
“evaluate” and its (direct) object slot is filled by the COA
instance (e.g., “coa-3”) as follows:
(evaluate (obj (instance coa-3)))

The capability descriptions associated with methods are
represented similarly, except that they may contain vari-
ables.  For example, the following capability description
would be associated with a method that has the capability
to evaluate a course of action for force deployment:
(evaluate (obj (?c is (instance-of

                   deployment-coa))))

where:
deployment-coa is a coa

    that has force-movements

 For matching, the goals and capability descriptions are
translated into corresponding Loom concepts. The goal
above would match this capability description if coa-3
had movements of forces, since coa-3 would then be a
kind of deployment-coa.

This approach gives us a rich representation for what is
intended by a goal and what the capabilities of a method
are. Unlike the state-based representation, goals and capa-
bilities can be easily paraphrased into natural language.

Figure 2 shows a simple method from our system for
evaluating transportation plans. It finds the unloading time
of a movement by calculating the unloading time of the set
of available vehicles of the COA movement. There are two
things to notice about this method. First, it is relatively
straightforward to paraphrase the representations of the
capability description and the method body into under-
standable natural language, because their structure mirrors
natural language. Second, this method illustrates the use of
two general kinds of parameters that can be passed in
EXPECT. They distinguish between the kind of data that
will be provided to the method and the kind of task to be
accomplished by the method. They are indicated by in-
stance-of or specialization-of in the capability de-
scription. These keywords indicate how the matcher should
match these slots against the corresponding slots in goals.
Instance-of indicates that the slot is a data parameter

and will match an instance of the indicated type. Thus,
(instance-of movement) will match a movement in-
stance or an instance that is more specialized. Instance-
of slots work much like function parameters in conven-
tional programming languages: they supply the data that
the function manipulates. However, in EXPECT, slots on
goals do more than just provide data; they can also further
specify the task to be done. Task parameters are indicated
by specialization-of slots and match against concepts
that appear in corresponding slots in the goal. For example,
(specialization-of unloading-time) will match un-

loading-time or any of its specializations. The capa-
bility description of the method in Figure 2 will match a
goal such as:
(find (obj (specialization-of unloading-time))
      (of (instance movement-23)))

or it will match the goal:
(find (obj (specialization-of
             emergency-unloading-time))
      (of (instance movement-23)))

Notice the “obj” slot in both cases does not supply data
but instead it specifies the sort of information that is sup-
posed to be found by the method. Specialization-of
slots add an additional dimension for method abstraction,
allowing us to re-use the same method in several different
contexts, and they are one of the ways we achieve “loose-
coupling” in EXPECT, which we will discuss in detail in
Section 4.2. In the example in Figure 2, ?t is bound to the
concept in the goal that matches (specialization-of
unloading-time). The variable ?t is then used in the
method body to pass the goal context on to subgoals so that
the method body will compute for example the emer-
gency-unloading-time rather than the unloading-time
if emergency time was specified in the original goal.

The key features of our goal representation are: 1) it is
structured, 2) a richer representation for intent is provided
because the structure is based on a verb clause representa-
tion, and 3) in addition to data parameters, task parameters
are explicitly distinguished.

4. Bringing Knowledge Back Together: Loose
Coupling in  Expect

We have argued that by separating different kinds of
knowledge and providing explicit representations for them
knowledge based systems created within the EXPECT
framework can be easier to understand, and because the
separation provides increased modularity, they are easier to
augment and modify.  In this section, we describe how the
program instantiator works to match up and integrate dif-
ferent knowledge sources.  We refer to the matching proc-
ess we use as semantic match because resources are
matched up based on their meaning as opposed to their
syntax.  We argue that this loosens the coupling between
knowledge sources, which can have distinct advantages for
knowledge re-use and acquisition.

capability:
  (find
   (obj (?t is (specialization-of

                    unloading-time)))
      (of (?m is (instance-of

                        movement))))
result-type: (instance-of time-value)
method: (calculate

     (obj ?t)
     (of (available-vehicles ?m)))

