Easy Computation of Bayes Factors and Normalizing
Constants for Mixture Models via Mixture Importance
Sampling

Mary J. Emond, Adrian E. Raftery and Russell J. Steele
University of Washington !

Technical Report no. 398
Department of Statistics
University of Washington

July 1, 2001

!Mary J. Emond is Research Assistant Professor of Biostatistics, University of Washington,
Box 357237, Seattle, WA 98195-7237; E-mail: emond@u.washington.edu. Adrian E. Raftery is
Professor of Statistics and Sociology, and Russell J. Steele is Graduate Research Assistant, both
at the Department of Statistics, University of Washington, Box 354322, Seattle, WA 98195-4322.
E-mail: raftery/steele@stat.washington.edu; Web: www.stat.washington.edu/raftery and
www.stat.washington.edu/steele. Emond’s research was supported by National Institute of
Health Grant 1R29CA77607, and the research of Raftery and Steele was supported by Office of
Naval Research Grants N00014-96-1-0192 and N00014-96-1-0330. The authors are grateful to Man-
isha Desai and Matthew Stephens for helpful discussions.



Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
01 JUL 2001 2. REPORT TYPE 00-07-2001 to 00-07-2001
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Easy Computation of Bayes Factors and Nor malizing Constants for £b. GRANT NUMBER

Mixture M odelsvia Mixture I mportance Sampling
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of Washington,Department of Statistics,Box REPORT NUMBER
354322, Seattle, WA ,98195-4322

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 37
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18



Abstract

We propose a method for approximating integrated likelihoods, or posterior normalizing
constants, in finite mixture models, for which analytic approximations such as the Laplace
method are invalid. Integrated likelihoods are key components of Bayes factors and of
the posterior model probabilities used in Bayesian model averaging. The method starts
by formulating the model in terms of the unobserved group memberships, Z, and making
these, rather than the model parameters, the variables of integration. The integral is then
evaluated using importance sampling over the Z. The tricky part is choosing the importance
sampling function, and we study the use of mixtures as importance sampling functions. We
propose two forms of this: defensive mixture importance sampling (DMIS), and Z-distance
importance sampling. We choose the parameters of the mixture adaptively, and we show
how this can be done so as to approximately minimize the variance of the approximation to
the integral.

The resulting method is easy to implement, involving only simple multinomial sampling,
it is almost as easy for complex mixture models as for simple ones, and it extends easily
to more complicated mixture models. The simulated values on which it is based are inde-
pendent, and so it avoids problems of convergence due to dependence of successive iterates.
We also propose a way of dealing with the label-switching problem. The method provides
a standard error, and so is to some extent self-monitoring. In simulations based on a prob-
lem in molecular biology, the methods performed well. The approach can be applied more
generally to models that are simple when written in a complete-data form, i.e. that are
amenable to the EM algorithm, such as models for missing data, for censoring or truncated
data, random effects or variance components.

Key Words: Allelotype Bayes factor; Bayesian model averaging; Beta-binomial distribution;
Defensive mixture importance sampling; Gibbs sampling; Label-switching; Markov chain
Monte Carlo; Multimodality.
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1 Introduction

The integrated likelihood, sometimes also called the marginal likelihood, plays an essential
role in Bayesian inference and testing, as it is the central component of the Bayes factor for
comparing two models, and of the posterior model probability of one model conditional on
data and on a set of candidate models. It also plays a role in Bayesian estimation, as the

normalizing constant for the posterior distribution. The integrated likelihood of a model is

I=pr(x)= /f(X|T)p(T)d'r, (1)
where x denotes the observed data, f(x|r, M) is the likelihood function for the parameter
7 under the model, and p(7) is the density (or probability mass function) for the prior
distribution of 7 given the model.

Since the integrated likelihood often is not analytically tractable, a body of literature on
the use of numerical methods for its calculation has developed. These are reviewed in Evans
and Swartz (1995) and include methods based on quadrature rules, Laplace’s method, im-
portance sampling and Markov Chain Monte Carlo (MCMC). Combinations of MCMC with
importance sampling and the Laplace method are considered by Rozenkranz and Raftery
(1994), Raftery (1996b) and Lewis and Raftery (1997). The Bayesian Information Criterion
(BIC) can be used as an asymptotic approximation to the log Bayes factor (Schwarz, 1978;
Kass and Wasserman, 1995).

In finite mixture models, however, none of these methods is fully satisfactory. Two
features of mixture models make many current methods for approximating the integrated
likelihood problematic. The first is that the model is not “regular” for testing and model
selection purposes. In regular models, the log-likelihood becomes approximately elliptically
contoured when there are enough data, even when the true parameter values correspond
to a lower-dimensional submodel that one is trying to test. In this standard situation,
for example, the likelihood-ratio test statistic has an approximate asymptotic chi-squared
distribution with degrees of freedom equal to the difference in the number of parameters. This
does not hold in finite mixture models whenever one estimates a model with G components
but the true number of components is smaller, so that the true parameter values lie on the
edge of the parameter space (Lindsay 1995).

A second feature is the “label-switching” problem, namely that the likelihood is invariant
to relabelling of the mixture components, and so has G! modes of the same height. Addi-
tional local modes are often present (Lindsay, 1995; Titterington, Smith and Makov, 1985),
especially when more than G components are fitted (Atwood et al, 1992).

1



The Laplace method (e.g. Tierney and Kadane 1986) provides an analytic approxima-
tion to the integrated likelihood based on the assumption that the posterior distribution is
approximately elliptically contoured (e.g. Raftery 1996a), and when this assumption holds
it can provide approximations of remarkable quality (e.g. Tierney and Kadane 1986; Grun-
wald, Guttorp and Raftery 1993; Lewis and Raftery 1997). However, for mixture models
this assumption fails when the model being fit has G components and the actual number
of components is smaller (Lindsay 1995), which is a situation of great interest for model
comparison and testing. Thus the Laplace method does not work in this situation.

The original justification of the BIC was in terms of the Laplace method, and it provides
a good approximation to the integrated likelihood in regular models for a unit information
prior on the parameters (Kass and Wasserman 1995; Raftery 1995). This justification does
not hold for mixture models, although BIC does provide a consistent estimate of the number
of components in the mixture (Leroux 1992; Keribin 1998), it leads to density estimates that
are consistent for the true density (Roeder and Wasserman 1997), and it has given good
results in a range of applications (e.g. Dasgupta and Raftery 1998; Fraley and Raftery 1998,
2000).

Quadrature methods can be used but they begin to break down for problems with more
than 4 parameters (Evans and Swartz 1995), and the number of parameters in mixture
models quickly surpasses this as the number of groups and/or the dimension of the data
increase. When testing or comparing mixture models, one is typically considering at least
some models that have substantial numbers of parameters.

Markov chain Monte Carlo (MCMC) can be used to estimate mixture models, and asso-
ciated methods can be used to approximate integrated likelihoods (e.g. Chib 1995, Raftery
1996b). However, in addition to the usual problems with MCMC methods (dependent sam-
ples, convergence issues, complexity of programming and implementation), in mixture models
they can easily fall foul of the label-switching problem (Celeux 1997; Stephens 1997, 2000).
For example, Neal (1998) pointed out that Chib’s (1995) results for a mixture model were
in error for this reason. Assessing the accuracy of the estimated integrated likelihoods is not
trivial with MCMC because of the dependence between successive samples.

Reversible jump MCMC methods can be used to estimate Bayes factors and posterior
model probabilities for mixture models (Richardson and Green 1997), but they are also
prone to label-switching problems, and convergence can be even more of a problem than for
regular MCMC. For example, in the rejoinder to the discussion of their paper, Richardson

and Green (1997) mentioned that diagnostics indicated that their method may not have



converged even after 500,000 iterations for the one-dimensional mixture model of the galaxy
data they analyzed. The difficulty of implementing reversible jump MCMC efficiently for
mixture models seems to increase with the dimension of the data.

Our goal in this paper is to propose importance sampling methods for integrated likeli-
hoods in mixture models that are easy to implement and that avoid the difficulties we have
been discussing. The method consists first of reformulating the model in terms of the unob-
served group memberships, Z, as is done for example for estimation via the EM algorithm,
and then estimating the integrated likelihood using importance sampling on the Z. Analytic
or quadrature methods are used for integration over 7; this is a “complete-data” problem
and as such is often straightforward.

