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A Training Program In Breast Cancer Research Using NMR Techniques 
 
 
I. INTRODUCTION 
 

The purpose of this proposal was to develop a research training program in breast cancer 
research at Howard University Cancer Center utilizing nuclear magnetic resonance (NMR) 
imaging and spectroscopy techniques. This program was a multidisciplinary consortium of five 
departments including College of Medicine MD/PHD program, Radiology, Radiation Oncology, 
Biology and Electrical Engineering. Through this program, we have trained seven predoctoral 
students and five postdoctoral students in six years. The predoctoral students were either from 
the MD/PhD program or from the Department of Electrical Engineering.  The MD/PhD program 
is a seven-year program in which the students do research in the Department of Biochemistry 
and Molecular Biology. The postdoctoral fellows were from a medical or physical science 
background with strong interests in breast cancer research.  All the students have participated in 
the research projects conducted in the Biomedical NMR Laboratory. In the later years of the 
program, the postdoctoral fellows were encouraged to develop their own research projects.  
Although the research component of the training was focused on NMR applications in breast 
cancer research, the trainees received a broad exposure to other aspects of breast cancer research 
through a rigorous curriculum, interactions with faculty, and participation in seminars and other 
research activities in the Howard University Cancer Center. The program was flexible and 
tailored to the trainees’ backgrounds to ensure the trainees receive a well-rounded education.  
This program has accomplished its goal to provide an educational and research opportunity to 
promising young African-American students to become productive breast cancer researchers. 
 
 
II. BODY 
 
Statement of Work   (All the tasks in the Statement of Work have completed). 
 
For Predoctoral Students 
 
Year 1: 
• Introduction to the Biomedical NMR Laboratory and Cancer Center.  Meeting with mentors 

to learn the on-going breast cancer projects (months 1 - 3)  
• Learn NMR instruments (months 4 -12)  
• Start departmental course work with the respective department (months 4 - 12)  
• Seminar presentation by the student each semester (months 4 - 12) 
• Clinical preceptorship one half day per week (months 4 - 12) 
• Report to MD/PhD committee and respective department on research progress (month 12) 
Year 2-3: 
• Take departmental comprehensive exams (months 13 - 15) 
• Submit a five page pre-proposal 30 days before taking comprehensive exam (months 13-15) 
• Write an expanded research proposal and defend the proposal (months 16-18) 
• Once the student has passed the written and oral comprehensive exams, the student is 

qualified as a Ph.D. candidate 
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• Select a thesis committee (month 18) 
• Start thesis project (month 18) 
• Report to MD/PhD committee and respective department on research progress each semester 

(months 18 - 36) 
• Clinical preceptorship one half day per week (months 13 - 36) 
Year 4: 
• Conclude the thesis project and write up thesis (months 37 - 42) 
• Thesis defense and writing of scientific papers for publication (month 43 - 48) 
 
For Postdoctoral Students: 
 
Year 1: 
• Introduction to the Biomedical NMR Laboratory at the Cancer Center.  Meeting with 

mentors to learn the on-going projects (months 1-2) 
• Participate in weekly Cancer Center Seminars (months 1-2) 
• Learn to use three NMR instruments in the laboratory (months 1-12) 
• Take cell biology course taught by Dr. Bremner and NMR course taught by Dr. Wang 

(months 3-12) 
• Select an on-going project and start to get involved with the research project (months 4-12) 
Year 2: 
• Participate in weekly Cancer Center Seminars (months 13-24) 
• Organize weekly research group meeting (months 13-24) 
• Continue research project (month 13-24) 
• Present progress report to the Executive Committee (months 18 and 24) 
• Clinical preceptorship one half day per week (months 13-24) 
Years 3-4: 
• Select a new research project approved by the Executive Committee (months 25-27) 
• Clinical preceptorship one half day per week (months 25-48) 
• Conduct the new research project (months 28-48) 
• Present progress report to the Executive Committee once every six months (months 28-48) 
• Present research results to the Cancer Center faculty and National Meeting 
• Write scientific papers 
 
Students trained in this program: 
 
Pre-doctoral students: (graduate program, current position) 
 
Emmanuel Agwu (MD/PhD, Biochemistry, internal medicine resident at HUH) 
O’tega Ejofodomi (Electrical Engineering, graduate student at HU) 
Lisa Kinnard (Electrical Engineering, researcher at FDA) 
Raymond Malveaux (medical student at Howard University)  
Armand Oei (Biology, student at New England School of Optometry) 
Shani Ross (Electrical Engineering, graduate student at U Michigan) 
Furia Thomas (Electrical Engineering, graduate student at Catholic University) 
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Postdoctoral students: (current position) 
 
Yusuf Ali, MD (radiology resident at Howard University Hospital) 
Ercheng Li, PhD (staff, Chemistry Department, Georgetown University) 
Huafu Song, MS (Engineer, NMR industry) 
Jianwei Zhou, PhD (assistant professor, Quiyang Normal University, China) 
Renshu Zhang, MD (research associate, Department of Radiation Oncology, HUH)  
 
Research Projects 
 
In this training grant, students have participated in seven research projects listed as follows: 
 
(1) NMR Studies of Phosphorus Metabolites of Breast Cancer Cells Using an Improved 
 Cell Perfusion System  
 P31 NMR has been used to study the high energy phosphorus metabolites in tumors. It can 
be used to monitor the effectiveness of cancer treatment.  Since the NMR signals of the 
phosphorus metabolites in cells are weak and the NMR study usually are long. During the long 
data acquisition time, the cancer cells need to be maintained in a good living environment.  In 
this project, we developed an improved NMR cell-perfusion system, which was used to study the 
phosphorus metabolites of breast cancer cells for an extended period. The improved perfusion 
system is driven by a peristaltic pump. The portion of the system before the pump is under 
negative pressure, and the portion after the pump is under positive pressure.  This design helps 
the removal of air bubbles trapped in the perfusion medium and avoid the degradation of the 
quality of NMR spectrum.  Using this perfusion system, NMR study of the breast cancer cells 
can be extended for more than a week not hours as it used to be. The P31 NMR spectrum of the 
wild type MCF7 breast cancer cells shows three distinct phases, which reflect the proliferation of 
the cells. Study of oxygenation of the agarose-encased cells in this perfusion system suggests 
that the cells utilized aerobic respiration. The ability for this perfusion system to maintain cells 
viable for more than a week allowed us to determine the longitudinal relaxation times (T1 
values) of the P31 metabolites of MCF7/WT cells in vitro.  A progressive saturation recovery 
NMR technique was used for T1 measurement. Accurate T1 values are crucial in designing P31 
MRS studies. This study has demonstrated that the long time bubble-free NMR cell perfusion 
system could be a useful tool for in vitro breast cancer research. 
 
(2) Segmentation of Mammographic Masses 

Mammography combined with a clinical examination is a standard method used for the 
detection and diagnosis of breast cancer. However, mammography alone can produce a high 
percentage of false positives. A computer-aided diagnostic (CADx) system can serve as a more 
accurate clinical tool for the radiologist, consequently lowering the rate of missed breast cancer 
and ultimately lowering morbidity and mortality. Breast cancer can exist not only in the form of 
masses, but also in the forms of microcalcifications, asymmetric density, and architectural 
distortion. These abnormalities can be seen using imaging techniques such as mammography, 
ultrasound and magnetic resonance imaging (MRI). Breast images have different appearances 
based upon their amounts of fibroglandular and fatty tissue. Fibroglandular tissue usually 
consists of a combination of breast glands (lobules), ducts, and surrounding fibrosis (fibrous 
connective tissue and scarring). It appears denser or brighter than fatty tissue on mammograms 
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due to its higher x-ray attenuation. The diseased tissue usually also becomes denser over time. 
Masses can have unclear borders and are sometimes overlapped with glandular tissue in 
mammograms; therefore, the radiologists can overlook them during their search for suspicious 
areas. Proper segmentation to include the shape and boundary characteristics is an essential step 
in aiding the computer for the analysis and malignancy determination of the mass. While many 
CADx systems have been developed, the development of effective image segmentation 
algorithms for breast masses remains unsolved in this field, particularly in the cases where the 
breast tissue is dense. Since cancerous masses often appear to be light and have ill-defined 
borders, it is quite challenging for mammographers to extract them from surrounding tissue. It is 
even more difficult to automatically segment masses from dense tissue. In this study, a fully 
automated segmentation algorithm has been developed. It delineates the complete mass as with 
minimum normal structures in dense and mixed tissue mammograms.  
 
(3) Establishment of an Image Database for Computer-Aided-Diagnosis (CADx) Research 

Development 
 The success of CADx is based on the accuracy and completeness of the mammographic 
image database, of which the CADx extracts the features of different types of pathology. The 
current available mammographic image databases are all obtained from the Caucasian 
population. There are very few African American cases. It is well known that African American 
women generally have denser breasts. The appearance of mammograms from African American 
breast cancer patients may not be the same as those images from Caucasian breast cancer 
patients.  Howard University Cancer Center has a well maintained cancer registry. It has more 
than 200 new African American breast cancer cases each year. We have digitized more than 
5000 images from 260 patients’ records using a high resolution Kodak LS85 laser scanner.  The 
database system and web-based search engine were developed using MySQL and PHP.  The 
database has been evaluated by medical professionals and the experimental results obtained are 
promising with high image quality and fast access time. We have also developed an image 
viewing system, D-Viewer, to display these digitized mammograms.  This viewer is coded in 
Microsoft Visual C++ and is intended to help medical professionals view and retrieve large data 
sets in near real time.  Finally, we have developed an image content-based retrieval function for 
the database system in order to provide improved search capability for the medical professionals. 
 
(4) F19 NMR Detection of Trifluoperazine Crossing Blood-Brain-Barrier Through Pgp 

Modulation 
Cancer patients are often treated with combination therapy for secondary symptoms such 

as depression, and cardiopulmonary diseases. The potential for drug-drug interaction under these 
conditions is high. Such interactions may cause changes in the pharmacokinetics, especially for 
drugs with narrow therapeutic indices. These changes can alter efficacy and toxicity of the 
administered drugs. Drug-drug interactions may occur due to common metabolic pathways, but 
also due to interference at the P-glycoprotein (Pgp) level. Pgp, a nonspecific transport protein, is 
expressed constitutively at the blood-brain-barrier (BBB), intestine, kidney, liver, and in 
activated T-cells. Interaction at the blood-brain-barrier may occur if one of the two 
concomitantly administered drugs blocks Pgp thus allowing the other drug to retain in the brain 
or increase in brain uptake of therapeutic drugs.  The potential for drug-drug interactions is not 
routinely studied at the Pgp level during drug development. Its presence is assumed only after 
unexpected clinical symptoms. We have shown using a dynamic NMR method based on 
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detection of a fluorinated drug, trifluoperazine (TFP), in the brain, in combinations with an 
immune suppressor, cyclosporin A to demonstrate drug penetration across blood-brain-barrier 
after Pgp modulation. 

 
(5) Tumor-targeted MR Contrast Enhancement by Anti-transferrin Receptor scFv-

Immunoliposome Nanoparticles 
 The development of improvements in MRI that would enhance sensitivity, thus leading to 
earlier detection of cancer and visualization of metastatic disease, is an area of intense 
exploration. In this study, we developed the cationic immunoliposome system that includes an 
anti-transferrin receptor single chain antibody fragment (TfRscFv) as the targeting molecule was 
used to encapsulate the MR contrast agent gadolinium (TfRscFv-Lip-GAD-d) for specific 
targeting to cancer cells and MR contrast enhancement. This system was evaluated for in vivo 
MR imaging in MDA-MB-435 breast cancer cells growing as solid tumor xenografts in athymic 
nude mice. The TfRscFv-Lip-GAD-d complex was administered intravenously at an 
encapsulated contrast agent. The MRI signal intensity of tumors was significantly enhanced 
compared to free contrast agent and the enhancement was closely related to the pathology of the 
tumors. These results indicate that this TfRscFv-Lip-GAD-d system significantly enhances the 
image contrast in solid tumors and is much superior to the contrast agent alone for identifying the 
tumor pathological features. This targeted immunoliposome system may serve as a powerful MR 
imaging probe for early detection and differential diagnosis of tumors. 
 
(6)  MRI and Histological Correlations Of Cortical Brain Volumes In APP/PS1 Mice 
 Quantitative analyses indicate that brain atrophy on ante-mortem neuroimages and post-
mortem tissue strongly correlates with the severity of cognitive impairment in Alzheimer’s 
disease (AD). The absence of cortical atrophy in the age-matched, non-demented elderly 
suggests that volumetric studies of ante-mortem neuroimages may provide an early marker of 
AD in aging populations. In this study we used design-based stereology to quantify cortical 
volumes in double transgenic mice that deposit AD-type mutant ß-amyloid proteins (Aß) in 
cortical tissue. Spin-echo T1-weighted, high-resolution magnetic resonance imaging (MRI) was 
applied to the brain of male and female double transgenic mice aged 4-28 months of age that co-
express AD-type mutations in amyloid precursor protein (APP) and presenilin-1 (PS-1), and, 
age-matched non-tg littermate controls (wild-type, WT). From a systematic-random series of 
coronal MRI images, total volumes of the hippocampal formation (VHF) and whole brain (Vbrain) 
were quantified by the Cavalieri-point counting method. The same sampling and estimation 
methods were used to quantify the same brain regions after perfusion and tissue processing. 
Strong correlations were found between VHF and Vbrain estimates from MRI images and 
histological sections. Agonal and tissue processing changes accounted for about 65 to 75% 
differences in cortical volumes between in situ and coverslipped sections. No differences were 
present in mean VHF or mean Vbrain for dtgAPP/PS1 compared to WT mice. These stereological 
studies of MRI neuroimages and postmortem tissue do not show cortical atrophy in association 
with widespread cortical deposition of AD-type amyloid plaques in aged dtg APP/PS1 mice, in 
contrast to the severe cortical atrophy in AD. Future studies with dtgAPP/PS1 mice will explore 
the possibility that high contrast ligands bound to mutant Aß proteins associated with amyloid 
plaques could facilitate early diagnosis of AD by ante-mortem neuroimaging. 
 
(7)  Enhanced Molecular Imaging with Fused Optical and MRI Images  
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 Improvement in molecular and cell biology techniques in recent years have had 
remarkable impact on our understanding of the cellular and molecular mechanisms of biological 
processes and the underlie development of diseases. Significant development have been made in 
noninvasive, high-resolution, in vivo imaging modalities such as positron emission tomography 
(PET), magnetic resonance imaging (MRI), and optical imaging (OI) for better diagnosis of 
patients, and imaging of cells and small animals of diseased models. In vivo molecular imaging, 
which utilizes these two fronts, opens up extraordinary opportunities for basic scientists and 
clinicians to study diseases, and in many cases, quantitatively at the molecular level. The early 
assessment of illness depends on anatomic and physiological changes of the disease, which are a 
late manifestation of the molecular changes that truly triggers the disease. Imaging early 
molecular changes at “predisease states” would be useful in patient care and management by 
allowing much earlier detection of the disease, designing more effective drugs, and evaluation of 
therapy. This research is to combine the strength of MRI and optical imaging modalities for 
better spatial and functional information in small animal imaging. The technique would be useful 
to evaluate targeting specificity of near infrared dye conjugated ligands in molecular imaging of 
tumor bearing animals.  
 