Figure 2. A method to calculate the unloading time of a
movement



4.1 Resolving Goals: Semantic Matching And Goal
Reformulation
In many systems, matching of goals and methods is done
on a fairly syntactic basis.  Lexemes in goals must match
those in methods, and variables are matched by position.
In EXPECT, we have tried to move toward a matching
process that is based on the semantics of the goals rather
than their syntax, and one in which reformulation can be
used to achieve a match when a more direct match is not
possible.  In EXPECT, the ability to provide looser coupling
between goals and method capabilities depends on the way
that they are represented.  As we described in Section 3.2,
both goals and method capabilities are represented as verb
clauses.  A main verb states what is to be done, using a
number of slots that act as “cases” (as in case grammar).
For matching, both goals and method capabilities are
translated into Loom concepts that mirror their structure.

Semantic Match. One of the mechanisms EXPECT pro-
vides to achieve looser coupling is based on Loom’s classi-
fier.  Given an existing hierarchy of Loom concepts (and
their definitions) organized according to the subsumption
(is-a) relations between them, the classifier is capable of
figuring out where in the hierarchy a new concept belongs,
based solely on the definitions of the concepts.   To find
possible methods for accomplishing a goal, the Loom clas-
sifier is used to find those methods whose capability de-
scriptions subsume the goal.  The classifier provides a form
of semantic match, because match is based on the meaning
of concepts, not on their syntactic form.

 The semantic matcher finds methods whose capabilities
subsume the posted goal not only when it is given the class
name but also when it is given a description of the type of
object that needs to be matched. An example of this kind of
matching occurs in our network diagnosis domain.
EXPECT’s terminological knowledge contains the defini-
tion:
lanbridge-23 is a COMPONENT

that is CONNECTED-TO 2 networks

CONNECTED-COMPONENT is a COMPONENT
that is CONNECTED-TO some NETWORK

When EXPECT is reasoning with its problem solving
knowledge about how to achieve the goal:
(diagnose (obj

             (instance lanbridge-23)))

it will be able to match that goal with a method with the
capability description:
(diagnose (obj (?c is (instance-of

                CONNECTED-COMPONENT))))

because the classifier can figure out that lanbridge-23 is
a kind of component which is connected to a network,
based on the definitions of lanbridge-23 and CONNECTED-
COMPONENT above.  This kind of subsumption matching
allows EXPECT to reason about the semantics of a goal in
terms of the meaning of its parameters.

Reformulations. The second mechanism that EXPECT
provides for looser coupling of goals and methods is re-
formulation.  Usually if a method cannot be found to
achieve a goal using semantic match, the system will a t-
tempt to reformulate the goal and then look for methods to
achieve the resulting goal(s).  Goal reformulation involves
decomposing a goal and then assembling a new goal (or
goals) by transforming pieces of the original goal based on
their meaning.  To be able to perform goal reformulation,
one needs an explicit, decomposable representation for the
goal, definitions for the terms the goal is constructed from,
and domain facts to drive the reformulation process.

In EXPECT, we provide two general types of reformula-
tions, conjunctive and disjunctive. A conjunctive reformu-
lation involves transforming some goal into a set of goals,
where each of the goals   in the set must be performed to
achieve the intent of the initial goal. Thus, a conjunctive
reformulation is a form of divide-and-conquer: it splits a
problem up into subpieces that together achieve the origi-
nal goal. As in divide-and-conquer, the system must find a
way of recombining the results of each of the subproblems
back into an appropriate result for the original goal for a
conjunctive reformulation to be successful. A disjunctive
reformulation may also reformulate an initial goal into sev-
eral goals, but  at runtime, only one of the goals   needs to
be executed to achieve the intent of the original goal.

EXPECT provides three types of conjunctive reformula-
tions: covering, individualization, and set reformulations.