The success of any importance sampling method depends critically on the importance
sampling function, and here two methods for creating this function are proposed: (1) de-
fensive mixture importance sampling (Hesterberg 1995), and (2) sampling via perturbation
of an initial grouping that has high posterior probability (the “Z-distance method”). The
second method appears to be new. In both of these methods, the importance sampling
function is itself a mixture.

Our goals for integrated likelihood estimators are accurate estimates of the integral,
realistic estimates of precision, practicality (in terms of programming time and computational
time), and conceptual simplicity. Simulation studies of easy to modestly difficult integration
problems suggest that our strategy achieves all of these goals.

The resulting strategy is easy to implement, involving only simple multinomial sampling.
The samples on which it is based are independent, so there are no problems of noncon-
vergence due to dependence between samples, as with MCMC. Our approach includes a
way of dealing with the label-switching problem that can plague MCMC, and also provides
estimated standard errors, and so is to an extent self-monitoring.

Our approach does not become much more complicated as the complexity of the mixture
model increases. Thus it can be used with almost equal ease for high-dimensional mixture
models as for univariate ones, and for complex mixture models as for simple ones. It extends
easily to most finite mixture models. It seems to provide quite good approximations to the
integrated likelihood, and also reliable estimates of the associated standard error.

In Section 2 we review mixture models and present our importance sampling based esti-
mators. In Section 3 we show how these estimators are applied in the context of multimodal-
ity due to the label-switching problem. In Section 4 we present simulation results motivated

by an application in molecular genetics, and in Section 5 we discuss advantages, limitations



and directions for future research.

2 Mixture Models and Importance Sampling Methods

2.1 Finite Mixture Models

Let x = (Xy,...,X,) be a realization of a random sample X(™ = (X,,...,X,) from a

G—component mixture distribution. The corresponding likelihood is

T13 7 5(x:65) = T 7 (l6, ), )

i=1j=1 i=1
where the 7,’s are mixing proportions that sum to 1, 7 = (my,...,7g), and the 6,’s are
component-specific parameter vectors with 8 = (0},...,6;)'. Each observation, x;, arises
from one of the G' component densities, f;,7 = 1,...,G, but the group memberships are

unknown. The parameter 7; is the unknown probability of an observation arising from f;.
To obtain the integrated likelihood, or marginal probability of the data, the joint distri-

bution of x and 7 = (6, 7) is integrated with respect to the unknown parameters:

I(x) = /T f[lf(xi\e, 7)p(8, m)dr, (3)

where p(6, 7) is the prior density for (0, 7) = 7. Analytic integration of (3) is virtually always
impossible.

The component membership for x; may be thought of as an unobserved random variable.
When the component membership is known, the likelihood takes a simpler form. Let z; =
(21, - - -, 2zic)' be the vector that indicates component membership for the i** observation such
that z;; = 1 if x; is from component j and 0 otherwise. The n x G matrix Z,, = {z},..., 2]}

gives the component membership for the entire sample, and we let Z; and Z™ be the random

variables corresponding to z; and Z,, respectively. Then
I(x) = / H/ fX\Z(Xi|Zi = 2;,0,7)fz(2i|0, 7)dz;p(0, 7)dT (4)
Ti=17%

= bl T L vy, (x10))p(0, )iz, (5)

i=1j=1

Note that we have assumed that f(z|0,7) = fz(z;|m) = [I5., ;. In the rest of this

article, we also make the (usually natural) assumption that § and 7 are indepedent a priori,



so that p(8,7) = p(@)p(n) (where it is understood that the p(-)’s refer to different functions,
depending on the argument).

This formulation greatly simplifies part of the problem, since the inner integral of (5)
(an integration with respect to 7 = (#, 7)) often can be evaluated analytically, or at least
closely approximated via the Laplace method or a similar approach, and may also be more
amenable to numerical integration via quadrature. The problem takes the following general

form:
I= /L(X\Z)p(Z)dz. (6)
Here, L(x|Z) = L(x|Z™ = Z,,) = [, I, f(xi|2:,0)p(0)dh, and p(Z) = p(Z™ = Z,) =

LI fz(z|m)p(w)dr. In (6) and in some of what follows, we suppress x and n in the
context of a fixed realization of the data. For the purposes of this article, we will assume
that integration with respect to (6, 7) can be done analytically. Desai (2000) and Desai and

Emond (2001) treat cases where numerical methods are needed for integration with respect
o (0,m).

2.2 Importance Sampling

The integral with respect to Z in (6) is the summation over G™ points, which can be done
exactly for very small data sets. Otherwise, importance sampling is a possible approach.

The importance sampling estimate is given by

K
Z X‘Zk

J= 20 (™

where the Z;’s are sampled (simulated) independently from the density A(-). Importance

sampling has classical elegance: I converges almost surely to I and K (I — I)/\/var(I)

has a standard normal limiting distribution when L(x|Z)p(Z)/h(Z) has finite mean and

variance under h(-). The latter result can provide a ready means for assessing the precision

of I through its standard error, provided that the standard error is an accurate estimate of
var([).

The catch to using (7) is the choice of h(-), since this choice determines how easily the
sampling can be done in practice and also determines the precision of I. Easy choices for h(-)
often lead to inefficient estimates. For example, it may be possible to simulate the Z’s easily
when the importance sampling function is the prior distribution of Z, i.e. when h(Z) = p(Z).
When the data are reasonably informative, this results in sampling mostly Z;’s for which

L(x|Z) has no substantial mass, leading to a very inefficient estimator (Raftery, 1996b).
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Worse yet, the empirical variance of the I;’s can markedly underestimate the true variance
of I under these circumstances, leading to false confidence in the estimate. Stephens and
Donnelly (2000) provide an extreme example of this phenomenon in practice.

The problem, then, is to find a good choice of h(Z): one that is reasonably easy to sample
from, and that also provides good efficiency. The choice of h(Z) that minimizes var(I) is
p(Z|x) = p(2™W = Z|X™ = x) (c.f. Zhang, 1996; Appendix A). This minimum variance
is zero, but one needs to know I in order to know p(Z|x), so sampling directly from p(Z|x)
is not possible. A potential surrogate for p(Z|x) is p(Z|x,7 = 7) where 7 is the maximum
likelihood estimate (MLE) for 7 in (2). We expect this to be a reasonable starting point for
constructing h(Z), since p(Z|X™)/p(Z|X™,7 = %) converges in probability to a constant
for a sequence of Z’s near the mode for Z(™ under regularity conditions (see Theorem 1).
Sampling from p(Z|x,7 = 7) has also been suggested by Wei and Tanner (1990) in the
different context of sampling from a posterior distribution; they called this method Poor
Man’s Data Augmentation, or PMDA.

In the present context, sampling directly from p(Z|x, T = 7) has at least three potential
pitfalls. The first is that, unless the likelihood is extremely peaked, it tends to miss Z’s
corresponding to important values of L(x|Z), as the sampling can stick to small subregions
of the sample space for seemingly reasonable values of K. In this situation, the sample
variance of the I;’s tends to underestimate the true variance of I. The second pitfall is that
p(Z|x, 7 = 7) is a good approximation to p(Z|x) only near the modal value of Z, and the
third is that the approximation, so far, is justified only when the fitted model is correct with
no superfluous components included (Theorem 1). In this paper we propose two methods for
constructing importance sampling distributions that use 7 and/or p(Z|x,7 = 7) to create

efficient importance sampling distributions while attempting to circumvent these pitfalls.

2.3 Defensive Mixture Importance Sampling

Here we propose the use of importance sampling distributions that are themselves mixtures,
with one component equal to the prior distribution so as to ensure coverage of the area in

which the posterior density is nonnegligible. We start with distributions of the form
mZ) = (1-6)g(Z) +dp(Z), 6 €0,1] (8)

for calculation of (7), where g(Z) is an intelligently-chosen probability mass function for Z,
and p(Z) is, as before, the marginal prior distribution of Z. The idea of using importance

sampling distributions that are themselves mixtures was discussed by Geyer (1991), Oh
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and Berger (1993), West (1993), Givens and Raftery (1996) and Raghavan and Cox (1998)
in different contexts. The idea of using mixtures of the form (8) as importance sampling
distributions for evaluating integrated likelihoods was mentioned by Newton and Raftery
(1994) and discussed by Raftery (1996b). However, the general approach of using mixtures
of this form as importance sampling functions was discussed in greater depth by Hesterberg
(1995). He called this a “defensive mixture” for the importance sampling distribution, and
so we will refer to this approach as defensive mixture importance sampling (DMIS).