 
III. KEY RESEARCH ACCOMPLISHEMENTS  
 
Year 1 (2000-01) 

• An improved NMR cell-perfusion system driven by peristaltic pump was constructed. 
This system totally eliminated the air bubbles from the perfusion medium. 

• The cell viability study of the MCF-7 breast cancer cells was extended successfully from 
hours to more than a week.  

Year 2 (2001-02) 
• Intravascular MRI contrast agent has been used to detect high blood flow, vascular 

density, and capillary permeability of tumors. 
• Dynamic MRI contrast enhancement is an important parameter for tumor 

characterization, and it correlates well with histopathological findings.  
• Using pixel aggregation and likelihood analysis techniques, the segmentation method can 

delineate the tumor body as well as tumor peripheral regions covering typical mass 
boundaries and some speculation patterns.  

Year 3 (2002-03) 
• We found that the maximum likelihood method in conjunction with fuzzy shadow 

approach is an effective approach not only for segmenting masses in mammogram, but 
also for using its results to separate malignant and benign masses.  

• We have demonstrated that cyclosporin A, an immune suppressor, enhances the drug 
penetration through the blood-brain-barrier. 

Year 4 (2003-04) 
• A fully automated segmentation algorithm for Computer-Aided-Diagnosis has been 

developed. It delineates the complete masses with minimum normal structures in dense 
and mixed tissue mammograms.  

• Drug penetration of trifluoperazine through the blood-brain-barrier due to Pgp 
modulation was detected using a dynamic in vivo F19 NMR method.  

 9



• Utilizing a well maintained cancer registry at the Howard University Cancer Center, 
mammograms from more than 200 African American breast cancer patients were 
digitized to establish a breast cancer image database. It will be available on the Internet to 
the CADx software developers and researchers.  

• Developed a TfR scFv-immunoliposome system to be used as a MR contrast agent 
delivery vehicle for improving affinity and specificity of contrast agent to tumor 
association.  

Year 5 (2004-05) 
• An improved NMR cell-perfusion system was developed. It has been used to study the 

phosphorus metabolites of breast cancer cell for an extended period longer than one 
week. Using this perfusion system, the T1 relaxation times of phosphorus metabolites 
were accurately measured.  

• The image digitization of more than 1000 mammograms from 220 African American 
breast cancer patients has completed. This huge image database is available to be used in 
the further development of Computer-Aided-Diagnosis system.  

• MRI contrast agent is incorporated into an anti-transferrin receptor single chain antibody 
(TfRsc) liposome nanoparticle for MRI molecular imaging. This significantly improves 
the image contrast between tumor and surrounding tissues. This improves the specificity 
of MRI imaging of tumor.  

Year 6 (2005-06) 
• Based on the finished mammography database of 260 African American (40 more cases), 

two previously supported students, Ms. Ross and Ms Ejofodomi wrote a paper entitled 
“A Mammography Database and View System for African American Patients”. The 
paper has been submitted to the Journal of Digital Imaging for publication. This huge 
image database is available to be used in the further development of Computer-Aided-
Diagnosis system. 

• A graduate student, Mr. Furia Thomas, has worked on a project for image fusion of MRI 
images and optical images. The MRI images provide detail anatomical information and 
the optical images provide functional information of the tissue. The greater imaging 
sensitivity of optical imaging technique can be complemented by the high resolution MRI 
images when these two images are fused together. Mr. Thomas has submitted an abstract 
entitled “Enhanced Molecular Imaging with Fused Optical and MRI Images” to the 28th 
IEEE Engineering in Medicine and Biology Conference Management System, July 2006.  

• The PI has continued developing the nanosize cationic immunoliposome system that 
includes an anti-transferrin receptor single chain antibody fragment (TfRscFv) as the 
targeting  molecule was used to encapsulate the MR contrast agent gadolinium-DTPA 
(TfRscFv-Lip-GAD-d) for specific targeting to cancer cells and MR image contrast 
enhancement. This system was evaluated for MR imaging of breast cancer cells in vitro 
as well as in vivo. The signal intensity of tumors was significantly enhanced compared to 
free contrast agent and the enhancement was closely related to the pathology of the 
tumors.  

 
 
IV. REPORTABLE OUTCOMES 
 
Research 
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of Breast Cancer Cells Using An Improved Cell Perfusion System Applications for the 
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Career Development 
 
Degrees Awarded 

1. Mr. Emmanuel Agwu, an MD/PhD student, received a MD degree from the School of 
Medicine in June 2003.  
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2. Ms. Lisa Kinnard received a PhD degree in June 2003 from the Department of Electrical 
Engineering. Her PhD thesis title is “Segmentation of Malignant and Benign Masses in 
Digitized Mammograms Using Region Growing Combined with Maximum-Likelihood”. 

3. Mr. Raymond Malveaux received a MD degree from the School of Medicine in June 
2005.  

4. Ms. Shani Ross received her B.S. degree in June 2004 from the Department of Electrical 
Engineering. She went to a graduate program in the Department of Biomedical 
Engineering at University of Michigan. 

5. Ms. O’tega Ejofodomi received her B.S. degree in June 2004 from the Department of 
Electrical Engineering. She went to a graduate program in the Department of Electrical 
Engineering at the Howard University pursuing medical imaging research. 

 
Employment/Research Positions 

1. Mr. Armand Oei is going to attend professional school at the New England School of 
Optometry, 2005. 

2. Dr. E. Chikezirim Agwu has entered a residency program at Howard University Hospital, 
2006.  

3. Dr. Lisa Kinnard has joined FDA as a research scientist to continue the CADX work, 
2006.  

 
Awards 
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Cancer Research for the AACR Special Conference entitled “Molecular Imaging in 
Cancer: Linking Biology, Function, and Clinical Application In Vivo” held January 23-
27, 2002 Lake Buena Vista, Fl. 
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1. Computer-Aided Detection of Mammographic Masses in Dense Breast Images. US Army 
Medical Command Post-Doctoral Award, Dr. Lisa Kinnard (PI), USAMRMC 
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2. Tumor-targeted MR Contrast Enhancement by Anti-transferrin Receptor scFv-
Immunoliposome Nanoparticles. Dr. Paul Wang is the principal investigator of this pilot 
project; Dr. Nancy Davidson(PI) (NIH SPORE, P50 CA88843-04), 06/04-05/05  

3. F19 NMR Detection of Trifluoperazine Crossing Blood-Brain-Barrier Through Pgp 
Modulation. Dr. Paul Wang (PI), Radiology Society of Northern America Research and 
Education Foundation Medical Student Departmental Grant (MSD0306), 06/03-08/03. 

4. Tumor-targeted MR Contrast Enhancement Using Molecular Imaging Techniques. 
National Cancer Institute's Minority Institution/Cancer Center Partnership (MI/CCP) 
program Pilot Project Initiative, (NIH 5U54CA091431), 03/04-02/05. 
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5. A Partnership Training Program in Breast Cancer Research Using Molecular Imaging 
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University, In vivo Cellulous and Molecular Imaging Center. The proposal is funded by 
the U.S. Army Medical Research and Materiel Command (W81XWH-05-1-0291), 07/05-
06/09. 

 
 
V. CONCLUSIONS 
 

This is a six year training program in breast cancer research using NMR imaging and 
spectroscopy techniques. This program is a multidisciplinary consortium of five departments 
including College of Medicine MD/PhD program, Radiology, Radiation Oncology, Biology and 
Electrical Engineering. This program has supported seven predoctoral students and five 
postdoctoral students. All the trainees have been actively involved in one of the seven ongoing 
research projects conducted in the Biomedical NMR Laboratory. They have learned the theory 
and instrumentation of NMR. Besides participating in the specific research project, the trainees 
also have attended the weekly seminars in the Cancer Center and special NMR seminar series in 
the Department of Radiology. The trainees have received a broad training in breast cancer and 
tumor biology. Based on the trainees’ research, eight papers have been published and 16 
abstracts have been presented in the national and international meetings. In addition, five grants 
including a USAMRMC postdoctoral award have received. This program has accomplished its 
goal to provide an educational and research opportunity to promising young African-American 
students to become productive breast cancer researchers.  
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VI. ABBREVIATIONS 
 
 
AD  Alzheimer’s disease 
APP  amyloid precursor protein 
BBB  blood-brain-barrier 
CADx  computer-aided diagnostic 
dtg  double transgenic 
HUH  Howard University Hospital 
MCF7 
MCF7/WT 
MR  magnetic resonance 
MRI  magnetic resonance imaging 
MRS  magnetic resonance spectroscopy 
NMR  nuclear magnetic resonance 
OI  optical imaging 
PET  positron emission tomography 
Pgp  P-glycoprotein 
PS-1  presenilin-1 
TFP  trifluoperazine 
TfRsc  transferrin single chain antibody 
TfRscFv transferrin single chain antibody variable fragment 
TfRscFv-Lip-GAD-d transferrin single chain antibody variable fragment – lipid-gadolinium  

 15



VII. APPENDICES (Reprints) 
 
  

1. Kinnard L, Lo S-C.B, Wang P, Freedman MT, Chouikha M, Separation of Malignant and 
Benign Masses in Mammography using Maximum-Likelihood Modeling and Neural 
Networks. Proc. of SPEI Vol 4684: 733-741, 2002. 

2. Lo S-C.B, Li H, Wang Y, Kinnard L, Freedman M, A Multiple Circular Path 
Convolution Neural Network System for Detection of Mammographic Masses, IEEE 
Transactions on Medical Imaging, Vol 21, No 2 pp 150-158. 2002  

3. Kinnard L, Lo S-C B, Wang PC, Freedman MT, Chouikha M, Automatic Segmentation 
of Mammographic Masses Using Fuzzy Shadow and Maximum-likelihood Analysis, 
Proc of IEEE Symposium on Biomedical Imaging (Cat 02EX608C): pp. 241-244, 2002. 

4. Kinnard L, Lo S-C.B, Wang PC, Freedman MT, Chouikha M, Separation of Malignant 
and Benign Masses Using Image and Segmentation Features. Proc. of SPIE, 2003 

5. Kinnard L, Lo SB, Makariou E, Osicka T, Wang PC, Freeman M, Chouikha M. 
Likelihood Function Analysis For Segmentation of Mammographic Masses For Various 
Margin Groups. Proc of IEEE Symposium on Biomedical Imaging. pp 113-116, 2004. 

6. Liang XJ, Yin JJ, Zhou JW, Wang PC, Taylor B, Cardarelli C, Kozar M, Forte R, 
Aszalos A, Gottesman M. Changes in Biophysical Parameters of Plasma Membranes 
Influence Cisplatin Resistance of Sensitive and Resistant Epidermal Carcinoma Cells. 
Exp Cell Research 293:283-291, 2004. 

7. Kinnard L, Lo SB, Makariou E, Osicka T, Wang P, Chouikha MF, Freedman MT. 
Steepest changes of a probability-based cost function for delineation of mammographic 
masses: A validation study. Med. Phys. 31(10):2796-2810, 2004.  

8. Pirollo K, Dagata J, Wang PC, Freedman M, Vladar A, Fricke S, Ileva L, Zhou Q, Chang 
EH. A Tumor-Targeted Nanodelivery System to Improve Early MRI Detection of 
Cancer. J Mol Imaging 5(1):41-52, 2006.  

 
 

 16



Separation of Malignant and Benign Masses using
Maximum-Likelihood Modeling and Neural Networks

Lisa Kinnarda,b, Shih-Chung B. Loa, Paul Wangc, Matthew Freedmana, Mohamed Chouikhab

aISIS Center, Department of Radiology, Georgetown University Medical Center,
Washington, D.C.

bDepartment of Electrical Engineering, Howard University, Washington, D.C., USA
cBiomedical NMR Laboratory, Department of Radiology, Howard University,

Washington, D.C.

Copyright 2002 Society of Photo-Optical Instrumentation Engineers. This paper was (will be) published in
The Proceedings of SPIE and is made available as an electronic reprint (preprint) with permission of SPIE. One
print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution
to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for
commercial purposes or modification of the content of this paper are prohibited.

ABSTRACT

This study attempted to accurately segment the masses and distinguish malignant from benign tumors. The
masses were segmented using a technique that combines pixel aggregation with likelihood analysis. We found
that the segmentation method can delineate the tumor body as well as tumor peripheral regions covering typical
mass boundaries and some spiculation patterns. We have developed a multiple circular path convolution neural
network (MCPCNN) to analyze a set of mass intensity, shape, andtexture features for determination of the
tumors as malignant or benign. The features were also fed into a conventional neural network for comparison.
We also used values obtained from the maximum likelihood values as inputs into a conventional backpropagation
neural network. We have tested these methods on 51 mammograms using a grouped Jackknife experiment
incorporated with the ROC method. Tumor sizes ranged from 6mm to 3cm. The conventional neural network
whose inputs were image features achieved an Az value of 0.66. However the MCPCNN achieved an Az value
of 0.71. The conventional neural network whose inputs were maximum likelihood values achieved an Az value
of 0.84. In addition, the maximum likelihood segmentation method can identify the mass body and boundary
regions, which is essential to the analysis of mammographic masses.

Keywords: Computer-assisted diagnosis, breast cancer, convolution neural networks, feature extraction

1. INTRODUCTION

While many breast cancer diagnostic systems have been developed, fully-automated mass segmentation continues
to be a major challenge in this area. Several investigators exploited methods using intensity values to decide if a
pixel should be placed in the region of interest (ROI) or background 14,9,5,7. Petrick12 et al. developed the density
weighted contrast enhancement (DWCE) method which applies a series of filters to the image in an attempt
to extract masses. Li6 et al. developed a competetitive classification strategy, which uses a combined soft and
hard classification method for deciding if segmented regions are true or false positives. Li7 et al. developed
a segmentation method that uses probability to determine segmentation contours. Most of these methods
are successful at segmenting the tumor body, however, they sometimes do not properly obtain the extended
boundaries of the tumor. While conventional region-growing is an excellent pixel-based segmentation method,
it may not suitable to use this method alone. It produces many segmentation contours for one tumor image,

Further author information: (Send correspondence to Lisa M. Kinnard)
Lisa M. Kinnard: E-mail: kinnard@isis.imac.georgetown.edu, Telephone: 1 202 687 5135
S.C. Ben Lo: E-mail: lo@isis.imac.georgetown.edu, Telephone: 1 202 687 1659,
Address: ISIS, Georgetown University, 2115 Wisconsin Avenue, NW, Washington DC, USA



but does not decide which segmentation contour is the best. Based on the above reasons, we have developed
a tumor segmentation method that combines region-growing with probability assessment to determine final
segmentation contours for various breast tumor images.

The most recognized obstacles in breast cancer diagnosis are (1) difficulties of diagnostic decision making in
calling back patient for further breast examination, (2) the large number of suspected lesions of which only part
of them are malignant lesions; and (3) missed diagnosis of breast cancer. The callback rates vary from 5% to 20%
in today’s breast cancer screening programs1,16. At some medical centers, the positive predictive rate can be 30%
to 35%4,1while at others this rate can be as low as 10% to 15%. It is well known that effective treatment of breast
cancer calls for early detection of cancerous lesions (e.g., clustered microcalcifications and masses associated
with malignant cellular processes)16,11,15 Tumors can be missed because they are obscured by glandular tissue
and it is therefore difficult to observe their boundaries. We were motivated by this clinical obstacle and have
developed a computer-assisted diagnostic system attempted to tackle this issue as demonstrated in the following
sections.