A covering  reformulation occurs when a goal can be
transformed into several new goals that together “cover”
the intent of the initial goal. Suppose that the following
goal is posted to estimate how many support personnel are
required for a COA:
(estimate (obj (specification-of
                     support-personnel)

(for (instance-of coa)))

Using subsumption matching, the system would try to find
methods for achieving this goal.  Suppose none were
found, because the system had no general method for est i-
mating the support personnel needed for a COA.  Suppose,
however, that the system did have methods for estimating
particular types of support personnel needed for a COA.
How could these methods be found?  When the system
failed initially to find a method, it would then try to refor-
mulate the goal into new goals.  If the domain model con-
tained the fact:
support-personnel is partitioned by
airport-support-personnel and
seaport-support-personnel

the system could reformulate the original goal into two
new goals:
(estimate (obj (specification-of
             airport-support-personnel)

(for (instance-of coa)))

and



(estimate (obj (specification-of
             seaport-support-personnel)

(for (instance-of coa)))

The system would then be able to find the two methods for
estimating particular types of support personnel needed for
a COA.   For conjunctive reformulations, part of the refor-
mulation process involves finding a function for re-
combining the results of each of the reformulations to form
the result for the original goal.  The appropriate function
for combining results is determined by the type of the goal.
In this example, the system adds the estimates together.

This sort of reformulation process reduces the need for
different parts of the knowledge base to match up exactly,
which enhances the possibilities for knowledge re-use
across systems. Also, because the system explicitly reasons
through the reformulation process, more of the design can
be captured to support knowledge acquisition. In this case,
if the user added a new type of support personnel to the
knowledge base, for example unloading-support-
personnel, then the system would use its record of this
reformulation to determine that it would be necessary to
perform the reformulation over again to capture the new
type of support personnel. EXPECT could detect that the
user needs to provide a method for estimating the law en-
forcement personnel needed for a COA. This is an example
of how EXPECT’s representations are useful to guide KA.
Individualization  reformulations are similar to covering
reformulations, except that they decompose a goal over a
set of objects into a set of goals over individual objects
(i.e., instances).  For example, given the goal of calculating
the employment personnel of the force modules in a COA:

(calculate (obj (specification-of
                 employment-personnel))

 (of (force-modules coa-2)))

and the domain fact that:
force-modules of coa-2 are the
  instances: 3rd-ACR 57th-IMF CVN71-ACN

the system could transform the original goal into three
goals:
(calculate (obj (specification-of
                 employment-personnel))

     (of (instance 3rd-ACR)))

(calculate (obj (specification-of
 employment-personnel))

      (of (instance 57th-IMF)))

(calculate (obj (specification-of
 employment-personnel))

      (of (instance CVN71-ACN)))

where each of these goals corresponds to one of the in-
stances force modules of coa-2.

Individualization reformulations are used when the set of
objects denoted by a concept is known at program instan-
tiation time. Sometimes, however, it may be known that a
set of objects will be passed to a method, but the elements
of that set may not be known at program instantiation time,
that is, they may only be known later, at runtime. To deal

with that situation, EXPECT provides a third kind of con-
junctive reformulation, the set reformulation. When no
method is found to achieve a goal that has a set of objects
in its parameters, EXPECT tries to solve the goal, at run-
time, for each element of the set in turn. For example, sup-
pose that the following goal is posted to calculate the clo-
sure date2 for several movements:
(calculate

(obj (specification-of closure-date))
(of (set-of (instance-of movement))))

and there are no methods that operate on a set of move-
ments.  EXPECT reformulates this goal over a set into a
goal over an individual movement:
(calculate

 (obj (specification-of closure-date))
 (of (instance-of movement)))

The matcher will return the method for calculating the
closure date of a movement. At execution time, the system
will loop over each of the movements in the set and calcu-
late one by one the closure date of the movements that are
included in the set.