If we define the quantity p(Zy)/h(Zy) to be the “weight” for the k™ term in (7), then the
defensive mixture estimate has the property that the weight is bounded by 1/, guaranteeing
the applicability of the Gaussian central limit theorem for 6 € [0,1] whenever it holds for
0 = 1, i.e. for sampling solely from the prior. In addition, the asymptotic variance of the
defensive mixture estimate can be no more than 1/§ times the variance obtained by taking
hZ) = p(Z), resulting in a bound on how much worse DMIS can do relative to taking
hZ) = p(Z).

In order to improve on p(Z), we need to choose g(-) so that h(-) mimics p(Z|x). Our
proposal is to take g(Z) = p(Z|x,7 = 7) with 7 being the MLE for 7. Note that this is
just a multinomial distribution with mean (2, ...2,)" where the z; = E(2,|x),7 = A)’s are
just the estimated values of the missing z;’s resulting from the E-step of the EM algorithm
used in obtaining 7 from (2). This proposal is supported by the following theorem, which
indicates that p(Z|x, 7 = 7) is near p(Z|x) when Z is near the mode of L(x|Z)p(Z) and the
fitted model is correct. The superscript (n)’s are included in the statement of the theorem

to make the dependence on n explicit.

Theorem 1 Let X™ be a random sample from the distribution fx(x|7) where fx(x|T) has

the representation based on an unobserved variable Z :
fx(x|T) :/ZfX\Z(X|Za7')fZ(Z‘T)dZ-

Let Z™ be the unobserved sample from fz(z|7). Let pn(Z,|X™) be the probability that
ZM) = 7, given X™ and let p,(Z|X™,7) be the probability that 2™ = Z given (X™, 7).

That is,

pn(Zn|X(n)) _ J1I; fXZ(Xi?zsgl{)z(zih)p(fr)df’ i

v Xi 9]_ Zij
@) = [T |22 ] = T




Define 2;;(X;, 7) = E[2j|X;, 7] = p(2i; = 1|X;,7), and let 7, be the MLE for T in (6) based
on X" . Hence, the %j(Xi, Tn)’s are the expected values of the missing data used in the
EM algorithm (Dempster, Laird and Rubin, 1977). Let 2(X™) denote the “sample” of 2;;’s

formed in this manner. Note that Z;; is not restricted to {0,1}. Define

2
j(T) =—-F [% long,Z(Xz-,,%(Xi,To)h')] and ,

52
)= =B | S tou (X
T
where Ty represents the true value of T and expectations are taken under the true value. We
assume that J(1o) and J(y) exist and are positive definite. Assume that conditions (1) —

(5) in Appendiz A hold. Then

Pa(2(XM)[XM, 7 =17,)  [J(m0)[*/*

The proof is given in Appendix A.

Remarks: 1. The amount of unknown information in this problem grows in proportion to
n. The theorem provides a measure of closeness between p(Z,|x,7 = 7) and p(Z,|x) only for
a single sequence of Z,’s. The approximation of p(Z,|x) by p(Z,|x,7 = 7) may not be good
at points far from i(X(”)). This is to be expected, since the data do not provide information
about the joint distribution of X and Z.

2. Condition 2 requires that 7,, converges to a single point. Hence, technically, it may be
necessary to restrict the integration to a subset of the parameter space so that L(x|Z)p(Z)
is unimodal over this subset. Allowing 7,, to converge over a set of G points still leads to a
finite limit, however (see Feng and McCulloch, 1996).

3. Condition (3) in Appendix A and the assumption of positive definiteness for J(7) and
J(70) both require that 7; > 0, j = 1,...G. It is of interest to know whether these condi-
tions may be relaxed, since we wish to have a good estimate of p(Z|x) even when we have fit
a model with the wrong number of non-zero components. In the situation where too many
components are fitted, Feng and McCulloch (1996) have shown that consistency of 7, still
holds, so that p(2(X™)|X™ 7 = #,) will have the same limiting value under the over-fitted

model as under the correct model. However, the remainder term in expansion (26) does not
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converge to zero in this situation, and |J(y)| and |J(7)| are both zero. In this situation,
we conjecture that the ratio on the LHS of (9) is O,(n%?), where d is the number of zero

components in the over—fitted model. O

In order to apply the proposed DMIS method, one needs to choose 4. Hesterberg (1995)
found that his simulation results were not sensitive to the choice of § within a range from
0.1 to 0.5. We found that §’s in this range gave reasonably unbiased results in very simple
problems, but that the sample variance of the resulting I;’s could vary by a factor of nearly
16 as d varied, even in these simple problems. Also, the accuracy of the standard errors
was sensitive to 6. Hence, a way of choosing ¢ is needed. The method we have developed
chooses § so as to minimize the variance of I under a simplifying approximation, given by

the following theorem.

Theorem 2 Suppose that L(x|Z) takes on only two distinct values as Z varies. Define

Zy = argmazy{L(x|Z)p(Z)}. Let 5op be the value of § that minimizes the variance of I in (7)

over all h(Z) of the form in (8), and let vo(8) = var(var(I)) with var(l) = K= Yy (I, — I)?,

the sample variance of Ij,’s. Then

Ip(Zu|x, 7 =7) — L(x|Zun)p(Znr)
Ip(Zy|x, 7 =7) — Ip(Zyps)

Moreover, 0y is the minimizer of vo(0) over h(Z) of the form in (8).

(10)

(5opt =

The proof is given in Appendix B. The proof shows that, regardless of the form of A(-), the

most efficient h(-) in this simplified situation satisfies
MZ) = p(Zn|x). (11)

That is, we choose our importance sampling distribution to match the optimal importance
sampling distribution at its modal value, and (11) provides a potential criterion for choosing
h(-) regardless of whether h(-) has the mixture form. For peaked likelihoods, Ip(Zj,) is small
relative to Ip(Zy|x,7 = 7) and can be dropped from the expression.

Equation (10) contains two unknown quantities, Zy; and I, which must both be esti-

mated. For an initial estimate of Z,;, we set the 75" component of Zs to be
Zij=1[j = max prob(zy, = 1|x;, 7 = 7)], (12)

where 1[-] represents the indicator function. That is, we assign the i observation to the

component with maximum posterior probability conditional on X = x and 7 = 7. Zos’s
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obtained in this manner from 7’s which are other local maxima of the likelihood equation
should be examined as potentially better estimates of Z;;. Also, Z’s close to Zus can be
examined to see whether any has a higher value of L(x|Z)p(Z), providing a better estimate
of Zy,.

The value I in (10) is replaced by I estimated using = 0.5. This produces a two—step
adaptive procedure for estimating /. Even though the justification may initially appear to
be overly simplistic, we found that choosing ¢ according to (10) worked well in simulations,
resulting in Var(f ) at or very near the empirically determined lower bound, even when the
assumption of only two values for L(x|Z)p(Z) was far from the truth. In principle, one could
take more than two steps in this procedure and iterate to convergence of I , but in practice
we found little advantage to going beyond two steps in our examples.

The defensive mixture method need not be limited to two components for A(-). Because
p(Z|x) = [ p(Z|x, T)p(x|7)p(T)d7T/I can be approximated arbitrarily closely by a weighted
sum of terms of the form p(Z|x, 7;), one might take

g(Z) = Zétp(Z‘X, T= Tt)v (13)

=1
with T > 1 and Y ,6; = 1 — §. For example, in a data set where there is significant
multimodality (beyond that due to label-switching), the 7’s in (13) could correspond to the
modes of the likelihood surface. The § and the ¢;’s would be fixed at 1/(T + 1) to obtain
fo, an initial estimate of I, and then chosen adaptively in a second step by solving the set

of equations
WZ) = HZaf), t=1,...,T. (14)

Here, the Z,’s are determined by the 7’s via (12), and p(Z.|x) = L(x|Z)p(Z)/Iy. This vari-

ant of the DMIS method is examined in our simulations with Data Set 5 in Section 4.