2. METHODS

Computer-assisted breast cancer diagnosis is divided into three parts, namely, image segmentation, feature
calculation, and classification. The next several section will theoretically describe the methods used in the
study.

2.1. Segmentation

It is well known that lesion segmentation is one of the most important aspects of computer-assisted diagnosis
(CADx) because one of the main characteristics of malignant tumors is ill-defined, and/or spiculated borders.
Conversely, benign tumors typically have well-defined, rounded borders. Segmentation is therefore extremely
important because the diagnosis of a tumor can strongly depend upon image features.

Pixel aggregation is an automated segmentation method in which the region of interest begins as a single
pixel and grows based on surrounding pixels with similar properties, e.g., grayscale level or texture.2 It is a
commonly used method13,14,9due to its simplicity and accuracy. The computer will use the maximum intensity
as the "seed point" -a pixel that is similar to the suspected lesion and is located somewhere inside the suspected
lesion. The next 4- or 8-neighboring pixel is checked for similarity so that the region can grow. If pixels in the
4- or 8-neighboring region are similar, they are added to the region. The region continues to grow until there
are no remaining similar pixels that are 4- or 8-neighbors of those in the grown region.

Our implementation of this method checks the 4-neighbors of the seed pixel and uses a graylevel threshold
as the similarity criterion. If a 4-neighbor of a pixel has an intensity value greater than or equal to a set
threshold, it is included in the region of interest. The 4-neighbors were checked instead of the 8-neighbors so
that surrounding tissue will not be included. The intensity threshold was used as a similarity criterion due to
its simplicity and effectiveness.

By using the same seed point with multiple intensity threshold values we obtained between 150 and 300 of
gray level change per lesion; however, the computer did not have the ability to choose the best partition. We
added a maximum-likelihood component to the region-growing algorithm. The algorithm can be summarized
in five steps. The image was first multiplied by a 2D shadow, whose size was approximately the same size as
the ROI. We will henceforth refer to the image to which the 2D shadow has been applied as the "fuzzified"
image. We started the threshold value at the maximum intensity in the image and decreased the intensities in
successive steps. Consequently, we obtained a sequence of growing contours (Si), where intensity value was the
similarity criterion. There was an inverse relationship between intensity value and contour size, i.e., the lower
the intensity value, the larger the contour. Next, we calculated the composite probability (Pi) for each contour
(Si):

Pi = p(Si|pdfi)× p(outsideSi|ROI). (1)



Figure 1: Figure (a) is used to calculate p(Si|pdfi). Figure (b) is used to calculate p(outsideSi|ROI)

where p(Si|pdfi) is the probability density function (pdf) of the ROI subject to the fuzzified image (see Fig. 1).
This pdf is calculated inside the contour, Si, where i is the thresholding step. The quantity p(outsideSi|ROI)
is the pdf of the ROI subject to the original image. This pdf is calculated outside the contour, Si. Next we
find the logarithm of the composite probability, Pi in the following way:

log(Pi) = log(p(Si|pdfi)) + log(p(outsideSi|ROI)), (2)

Finally, we determine the likelihood that the contour represents the tumor body by assessing the maximum
likelihood function:

argmax(Log(Pi)), (3)

Equation 3 intends to find the maximum value of the aforementioned likelihood values as a function of intensity
threshold. We assess (so as other investigators5) that the intensity value corresponding to this maximum
likelihood value is the optimal intensity for the tumor body contour. We also determine the likelihood that the
contour represents the tumor extended borders by assessing the maximum change of the likelihood function:

argmax(
dLog(Pi)

di
), (4)

i.e., find the steepest jump on the aforementioned function. An intensity value between this jump and the
maximum value on the function produces the best contour of the tumor body and its extended borders.

2.2. Feature Calculation

One extremely important task in the separation of malignant and benign tumors is feature selection and calcu-
lation. Benign tumors can be lucent at the center and can have well-defined borders; while malignant tumors
can have spiculated and/or fuzzy borders. We used the following features:

Global Features

Skewness =
1

N

∑N−1
i,j=0[g(i, j)− g(i, j)]3√∑N−1
i,j=0[g(i, j)− g(i, j)]3

(5)

where g(i, j) is intensity value and g(i, j) is average intensity value.



Kurtosis =
1

N

∑N−1
i,j=0[g(i, j)− g(i, j)]4√∑N−1
i,j=0[g(i, j)− g(i, j)]4

(6)

Circularity =
A1

A
, (7)

where A is the area of the actual ROI; A1 is the area of the overlapped region of A and the effective circle Ac,
which is defined as the circle whose area is equal to A and is centered at the corresponding centroid of A.

Compactness =
p2

a
, (8)

where, p=tumor perimeter and a=tumor area

perimeter = tumor perimeter. (9)

Local Features
These intensity features were calculated on the 10o ROI as it was divided into 10o sectors in the polar coordinate
system, therefore each tumor contained 36 sectors.

g(i, j) =
1

N

N−1∑
i,j=0

g(i, j), (10)

where Mean = g(i, j), N is the total pixel number inside the ROI

Contrast =
Pf − Pb

Pf
, (11)

where Pf is the average gray-level inside the ROI’s and Pb is the average gray-level surrounding the ROI.

σ2
f =

1

N

N∑
i=1

(g(i, j)− g(i, j))2, (12)

where σ2
f = standard deviation.

Area = tumor area (13)

σn =
1

Nb

Nb∑
i=1

(ri − r̄)2, (14)

where σn = Deviation of the Normalized Radial Length, Nb is the total number of pixels located on the boundary
of the ROI, ri is the value of the normalized radial length from the boundary coordinate (xi, yi) to the centroid
of the ROI; r̄ is the mean of ri.

Roughness = ([
1

Nb

Nb∑
i=1

(ri − r̄)4]
1
4 − [

1

Nb

Nb∑
i=1

(ri − r̄)2]
1
2 ])/r̄. (15)

radial length = length of radius, (16)

where length of radius is the distance from the center of the tumor to its edge.



Given a second-order joint probability matrix Pd,θ(i, j), where Pd,θ(i, j) is the joint gray level distribution
of a pixel pair (i,j) with the distance d and in the direction θ, six texture features are defined as follows:

Ed,θ(i, j) =
L∑

i=1

L∑
j=1

Pd,θ(i, j)
2, (17)

where Ed,θ(i, j) = energy.

Id,θ(i, j) =
L∑

i=1

L∑
j=1

(i− j)2Pd,θ(i, j), (18)

where Id,θ(i, j) = inertia.

E =
L∑

i=1

L∑
j=1

Pd,θ(i, j)log2Pd,θ(i, j), (19)

where E = entropy.

IDMd,θ =
L∑

i=1

L∑
j=1

1

1 + (i− j)2
Pd,θ(i, j), (20)

where, IDMd,θ = Inverse Difference Moment.

DEd,θ = −
n−1∑
k=0

Px−y(k)log2Px−y(k), Px−y(k) =
n−1∑
i=0

n−1∑
j=0

Pd,θ(i, j), (21)

for |i− j| = k, k = 0, 1, ..., n− 1 where, DEd,θ = Difference Entropy.

2.3. Classifiers

We used a conventional backpropagation neural network for two of the three studies described in this paper.
It is comprised of an input layer, one hidden layer, and one output. We used the multiple circular path neural
network8 for the third study described in this paper. It is comprised of 3 input layers, one hidden layer and
one output. The first input layer is fully connected, i.e., all inputs connect to all hidden nodes. The second
input layer is called a self correlation path, i.e., each node on the layer connects to a single set of the 18 image
features for the fan-in and fully connects to the hidden nodes for fan-out. The third input layer is called a
neighborhood correlation path, i.e., each node on the layer connects to the input nodes of adjacent sectors for
the fan-in and fully connects to the hidden nodes for fan-out. Our study used 18 hidden layer nodes. A more
detailed explanation of the MCPCNN can be found the work done by Lo et. al.8.

3. EXPERIMENT

The image samples were chosen from several databases compiled by the ISIS Center of the Georgetown University
(GU) Radiology Department and the University of Florida’s Digital Database for Screening Mammography
(DDSM).3 They are a mixture of "obvious" cases and "not obvious" cases. The "obvious" cases contain tumors
that are easily identifiable as malignant or benign while the "not obvious" cases are those that radiologists find
difficult to observe and/or classify. Forty malignant and forty benign tumors were tested during this experiment.
The GU films were digitized at a resolution of 100µm using a Lumiscan digitizer. The DDSM films were digitized
at 43 and 50 µm’s using both the Lumiscan and Howtek digitizers. We compensated for this difference in
resolution by reducing the DDSM images to half their normal sizes. The images were of varying contrasts and
the tumors were of varying sizes. There were 28 malignant cases and 23 benign cases.



Experiment Features Neural Network

1 Image Features Conventional NN

2 Image Features MCPCNN

3 ML-curve as features Conventional NN

Table 1: This table summarizes the studies presented in this paper.

The experiment was subdivided into three studies as shown in table 1 below.

Experiments 1 and 2 used 6 global and 12x36 sector features to yield a total of 438 image features per tumor.
There were 18 hidden nodes and 1 output for both the BP and MCPCNN classifiers. The training and testing
method used was the jackknife method. Experiment 3 used 19 likelihood feature values per tumor. There were
15 hidden nodes and 1 output for the BP classifier. The training and testing method used was the jackknife
method. The results were analyzed using the LABROC4 program.10

4. RESULTS

Here are two examples of segmentation results for both malignant (see Fig. 2) and benign (see Fig. 4) cases.
Each example gives the segmentation result produced by the maximum likelihood value on the curves described
in section 2.1.

The following is a table, which gives the Az values produced by the neural network.

Experiment Features Neural Network Az

1 Image Features Conventional NN 0.66

2 Image Features MCPCNN 0.71

3 ML-curve as features Conventional NN 0.84

Table 2: Results from Experiments 1-3.

5. CONCLUSION AND DISCUSSION

In analyzing the segmentation results we drew several conclusions. We discovered that there was a marked
difference between the likelihood functions in malignant cases and the likelihood functions in benign cases.
The likelihood function in the benign case often experiences a sharp drop, while the likelihood function in the
malignant case is often smoother. In the image, a sharp drop value in the likelihood function represents an
abrupt change in the area as well as likelihood value. We observed thatin benign cases, the likelihood function
sharp changes are much more evident because benign tumors usually have well-defined borders. Conversely, in
many malignant cases, the likelihood functions are smoother because many of their the borders are ill-defined. In
analyzing the likelihood functions for malignant cases we recognized that those curves with very sharp changes
were produced from tumors with well-defined borders and vice versa; i.e., there were malignant tumors that
could be mistaken as benign and vice versa.

The maximum likelihood curves used as inputs to the BP neural network produced the best performance
overall. The image features used as inputs to the MCPCNN produced the second best performance. The image
features used as inputs to the BP produced the worst performance. Since we received the best results by using
the likelihood functions as features, we expect that the MCPCNN may improve the overall results by giving
the likelihood functions in every sector.



Figure 2. The segmentation results for a malignant tumor. Part (a) shows the segmentation result produced by the
maximum likelihood change intensity choice, part (b) shows the original image, and part (c) shows the segmentation
result produced by the maximum likelihood intensity choice.

..

Figure 3. A likelihood function with respect to threshold values for all segmentation steps (malignant case) shown in
Fig. 2.
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Figure 4. The segmentation results for a benign tumor. Part (a) shows the segmentation result produced by the
maximum likelihood change intensity choice, part (b) shows the original image, and part (c) shows the segmentation
result produced by the maximum likelihood intensity choice.

..

Figure 5. A likelihood function with respect to threshold values for all segmentation steps (benign case) shown in Fig. 4.
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A Multiple Circular Path Convolution
Neural Network System for Detection

of Mammographic Masses
Shih-Chung B. Lo*, Member, IEEE, Huai Li, Member, IEEE, Yue Wang, Member, IEEE, Lisa Kinnard, and

Matthew T. Freedman

Abstract—A multiple circular path convolution neural network
(MCPCNN) architecture specifically designed for the analysis of
tumor and tumor-like structures has been constructed. We first
divided each suspected tumor area into sectors and computed the
defined mass features for each sector independently. These sector
features were used on the input layer and were coordinated by con-
volution kernels of different sizes that propagated signals to the
second layer in the neural network system. The convolution ker-
nels were trained, as required, by presenting the training cases to
the neural network.

In this study, randomly selected mammograms were processed
by a dual morphological enhancement technique. Radiodense
areas were isolated and were delineated using a region growing al-
gorithm. The boundary of each region of interest was then divided
into 36 sectors using 36 equi-angular dividers radiated from the
center of the region. A total of 144 Breast Imaging—Reporting
and Data System-based features (i.e., four features per sector for
36 sectors) were computed as input values for the evaluation of this
newly invented neural network system. The overall performance
was 0.78–0.80 for the areas ( ) under the receiver operating
characteristic curves using the conventional feed-forward neural
network in the detection of mammographic masses. The perfor-
mance was markedly improved with values ranging from 0.84
to 0.89 using the MCPCNN. This paper does not intend to claim
the best mass detection system. Instead it reports a potentially
better neural network structure for analyzing a set of the mass
features defined by an investigator.
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Index Terms—BI—RAD, computer-aided diagnosis, convolu-
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sector features.

I. INTRODUCTION

I T IS KNOWN that effective treatment of breast cancer calls
for early detection of cancerous lesions (e.g., clustered mi-

crocalcifications and masses associated with malignant cellular
processes) [1]–[3]. Breast masses appear as areas of increased
density on mammograms. It is particularly difficult for radi-
ologists to detect and analyze a suspected area where a mass
is overlapped with dense breast tissue. These masses are more
readily seen as time progresses, but the further the tumor has
progressed, the lower the possibility of a successful treatment.
Therefore, increasing the chances of early breast cancer detec-
tion in improving today’s clinical system is of vital importance
in breast cancer diagnosis.

Several research groups have developed computer algorithms
for automated detection of mammographic masses [4]–[8].
Some of these methods involved in classification of masses and
normal dense breast tissues [7], [8]. Investigators also attempted
to classify the malignant or benign nature of the detected tu-
mors [9]–[11]. It is conceivable that correct segmentation of the
masses [12] plays an important processing step prior to further
mass analysis. In short, the results of these detection programs
indicate that a high true-positive (TP) rate can be obtained
at the expense of two or three false-positive (FP) detections
per mammogram. Mammographically, a multiplicity (more
than two) of similar benign-appearing breast lesions argues
strongly for benignity [13]–[16] and, indeed, the more masses
that are identified, the less chance that they represent cancer
[17]. If the computer indicates multiple suspicious locations
on a mammogram, the radiologist has to seek out one mass
that possesses mammographic features, which are different
from the others. The significant lesion may be missed due to
the multiplicity of possible lesions. We, therefore, believe that
a more useful and fundamental approach to computer-aided
diagnosis (CAD) of masses is to devise computer programs to
analyze features of a suspected area [18], [19] and to provide
feature measures and estimates of the likelihood of malignancy
by making comparisons within a digital mammographic
database. The computer, therefore, serves as a second opinion
and also provides a reproducible and an objective evaluation
of the mass. With this aid, the radiologist may also increase
his/her sensitivity by lowering the threshold of suspicion, while
maintaining the overall specificity and reading efficiency.