Finally, EXPECT provides the input  reformulation,
which is a form of disjunctive  reformulation. It occurs
when no method can be found to handle one of the inputs
to a goal, but several methods can be found that together
will cover the range of possible inputs that will occur at
runtime. For example, given the goal:
(calculate
(obj (specification-of closure-date))
(of (instance-of movement)))

suppose that the method library contained no method for
calculating the closure date of a movement in general, but
there were methods for calculating the closure date of par-
ticular types of movements and there was a domain fact
that told the system that:
movement is partitioned by airlift-movement and
sealift-movement

then the system could create the goals:
(calculate
(obj (specification-of closure-date))
(of (instance-of airlift-movement)))

(calculate
(obj (specification-of closure-date))
(of (instance-of sealift-movement)))

The system would expand methods for each of these goals,
and then create dispatching code that would select which
method to use at runtime, based on the type of the instance
of movement that was actually passed in.  Note that unlike
a covering reformulation, only one of the branches of a
disjunctive reformulation needs to be executed.

In summary, the loose coupling that EXPECT provides
through semantic match and reformulations is crucial to
our approach to knowledge acquisition.  First, by moving
away from syntactic matching, users can add knowledge to

                                    
2The closure date is the date when all the material to be shipped has ar-
rived at the destination.



a system without being as concerned with issues of form.
This opens up the possibility for greater knowledge re-use.
The second benefit is that by having the program instan-
tiator reason extensively about the process of matching up
goals and methods, more of the design of the knowledge
based system and the interdependencies between parts of
the system can be captured (and hence, used to form ex-
pectations for knowledge acquisition).   In reformulating
goals, the program instantiator develops a rationale for how
a high-level goal can be achieved in terms of lower level
goals.  This sort of processing is often exactly the sort of
reasoning that one wants to use as a basis for knowledge
acquis ition.

4.2 The Program Instantiator:
Capturing Interdependencies

The EXPECT program instantiator creates a knowledge
based system in a refinement driven fashion.  Initially, the
program instantiator starts with a high level goal that speci-
fies what the knowledge based system is supposed to do.
For example, to create a system for evaluating a particular
COA, the instantiator would be given the following goal:
(evaluate (obj (instance-of deployment-coa)))

This high level goal determines the scope of the knowledge
based system that EXPECT will create.  The goal above
would create a knowledge based system that could evaluate
a deployment-COA—but nothing else.  On the other hand,
a goal such as:
(evaluate (obj (instance-of coa)))

would create a knowledge based system that could evaluate
any COA that was in EXPECT’s knowledge base (assuming
appropriate problem solving knowledge was also
available).  Thus, a single EXPECT knowledge base can be
used to create a variety of knowledge based systems, each
scoped to cover a different (or possibly overlapping) set of
problems.

References to instances that appear in goals during the
program instantiation phase act as “place holders” for the
actual data object that will appear when the program is
executed. The use of a more general or abstract instance
results in the creation of a system that can handle a wide
range of inputs, i.e., all the instances of that type.

When a goal is posted, the program instantiator searches
its problem solving knowledge to find a method whose
capability description matches the goal. This matching of
goals and methods is a critical step in the program instan-
tiator’s reasoning and was the main topic of the previous
section. How it is done, and the representations that are
used, have a direct effect on how maintainable and reusable
the knowledge base will be and EXPECT’s ability to ac-
quire new knowledge.

Once a method is selected to achieve the posted goal, the
variables in the method’s capability description are bound
to corresponding instances and concepts in the goal. The
body of the method is expanded by plugging in the bind-
ings for the variables in the body and then posting its sub-
goals. During this process, if any of the slots of an instance

are accessed by the method, those accesses are recorded in
the design history.  This record of the interdependencies
between factual knowledge (instances) and problem solv-
ing knowledge is later used to form the expectations that
guide knowledge acquisition. For example, if the program
instantiator notes that it uses a method that requires infor-
mation about the berths of a port, then when a new port is
entered, the knowledge acquisition routines will know that
information about the berths of that new port needs to be
added.

A key advantage for knowledge acquisition of EX -
PECT’s approach is that the program instantiator explores
all  the possible execution paths through the knowledge
based systems it creates. It thus captures all the interde-
pendencies between factual and problem solving knowl-
edge, something which is not possible to do by analyzing
execution traces, for example, since each analysis will only
cover one execution path through the system.