2.4 The Z-Distance Method

Our second method is a novel sampling method that directly targets for sampling Z near
Zy. By “Z near Z,” we mean near in the sense that |L(x|Z)p(Z) — L(x|Zx)p(Z )| is
relatively small, making Z an important point to sample. For motivation, consider the case
where maxy, p(zi = 1|x,7 = 7) is not much greater than the p(z;; = 1|x,7 = 7) for other
k’s. Then, the point near Zj; with the i observation re-assigned to another group will have

a value of L(x|Z)p(Z) close to L(x|Zns)p(Zus). Our second method, “Z-distance” sampling,
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attempts to target these points with such re-assignments. Z-distance sampling is done as

follows:

1. Divide the n observations into an initial grouping consisting of R groups with R €
{1,...,n}. Each of the R groups comprises observations that are close to each other
in the sense that they have high conditional probability of being in the same group.
For example, ||2;, — Z;,|| is small for observations ¢; and iy in the same group, where
Z; is defined in Theorem 1. A non-parsimonious clustering algorithm can be used to
form the initial groups, or the initial groups can be those given by Z,; in (12). Let r;

be the number of observations in the j* group.

2. A Zj in the importance sampling step is formed by taking the r; observations in the j*
group and redistributing them into the G groups according to a Dirichlet-Multinomial
distribution with mean parameter p; = (y;1,..., ) and dispersion parameter w;

that may depend on p(Z|x, 7 = 7).

In Appendix C, we review the Dirichlet—Multinomial distribution with the above parametriza-
tion and provide details on how to carry out the sampling in practice. The choice of the
Dirichlet—Multinomial distribution in step 2 allows for correlation between the elements of
Z;, unlike sampling from p(Z|x, 7). This method also contains some previously considered
choices of h(-) as special cases. If each observation is its own group and p;; = p(z;; = 1|7, %),
then we have sampling from the conditional posterior for Z, p(Z|x, 7 = 7). If the prior on 7
is a Dirichlet distribution (its natural conjugate prior), then p(Z) has a Dirichlet-multinomial
distribution. Hence, the above algorithm results in sampling from p(Z) when R = 1 and
p(Z) is used in step 2.

Another version we have examined that allows for adaptive estimation of the importance
sampling distribution is to set y; equal to the mean of the p(Z|x;,7) over x;’s in the j™*
group, and take w; = cv;/(p;(1 — p;) — v;) where v; is the variance of the p(Z|x;,7)’s in the
j™ group, p; is their mean and c is an estimated tuning parameter. The ad hoc justification
for this is that w = v/(7n(1 — ) — v) for random p’s from a Beta(a,b) distribution where
7 =a/(a+ b) is its mean, v is its variance and w = (a + b) *. We chose ¢ adaptively using
(11). For reference, we call this sampling version Z-distance 2, or ZD-2, sampling. See
Appendix C for another suggested variant of Z-Distance sampling.

The choice of the Dirichlet-multinomial distribution in step 2 is one of practicality and

could be modified. This formulation of Z-distance sampling is a very general one that
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allows for a wide range of sampling schemes that cannot all be evaluated in a single study.
Nevertheless, we put it forth as a general proposal given its intuitive appeal and unifying
nature.

A simple version of the Z—distance method that we have evaluated in several simulations
is the “Uniform Distance” method, or UD method, defined as follows. Set R = G, use the
initial group assignments given by (12), and take p; = (1/G,...,1/G)Vjand w; =1/G V j.
The UD method has the following properties :

(1) It is adaptive in the sense that it uses information from 7 to form the initial grouping, but
it does not require estimation of additional importance sampling distribution parameters.
A modified form of the UD method, UD,,.q, allows R > G initial groups to be chosen by
applying a non—parsimonious clustering algorithm. This appears to be useful when the data
give only vague information about the true groupings.

(2) While h(Zy) # p(Zy|x) as in the methods above, K can be chosen to control the
probability of including Z,, in the sample @ times for chosen Q (Q = 5, for example).

(3) The sampling is symmetric with respect to label-switching. That is, if Z; and Z, are
identical except for different labeling of the groups, then h(Z;) = h(Zy) under the UD method
of sampling. Property (3) provides an easy way of dealing with multimodality, discussed in

more detail below.

3 Label-Switching and Multimodality

The “label-switching problem” refers to the fact that when the mixture components all have

the same parametric form, the likelihood has the same value for different labelings of the

groups:
fxilzi=(zi1,---52i6),0 = (01,...,06), 7= (m,...,7¢))
= f(XZ | Z; = (Zipla""zipc)ag = (epla""epc)’ﬂ- = (7rp1’ . "’WPG))’ (15)
where (p1,...,pg) is any permutation of (1,...,G). In general, there are up to G! dis-

tinct labelings that result in the same value of f(x|z6), and we say that these label-
ings are equivalent. There will be fewer than G! distinct labelings when not all the pa-
rameter values are distinct. Note, in particular, that this is the case when two or more
of the m;’s are zero. If p(f,7) is symmetric with respect to label-switching, that is if

p((01,...,0c),(m1,...,7c)) = p((0p,---10ps), (Tpys .-, Tpg)), then L(x|Z)p(Z) will have
G! modes with equal mass. Because of this fact, we use a symmetric prior. This results in no
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loss of generality, because any non-symmetric prior can be reformulated into an equivalent
symmetric prior with the same total mass on each set of equivalent points, so that I remains
unchanged.

The defensive mixture method as described above produces a unimodal sampling dis-
tribution that can be a poor approximation to p(Z|x) under multimodality. The obvious

modification is

W)= (1~ 8) 5 S p(Zix, 7 = 7) + 60(2), (16)

where b indexes the G! permutations of the components of 7. The sampling is best done
in a stratified manner, since this is both simpler and more efficient (Oh and Berger, 1993;
Hesterberg, 1995): if K samples are planned, then Z is drawn from p(Z) for K¢ of the
samples, and from each of the p(Z|7 = 7, x)’s for K(1 —0)/G! of the samples. We may still
calculate d,,; using (11).

As noted above, the UD method is already symmetric with respect to label-switching,
so no modification is needed.

As an alternative to sampling at each mode, we have used the following method, which
is applicable when the symmetric prior is employed. Assign each Z; to an equivalence class
containing all the Z’s corresponding to an equivalent labeling in (15). Hence, the equivalence
class to which Zj belongs consists of Zj plus all distinct permutations of the G’ columns of
Zj. Denote the resulting equivalence classes by E;, j = 1,..., Ng, where Ng, the number
of such equivalence classes, need not be known. Sampling from h(z) can then be viewed as

sampling from the F;, and it follows that

S S L(x(Zi)p(Z) (17)

j=1Zy€E;

~
Il

I
™
4

(E;)L(x|Z;)p(Z;), (18)
j=1
where Z; is any Z € E; and #(E,) is the number of Z’s in E;. It is easy to see that
#(E;) = G'/E0,!, where EOQ; is the number of groups with no members in it (i.e the number
of columns consisting entirely of zeros) for Z’s in the equivalence class E;. Let j(Z) denote
the subscript of the equivalence class to which Z belongs. The importance sampling estimate
is
G! P(Z)
L(X|Zy) .
ZZEEj(Zk) h’(Z)

. K
=y

(19)
k=1 on(zk)!
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In practice, the equivalence classes need not be enumerated. At each iteration, we sample
Zj from h(-) and then calculate £0jz,) and Y zeB s, h(Z) for that iteration. The last
step can take some computing effort. However, if h(-) is highly concentrated at one of the
symmetry-based modes, Yzep;, , h(Z) can be approximated by h(Zj). This will be the
case when the likelihood surface is peaked and 9§ is not close to 1.

Another method for handling the label-switching problem under a symmetric prior is the
following. Instead of estimating I, estimate I where

~ el
i= x|Z)p(Z)dZ = /
s E0j(z,)! Hxi2)

0 L (x|Z)p(Z)1[Z € S)dZ, (20)

where S represents any one of G! equivalent “regions” of integration. “Regions” is put in
quotes because some Z;’s will have fractional membership in more than one region. For
example, when G = 2 and n is odd, S = {Z : E m2 s < (n—1)/2}. When n is even,
S ={Z: E"/Z ' 2i» < n/2 — 1}, while the points Z with Z;lfl Zk2 = n/2 has a membership
weight of .5 in S. Hence, we can sample near one mode using hs; as constucted in Section
2, and any Zj that falls outside of S for that mode contributes I, = 0 to (7). When n
is even and Z?/ ® 22 = n/2, I is weighted by .5 in (7). When sampling is done mostly
near the mode, few Z;’s fall outside S and little computing efficiency is lost in exchange for
substantial simplicity.

With this particular choice of S, the proposed method seems likely to work best when
the estimated proportions in the different groups are not too similar. The problem is similar
to the label-switching problem in MCMC estimation of mixture models, and methods for
dealing with this could also be adapted to the present setting. The most promising such
methods essentially amount to different choices of S and algorithms for finding it, and the
approaches of Celeux, Hurn and Robert (2000) and Stephens (2000) might be useful here

also.