0278-0062/02$17.00 © 2002 IEEE



LO et al.: A MCPCNN SYSTEM FOR DETECTION OF MAMMOGRAPHIC MASSES 151

II. CLINICAL BACKGROUND OF BREAST LESIONS AND

TECHNICAL APPROACH INMASS DETECTION

A. Description of Clinical Background

Most commonly, breast cancer presents itself as a mass. The
same lesion shows a somewhat different picture from one pro-
jection to the other. Difficulties in masses also vary with the
underlying breast parenchyma. In the fatty breast, masses are
generally easy to detect. In the dense breast, mass detection
is more difficult and auxiliary signs aid this detection. When
the breast contains one mass, the decision process is based on
its size, shape, and margins. When there are several masses,
one looks at each, trying to determine whether any has fea-
tures to suggest cancer. Furthermore, one looks to see if any
mass is different in appearance from the others. Multiple small,
well-defined, similar masses that present themselves bilaterally
are all likely to be benign. Large, poorly defined, spiculated
and unusually radiodense masses are extremely likely to be ma-
lignant. In this study, we used several computational features
(see Section III-B) highly associated with four major features
of breast masses routinely used in clinical reading:

Density: Malignant lesions tend to have greater radio-
graphic density due to high attenuation and less
compressibility of cancer than normal tissue.
Radiolucent lesions are typically benign and the
diagnosis can be made from the mammogram.

Size: If the lesion has morphological features sug-
gesting malignancy, it should be considered
suspicious regardless of the size. Isolated
masses with noncystic densities greater than
8 mm in diameter can be malignant. In general,
the larger a lesion, the more suspicious it is.

Shape: The more irregular the shape of a lesion, the
more likely the possibility of malignancy. Le-
sions tend to be round, ovoid and/or lobulated.
Small and frequent lobulations are suspicious.
Lesions in the lateral aspect of the breast near the
edge of the parenchyma with a reniform shape
and a hilar indentation or notch usually repre-
sent a benign intramammary lymph node. Breast
carcinoma hidden in the dense tissues can cause
parenchymal retraction, which possess different
shapes.

Margins: The margins of the lesion should be carefully
evaluated for areas of spiculation, stellate pat-
terns or ill-defined regions. Most breast cancers
have ill-defined margins secondary to tumor in-
filtration and associated fibrosis. The appearance
of spiculations and a more diffuse stellate pat-
tern are almost pathognomonic for cancer. Le-
sions with sharply defined margins have a high
likelihood of being benign; however, up to 7% of
malignant lesions can be well circumscribed.

These are known clinical features and have been adapted in
“Breast Imaging—Reporting and Data System” (BI—RAD)
[20] of the American College of Radiology. Fig. 1(a) and (b)
shows two breast images containing masses. In Fig. 1(a), a
malignant mass is superimposed on the dense glandular tissue.

Fig. 1. (a) Dense breast containing a malignant mass. (b) Fatty and glandular
breast containing a malignant mass.

However, its spiculated nature makes it easily identifiable.
In Fig. 1(b), another malignant mass is located on the fatty
background but is associated with a large body of glandular
tissue. This mass is not easily detectable by the computer
because its density is lower than the neighboring glandular
tissue. Furthermore, one end of the mass is fully connected
with this tissue.

B. Technical Approach for Detection of Mammographic
Masses

In this study, our goal was to detect clinically suspicious le-
sions. The differentiation of benign and malignant status of the
mammographic masses can be extended from this study model
and will be reported in our future work. The study was con-
ducted with the following steps: 1) use background correction
method and morphological operations to extract radio-opaque
areas; 2) delineate the boundary of the areas; 3) compute the fea-
tures and texture of the masses with emphasis on the boundary;
and 4) design training strategy using neural networks as classi-
fiers for the recognition of mass features. The overall detection
scheme of the study framework is shown in Fig. 2.

III. D EVELOPMENT OFTECHNICAL METHODS

A. Preprocessing and Extraction of Suspicious Masses

In automatic mass detection, accurate selection of suspected
masses is considered a critical first step due to the variability
of normal breast tissue and the lower contrast and ill-defined
margins of masses. In our previous study [18], we aimed to im-
prove the task of lesion site selection using model-based image
processing techniques for unsupervised lesion site selection. We
focused on two essential issues in the stochastic model-based
image segmentation: enhancement and model selection. Based
on the differential geometric characteristics of masses against
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Fig. 2. A system flow chart for the detection of masses in this study.

the background tissues, we proposed one type of morpholog-
ical operation to enhance the mass patterns on mammograms
by removing high intensity background caused by breast tis-
sues while maintaining mass-signals [18]. Then we employed
a finite generalized Gaussian mixture (FGGM) distribution to
model the histogram of the mammograms where the statistical
properties of the pixel images are largely unknown and are to
be incorporated. We incorporate the expectation-maximization
algorithm with two information theoretic criteria to determine
the optimal number of image regions and the kernel shape in
the FGGM model. Finally, we applied a contextual Bayesian
relaxation labeling (CBRL) technique to perform the selection
of suspected masses.

We consistently processed the mammograms using this
prescreening segmentation method. In the previous study [18],
the FGGM method isolated 1142 potential masses including
114 of the 186 true masses in 200 mammograms. The mammo-
grams were collected from the Mammographic Image Analysis
Society (MIAS) database [21] and Brook Army Medical Center
(BAMC) database. After morphological enhancement, 3143
potential masses were extracted using the FGGM technique.
Of them, 181 were masses; however, five masses were not
extracted. The results demonstrated that more true masses were
picked up after enhancement although more false cases were
also included. The undetected areas mainly occurred at the
lower intensity side of the shaded objects or more obscured
by fibroglandular tissues that, however, were extracted on
morphological enhanced mammograms. Additionally, when
the margins of masses are ill defined, only parts of suspicious
masses were extracted from the original mammograms. We,
therefore, decided to use the proposed morphological operation
as a preprocessing step for the image enhancement prior to a
segmentation method for the extraction of potential masses on
the mammograms.

Based on the CBRL segmented region of interest (ROI), we
employed a region growing method using a four-neighbors con-
nection method assisted with a template masking operation to
fill unconnected holes in the ROI

IF and

then (1)

IF then

for and (2)

where denotes the threshold value of the originally CBRL
segmented ROI, represents the set of growing region, and
[ ] is a set of four conditions (i.e., [1, 0], [1, 0], [0, 1], and
[0, 1]) for the four neighboring pixels. In (2), is the size of
template. In practice, we found thatshould be set at five pixels
to fill the holes without disrupting the boundary.

B. Feature Extraction of the Masses

Feature extraction methods play an essential role in many
pattern recognition tasks. Once the features associated with an
image pattern are extracted accurately, they can be used to dis-
tinguish one class of patterns from the others. Recently, many
investigators have found that the multilayer perceptron (MLP)
neural network using the error backpropagation training tech-
nique is a very powerful tool to serve as a classifier [22], [23].
In fact, the use of MLP neural network system for classification
of disease patterns has been widely applied in the field of CAD
[24]–[28].

The success of using a classifier for a pattern recognition task
would rely on two factors: 1) selected features that could de-
scribe a discrepancy between image patterns and 2) accuracy of
the feature computation. Should either one fail, no analyzer or
classifier would be able to achieve an expected performance. By
analyzing many clinical samples of various sizes of masses, we
found that the peripheral portion of the mass plays an important
role for mammographers to make a diagnosis. The mammogra-
pher usually evaluates the surrounding background of a radio-
dense area when a region is suspected.

We used the CBRL segmented ROI to compute the center.
Since the segmented ROIs were somewhat smaller than the
mammographer’s delineation and on the denser region of the
suspected patch, the computed centers were quite close to the
visual center. We then divided the boundary of the ROI into
36 sectors (i.e., 10per sector) using 36 equi-angular dividers
radiated from the center of the ROI. The following features
were computed within each 10sector of the region.

a) “ ”—the length from the center of the ROI to the boundary
segment of the sector.

b) “ ”—the cos( ) (where is the normal angle of the
boundary).

c) “ ”—the average gradient of gray value on the segment
along the radial direction (i.e., ) where

is the number of pixels of along the radial direction
from inside the boundary to the boundary (see the left
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Fig. 3. A suspicious mass is delineated and shown as the shaded region.
Contrast is computed by subtracting the average background pixel value
(i.e., b , o = 1; 2; . . .P ) from the average foreground value (i.e.,h ,
i = 1; 2; . . .P ).

line segment, Fig. 3). Technically speaking, this set
of gradient values may also serve as a fuzzy system on
the input layer in the neural network (to be described in
Section III-C).

d) “ ”—the gray value difference (i.e., contrast)
along the radial direction. Specifically,

where (or )
represents a pixel value along the radial direction. The
position inside the boundary is the center of pixels

( ) and position outside the
boundary is the center of pixels ( ),
and is the number of pixels equivalent to a segment of

and was used for averaging (see Fig. 3).
Hence, a total of 144 computed features (four features/sector

for 36 sectors) were used as input values for the classification
of the ROI. The relationship between the computed features and
BI—RADS descriptors are discussed below.

i) ROI Size—The size of ROI is provided by the 36 “”
values.

ii) ROI Shape (round, oval, lobulated, or irregular)—The 36
“ ” and 36 “ ” values can describe the shape of the ROI.

iii) ROI Margin (circumscribed, microlobulated, obscured,
ill- defined, or spiculate)—The 36 “” and 36 “ ” values
can describe the ROI margin.

iv) ROI Density (fat-containing, low density, isodense, or
highly dense)—The 36 “” and 36 “ ” values can be used
to describe the density distribution of the ROI.

In short, the selected features are greatly associated with the
main mass descriptors indicated in the BI—RADS. The reason
for using 36 values for each nominated feature is four-fold:
1) mass boundary varies, it is difficult to describe an image pat-
tern using a single value; 2) due to the general shape of the
masses, the features of masses can be easily analyzed by the
polar coordinate system; 3) in case some features are inaccu-
rately computed in several directions due to the structure noises,
such as the breast slender lines, there may still exist a suffi-
cient number of correct features; and 4) generally more accu-
rate results can be produced by using subdivided parameters
rather than using global parameters in a pattern recognition task
when the parameters are barely discernable and sample sizes are
sufficiently large. Other computational features (e.g., difference

entropy [19] and other higher order features) are eligible but re-
quire further investigation.

C. The Neural Network Structure Specifically Designed for the
Extracted Boundary Features

1) Multiple Paths With Circular Networking to Instruct the
Neural Network in Analyzing Sector Features:This paper
focuses on neural network design and arrangement of features
for effective pattern recognition of ROIs. We designed several
neural network connections between the input and the first
hidden layers as shown in Fig. 4. In this neural network system,
the first layer also functions as a correlation layer that trans-
forms and encodes the signals from input nodes into correlation
features for further neural network process. Fig. 4(a)–(c) illus-
trates the full connection (FC), a self correlation (SC) network,
and a neighborhood correlation (NC) network, respectively.
Network connections with multiple sectors (i.e., 20, 30 , 40 ,
and 50 of the NC) are grouped separately as independent NC
paths. In the following study, we used four SC paths for a single
sector and thirteen NC paths for four types of multisectors.
The method of using the multiple correlation connections
was motivated by our research experience in two-dimensional
(2-D) convolution neural network (CNN) [(2-D CNN)] where
we found that more than ten multiple convolution kernels in
the CNN were necessary in the detection of lung nodules and
microcalcifications [25].

Compared with 2-D CNN systems, the computation required
in the one-dimensional (1-D) CNN (e.g., 144 input features)
is relatively small. The combination of the networking paths
described earlier for multiple circular path convolution neural
network (MCPCNN) was implemented using C programming
language. The internal computation algorithm used in the
MCPCNN shares the same convolution process as that in the
2-D CNN [25]. Rotation invariance and flip invariance for
training the 1-D convolution kernels in the MCPCNN were
employed.

The fully connected neural network is a conventional feed-
forward MLP neural network. The signals of the fully connected
neural network join the other network processes (i.e., SC paths
and NC paths) at the single node of the output layer. The signal
received at the output node is scaled between zero and one.
During the training, zero and one were assigned at the output
node to perform backpropagation computation for a nonmass
and a mass, respectively. The backpropagation is computed in
such a way that the computed incremental errors [see equations
(9) and (10)] are retraced into every independent network path.
Excluding the output layer, the SC and NC signals are indepen-
dently arranged and are processed through the 1-D convolution
process in the forward propagation. The learning algorithms for
all three types of circular network paths are based on the back-
propagation training method.

Let ( , ) represents an input signal at the nodeand
sector . The signal processed through an NC path and to be
received at each node,, on the first hidden layer is

(3)
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Fig. 4. Three types of network paths connecting the input and the hidden layers in the MCPCNN. (a) FC path. (b) SC path. Eeach node on the layer connects
to a single set of the features (l, a, g, c) for the fan-in and fully connects to the hidden nodes for fan-out. (c) A NC path. Each node on the layer connects to the
input nodes of adjacent sectors for the fan-in and fully connects to the hidden nodes for fan-out. The fan-in nets emphasizing SC in (b) and NC in (c) represent
convolution weights (i.e., the same type of sectors possess the same set of weighting factors).

where represents the bias term and
is an array associated the 2-D nets that fan-in to a given receiving
node, . Each element of is the weight factor
connected to node from node sector through a NC path,
, and covers a range of neighborhood sectors corresponding

to each type of NC path. Note that multiplications between the
input nodes and connecting weights are computed first followed
by taking the sum of the products for those nodes and sectors in-
volved. The operation is repeated by shifting the weights from
one set of sectors to the next. The procedure involving array
multiplication passing through every sector is referred as the
1-D convolution operation that takes place in the sector dimen-
sion. The signal processed through an SC path and to be received
at a node, , on the first hidden layer is a special case of an NC
path when only covers one sector

(4)
where is the weight factor connected tofrom
node through a SC path,, regardless of the sectors. A total
of 18 paths (1 FC, 4 SC paths, and 13 NC paths for four types
of multisectors) were used in our experiment described later.
Nevertheless, the signals processed through a path and to be
received at each node,, on the first hidden layer is

(5)

where is one of the network paths and is a sigmoid func-
tion given by

(6)

The sigmoid function would produce modulated values ranging
from zero to one. The signals on other hidden layers in each path
are processed the same as a conventional fully connected neural
network. Other than the first hidden layer, the receiving signals
at a hidden layer,, collected from the previous hidden layer,
to one, are merged from the nodes in the last layer and are given
by

(7)

where and denote the nodes at layers and ,
respectively.

Let the th change of the weight be and the
th change of the bias be . The error function is defined

as

(8)

where and denote the target output value and the actual
output value, respectively when the input values , are
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Fig. 5. A schematic diagram, showing the MCPCNN and sector features of masses, that was used in the following study.

entered in the network. In this model, the error backpropagation
algorithm, which updates the kernel weights, is given below

(9)

(10)

(11)

In the case of the last layer

(12)

where , , , and denote the derivative of ,
the learning rate, the weighting factor contributed by the
momentum term, and the desired output image, respectively.
Furthermore, or and when .

During the training, we added an isotropic constraint to the
weights of the 1-D convolution kernels so that

(13)

where is not the fully connected path. These additional con-
straints are used to induce the kernels functioning as correlation
processing filters and could facilitate the algorithm in searching
for an appropriate filter.