Figure 3 shows a partial view of how the program in-
stantiator expands goals. The top-level goal given to the
system is to evaluate a deployment course of action. This is
the goal posted in node n1. The matcher finds a method
whose capability can achieve this goal, and the method's
capability, the bindings, and the method's body are re-
corded in the node.  After the bindings are substituted in
the method body,  the subgoal of evaluating the transporta-
tion factors of the COA would arise, and successive goal
expansions would produce the goals in nodes n2 and n6.

Notice that even though the method used to achieve the
goal in n1 can be used for any kind of COA, the bindings
specify that is used for deployment COAs and the system
propagates this more specific type as it expands the sub-
goals.  When no method is found to match a goal, EXPECT
tries to reformulate the goal and try matching again.  For
example, the goal in node n2 is achieved by a covering
reformulation of the object parameter of the goal.

During the process of expanding the goals, the program
instantiator also keeps track of the interdependencies be-
tween the different components of the knowledge bases.
Let us look more closely at node n6 in Figure 3.  The goal
of calculating the closure date of a deployment COA is
achieved with a method whose body indicates that the sys-
tem must calculate the closure date of all the movements of
the COA.  Since movements is a slot (or role in Loom
terminology) of the concept COA, the system annotates that
COA movements are used by the method in this node.  The
factual domain knowledge is effectively being linked to the
problem-solving knowledge that uses it.  This is shown
with thick gray lines in the figure.  Furthermore, the bind-
ings in the node indicate that movements are used (and thus
needed) for deployment COAs, but not for other types of
COAs.

5. Flexible Knowledge Acquisition
By representing separately and explicitly knowledge of
different types, EXPECT allows users to make changes to
the knowledge bases in terms that are meaningful in the
domain.  By deriving the interdependencies between the



different types of knowledge as they are used for problem
solving, EXPECT can provide guidance for knowledge ac-
quisition that is dynamically generated from the current
content of the knowledge bases.  By representing explicitly
problem-solving methods, EXPECT can reason about their
components and support users in modifying any compo-
nent of the methods.  This section describes briefly how
EXPECT's KA tool takes advantage of the features de-
scribed in this paper, see [Gil, 1994; Gil and Paris, 1994]
for more details.

Guiding Acquisition of Domain Facts
EXPECT's knowledge acquisition tool supports users in

entering factual domain knowledge by automatically gen-
erating a dialogue that requires the information needed for

problem-solving as indicated by the interdependencies
captured by the program instantiator.  Let us go back to the
example in Figure 3.  Suppose a user wants to define an
instance of a new COA. EXPECT examines the interde-
pendencies derived by the Program Instantiator and real-
izes that only deployment COAs are evaluated (according
to the top-level goal in node n1). Other kinds of COAs
(such as employment COAs) are not evaluated. Using that
information,  EXPECT will first request the user to be more
specific about the COA.  To provide maximum support to
the user in providing this information, EXPECT generates a
menu of options that correspond to the different kinds of
COAs that are known to the system.  The system continues
to request the user to be more specific for as long as the
subtypes of the currently specified type are used differently

by the system.
Next, EXPECT examines the inter-

dependencies to request additional
information needed about a deploy-
ment for problem solving.  It notices
that the roles used in the methods are
force-modules and movements.  Ac-
cording to the knowledge that is cur-
rently available to the system, the
JSCP (Joint Strategic Capabilities
Plan)  information is not used for
COA evaluation.  (JSCP information
specifies high level directives that are
irrelevant for COA evaluation.)
Thus, EXPECT requests the user to
enter the force modules and move-
ments of the COA and makes the
JSCP information optional.  Again, to
support the user, EXPECT generates a
menu with the force modules and
movements that are currently defined
in the system as suggestions. If the
user adds a step  to a problem-solving
method that uses the JSCP of a COA,
EXPECT will automatically detect
this new interdependency and ask the
user to provide this information for
any COAs.