4 Simulations and Applications

Simulation studies were carried out to assess the performance of the DMIS and UD methods.
Variations of the Z-distance method were applied in selected cases. Our simulations are
divided into two groups. The first group consists of three small scale problems (Data Sets 1,
2, and 3) where performance can be assessed relative to the exact answer. The goals of this
group of simulations were to assess the absolute and relative performance of these methods,

to assess the sensitivity of the DMIS method to choices of §, to assess the sensitivity of the
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Table 1: Three Modes for the Likelihood Surface for Data Set 3.

—IOg lik ﬂl IELQ T L(X, ZM) X 1080
175.74 169 .276 .155 2.48
175.78 .220 .151 5 0.0013
17591 .185 .532 0 11.3

UD method to the initial grouping, and to determine how the performance of each method
varied depending on whether the likelihood was sharply peaked or flat.

In the second group of simulations, the methods are applied to three data sets (Data
Sets 4, 5, and 6) with larger sample sizes (n=204). The goals of the second group of
simulations were to assess the practical applicability of each method for larger samples, to
determine whether there were any obvious breakdowns in the methods, to obtain a rough
assessment of the accuracy of the methods for larger-sample problems, and to determine
whether performance varied depending on the extent to which the likelihood was flat or
peaked.

For all the simulation studies, the data were in the form of X; successes in n; trials where
n; was known. The fitted model was a two—component binomial mixture with uniform priors
on the two mean parameters and on the mixing proportion parameter. We used K = 1000 for
Data Sets 1, 2, and 3, and K = 10,000 for Data Sets 4, 5, and 6. This model was chosen for
the simulation study in order to study the performance of the importance sampling methods
for a particular application in molecular biology (Newton et al, 1998; Desai, 2000). Data
Sets 1 and 2 are each a subset from one of two allelotype data sets (Barrett et al, 1996; and
Shibagaki et al, 1994, respectively) where it is of interest to determine whether there exist
two binomial components (Newton et al, 1998). Data Set 3 is simulated data from a single
binomial component with mean 0.22 and n;’s that are the same as the n;’s in Data Set 2.
[SHOULD WE SHOW THE DATA SETS IN AN APPENDIX? - AR, 5/12]

The resulting likelihood surfaces for 7 for the three data sets range from markedly peaked
to flat. The likelihood surface for 7 for Data Set 3 is relatively flat with three modes of
nearly equal height which correspond to disparate values of 7 (Table 1). In Table 1, Zs is
determined by (12) using the 7 indicated in the row. Note that the MLE is given in row 1,
but the Z,; derived from the MLE accounts for only 2.5% of the mass of I, while the Z,
in the third row accounts for 11% of the mass. This shows that the MLE does not always

translate to the best estimate of Z,,.
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Table 2 shows results for the defensive mixture method as a function of §. We calculated
dopt from (10). In each data set, d,, gave the minimum or near minimum variance for I,
indicating that the theoretical arguments underlying its use translate to good performance
in practice. As expected from its derivation, d,, performed best in Data Set 1 where the
likelihood is very peaked and the assumption of only two distinct values for L(x|Z) is nearly
satisfied. However, d,,; still performed well in Data Set 3 where the assumption is not even
approximately true. Mean—squared errors as a function of § followed the same pattern.
On the other hand, the empirical standard deviation of the I;’s was a better estimate of
the (estimated) true standard deviation at J,,; in Data Sets 2 & 3 than in Data Set 1. The
results suggest that a ¢ in [0,y;, 0.99] may provide the best balance of efficiency and estimated
standard deviations that are accurate estimates of the true standard deviation.

Comparative results for the DMIS and UD methods are shown in Table 3, along with
results for the UD method as a function of the initial grouping. For comparison, results
from Monte Carlo estimation by sampling from the prior (h(7) = p(7)) are also shown. The
variants UD-1, UD-2 and UD-3 in Table 3 refer to using the Z,,’s calculated from (12) using
the three different 7’s in rows 1-3, respectively, in Table 1 as the initial groupings for the UD
method. For comparison, the table entry h(7) = p(7) refers to the result obtained by sam-
pling from p(7) for integration of (1). To assess the results, consider the scale of evaluation of
evidence of Bayes factors in Jeffreys (1961) and Kass and Raftery (1995), according to which
a Bayes factor between 1/3 and 3 constitutes evidence “worth no more than a bare mention.”
This suggests that we would want Bayes factors (ratios of two integrated likelihoods) to be
off by no more than a factor of 3 with high probability. Some simple calculations suggest
that this will be satisfied if the ratio of v/MSE to I is no more than about 0.2.

Overall, the results for the DMIS and UD methods were satisfactory. The bias was
small, the coefficient of variation was well within the desired range for both methods and
all data three sets, and the estimated standard errors were close to the empirical standard
deviations, on average. In contrast, Monte Carlo estimation by sampling from the prior for
the parameters 7 was substantially less accurate on average; more samples would be needed
for it to be minimally acceptable.

In Data Set 1 the DMIS method, with its ability to mimic the peaked posterior, had the
best efficiency. The UD method and sampling from the prior for 7 were less efficient but
they did yield reasonably accurate standard errors. The DMIS and UD methods performed
comparably in Data Set 2 for the modestly peaked likelihood, and the UD method was
slightly better than the DMIS method for the flat likelihood in Data Set 3.
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Table 2: Small Sample Simulation Results (N=17): Performance of defensive mixture im-
portance sampling as a function of ¢

Data set 1: markedly peaked likelihood
I =56.38 x 1077°
g I | sEM | sp() | VMSE
0| 54.62 2.71 4.68 5.00
0.01 | 55.38  3.15 5.01 5.12
0.027 | 56.04  3.78 747 7.48
0.1 | 55.79 3.48 6.19 6.22
0.208* | 55.21 3.16 4.44 4.60
0.5 | 57.49 5.13 6.43 6.52
0.9 | 56.61  7.52 6.84 6.84
0.99 | 59.57 18.84 11.36 11.79
1|66.55 52.23 78.89 79.54
Data set 2: peaked likelihood
I=51.29 x 10°%
§ I | SEM | sp(i) | VMSE
0]44.27 3.78 5.38 8.85
0.01 | 54.13 11.42 63.76  63.83
0.1 |50.27 5.93 13.53 13.57
0.5]49.29 4.62 5.73 6.07
0.586* | 50.51  5.51 6.40 6.44
0.9 | 50.43 7.59 8.23 8.27
0.99 | 53.5 16.04 15.07 15.23
1|56.89 39.41 86.41 86.59
Data set 3: flat, multimodal likelihood
I =98.87x 1078
g I | sEM | sp() | VMSE
0]89.78 18.3 47.85  48.71
0.01 | 95.12 17.28  25.58 25.85
0.1 98.7 11.88 13.90 13.90
0.5]97.86 7.20 7.83 7.89
099876 7.24 8.50 8.50
0.99 | 98.25 8.63 9.14 9.16
1* 1 97.62  9.53 9.54 9.62

NOTE: Each row represents results of 100 trials of the procedure with K = 1000 for each trial.

I is the mean of I over the 100 trials, SEM is the mean of the standard errors of I over the 100
trials, and SD(]) is the empirical standard deviation of the 100 I’s (taken to be an estimate of the
true standard deviation of I for comparisons with SEM).

* This is dopt from (10).
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Table 3: Small Sample Simulation Results (N=17): Comparison of Methods

Data set 1: markedly peaked likelihood
I=56.38x10""6

Method I | sEM |sp() | VMSE
DMIS 55.21  3.16 4.44 4.60
UD 57.10 7.38 8.50 8.53
h(r) =p(r) | 56.78 13.12 13.34 13.35

Data set 2: peaked likelihood
I=5129x10%

Method I [SEM | sD{) | VMSE
DMIS 50.51 5.51 6.40 6.44
UD 52.16  6.13 6.18 6.24
h(t) =p(7) | 52.17  9.77 10.44 10.48

Data set 3: flat, multimodal likelihood
I =98.87x 1078

Method I | sEM |sp() | VMSE

DMIS 97.62  9.53 9.54 9.62
UD-1 94.98  6.20 6.52 7.67
UD-2 98.13  6.64 7.12 7.16
UD-3 98.27  6.63 7.17 7.20

h(r) =p(r) | 98.66 1537 13.70  13.70

NOTE: Each row represents results of 100 trials of the procedure with K = 1000 for each trial.
The columns are defined as in Table 2.