2) Resampling the Training Set Through Utilization of Rota-
tion and Flip Invariance of the Features:In this neural network
model, there are no starting and ending sectors. The forward and
backpropagation computation can start from any sector. Consid-
ering a flipped patch, the characteristics of mass feature should
remain the same. To take advantage of this flip invariance, the
same numerical target value can be assigned at the output node

for the flipped image patch in order to double the amount of
cases during training.

Since we designed a 10increment for each rotation, every
SC or NC path would process through 36 times using the de-
fined features for each image patch. To simplify this network
computation, we shifted one small sector (four nodes) on the
input layer at a time to conduct the circular convolution process
with the SC and NC kernels in the following experiments. By
reversing the sequence of the sector, one can train the flipped
version of the suspicious masses. Hence, using the properties
of the rotation invariance and flip invariance for the neural net-
work training literally increases the number of the training set
by a factor of 72.

In summary, we have developed a complete detection pro-
cedure for the automatic recognition of mammographic masses
including background adjustment, contrast enhancement, ROI
segmentation, feature extraction, and MCPCNN system with a
training method. Fig. 5 shows a flow diagram for the essential
sections of the computational procedures.

IV. EXPERIMENTS AND RESULTS

As described in Section III-A, the 200 mammograms were se-
lected from the MIAS database and the BAMC database for the
study. Of the 200 mammograms, 50 mammograms are normal,
and each of the 150 abnormal mammograms contains at least
one mass case of varying size, subtlety, and location. Both the
cranio-caudal (CC) and medio-lateral oblique (MLO) projec-
tion views were used. The films were digitized with a com-
puter format of 2048 2500 12 bits (for an area
where each image pixel represents 100m square). Ninety-one
mammograms, either a CC or an MLO view film, were selected
from 91 patient film jackets. No two mammograms were se-
lected from the same patient. All the digitized mammograms
were miniaturized to 512 625 12 bits using pixel av-
eraging before the method was applied. According to radiolo-
gists, the size of small masses is 3–15 mm in effective diameter.
A 3-mm object in an original mammogram occupies 30 pixels
in a digitized image with a 100–m resolution. After reducing
the image size by four times, the object will occupy the range
of about 7–8 pixels. The object with the size of seven pixels
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is expected to be detectable by any computer algorithm. After
preprocessing and an object screening based on the circularity
test and the size test (between 3 and 30 mm), a total of 125 sus-
picious areas were selected from the testing mammograms (91
cases) for this study. Specifically, the screening procedure of re-
ducing FPs involves two steps: 1) image patches with circularity
less than 0.25 or diameter greater than 30 mm were eliminated
and 2) ) using probability modular neural network to rule out
the majority of FPs. Of the 125 suspicious areas, 75 ROIs con-
tained masses based on corresponding biopsy reports with one
experienced radiologist reading. Of 75 masses, 39 were malig-
nant and 36 were benign. This set of ROIs was used in [19] and
discussed in [19, Fig. 6 and Table II].

A. Experiment 1

Of the 125 suspicious areas, we randomly selected 54 com-
puter-segmented ROIs where 30 patches were matched with the
radiologist’s mass identification and 24 were not. This database
was used to train two neural network systems: 1) a conven-
tional three-layer neural network and 2) the proposed MCPCNN
training method using the same neural network learning algo-
rithm. The structure of the MCPCNN was described earlier. In
the study, we used one fully connected path, four SC paths, four
NC paths covering two sectors, four NC paths covering three
sectors, three NC paths covering four sectors, and two NC paths
covering five sectors in the first step network connection for the
MCPCNN. All paths in the neural network have their hidden
layers. Only one hidden layer per path was used. Both neural
network systems were trained by the error backpropagation al-
gorithm by feeding the features from the input layer and regis-
tering the corresponding target value at the output node. Com-
pletion of the training was determined by the mean square error
[i.e., , where is number of samples] when
it was approximately reduced to 310 . Once the training of
the neural networks was completed, we then used the remaining
71 computer segmented ROIs for the testing. Forty-five out of 71
ROIs were masses and 26 ROIs were not. Neither the images nor
their corresponding patients in the testing set could be found in
the training set. The neural network output values were fed into
the LABROC4 program [29] for the performance evaluation.
The results indicated that the areas () under the receiver op-
erating characteristic (ROC) curves were 0.78690.0536 and
0.8443 0.0457 using the conventional neural network (MLP)
and the MCPCNN, respectively. The ROC curves of these two
neural network systems are shown in Fig. 6(a). Thevalue
was 0.7869 0.0536 when using the MLP method with 125
hidden nodes. The performance of the MLP remains about the
same at 0.7809 0.0551 of using the same neural network
parameters but with 30 hidden nodes.

We also invited another senior mammographer to conduct an
observer study using the ROC study protocol. The mammogra-
pher was asked to rate each patch using a numerical scale rang-
ingfrom zero to ten for its likelihood of being a breast mass.
The image patches were displayed on a SUN monitor (Model:
GDM-20D10). The image size shown on the monitor was re-
duced to approximately as compared with the original
film size ( ). These 71 numbers were also fed into the
LABROC4 program. The of the mammographer’s perfor-

(a)

(b)

Fig. 6. The ROC curves obtained from corresponding experiments. (a) Shows
that the performance of MCPCNN training method is superior to that of the
conventional MLP method. The highest curve is the ROC performance of the
senior mammographer. (b) Shows that the ROC results were increased using the
leave-one-case-out procedure in both neural network systems. The MCPCNN
still showed higher performance than conventional MLP method.

mance on this set of test cases was 0.9090.0340. The corre-
sponding ROC curve is also shown in Fig. 6(a).

B. Experiment 2

We also conducted a leave-one-case-out experiment (i.e.,
jackknife procedure) using the same database. In this ex-
periment, we used those image patches extracted from 90
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TABLE I
ROC PERFORMANCE OF THETEST METHODS IN DISTINGUISHING TRUE AND FALSE MASSES

mammograms (one mammogram per case) for the training and
used the image patches (most of them are single) extracted
from the remaining one mammogram as test objects. The
procedure was repeated 91 times to allow every ROI extracted
from each mammogram to be tested in the experiment. For each
individual ROI, the computed features were identical to those
used in Experiment 1. Again, the training was stopped when
the mean square error value approximately equal to 310 .
Both neural network systems were independently trained and
evaluated with the same procedure. The results indicated that
the values were 0.7985 0.0394 and 0.8866 0.0289 using
the conventional neural network (MLP) and the MCPCNN,
respectively. The performance of the MLP decreased to an
of 0.7608 0.0429 using the same neural network parameters
but with 30 hidden nodes. Fig. 6(b) shows the ROC curves of
these two neural network systems using the leave-one-case-out
procedure [30] in the experiment.

We also used CLABROC program [31] to analyze the ROC
data and compare the ROC results. The results and their sta-
tistical significances using two tailed value of 0.05 as the
threshold are shown in Table I. The radiologist’s performance
is greater than conventional neural network system with a
value of 0.0447 in the first experiment. The MCPCNN was also
proven to be superior to the MLP with a statistically significant
result ( 0.0241).

V. DISCUSSION

It is known in the field of artificial intelligence that the key
factors in pattern recognition are: 1) effective methods in the
extraction of features and 2) classification methods for the
extracted features. In this study, we showed that the training
method designed to guide the analyzer is also an important
factor for a pattern recognition task. Though this finding is not
new, the research of developing training methods for various
pattern recognition tasks has not been established in the field
of medical imaging. Our studies demonstrated that with proper
network connections and task-oriented guidance, organized
features would assist the neural network in performing the task.

Technically speaking, a feed-forward MLP neural network
provides an integrated process for classification and sometimes
for feature extraction. The output values of the hidden nodes
can be interpreted as a reorganized set of features presented to
the output layer for classification. The drawback of the MLP is,
the user has a very little control and little understanding about
the network learning. The MCPCNN is a network design that
partially remedies these issues and is applicable for any pat-
tern recognition task associated with ROIs. The MCPCNN (a

member of the CNN family) possesses shared weights in the
hidden layer(s) that act as filter kernels for extracting correlated
features. With a higher resolution mammogram, a finer sector
( 10 ) would be preferred for the analysis mass, especially for
the study of classification of masses. During forward and back-
propagation training, the kernels would comply with both sig-
nals from input and output layers for all training cases, so as
to maximize the classification performance. We do not recom-
mend using 2D CNN for the detection of masses because the
mass sizes vary from a few millimeters to 4 cm or even larger. It
would require a large fixed size to cover the maximum mass size
when using the 2-D CNN. The varieties of mass shapes and po-
tential long spiculated patterns make the use of the 2-D CNN not
practical. Since the MCPCNN processes the features computed
from sectors, it does not limit the sizes of its ROIs. Best of all,
the MCPCNN also has the ability to classify partially obscured
masses. The 2-D CNN, however, would be more appropriate for
the detection of microcalcifications and small lung nodules.

As far as the research in the detection of masses is concerned,
we have shown that use of MCPCNN with sector features is an
effective approach. Since the MCPCNN coordinates the input
data and performs correlation between features of adjacent sec-
tors in the first stage of data processing, the internal neural net-
work learning algorithm can be changed if a learning algorithm
is found to be more effective. In fact, the MCPCNN is a tech-
nique that can effectively classify features arranged in the polar
coordinate system. A technique using the rubber band straight-
ening transformation, independently developed by Sahnieret al.
[11], for the detection of masses also employs a similar con-
cept in extracting feature and/or texture in the polar coordi-
nate system. We believe that integration of features and texture
values computed at small sectors will be the research trend in
mass detection and tumor classification.

VI. CONCLUSION

In the clinical course of detecting masses, mammographers
usually evaluate the surrounding background of a radiodense
area when an ROI is suspected. In this study, we simulated
this fundamental concept with a neural network system (i.e.,
MCPCNN). In order for the MCPCNN to function, boundary
features of the suspicious region in each radial sector were com-
puted. We found that the MCPCNN is capable of analyzing
correlated features within the sector and between adjacent sec-
tors, which led to an improvement in detecting mammographic
masses.

Through this study, we found that the selected features are
somewhat effective in the detection of masses. These features
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were “computationally translated” from the qualitative descrip-
tors of BI—RAD. These features can be extended for the im-
provement of the mass detection, but this task is beyond the
scope of this paper. With the preliminary studies shown above,
we found the MCPCNN coupling with the proposed training
method produced greater results than the conventional neural
network. We found that the performances of both neural net-
work systems were improved in Experiment 2. This may have
occurred due to the number of training samples that was in-
creased from 54 to 124. In Experiment 2, thevalue was im-
proved by 0.042 using the MCPCNN, which was higher than
the difference of 0.012 obtained by the conventional training
method. The results implied that the MCPCNN learned more ef-
fectively than the conventional neural network when the number
of training cases was increased. With the use of a larger database
and advanced texture features proposed by others, it is expected
that the performance of MCPCNN should be significantly im-
proved. This paper does not intend to claim the best mass de-
tection system, in comparison to similar systems; but rather its
goal is to report a potentially better neural network structure for
analyzing a set of mass features.
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ABSTRACT 
 

This study attempted to accurately segment tumors in 
mammograms.  Although this task is considered to be a 
preprocessing step in a computer analysis program, it plays an 
important role for further analysis of breast lesions.  The region 
of interest (ROI) was segmented using the pixel aggregation and 
region growing techniques combined with maximum likelihood 
analysis.  A fast segmentation algorithm has been developed to 
facilitate the segmentation process.  The algorithm repetitively 
sweeps the ROI horizontally and vertically to aggregate the 
pixels that have intensities higher than a threshold. The ROI is 
then fuzzified by the Gaussian envelope.  With each segmented 
region for a given threshold step in the original ROI, the 
likelihood function is computed and is comprised of probability 
density functions inside and outside of the fuzzified ROI.  We 
have implemented this method to test on 90 mammograms.  We 
found the segmented region with the maximum likelihood 
corresponds to the body of tumor.  However, the segmented 
region with the maximum change of likelihood corresponds to 
the tumor and it extended margin.  
 

INTRODUCTION 
 
The goal of breast mass segmentation is to separate suspected 
masses from surrounding tissue as effectively as possible.  
While it is a pre-processing step of Computer Assisted 
Diagnosis (CADx) it is extremely important in the diagnostic 
process, because a major characteristic used to separate 
malignant and benign tumors is shape [1, 12].  Over the years 
researchers have used many methods to segment masses in 
mammograms.  Petrick [8] et al. used a filtering method called 
the Density Weighted Contrast Enhancement (DWCE) method.  
Karssemeijer and te Brake implemented a discrete dynamic 
contour model [1].  Li et al. developed a competetitive 
classification stragegy, which uses a combined soft and hard 
classification method for deciding if segmented regions are true 
or false positives.   Furthermore, many researchers have 
implemented methods based on pixel aggregation [3, 5, 7, 9]. 
A major issue faced by CADx researchers is the ability to 
properly obtain the boundaries of masses because these 
boundaries are often obscured by surrounding breast tissue.  
While benign masses can be easily detected due to their well-
defined boundaries, the borders of malignant tumors often blend 
into surrounding tissue, making it exceedingly difficult to 
properly segment them as effectively as possible.  We have 
developed a maximum likelihood method [3] and have added a 
component to not only segment the tumor body, but to segment 
the extended tumor borders as well.  

 
2.  METHODS 

 
The next several sections will describe the database, as well as 
provide the theoretical background used to develop our 
algorithm.   
 

2.1. Database 
 
The image samples were chosen from several databases 
compiled by the ISIS Center of the Georgetown University 
Radiology Department as well as the University of South 
Florida’s (USF) Digital Database for Screening Mammography  
[2].  They are a mixture of "obvious" cases and "not obvious" 
cases. The "obvious" cases contain tumors that are easily 
identifiable as malignant or benign while the "not obvious" 
cases are those that radiologists find difficult to observe and/or 
classify.  Forty malignant and forty benign tumors were tested 
during this experiment.  The Georgetown University films were 
scanned at a resolution of 100µm while the USF films were 
scanned at 43.5 and 50 µm’s.  We compensated for this 
discrepancy in resolution by reducing the USF images to half 
their normal sizes.  Hence, the original test images for this study 
all contain 12 bits per pixel with approximately 100 µm pixel 
size.       
 

2.2. Pixel Aggregation and Region Growing 
 
Pixel aggregation is an automated segmentation method in 
which the region of interest begins as a single pixel (seed point) 
and grows based on surrounding pixels with similar properties, 
e.g., grayscale level or texture [4, 11].  Typically, the seed is 
located at somewhere in the center region with the highest 
intensity in the suspected lesion.  It is a commonly used method 
[7, 9, 10] due to its simplicity and accuracy.  The next 4-
neighboring pixel is checked for similarity so that the region can 
grow.  Our algorithm checks the 4-neighbors of the seed pixel 
and its grown pixels uses a graylevel threshold.  The threshold 
was used as a similarity criterion.  The algorithm repetitively 
sweeps the ROI horizontally and vertically to aggregate the 
pixels that have intensities higher than a threshold.  Sweeping 
the neighboring pixels in the alternate direction is a fast region 
aggregation algorithm that we have recently developed.  The 
iteration ends when no more pixels are acquired in the sweeping 
step (see Figure 1).  The segmented region can be grown by 
repeating the same method with a lower threshold value.  Based 
on these segmented regions, we can evaluate the regions and 
region changes with respect to the threshold values.  We do not 
recommend using the 8-neighbor connectivity method for it may 
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invade the surrounding tissue at the critical threshold to be 
discussed below.   
At the conclusion of the each region segmentation in the 
sweeping process, there were several holes located inside the 
detected ROI.  We used a chain code to detect the boundaries of 
these holes and then fill them using a threshold criterion.   The 
output images of the above computer procedures are then used 
as templates (Si) for the maximum likelihood analysis.   
   