Acquisition of Problem-Solving
Knowledge
Suppose now that the domain knowl-
edge changed and a new subclass of
support personnel was added, e.g.,
unloading-support-personnel.
EXPECT would detect that to esti-
mate the support personnel for a
COA in node n2 it would generate
three subgoals in the covering refor-
mulation instead of two, and thus
needs a problem-solving method for
estimating the unloading-support-
personnel needed for a COA.

goal: (calculate (obj (spec-of employment-personnel))
                 (of (inst-of deployment-coa)))
achieved-by: (calculate (obj (?p is (spec-of 
                                      employment-personnel))
                 (of (?c is (inst-of coa)))
bindings: ((?p (spec-of employment personnel))
           (?c (inst-of deployment-coa)))
method: (add (obj (personnel (force-modules ?c)))

...

goal: (evaluate (obj (inst-of deployment-coa)))
achieved-by: (evaluate (obj (?c is (inst-of coa))))
bindings: ((?c (inst-of deployment-coa)))
method: (evaluate (obj transportation-factors)
                  (of ?c))

goal: (estimate (obj (spec-of support-personnel))
                (for (inst-of deployment-coa)))
achieved-by: covering-reformulation obj

goal: (estimate (obj (spec-of seaport-support-personnel))
                (for (inst-of deployment-coa)))
achieved-by: (estimate (obj ?ssp is (...

goal: (estimate (obj (spec-of airport-support-personnel))
                (for (inst-of deployment-coa)))
achieved-by: (estimate (obj ?asp is (...

movements

force-modules capability: (calculate 
                (obj (?d is (spec-of closure-date)))
                (of (?c is (inst-of coa))))
result-type: (inst-of time-value)

method: (calculate (obj ?d)
                   (of (movements ?c)))

coa

deployment-coa

TERMINOLOGICAL KB

PROBLEM SOLVING METHODS

jscp

DOMAIN-SPECIFIC KBS
        +
DESIGN HISTORY

Figure 3.  During problem solving, the program instantiator integrates the different types of 
knowledge that the diffferent knowledge bases contain and keeps track of how they are used (use of 
problem solving methods is in dark grey, use of aspects of domain entities is in light grey).  These 
interdependencies, dynamically generated by EXPECT based on the current available knowledge, are 
the basis for guiding knowledge acquisition.  

n1

n2

n4

n6

n3

n5

...

...

goal: (calculate (obj (spec-of closure-date))
                 (of (inst-of deployment-coa)))
achieved-by: (calculate (obj (?d is (spec-of closure-date)))
                        (of (?c is (inst-of coa))))
bindings: ((?d is (spec-of closure-date))
           (?c (inst-of deployment-coa)))
method: (calculate (obj ?d)
                   (of (movements ?c)))

capab: (calculate (obj (?d is (spec-of employment-personnel)))
                      (of (?c is (inst-of coa))))
result-type: (inst-of person-count)
method: (add (obj (personnel (force-modules ?c)))



EXPECT guides the user in specifying the new method by
reusing one of the other two as a rough initial version for
the new method that the user can correct by changing any
of its components.

In addition to adding new problem-solving methods,
EXPECT's knowledge acquisition tool supports users in
modifying existing methods.  For example, a user may add
a new step in a method to use the priority of a movement in
a COA to decide whether or not to use more resources for
transportation.  Suppose that the priority of a movement is
not defined, and that priorities are defined as relations that
only apply to mission objectives.  Based on this domain
knowledge, EXPECT notifies the user that the priority of a
movement is not defined and thus cannot be used by a
method.  EXPECT also presents to the user with a menu of
all the roles that are defined for movements as options to
be used in the method. The knowledge acquisition dialogue
is updated if the underlying interdependencies change.  In
this case, if the definition of the role "priority" is changed
so that it is defined for a COA then the system would allow
the user to use the priority of a COA.

Summary
In real world situations, users need to be able to adapt their
tools: no one has the foresight to envision all the knowl-
edge a system might need. Our research on EXPECT ad-
dresses that problem. By separating the different kinds of
knowledge that go into a knowledge based system and
automatically deriving the interdependencies between them
EXPECT guides a user in modifying a knowledge based
system.
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