UD-b refers to the Uniform Distance method taking the initial grouping to be Z3; calculated from
(12) using 7 from row b of Table 1.
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The three larger sample simulation data sets each consisted of 204 proportions. Data Set
4 consists of 12 replicates of Data Set 1, Data Set 5 consists of 12 replicates of Data Set 3,
and Data Set 6 consisted of 204 replicates of the proportion 8/40. Data Sets 4 and 5 were
constructed in this way in order to be able to get bounds on I using the exact values of I
for Data Sets 1 and 3, and in order to assess the impact of increasing the sample size while
keeping the shape of the likelihood surface fixed. To obtain bias estimates for Data Set 5,
the true I was taken to be the value of ] resulting from importance sampling integration of
(3) by drawing 5 million samples directly from the prior on the parameters, p(f,7) . This
appears to provide a reliable answer for the flat likelihood in this example. Data Set 6 is
an artificial example with an easily calculated exact answer that should be “easy” for any
viable candidate method. Data Set 6 serves as a gauge for assessing whether a method meets
a minimum performance standard.

Results for the larger sample sizes are shown in Table 4. The results show that the 2-
component DMIS method performs very well for the markedly peaked likelihoods in Data
Sets 4 and 6, but performs poorly for the flat likelihood (Data Set 5) compared to sampling
from p(7). Because the likelihood for Data Set 5 has three modes of comparable height, a 4-
component DMIS sampling method was tested here, with components corresponding to each
mode and to the prior as in (13). Taking each of the four ¢’s (component sampling weights)
in this sampling scheme to be 0.25 results in a great improvement in the bias as well as
improvement in the variance of I compared to the 2-component DMIS importance sampling
distribution (Table 4, first and second rows under Data Set 5). When we attempt to solve
(14) in order to minimize the variance resulting from the 4—component importance sampling
distribution, we find no solution in [0, 1]®*. Without this constraint, the solution puts d3 at
0.012, < 0, 05 > 1 and 63 > 1. Hence, we set 63 = 0.012,J = 0 and split the remaining mass

A

between d, and d3. This was very effective in reducing var(I), producing a 54—fold decrease
in var(I) relative to the equal weight case (Table 4, third row under Data Set 5). However,
the estimate of I was biased downward, and only 50% of the mass was “found”. Still, the
MSE was significantly improved. We also adjusted the §;’s to allow 6 = 0.05 (versus § = 0
in the previous simulation). The result was an increase in the variance and decrease in the
bias, giving an overall decrease of 5% in the MSE (Table 4).

The naive UD method with R = G, as described in Section 2.2, does not perform well
compared to the DMIS method for the markedly peaked likelihood, nor does it perform as
well as sampling from p(7) for the flat likelihood in Data Set 5. (Note that the UD method

and the DMIS method with 6 = J,,: coincide in this case.) However, the ZD-2 method
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Table 4: Larger Sample Simulation Results (N=204)

Data set 4: Peaked Likelihood, I € [37.4,486.1] x 10787

Method [ | SEM |sD(J) | VMSE
DMIS, § = 0.078 65.32 0.31 0.30 —
UD 66.62 26.01 30.91 —
ZD-2! 65.32 0.11 0.13 —
h(r) = p(7) 78.82 37.13  39.10 —

Data set 5: Flat, Multimodal Likelihood, I € [0.25,1762] x 109%

Method [ | SEM | sD(/) | VMSE’
2—component DMIS § = .5 1256  7.65 30.44 31.16
4-component DMIS? 19.98 8.13 24.41 24.42
4-component DMIS? , 9.35  2.08  3.22 10.41
4-component DMIS, § = .05* 14.59  3.63 6.54 8.03
9-component DMIS, § = 6, = 1; UD® | 11.83  6.02 14.04  15.87
mixture of 3 UDs® 1537 431  6.59 7.64
UD, 04, R=37 17.11  3.36  4.42 4.09
h(r) = p(r) 18.85 2.88 2.63  2.63

Data set 6: One Group; Peaked Likelihood, I = 20.95 x 101778

Method [ | SEM |sD(J) | VMSE
DMIS, 6oyt = 0.7716 20.99 0.24 0.24 0.24
UD 21.06  0.49 0.40 0.41
h(r) = p(7) 2152 658 589  5.92

NOTES: Each row represents 50 trials with K = 10000 for each trial.
* estimated based on assuming I = 19.240 obtained as I from 5 million samples from p(7). The standard
error of this estimate is 0.001

1 7ZD-2 sampling as described in Section 2.2.

2 The IS distribution is h(Z) = 61p(Z|z, T = 71 + 2p(Z|x, T = 75 + d3p(Z|z, T = 73 + Ip(Z), as in (13), where
the 7;’s correspond to the three modes of the likelihood surface (Table 1). 6 = §; = 0.25,7i = 1,2, 3.

3 h is the same as above, except that § and the §;’s were chosen adaptively. The solution to (14) puts
d3 = 0.012, d3 > 1,6; > 1 and 6 < 0, so {4, 1, 82,05} = {0,.494,.494,0.012} was used.

4 Like the case directly above, except that § was set to 0.05: {4,81,d2,d3} = {.05,.47,.47,.012}.

5 In this case the 2-component DMIS with § = dopt = 1 is equivalent to the UD method, since the latter
puts all observations into one group initially (R = 1).

6 Three versions of the UD method were mixed in equal proportions. Each of the UD initial groupings with
R=2 was formed from one of the Z,;’s calculated from (12) using the three #’s in (Table 1).

7 Three initial groups for the UD method (R=3) were created using an ad hoc clustering method (inspecting
the values of p(z;|x;,7 = 7mrE) and dividing them into three groups according to their proximity.)
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and the simple UD,,,q method brought large gains in efficiency in each case, respectively.
Specifically, using three initial groups for the UD,,,q method (R=3) reduced the estimated
MSE by a factor of 10 for Data Set 5, while use of ZD-2 sampling, as described in Section
2.2, resulted in a variance reduction for I by a factor greater than 5 x 10* (Table 4). For the
contrived Data Set 6, both the naive UD method and the DMIS method performed well and
considerably outperformed sampling from the prior. Sampling from the prior peformed best
for Data Set 5, emphasizing that one should always investigate simple methods when the
integrand has simplifying features. Most applications will not present such simple likelihoods,

however, and adaptive methods such as those proposed here may be needed.

5 Discussion

We have proposed a general approach to approximating integrated likelihoods for finite
mixture models. The basic idea is to make the unobserved group memberships the argument
of the integral, and then to use importance sampling in terms of the group memberships to
evaluate the integral. The tricky part of this is finding a good importance sampling function,
especially since the dimension of the resulting integral is high in most cases. We propose
using a mixture distribution a second time in the problem, this time as importance sampling
function, and we outline two ways of doing this: defensive mixture importance sampling,
and the Z—distance method. We propose choosing the mixture parameters of the importance
sampling function adaptively so as to minimize the variance of the approximated integrand,
and we develop a simple way of making this choice.

The resulting method is easy to implement, essentially involving only simple multino-
mial sampling. It does not become much more complex as the complexity of the mixture
model increases, and extends easily to more complicated mixture models. It is based on
independent simulation, and so does not encounter problems of convergence due to depen-
dence between consecutive samples. It also produces a standard error and so to some extent
is self-monitoring, although care must be taken when using this. We also propose a way of
dealing with the label-switching problem that can plague inference for mixture models. The
method can also allow one to make use of analytic approximations that are valid when the
group memberships are known (such as the Laplace method and BIC), even though these
are not valid for the mixture model itself.

The method seems to have some advantages over the main alternative methods that

have been proposed. Analytic approximations such as Laplace and BIC are not valid for
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finite mixture models. The number of parameters in mixture models tends to outrun the
capabilities of numerical quadrature rather quickly. And our methods seem easier to imple-
ment than MCMC, also addressing the convergence and label-switching problems that can
affect MCMC for mixture models. For further discussion of the relative merits of importance
sampling and MCMC in a different context, see Stephens and Donnelly (2000).

The basic idea of our method is not limited to mixture models, and can be applied more
generally to models that can be expressed simply in terms of latent or missing data, i.e.
models that lend themselves to the EM algorithm or to data augmentation. These include
simple hierarchical models, variance component models, and multiple imputation models for
missing data.