 

2.3. Fuzzy Shadow and Maximum Likelihood Analysis 
 
By using the same seed point with multiple intensity threshold 
values, we obtained between 20 and 50 segmentation partitions 
per lesion.  Kupinski and Giger proposed a maximum-likelihood 
based method to choose the best partition [3].  However, their 
method did not completely address the issue in identifying the 
tumor margin.  Since the mammographic masses may or may 
not have their extended boundaries, it is important to separate 
the region of tumor body from its extended region.  We adapt 
Kupinski and Giger’s point in composing the ROI with a 
Gaussian envelope, which further fuzzies the tumor margin. 
With each segmented region for a given threshold step in the 
original ROI, the likelihood function is computed so that it 
consists of probability density functions inside and outside of 
the fuzzified ROI.   
The maximum likelihood method is based upon the probability 
density function (pdf), which for an image, is the histogram.  
Given a template Si, which was described in section 2.1.1. we 
can model the image’s pixel probabilities in the following way: 
 

( )( ) ( ) [ ]( )
( )( )

( )
( ) ( )1

,
,

:,
:)2/()(exp[,,,

222
2

i

il
li Syx

Syx
yxfHist

yxyxfHistSyxfp
∉
∈

⎪⎩

⎪
⎨
⎧ +−

=
σσ

 
where Hist represents the histogram function. A Gaussian 
envelope with variance σl

2 centered at the seed point gray level 
was employed.  The Gaussian envelope is a special case of the 
proposed fuzzy shadow.  The size and standard deviation (σl) 
used in the experiment were 1400 and 160 pixels, respectively.  
These values were found experimentally, however, there are 
more statistical methods found in literature.  Equation (2) 
defines the likelihood that a tumor is contained in the segmented 
region Si: 
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Equation (2) was implemented by summing the log of the 
probabilities of all pixel values inside Si (segmented region) and 
outside Si (background).  Note that Si is the segmented region 
based on the original ROI, not the fuzzified ROI.  The likelihood 
for various partitions was then analyzed to obtain the final 
segmentation. The partition is chosen for the body of the tumor 
based on the following criterion: 
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Based on our investigation, we further define that the step before 
maximum changes of likelihood value is the tumor margin: 
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3. RESULTS 
 

The following graphics are experimental results for one patient.   
Figure 1 shows the a portion of the pixel aggregation process, 
Figure 2, is the plot produced by summing all probability values 
inside and outside Li for various intensities, and Figure 3 shows 
the original image followed by the tumor body image and the 
extended tumor body image. 
 

  
 
 

  
 
 

  
 
 

  
 
 

Figure 1 – Several iterations of the pixel aggregation process 
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Figure 2 – Plot of the sum of the logarithm values for various image intensities 
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Figure 3 – (a) original image, (b) image of tumor body, (c) image of tumor body with extended borders  
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Instead of using the Gaussian enveloped image for the 
segmented region, we use the original image for each step of 
region growing in this study, simply because Gaussian 
enveloped image distorts the original intensities and boundaries.  
However, it facilitates the likelihood analysis by fuzzifying the 
tumor region.  We found that this partition effectively 
segmented the tumor body, but often did not include the borders.  
We performed a study prior to the one described in this paper on 
30 mammograms and discovered that the best segmentation 
result including the tumor margin occurs at the steepest ascent 
location on the plot of ( )2, liSIp σ .  In this particular study, the 

maximum value on the plot of ( )2, liSIp σ corresponded to the 

tumor body segmentation result (see Figure 3).   Figure 2 
shows that this sharp increase occurs at intensity 2745, therefore 
it can be inferred that the best segmentation result is produced 
when the seed point intensity is approximately 2745.  The 
maximum value on the curve occurs at intensity 2815, therefore, 
when the tumor body segmentation result was found for this 
particular intensity value.   
We discovered that this method is particularly helpful when the 
masses have ill-defined borders.    In most cases in which the 
mass boundary is ill-defined, the probability curve increases in a 
steady fashion, while the cases in which the mass boundary is 
well-defined, the steep ascent location is very abrupt.  In some 
cases we found that this ascent location to be so abrupt, that it 
could be compared to a step function.   
 

4.  DISCUSSION AND CONCLUSION 
 
We have developed a mass segmentation method that is capable 
of delineating a mass body, as well as its borders.  We believe 
that it outperforms traditional region growing techniques. 
Traditional region growing without the use of a quantitative 
method can introduce a great deal of subjectivity because given 
a large number of segmentation results, what is perceived to the 
best one can vary greatly from one researcher to another.   By 
analyzing the likelihood of the segmented regions, it is rational 
to identify that the maximum likelihood of the segmented 
regions corresponds to the tumor body and the maximum 
likelihood change of the segmented regions corresponds to the 
tumor margin.  For the latter, we would like to indicate that 
when the segmented region significantly increases with the 
threshold increment, the likelihood value would also 
significantly change.   In most cases, the significant change of 
the segmented region implies that the tumor margin grows and 
invades the surrounding tissues because their intensity 
difference is usually very small. 
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ABSTRACT 
 
The purpose of this study is to investigate the efficacy of image features versus likelihood features of 
tumor boundaries for differentiating benign and malignant tumors and to compare the effectiveness 
of two neural networks in the classification study: (1) circular processing-based neural network and 
(2) conventional Multilayer Perceptron (MLP).  The segmentation method used is an adaptive 
region growing technique coupled with a fuzzy shadow approach and maximum likelihood analyzer.  
Intensity, shape, texture, and likelihood features were calculated for the extracted Region of Interest 
(ROI).  We performed these studies:  experiment number 1 utilized image features used as inputs 
and the MLP for classification, experiment number 2 utilized image features used as inputs and the 
neural net with circular processing for classification, and experiment number 3 used likelihood 
values as inputs and the MLP for classification.  The experiments were validated using an ROC 
methodology.  We have tested these methods on 51 mammograms using a leave-one-case-out 
experiment (i.e., Jackknife procedure).   The Az values for the four experiments were as follows:  
0.66 in experiment number 1, 0.71 in experiment number 2, and 0.84 in experiment number 3.   
 
Keywords:  Computer-assisted diagnosis, breast cancer, convolution neural networks, feature 
extraction 
 

1. INTRODUCTION 
 

Many studies have investigated the efficacy of various features used in Computer-Assisted 
Diagnostic (CADx) systems.  Sahiner et al.13 used texture and morphological features and used a 
genetic algorithm to select the best image features.  In a study used to differentiate dense tissue 
from fatty tissue, Byng et al.1 used fractal dimension and regional skewness as features.  Qian et 
al.12 calculated circularity, normalized deviation of radial length, intensity variation, mean intensity 
difference, and the mean gradient of region boundary.  Wei et al.16 calculated the following eight 
texture features from the co-occurrence matrix:  correlation, energy, entropy, inertia, inverse 
difference moment, sum average, sum entropy, and difference entropy.  In a later study, Sahiner et 
al.15 calculated a Fourier descriptor, convexity, rectangularity, perimeter, Normalized Radial Length 
(NRL) mean, contrast, NRL entropy, circularity, NRL area ratio, NRL standard deviation, NRL zero 
crossing count, perimeter-to-area ratio, and area.  These and other studies have been successful in 
finding features that are effective in separating from benign features, however, our study uses 
traditional features as well as segmentation features as inputs to two different classifiers. 



In the United States, breast cancer accounts for one-third of all cancer diagnoses among 
women and it has the second highest mortality rate of all cancer deaths4. In various studies it has 
been shown that only 13% - 29% of suspicious lesions were determined to be malignant11, 13, 17 which 
indicates that there are high false positive rates for biopsied breast lesions.  A higher predictive rate 
is anticipated by combining the mammographer’s interpretation and the computer analysis.  This 
could be of great clinical value because a lower amount of false positives in breast biopsies would 
reduce anxiety among patients and their families.  Other studies show that 7.6-14% of the patients 
have mammograms that produce false negative diagnoses3, 8. Alternatively, a CADx system can serve 
as a clinical tool for the radiologist and consequently lower the rate of missed breast cancer.  
    
 

2.  METHODOLOGY 
 

The next several sections will describe the database, as well as provide the theoretical 
background used to develop the CADx experiment.  
  
2.1 Database 

The image samples were chosen from several databases compiled by the ISIS Center of the 
Georgetown University Radiology Department as well as the University of South Florida’s (USF) 
Digital Database for Screening Mammography4.  Twenty-eight malignant and twenty-three benign 
tumors were tested during this experiment.   
 
2.2 Maximum Likelihood Segmentation Method 

The segmentation method used in this study is an adaptive region growing technique coupled 
with a fuzzy shadow approach and maximum likelihood analyzer.  The region growing technique 
aggregates surrounding pixels with similar properties, e.g., grayscale level. It is a commonly used 
method due to its simplicity and accuracy.  The intensity threshold is usually used as a similarity 
criterion.  We used the highest intensity as the seed point with multiple intensity threshold values 
and decreased the gray level in successive steps. This method by itself generated a sequence of 
contour on the mass; however, the computer did not have the ability to determine the boundaries 
interfered by other tissues and to choose the proper partition corresponding to the experts’ 
perception. A fuzzy operator and a maximum-likelihood component were therefore added to the 
region-growing algorithm.  The likelihood function is comprised of the likelihood of the composite 
probabilities for probability density functions (PDF’s) inside (p(Si|pdfi)) and outside (p(Si|ROI)) a 
given contour (see example contour in Figure 1) 2.   

( ) ( )( ) ( )( )ROISppdfSpPLog iiii loglog +=                        (1) 
 

The subscript i represents the thresholding step, or, intensity value used to produce a given contour.  
The area inside the contour is the original ROI, which has been multiplied by a fuzzy shadow, 
whereas the area outside the contour is the original ROI.  The likelihood that the contour represents the 
mass’s extended borders is determined by assessing the maximum change of the likelihood function5,6: 

( )( )
di

Pd ilog
maxarg                                  (2) 

To summarize, the best contour is determined by locating the steepest jump in likelihood values, i.e., 
the intensity corresponding to this location will produce the best contour.   



   
 

Figure 1:   (a) ROI used to calculate p(Sm|pdfi ).  (b) ROI used to calculate p(Sm|ROI) where m is 
the mth contour corresponding to the maximum value of likelihood function indicated in eq. (2). 

(b) (a) 

 
2.3 Feature Calculation 

The features used to separate the malignant and benign masses were a combination of 18 
statistical descriptors along with the likelihood features.  The features have been separated into 
global features and sector features, where global features are those for which one value per mass is 
calculated.  Sector features are those features calculated on the 10o ROI as it was divided into 10o 
sectors in the polar coordinate system (see Figure 2); therefore, each mass contained 36 sectors. 
 
 

 
 

Figure 2: Sample map used to calculate sector features 
  

In this study, three sets of features were used.  One set of features is related to the use of the 
likelihood function curve which will be discussed in section 3.  The other sets of features are as 
follows:  
 
Global Features:  skewness, kurtosis, circularity, compactness, and mass perimeter. 
Local Features:  mean intensity value, contrast, standard deviation inside the sector, sector area, 
deviation of the normalized radial length, radial length, roughness, energy, inertia, entropy, inverse 
difference moment, and difference entropy.  
 
 
 
 



2.4 Classifiers 
We used a conventional Multilayer Perceptron (MLP) neural network for two of the three 

studies described in this paper.  The standard backpropagation training method was used for the 
MLP.  It was comprised of an input layer, one hidden layer, and one output.  We used a Multiple 
Circular Path Neural Network9 (MCPCNN) for the third study described in this paper (see Figure 3).  
It is comprised of 3 input layers, one hidden layer and one output.  The first input layer is fully 
connected, i.e., all inputs connect to all hidden nodes.  The second input layer is called a self 
correlation path, i.e., each node on the layer connects to a single set of the 18 image features for the 
fan-in and fully connects to the hidden nodes for fan-out.  The third input layer is called a 
neighborhood correlation path, i.e., each node on the layer connects to the input nodes of adjacent 
sectors for the fan-in and fully connects to the hidden nodes for fan-out.  Our study used 18 hidden 
layer nodes. 

 
 

 
 

Figure 3:  Multiple Circular Path Convolution Neural Network (MCPCNN) 
 

 
 
 
 
 
 



3. EXPERIMENTS 
 

In experiment 1 the input features consisted of 6 global image features combined with 12×36 
sector image features to yield a total of 438 features.  The classifier used for this experiment was a 
MLP neural network.  It contained 18 hidden nodes and one output.  Experiment 2 used the same 
image input features as those used in experiment 1, yet the classifier used for this experiment was the 
MCPCNN.  The MCPCNN also contained 18 hidden nodes and one output.  The neural networks 
were both tested and trained using the jackknife method.  In experiment 3 the input values 
consisted of likelihood values that were extracted from the segmentation likelihood functions (see 
Figures 5, 6).  The classifier used in this experiment was a MLP with 15 hidden nodes and one 
output.  The neural network for this experiment was also tested and trained using the jackknife 
method.  The results were analyzed using the LABROC4 analysis tool10.  The experiments are 
summarized in Table 1. 

 
4. RESULTS 

 
The following table (Table 1) is a summary of the results achieved by the two classifiers 

used in the experiments described in section 2 of this paper.  The corresponding ROC curves are 
shown in Figure 4.  Two likelihood functions (features used in Experiment 3) along with their 
segmentation results (one malignant and one benign) are shown in Figures 5 and 6. 
 
 

Table 1:  Summary of Classification Results 

Experiment Features Neural Network Az values 

1 Image Features MLP 0.66 

2 Image Features MCPCNN 0.71 

3 ML-curve as features MLP 0.84 
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Figure 4:  ROC Results (TPF:  True Positive Fraction, F_BP:Experiment 1, F_MCP:  

Experiment 2, P_Curve:  Experiment 3) 
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Figure 5:  The segmentation results for a malignant tumor. (a) likelihood function with respect to 

threshold values for all segmentation steps (b) original image, (c) segmentation result 
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Figure 6: The segmentation results for a benign tumor. (a) likelihood function with respect to 

threshold values for all segmentation steps (b) original image, (c) segmentation result 
 



 
5.  DISCUSSION OF RESULTS 

 
n general there is a ma e likelihood function for 

benign

 performed better (see Figure 4) than the conventional neural network, where the 

6.  CONCLUSION 

We found that the maximum likelihood m
is an e
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ABSTRACT 
 
The purpose of this work was to develop an automatic boundary 
detection method for mammographic masses and to observe the 
method’s performance on different four of the five margin groups 
as defined by the ACR, namely, spiculated, ill-defined, 
circumscribed, and obscured. The segmentation method utilized a 
maximum likelihood steep change analysis technique that is 
capable of delineating ill-defined borders of the masses.  Previous 
investigators have shown that the maximum likelihood function 
can be utilized to determine the border of the mass body.  The 
method was tested on 122 digitized mammograms selected from 
the University of South Florida’s Digital Database for Screening 
Mammography (DDSM).  The segmentation results were 
validated using overlap and accuracy statistics, where the gold 
standards were manual traces provided by two expert 
radiologists.  We have concluded that the intensity threshold that 
produces the best contour corresponds to a particular steep 
change location within the likelihood function.  
 