Various other approaches have been proposed for approximating integrated likelihoods
for models of this kind using the output of the EM algorithm or similar results. Cheeseman
and Stutz (1995) proposed the estimator

Ios = L(x|Z)p(Z)/1(2), (21)

where h(Z) = p(Z|x, 7)|,_5. Our discussion here sheds some light on this estimator of the in-
tegrated likelihood. Recall that I = [ L(x|Z)p(Z)dZ, and that the importance sampling esti-
mator of I based on the importance sampling function h(-)is [ = K~* YK | L(x|Z)p(Zy)/M(Zy,).

Now the integrated likelihood can be rewritten as
I= / v(Z)h(Z)dZ, (22)

where v(Z) = L(x|Z)p(Z)/h(Z). The importance sampling estimator is then seen to be the

simple Monte-Carlo integration estimator

K
I=K7Y v(Zy). (23)
k=1
The Cheeseman-Stutz estimator is then just
Ios = v(Z). (24)

From (22), (23) and (24), it is apparent that instead of the simulation-consistent approach
of integrating over values of Z simulated from h(-), the Cheeseman-Stutz estimator proceeds
by replacing Z by 7 in the integrand. This is not valid in the present context, and the
Cheeseman-Stutz estimator will be biased in general, even with an infinite amount of simu-
lation. Note that the published derivation of the Cheeseman-Stutz estimator was based on

a Laplace approximation that is not valid in general for mixture models.
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Chickering and Heckerman (1996) proposed a modification to the Cheeseman-Stutz esti-
mator to take account of the possibility that the dimension of the parameter space for the
completed data set (x,Z) may be different from that for the imcomplete data. The need for
such an adjustment arises only because of the Laplace method used to derive the Cheeseman-
Stutz estimator which, as we have seen, is in any event invalid for general mixture models.
No such adjustment is needed in our importance sampling approach.

Biernacki, Celeux and Govaert (2000) have proposed the Integrated Completed Likeli-
hood (ICL), which is similar to the Cheeseman-Stutz approach in that it is based on a single
value of Z, but replaces the elements of Z by their most likely values given the data and
7 (rather than by their expected values as in Cheeseman-Stutz), and then integrates the

resulting completed likelihood over 7. Thus, Biernacki et al. (2000) report
p(x|Zw) = [ p(X|Zur, T)p(r|Zas)dr,

where Z,, is given by (12). This is clearly not valid as an approximation to the integrated
likelihood, but Biernacki et al. (2000) do not claim that it is, and argue for it instead in its
own right as the solution to a scientific problem that is of interest in some contexts.

Wei and Tanner (1990) proposed importance sampling using h(Z) = p(Z|x,7 = 7),
a method they called Poor Man’s Data Augmentation-2 (PMDA-2). They used this for
parameter estimation, and not, as here, for integrated likelihoods. However, it could be used
for integrated likelihoods, and then it would be a special case of DMIS, with § = 0. As an
importance sampling function, this may miss important regions away from the MLE, and
the resulting estimator of the integrated likelihood may have high variance (or even, if Z is
continuous, infinite variance). In Wei and Tanner’s (1990) proposed PMDA-1 method, the
importance sampling weights are all set to be equal. This greatly reduces the variance, but
the resulting estimator is biased, even asymptotically (i.e. with an amount of simulation
that tends to infinity).

The methods we propose here are in the spirit of the nonparametric importance sampling
method of Zhang (1996), in the sense that we obtain an adaptive estimate of the most efficient
importance sampling distribution. Adaptive procedures for estimating an intractable p(Z)
are described by Evans and Swartz (1995), Oh and Berger (1993) and Givens and Raftery
(1996). Our goal here is to go beyond estimating p(Z) and estimate an importance sampling
distribution which is closer to the ideal distribution p(Z|x) than to p(Z). In addition, we
have addressed the issue of accurate estimation of the standard error of I.

Raghavan and Cox (1998) proposed a different adaptive algorithm for estimating the
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mixing parameter § in defensive mixture importance sampling. Their method is designed
for importance sampling problems where there is more than one estimand of interest. They
employ a complex minimization and reweighting scheme that allows the researcher to try to
minimize the asymptotic variances of several importance sampling estimators based on the
same randomly sampled values. We can avoid using computational minimization techniques
by using the much simpler optimal ¢ result in Theorem 2, because we are interested only in
calculating the integrated likelihood.

We have explored various possible versions of DMIS and UD, finding that in situations
where the likelihood is not highly peaked, better performance can be achieved by adding
components to the defensive mixture, or by using mixtures of UD methods. It seems plausible
that the method could be improved by developing a systematic way of determining when
additional components are needed in the defensive mixture, and adding them automatically.
One possible approach is adaptive. Consider, for example, hA(Z) to be a mixture of functions
of some form such as (13) or, more parsimoniously, location- and/or scale-shifted versions of
p(Z|Z). In a first stage, two-component DMIS would be used to generate a first (weighted)
sample from p(Z|x). Then, using the EM algorithm, a mixture of functions of Z of the
selected form could be fit to the resulting sample, for example using some criterion such
as BIC to choose the number of components and the selected functional form. In this way
additional components would be added automatically to the defensive mixture if needed to
fill out areas that are underrepresented in the first iteration. This adaptive process could be
continued iteratively, although it seems likely that the improvement would be small past a
few iterations.

Owen and Zhou (2000) discussed the use of control variates to improve the performance of
defensive mixture sampling for integration. The control variate method provided impressive
gains in efficiency in the examples therein. However, our trials of the control variates did
not improve the performance of the DMIS method for integrated mixture likelihoods when
the fitted G was greater than the true G (results not shown). More research is needed to
determine how the techniques proposed by Owen and Zhou may complement those described
here.

A more direct method for sampling Z’s that are moderately close to Z;; is embodied
in the Z-distance sampling approach introduced here. This method is a promising avenue
for further research. The z;’s can be sampled in a designed, dependent manner that reflects
obvious features of the data, and this may well have the potential to lead to improved

methods. For example, the initial groups can be based upon the fact that particular pairs of
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points are much more likely to be in the same group than other pairs. Furthermore, in its
more complex forms, Z-distance sampling allows tuning of its Dirichlet-multinomial sampling
distributions to the data. The simplest form of Z-distance sampling, the Uniform Distance
method with R = G, appears to be adequate for small samples and moderately peaked
likelihoods. However, it uses little information from the data and may be too inefficient for
many problems. For our large-sample flat likelihood test case (Data Set 5), was improved
markedly by using more data information simply by choosing R > G initial groups via
a non—parsimonious initial clustering step. This method may be particularly useful when
models with G greater than the true G will be fitted, resulting in flat likelihood surfaces
with many minor modes. A problem for future research is to find a method for choosing the
number of initial groups to optimize the MSE, say.

For peaked likelihoods, ZD-2 sampling performed as well as the DMIS method, using (10)
to tune the importance sampling distribution parameters. The Z-distance sampling method
proposed here allows very flexible sampling schemes. Even more flexible sampling schemes
could be obtained by allowing the groupings to vary with k& and/or allowing the assignments
in the 7 + 1,5 4 2, ...R groups to be conditional on the assignments in the 1,...,7 groups.

One place where difficulties might arise with our variance-optimization method is in
obtaining adequate initial estimates of I and Z;,;. However, the need for some sort of infor-
mation about the integrand is a general requirement for optimizing an importance sampling
technique, not a shortcoming of our method in particular. In our examples, we had no
trouble finding a suitable initial I by taking 6 = .5 in the 2—component DMIS method.
Nevertheless, it is conceivable that the 2—component DMIS method might fail completely
for some data/model combinations. A simple Laplace-based method such as BIC, even if
inadequate as a final value, may be good enough to be used as an initial value.

The choice of a suitable importance sampling method (with a suitable number of compo-
nents when the DMIS method is used) may be easier if the data analyst has some knowledge
of the likelihood surface. For complex problems, this can be obtained, for example, by exam-
ining the surface using the EM algorithm or other mode—finding routine on a grid of starting
points. This also provides a search for vAY: by applying (12) at each located mode.