1. INTRODUCTION 
 
In a CADx system, segmentation is arguably one of the most 
important aspects – particularly for masses – because strong 
diagnostic predictors for masses are shape and margin type [2,9].  
The margin of a mass is defined as the interface between the mass 
and surrounding tissue [2].  Furthermore, breast masses can have 
unclear borders and are sometimes obscured by glandular tissue 
in mammograms. A spiculated mass consists of a central mass 
body surrounded by fibrous projections, hence the resulting 
stellate shape.  For the aforementioned reasons, proper 
segmentation - to include the body and periphery - is extremely 
important and is essential for the computer to analyze, and in 
turn, determine the malignancy of the mass in mammographic 
CADx systems.    
Over the years researchers have used many methods to segment 
masses in mammograms.  Petrick [7] et al. developed the Density 
Weighted Contrast Enhancement (DWCE) method, in which 
series of filters are applied to the image in an attempt to extract 
masses.  Comer et al. [1] segmented digitized mammograms into 

homogeneous texture regions by assigning each pixel to one of a 
set of classes such that the number incorrectly classified pixels 
was minimized via Maximum Likelihood (ML) analysis. Li [5] 
developed a method that employs k-means classification to 
classify pixels as belonging to the region of interest (ROI) or 
background. 
Kupinski and Giger developed a method [4], which uses ML 
analysis to determine final segmentation.  In their method, the 
likelihood function is formed from likelihood values determined 
by a set of image contours produced by the region growing 
method.  This method is a highly effective one that was also 
implemented by Te Brake and Karssemeijer in their comparison 
between the discrete dynamic contour model and the likelihood 
method [9].  For this reason we chose to investigate its use as a 
possible starting point from which a second method could be 
developed.  Consequently in our implementation of this work we 
discovered an important result, i.e., the maximum likelihood steep 
change.  It appears that in many cases this method produces 
contour choices that encapsulate important borders such as mass 
spiculations and ill-defined borders.   
 

2. METHODS 
 

2.1 Initial Contours 
As an initial segmentation step, we followed the overall region 
similarity concept to aggregate the area of interest [1, 4].  Used 
alone, a sequence of contours representing the mass is generated; 
however, the computer is not able to choose the contour that is 
most closely correlated with the experts’ delineations.  
Furthermore, we have devised an ML function steep change 
analysis method that chooses the best contour that delineates the 
mass body as well as its extended borders, i.e., extensions into 
spiculations and areas in which the borders are ill-defined or 
obscured.  This method is an extension of the method developed 
by Kupinski and Giger [4] that uses ML function analysis to 
select the contour which best represents the mass, as compared to 
expert radiologist traces.  We have determined that this technique 
can select the contour that accurately represents the mass body 
contour for a given set of parameters; however, further analysis 
of the likelihood function revealed that the computer could 
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choose a set of three segmentation contour choices from the 
entire set of contour choices, and then make a final decision from 
these three choices.    
The algorithm can be summarized in several steps.  Initially, we 
use an intensity based thresholding scheme to generate a 
sequence of grown contours (Si), where gray value is the 
similarity criterion.  The image is also multiplied by a 2D 
trapezoidal membership function (2D shadow), whose upper base 
measures 40 pixels and lower base measures 250 pixels (1 pixel = 
50 microns). The image to which the shadow has been applied is 
henceforth referred to as the "fuzzy" image.  The original image 
and its fuzzy version were used to compute the likelihood of the 
mass’s boundaries.   The computation method is comprised of 
two components for a given boundary: (1) formulation of the 
composite probability and (2) evaluation of likelihood.   
In addition, we chose to aggregate contours using the original 
image. This accounts for the major difference from that 
implemented by the previous investigators. Since smoother 
contours were not used, the likelihood function showed greater 
variations.  In many situations, the greatest variations occurred 
when there was a sudden increase of the likelihood, and this was 
strongly correlated with the end of the mass border growth.  This 
phenomenon would be suppressed if the fuzzy image was used to 
generate the contours.  The fuzzy image was used mainly to 
construct the likelihood function.   
 
2.2 Composite Probability Formation 
For a contour (Si), the composite probability (Ci) is calculated:                  
                 ( )( ) ( )( )iiiiii SyxmpSyxfpSC ,, ×=          (1) 

The quantity fi(x,y) is the area to which the 2D shadow has been 
multiplied, p(fi(x,y)|Si) is the probability density function of the 
pixels inside Si where ‘i’ is the region growing step associated 
with a given intensity threshold.  The quantity mi(x,y) is the area 
outside Si (non-fuzzy), and p(mi(x,y)|Si) is the probability density 
function of the pixels outside Si.  Next we find the logarithm of 
the composite probability of the two regions, Ci: 

( ) ( )( )( ) ( )( )( )iiiiii SyxmpSyxfpSCLog ,log,log +=     (2) 

 
2.3 Evaluation of Likelihood Function 
The likelihood that the contour represents the fibrous portion of 
the mass, i.e., mass body is determined by assessing the maximum 
likelihood function: 

( )( ) niSSCLog iii ,...1,;maxarg =           (3)                                                

Equation (3) intends to find the maximum value of the 
aforementioned likelihood values as a function of intensity 
threshold.  It has been assessed (also by other investigators [4]) 
that the intensity value corresponding to this maximum likelihood 
value is the optimal intensity needed to delineate the mass body 
contour.  However, in our implementation it was discovered that 
the intensity threshold corresponding to the maximum likelihood 
value confines the contour to the mass body.   In our study many 
of these contours did not include the extended borders.  We, 
therefore, hypothesize that the contour represents the mass’s 
extended borders may well be determined by assessing the 
maximum changes of the likelihood function, i.e., locate the 
steepest likelihood value changes within the function:    

( )( ) niSSCLog
di

d
iii ,,1,; K=               (4) 

Based on this assumption, we have carefully analyzed the 
behavior of maximum likelihood function. The analysis reveals 
that we have successfully discovered that the most accurate mass 
delineation is usually obtained by using the intensity value 
corresponding to the first or second steep change locations within 
the likelihood function immediately following the maximum 
likelihood value on the likelihood function. 
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Figure 1:  A likelihood function with steep change indicators 

 
2.4 Steep change definition 
The term "steep change" is rather subjective and can defined as a 
location between two or more points in the function where the 
likelihood values experience a significant change.  In some cases 
the likelihood function increases at a slow rate. The algorithm 
design accounts for this issue by calculating the difference 
between likelihood values in steps over several values and 
comparing the results to two thresholds.  The difference equation 
is given by:   

( ) ( ) ( )( ) Nttwzfwtzfth ,,0,1 K=+−−−=      (5) 

where f is the likelihood function, z is the maximum intensity, w is 
the width of the interval over which the likelihood differences are 
calculated (e.g. – for w=7 differences are calculated every 7 
points), and N is the total number of points in the searchable area 
divided by w.  If the calculation in question yields a value greater 
than or equal to a given threshold, then the intensity 
corresponding to this location is considered to be a steep change 
location.  The threshold algorithm occurs as follows: 
 
If (h(t)ML > MLT1);  t=0,…,m 
Then choice 1 = intensity where that condition is satisfied 
If (h(t)ML > MLT2);  t=m,…,z 
Then choice 2 = intensity where that condition is satisfied 
 
where h(t)ML is the steep change value given by equation (5), 
MLT1 and MLT2 are pre-defined threshold values, m is the 
location in the function where the choice 1 condition is satisfied, 
and z is the location in the function where the choice 2 condition 
is satisfied.  Once the condition is satisfied for the first threshold 
value (MLT1) then its corresponding intensity value is used to 
produce the segmentation contour for the first steep change 
location.  Once the condition is satisfied for MLT2 then its 
corresponding intensity value is used to produce the segmentation 
contour for the second steep change location. 
 
2.5 Validation 
The segmentation method was validated on the basis of overlap 
and accuracy [8,10]: 

FPTPFN

TP

NNN

N
Overlap

++
=              (6) 

Group 2 
(first steep change location) 

Group 1 
(max likelihood location) 

Group 3 
(second steep change location) 
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where NTP is the true positive fraction, NTN true negative fraction, 
NFP is the false positive fraction, and NFN is the false negative 
fraction.  The gold standards used for the validation study were 
mass contours, which have been traced by expert radiologists.   
Our experiments produced contours for the intensity values 
resulting from three locations within the likelihood functions:  (1) 
The intensity for which a value within the likelihood function is 
maximum (group 1 contour) (2) The intensity for which the 
likelihood function experiences its first steep change (group 2 
contour) and (3) The intensity for which the likelihood function 
experiences its second steep change (group 3 contour).  We have 
observed that the intensity for which the likelihood function 
experiences its first steep change produces the contour trace that 
is most highly correlated with the gold standard traces, regarding 
overlap and accuracy.     

 
3. EXPERIMENTS AND RESULTS 

 
Here we describe the database used, describe the experiments, 
provide visual results obtained by the algorithm, as well as report 
the results obtained by the ANOVA test.   
 
3.1 Database  
For this study, a total of 122 masses were chosen from the 
University of South Florida's Digital Database for Screening 
Mammography (DDSM) [3].  The films were digitized at 
resolutions of 43.5 or 50 µm's using either the Howtek or 
Lumisys digitizers, respectively.  The DDSM cases have been 
ranked by expert radiologists on a scale from 1 to 5, where 1 
represents the most subtle masses and 5 represents the most 
obvious masses.  The images were of varying subtlety ratings.  
The first set of expert traces was provided by an attending 
physician of the GUMC, and is hereafter referred to as the Expert 
A traces.  The second set of expert traces was provided by the 
DDSM, and is hereafter referred to as the Expert B traces.  
 
3.2 Experiments and Results 
As mentioned previously, the term “steep change” is very 
subjective and therefore a set of thresholds needed to be set in an 
effort to define a particular location within the likelihood function 
as a “steep change location”.  For this study the following 
thresholds were experimentally chosen: MLT1=1800, 
MLT2=1300, where MLT1= threshold for steep change location 1 
for the likelihood function, and MLT2 = threshold for steep 
change location 2 for the likelihood function.  We performed a 
number of experiments in an effort to prove that the intensity for 
which the likelihood function experiences the first steep change 
location produces the contour trace, which is most highly 
correlated with the gold standard traces regarding overlap and 
accuracy.   
First we present segmentation results for two malignant cases 
followed segmentation results for two benign cases.  Each figure 
contains an original image, traces for Experts A and B, and 
computer segmentation results for groups 1, 2, and 3.  Second, 
we present data that plots the mean values for various margin 
groups for both overlap and accuracy measurements.  The plots 

present data for the spiculated and ill-defined groups of malignant 
masses, and ill-defined and circumscribed groups of benign 
masses.  Data was not presented for the other categories because 
there was not a sufficient amount of cases.  
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Figure 2:  Segmentation Results:  Spiculated Malignant Mass 
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Figure 3:  Segmentation Results:  Ill-defined Malignant Mass 
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Figure 4:  Segmentation Results:  Obscured Malignant Mass 
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Figure 8:  Mean Measurement Values (Benign Masses) 

 
4. DISCUSSION AND CONCLUSION 

 
The visual results (see Figures 2-6) reveal that the group 2 trace 
appears to delineate the masses better than the group 1 and group 
3 contours in most cases.  Visually, it appears that the method 
has performed equally well on all margin groups.  This is an 
encouraging result because some of the more difficult masses to 
segment are typically those that are spiculated, obscured, and 
those that have ill-defined borders.  The plots shown in Figures 7-
8 confirm that the group 2 trace performs better than the other 

groups on the basis of overlap and accuracy for all margin 
groups, therefore supporting our visual observations.    
In future work, a worthwhile study would be to test gather more 
data for all margin groups in an effort to see if the various groups 
require different parameter values to maximize the algorithm’s 
robustness. Our ultimate goal is to optimize its performance for 
those masses falling in the ill-defined and obscured margin groups 
because segmentation of masses falling into those categories is 
exceedingly difficult.      
 

5. REFERENCES 
 
[1] M.L. Comer, E.J. Delp, “The EM/MPM algorithm for 
segmentation of textured images:  Analysis and further 
experimental results”, Proceedings of the 1995 IEEE ICIP, 
Lausanne, Switzerland, September 16-19, 1996. 
 
[2] J.R. Harris, M.E. Lippman, M. Morrow, S. Hellman, 
“Diseases of the breast”, Lippincott-Raven Publishers, 
Philadelphia, PA, pp. 80-81, 1996.  

 
[3] M. Heath, K.W. Bowyer, D. Kopans et al., “Current status of 
the digital database for screening mammography”, Digital 
Mammography, Kluwer Academic Publishers, pp. 457-460 , 
1998. 
 
[4] M.A. Kupinski, M.L. Giger, “Automated Seeded Lesion 
Segmentation on Digital Mammograms”, IEEE Trans. on Med. 
Imag., vol. 17, no. 4, pp. 510-517, 1998. 
 
[5]  L. Li, Y. Zheng, L. Zhang, R. Clark, “False-positive 
reduction in CAD mass detection using a competitive 
classification strategy”, Med. Phys., vol. 28, pp. 250-258, 2001. 
 
[6] J.E. Martin, “Atlas of mammography:  histologic and 
mammographic correlations (second edition)”, Williams and 
Wilkins, Baltimore, MD, p. 87, 1988.   
 
[7] N. Petrick, H-P Chan, B. Sahiner, D. Wei, “An Adaptive 
Density-Weighted Contrast Enhancement Filter for 
Mammographic Breast Mass Detection”, IEEE Trans. on Med. 
Imag., vol. 15, no. 1, pp. 59-67, 1996. 
 
[8] J. Suckling, D.R. Dance, E. Moskovic, D.J. Lewis, S.G. 
Blacker, “Segmentation of mammograms using multiple linked 
self-organizing neural networks”, Med. Phys., vol. 22, pp. 145-
152, 1995. 
 
[9] G.M. te Brake, N. Karssemeijer, “Segmentation of suspicious 
densities in digital mammograms”, Med. Phys., vol. 28, no. 2, pp. 
259-266, 2001. 
 
[10] B. Van Ginneken, “Automatic segmentation of lung fields in 
chest radiographs”, Med. Phys., 27, pp. 2445-2455, 2000. 
 

6. ACKNOWLEDGMENTS 

This work was supported by US Army Grant numbers DAMD17-
01-1-0267, DAMD 17-00-1-0291, DAAG55-98-1-0187, and 
DAMD 17-03-1-0314. 
 

Mean Measurement Values for 
Spiculated and Ill-defined Malignant Masses 

M
ea

n 
V

al
ue

s 
 

M
ea

n 
V

al
ue

s 
 

Mean Measurement Values for 
Ill-defined and Circumscribed Benign Masses 

Categories (measurement, group)  

Overlap,  
Spiculated 

Overlap,  
Ill-defined 

Accuracy,  
Spiculated 

Accuracy,  
Ill-defined 

Overlap,  
Ill-defined 

Overlap,  
Circumsc. 

Accuracy,  
Ill-defined 

Accuracy,  
Circumsc. 