No single importance sampling variant can be expected to work for every data set, and
some knowledge of the integrand is required in order to choose an appropriate variant.
However, the small set of variants presented here seems to hold some promise of being useful
over a reasonably wide range of integrands. The methods studied here are also simple, and

we provide theoretical insights into constructing good importance sampling distributions

25



through Theorems 1 and 2. Like Stephens and Donnelly (2000), we conclude that importance
sampling deserves further development as a viable, potentially simpler alternative to MCMC

methods for some problems.
APPENDIX

A. Proof of Theorem 1 For this proof, we redefine 7 = (my,...,7mg-1,6')" so that the
information matrices can be assumed to be positive definite. Assume that the following
conditions hold:

(1) 7 is r—dimensional with prior density p(7) that is continuous at 7, and p(mp) > 0.

(2) %, B 74 where 74 is a point in [0,1]7! x ©.

(3) There exists a function M(X; ) with the property that given any € > 0

2

5 ) .
longZ (X, 2(X;,m0)|7) — log fx,z(Xi, 2(X;, 70)|70)| < M(Xj; 7o)
672

with E[M(X;;7)] < € whenever |7 — 19| < & for some 4.
(4) The functions 2;;(X;; 7) are simultaneously continuous at 7, with probability going to 1;

(5) There exists a function M (X;;7) with the property that given any € > 0

long(X IT) — long(X IT0)| < M(Xi;70)

o2 or?
with E[M(X;;79)] < € whenever |7 — 79| < § for some 4.

We suppress some subscripts for ease of notation in the proof. Partition the ratio of
interest as follows

BEKOIX) (oK XNptie oKX =0
Pr(2(XM) XM, 7 = 7) p(XM, 2(XM)|r =7)  — [p(XM|r)p(r)dr
Ny Ny
= — x .
D, D,
The proof is similar to that of Walker (1969) to show that
Ny P 120 70 \11/2
— " . 2
n/2D1p(7) = (2m)""[J (7o) (26)

Walker’s 6 and f(X;|6) are replaced by 7 and fx z(X;, 2;(X;,7)|7), respectively, and a few
extra steps are needed to show that Z;(X;,7) can be replaced by Z;(X;, 7o) in determining

the limit. Briefly, the integrand in N; is expanded about 7 to obtain
N = [ exp(log(p(X®™), 2(X) r)p(r))dr (27)

= p(X, (X = 7)p(7) [ exply (7 — 2 Culf57)r — DL+ i + Rl
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where 7 € (7, 7),

RQn =

Here we have used the fact that

(%p(xw, 2(X™)|r) =0 at 7.

The assumptions ensure that Ry, and Rj, converge in probability to zero, uniformly over
7 in a neighborhood of 7y, and that the integrand is negligible outside this neighbor-
hood. Also, |C,,(7,7)|/n" % |J ()| by continuous mapping and (26) follows. Similarly,
Dy /(Nyn™?p(7)) 2 (27)7/2|J (79)|'/?, was shown by Walker (1969), which establishes the
theorem.

B. Proof of Theorem 2

Let j index the G™ values of Z, and let hs; denote the probability of Z; under a generic
importance sampling distribution A(-) that depends on § in some manner. Also let k; be the

number of times Z; is drawn in a sample of size K. Note that the variance of I is given by

- 1 L(x|Z;)p(Z;)k;

var(l) = v1(0) = var( 2_; o )
= Lo MABIREI O 00) -5 iz, (2 Lix zop(z), @9
J 9j i

since (k1, ..., ks) is multinomial (K, (hsy, ..., hegn)). Note that omitting the dependence on
¢ and minimizing (28) with respect to each h; results in

hj = L(x|Z;)p(Z;)/ ; L(x|Zy)p(Zk) = p(Z;]x),

the posterior probability of Z;. This shows that the unknown p(Z|x) is the optimal impor-
tance sampling distribution in terms of minimizing var([).

Returning to A’s of known form depending on §, a reasonable simplifying assumption at
this point is to lump Z’s with the same or nearly the same values of L(x|Z)p(Z) into a single

equivalence class and take h(Z) to be the same for all Z’s in an equivalence class. Because
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there is a class of points with negligible mass for L(x|Z)p(Z), we found it reasonable to ap-
proximate the minimization problem by assuming just two equivalence classes corresponding
to the “non-negligible” and “negligible” classes of points, respectively. Suppose there are
c; elements in the “non-negligible” class (class 1) and ¢, elements in the “negligible” class
(class 2) , with f; and f, being the respective values of L(x|Z)p(Z) and hs; and hsy being

the respective values of h. Then,

_aff(l=ha) | caf5(1 = hg)
v1(0) = o + I + constant. (29)

Now, minimizing (29) with respect to hsi, subject to the constraint cihs + cohgo = 1 gives

i Lx\Za)p(Za)
cifi+ceafy 1

The last equality follows from the fact that Z,, must be in the non-negligible class of points.
Note that (30) does not depend on the actual form of h(-). When h(-) has the form of (8),
(10) follows from (30).

One of the goals of this research is to find an importance sampling method whose precision
can be accurately monitored using the sample variance of the I;’s. Hence, it is of interest
to choose h to minimize or nearly minimize v4(6) = var(var(I)). In this subsection, we show

that hs; in (30) also minimizes v5(0) under the conditions above. Specificallyy,

var(var(l)) = var(— Zlk— (31)

— 2 2(pg—2 — 32
pa = iy 2(pa — 2p3) a3 (32)
K K2 K3

where u; represents the 4% central moment of the distribution producing the IID I;’s
(Cramer, 1946). Let y, = 1 if Zj, is in class 1 and let y, = 0 if Z is in class 2. Then

P(Zk) fi fo

Iy = L(x|Z = Syt (1

k= L(x| k)h(Zk) %t s (1 — k) (33)
i fe ) 2
- (2L _ 2z + 2= 34
<h51 heo) % ha (34
= M (hs)yx + Ma(hst). (35)
Hence,

ji2 = M2pq, and ps = Mipg(1 — 3pq), (36)
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where p = ¢1hs; = Elyi] and ¢ = 1 — p. This gives
var(var(I)) oc (K — 1)Mipg — 2(2K — 3) M{p*¢>. (37)

It can be verified directly that the hs; in (30) is a zero of the derivative of (37) and that it

represents a minimum.

C. Z-distance Sampling Using a Dirichlet-Multinomial distribution
The Dirichlet-Multinomial distribution is a compound distribution that describes the marginal
distribution of X when X|p is Multinomial(n,p = (p1,---,pg)), and p has a Dirichlet distri-

bution whose joint density is given by
Cpp ™ pg® (38)

where p; > 0, > p; =1, S = > a; and o; > 0. Then the marginal mean of X is ny where
the mean parameter u = («q,...,as)/S; and the dispersion parameter for X is w = 1/S.
The probability mass function for X is
T (wt T i i -1
Prob[X = (z4,...,2¢)] = PAC(w™) I D% + pico™ ) .
[T %! TL T (paw =)0 (n + w™t)

To facilitate the Z-distance sampling described in section 2, it is useful to note that the

(39)

number of observations falling into group j is beta-binomial with probability mass function

T (w (e + pw ™ )T(n —c+ (1 — py)w™)
c(n — )T (paw™)I((1 = p)w )T (n + w™')

nIL(S)T(c+ a)l(n—c+ S —am)
cl(n—e)'T(a)T(S —a)l'(n+S) °

Given X; = ¢, the conditional distribution of (X,..., Xg|X; = ¢) is Dirichlet-Multinomial

with mean parameter p' = (pg, . .., pia)/ Xj21 14, and dispersion parameter w' = w/ > ;4 ;.

Prob[X; = | (40)

(41)

Hence, the distribution of the n observations into the G groups can be done as a sequence of
beta-binomial samples. This is particularly easy when p = (1/G,...,1/G) and w = 1/G for
the Uniform Distance method. The Uniform Distance method is a variant of our Z-distance
method that incorporates a limited amount of information from p(Z|x, 7 = 7). When neces-
sary, improved performance might be achieved by taking p; = (1 —«)(0,...,1,...,0)" + af,
where the first component vector has a 1 in the ;™ position, and the £ element of the

second component vector is given by

Yiegroup j Prob[Zy, == 1|x, 7 =17]
Ej Zlegroup j Prob[Z;, == 1|x,7 = 7A_]-

Hjk =
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w could be fixed at 1/G again, and « would be chosen to satisfy equation (11). With this
method, observations that are in group j in the initial grouping based on Z. are most likely
to be redistributed into groups close to group j, whereas the Uniform Distance method redis-
tributes the observations uniformly into the groups. Another adaptive variant of Z—distance

sampling, ZD-2, is discussed in the text.
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