Categories (measurement, group)  

116



Changes in biophysical parameters of plasma membranes influence

cisplatin resistance of sensitive and resistant epidermal carcinoma cells

Xing-Jie Liang,a Jun-Jie Yin,b Jien-Wei Zhou,c Paul C. Wang,c

Barbara Taylor,a Carol Cardarelli,a Michael Kozar,d Raynard Forte,d

Adorjan Aszalos,a and Michael M. Gottesmana,*

aLaboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4254, USA
b Instrumentation and Biophysics Branch, Center for Food Safety and Applied Nutrition, Food and Drug Administration,

College Park, MD 20740-3835, USA
cDepartment of Radiology, Howard University, Washington, DC 20060, USA

dDivision of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA

Received 30 June 2003, revised version received 15 September 2003

Abstract

The mechanism of resistance of cancer cells to the anticancer drug cisplatin is not fully understood. Using cisplatin-sensitive KB-3-1 and -

resistant KCP-20 cells, we found that the resistant cells have higher membrane potential, as determined by membrane potential sensing oxonol

dye. Electron spin resonance and fluorescence polarization studies revealed that the resistant cells have more ‘‘fluid’’ plasma membranes than

the sensitive cells. Because of this observed difference in membrane ‘‘fluidity,’’ we attempted modification of the plasma membrane fluidity by

the incorporation of heptadecanoic acid into KB-3-1 and KCP-20 cell membranes. We found that such treatment resulted in increased

heptadecanoic acid content and increased fluidity in the plasma membranes of both cell types, and also resulted in increased cisplatin resistance

in the KCP-20 cells. This finding is in accord with our results, which showed that the cisplatin-resistant KCP-20 cells have more fluid

membranes than the cisplatin-sensitive KB-3-1 cells. It remains to be determined whether the observed differences in biophysical status and/or

fatty acid composition alone, or the secondary effect of these differences on the structure or function of some transmembrane protein(s), is the

reason for increased cisplatin resistance.

D 2003 Elsevier Inc. All rights reserved.

Keywords: Cisplatin resistance; Heptadecanoic acid; Plasma membrane fluidity; Membrane potential; Fluorescence polarization; Human epidermal carcinoma

KB cells

Introduction

Cis-diamminodichloroplatinum II (cisplatin) is one of

the most useful anticancer drugs. Treatment protocols for

solid tumors of the esophagus, bladder, ovary, testes, head,

and neck include this drug. As for most antitumor agents,

resistance develops in cancer cells, limiting their efficacy.

The reason for resistance against cisplatin is not fully

understood. Several mechanisms have been suggested,

including decreased cisplatin accumulation [1,2], and alter-

ation of apoptotic signaling [3,4]. Reports also indicate that

alterations in growth regulating proteins, such as c-Myc

[5], inhibition of caspase-9 [6], and reduced inhibition of

DNA synthesis [7] are associated with cisplatin resistance.

Involvement of plasma membrane lipids in cisplatin resis-

tance has also been implicated [8]. Britz et al. [9] suc-

ceeded in decreasing cisplatin resistance by treating

monoclonal cells with a free or liposome-encapsulated bile

acid derivative.

Our interest was focused on the biophysical status of

plasma membranes in relation to cisplatin resistance. We

investigated the biophysical differences between cisplatin-

resistant and -sensitive cells and the influence of a fatty acid

inserted into the plasma membranes on cisplatin sensitivity

of human epidermal carcinoma KB cells.
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Materials and methods

Cell lines

The KB-3-1 cell line was derived from a single clone of

human KB epidermal carcinoma cells (a HeLa subclone),

after two subclonings, as described by Akiyama et al. [10].

The cisplatin-resistant subline of KB-3-1 cells was selected

by exposure to 0.5 Ag/ml cisplatin (KB-CP.5) for 42 days.

After that, single clones were picked and propagated in

medium containing 0.5 Ag/ml cisplatin. One other cisplatin-

resistant cell line, KCP-20, was obtained after 6 months’

exposure of KB-3-1 cells to increasing concentrations of

cisplatin, up to 20 Ag/ml [11]. KCP-20 cells were maintained

in medium containing 5 Ag/ml cisplatin and taken out of

cisplatin before making the measurements. All cell lines were

grown in Dulbecco’s modified Eagle medium (Invitrogen,

Grand Island, NY), supplemented with L-glutamine, penicil-

lin, streptomycin (Quality Biological, Gaithersburg, MD),

and 10% fetal bovine serum (Whittaker Bioproducts, Wal-

kersville, MD).

Membrane potential measurements

Membrane potential measurements were performed by

flow cytometry, using the negatively charged DiBaC4 (3)

oxonol dye (Molecular Probes, Eugene, OR), essentially as

described earlier [12]. Briefly, a cell suspension of 1 � 106

cells/ml was equilibrated for 1 min in PBS followed by the

addition of oxonol dye, 150 M. After exactly 2 min

equilibration at room temperature, histograms were collect-

ed from 104 cells. Reproducibility was determined by

measuring membrane potentials of the cells on different

days, from separate cultures, and by comparing the relative

fluorescence of the oxonol-stained cell types.

Oxonol fluorescence intensity measures membrane po-

tential when the extracellular potassium concentration is

changed from 5 to 150 mM, resulting in increased fluores-

cence intensity of the oxonol-stained cells and thus making

the cells depolarized. All measurements were made with a

Becton Dickinson FACSCalibur flow cytometer (Becton

Dickinson, Mountain View, CA), operated with a 15-mW

argon ion laser tuned to 488-nm excitation wavelength.

Fluorescence emission was collected at 525 nm. Results are

expressed in comparative histograms of representative series.

Polarity of fluorescent membrane probes in live cells

Measurements of steady-state fluorescence polarization

were done with a spectrofluorometer LS50B (Perkin Elmer,

Norwalk, CT) and the lipid-soluble fluorophore, 1-(4-trime-

thylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-

DPH) (Molecular Probes). This fluorophore is known to

probe plasma membranes of cells at the surface. TMA-DPH

was dissolved in tetrahydrofurane at a concentration of 2

mM and was kept in the dark at 4jC. Cells (106/ml) were

labeled with TMA-DPH at a concentration of 2 AM in PBS.

After 10 min incubation time at 4jC, the cell suspension

was centrifuged and washed two times in the centrifuge with

PBS. After resuspension in PBS, fluorescence anisotropy

was measured at 25jC. The excitation wavelength was 355

nm and the emission was measured at 430 nm with a slit

width of 5. Polarization values were calculated according to

Collins and Scott [13] by the equation P = (I0,0 � G * I0,90) /

(I0,0 + G * I0,90) from the measured fluorescence intensities.

Electron spin resonance (ESR) studies on live cells

ESR studies were conducted with 5-doxyl stearic acid (5-

doxyl-SA) and with 2,2,6,6-tetramethyl piperidin-1-oxyl-4-

yl-octadecenoate (T-SASL) probes (Molecular Probes). The

first probe intercalates to the 5 carbon depth in the outer

leaflet of the plasma membrane [14] and T-SASL at the

surface of the plasma membranes [15]. Labeling the cells

with the spin probes was done as follows: 5-doxyl-SA was

dissolved in ethanol, 1 mg/ml, and was kept at 4jC. Then, 1�
107 cells were mixed with 8� 10�8 mol spin label in 0.02 ml

volume of PBS. After 1 min contact time, the cell suspension

was transferred into a 50-Al micropipette capillary tube and

sealed at the bottomwith Critoseal (Syva Co., Palo Alto, CA).

The micropipette with the cells was placed into the cavity of a

Varian E-9 Century series spectrometer (Syva Co.). ESR

spectra were recorded at X-band, at 9.5 kHz, 100-field

modulation, 4-Gous modulation amplitude, 100-Gous sweep

range, and at 10 mW microwave power. The temperature of

the probe was set to 24jC by the variable temperature

accessory using N2 gas flow. Evaluation of the obtained

ESR spectra, when 5-doxyl-SAwas used, was by the equation

expressing the order parameter S:

S ¼ 0:5407 ðT11 � T1Þ=a0; where a0 ¼ ðT11 þ 2T1Þ=3

and T11 and T1 are the outer and inner tensors obtained from

the ESR spectra.

When the T-SASL probe was used, the same instrument

parameters were applied, except that the incident microwave

power was 20 mW. The spectral parameters, h0 and h�1 are

the spectral amplitudes and the ratio h0/h�1 defines the

motional freedom of the probe according to Yin et al. [15].

With both spin labels, the ESR spectra show contribution

from spin labels of restricted motion with no contribution

from the free-moving spin label.

Lipid packing of plasma membranes in live cells

Plasma membrane lipid packing can be studied by insert-

ing the fluorescence probe merocyanine 540 (MRC 540)

(Molecular Probes) into cell membranes and assessing the

degree of insertion by fluorescence intensity measurement,

using flow cytometry [16,17]. The experiment was according

to Schlegel et al. [16] with some modifications. Briefly, 1 �
107 cells, suspended in 1 ml of PBS were treated with 10 Al of
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a MC540 stock solution of 1 mg/ml, in 60% ethanol, 40%

water. After a 10-min incubation at room temperature, cells

were pelleted in a centrifuge, washed once in PBS by

centrifugation, resuspended in 1 ml PBS, and fluorescence

histogramswere obtained. ABectonDickinson FACSCalibur

flow cytometer (Becton Dickinson, Franklin Lakes, NJ) was

used at 488-nm excitation and 575-nm emission wavelength.

Histograms were collected with 104 cells. Results are

expressed as means of fluorescence of the histograms

obtained from duplicate measurements of one typical set of

cells.

Preparation of cells for NMR spectrometry

KB-3-1 and KCP-20 cells were grown to 90% conflu-

ence, harvested with 0.05% trypsin, 0.53 AM EDTA, centri-

fuged at 4jC at 730 � g for 10 min, and washed twice with

growth medium. To perform a long-term NMR study, the

cells were restrained in an agarose thread [18,19]; 0.5 ml of

(9 � 107 cells) was mixed with an equal volume of liquid

agarose in phosphate-buffered saline, and immersed in a

bath at 37jC for 5–7 min. The mixture was extruded under

low pressure through cooled tubing (0.5 mm ID) into a 10-

mm NMR tube containing growth medium. Using 0.5-mm

threads ensures that there is no metabolic compromise, and

the cells are viable and in stable energetic status for a long

period of time, while the threads maintain their mechanical

strength. The gel threads, which fill the tube, are concen-

trated without compression at the bottom of the NMR tube

by insertion of a plastic insert with the perfusion fitting. A

Teflon inflow tube (0.5 mm ID) was placed near the bottom

of the tube. The gel threads were perfused with growth

medium at 0.9 ml/min. Cells were continuously perfused for

more than 40 h. Accumulation of data was started within 30

min after the harvest.

NMR spectrometry of live cells

The 31P NMR spectra were recorded at 37jC on a Varian

XL-400 machine (Varian Associates, Inc., Palo Alto, CA) at

162 MHz using RF pulse corresponding to a 72j flip angle

and 2 s repetition time. The flip angle used was the Ernst

angle for phosphocreatine (PCr) (T1 relaxation time, 3 s).

There were more than 40 spectra obtained. Each spectrum

contained 1800 transients and took 1 h. During the entire

study, the system was deuterium locked with an external

source (99.9% D2O in a capillary, Sigma, St. Louis, MO) to

avoid magnetic field drift.

All the spectra were transformed and viewed separately to

confirm that the spectra did not change during the experi-

ment. There were 25,000 data points collected and zero-

filled to 8k before Fourier transformation. The spectra were

added and 10-Hz line broadening was applied to obtain Fig.

3. The chemical shifts were standardized to h-adenosinetri-
phosphate (h-ATP) set to �18.70 ppm. Many phosphorus

metabolites were identified, including phosphocholine (PC,

3.57 ppm), inorganic phosphate (Pi, 2.59 ppm), glycero-

phosphoethanolamine (GPE, 0.81 ppm), glycerophospho-

choline (GPC, 0.26 ppm), phosphocreatine (PCr, �2.69

ppm), g-adenosine triphosphate (g-ATP, �5.12 ppm), a-
adenosine triphosphate (a-ATP, �10.19 ppm), and diphos-

phodiesters (dPdE, �10.86, �12.58 ppm). Chemical shifts

of these molecules are also listed in the literature [18,19].

Treatment of cells with heptadecanoic acid and cell

proliferation studies

Treatment of KB-3-1 and KCP-20 cells with heptadeca-

noic acid was carried out in 24-well plates (Corning Inc.,

Corning, NY), with modification of the method used by

Callaghan et al. [20]. After exploratory dose selection studies

for cisplatin and heptadecanoic acid, the final conditions

were as follows: cells (106/ml) were incubated in appropriate

medium, as described above for both cell types, and after 2–

3 days of incubation, the medium was withdrawn and

replaced by serum-free medium. Following 6 h incubation

at 37jC, 5% CO2 medium was replaced by serum-free

medium containing different concentrations of heptadeca-

noic acid or nothing. This incubation was followed by

replacement of the medium with complete medium contain-

ing cisplatin or nothing. KB-3-1 cells were treated with 0.08

Ag/ml and KCP-20 cells with 5 Ag/ml cisplatin from a stock

solution of 500 Ag/ml aqueous solution. Cells were harvested

after 5–6 days’ incubation and treated with heptadecanoic

acid alone, with cisplatin alone, heptadecanoic acid plus

cisplatin or nothing, and were counted after trypsinization by

a Coulter Particle Counter (Coulter Electronics, Luton, UK).

Calculation of proliferation was based on cells treated with

nothing as 100%. The expected yield was: cell count of cells

treated with heptadecanoic acid alone multiplied by cell

count of cells treated with cisplatin alone. The cell count

of cells treated with both reagents was then related to the

previous cell count product and tabulated.

Preparation of plasma membranes for determination of

relative fatty acid composition

For the purpose of plasma membrane preparation, 107

cells from each cell line were harvested at log phase and

washed with ice-cold PBS. Cells were sedimented by

centrifugation and then suspended in ice-cold hypotonic

solution (0.5 mM KH2PO4, 0.1 mM EDTA containing 1%

protease inhibitor aprotonin, pH 8.0) for 5 min. Cells were

disrupted on ice by a tight Dounce homogenizer with

constant 40 strokes. Samples were checked for complete

disruption in a phase-contrast microscope. Homogenates

were centrifuged at 2000 � g for 10 min at 4jC to discard

the nuclei and then the supernatant was centrifuged at

25,000 � g for 25 min to pellet all other organelles. The

resulting supernatant was further centrifuged for 55 min at

4jC. The membranes sedimented at the bottom and were

stored at �80jC before fatty acid analysis. To determine
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that the sediment contained only plasma membranes and no

membranes of organelles, markers were used in connection

with Western blot analyses. For a positive marker, the anti-

integrin antibody anti-2/VLA-2a was used according to

Emsley et al. [21].

Conversion of plasma membrane lipids to methyl esters and

fatty acid analysis

Fats were extracted into organic phase by vortexing the

membrane preparations obtained as described above, with

minor modification of the methods of Kozar et al. [22]. In

brief, 2 ml of HPLC-grade water (Fisher Scientific, Pitts-

burgh, PA) was added to the membranes together with 3.75

ml of 2:1 (v/v) methanol/chloroform (Fisher Scientific) and

the suspension was vortexed for 15 min. Then, after addition

of 1 ml chloroform and 1 min vortexing, the suspension was

centrifuged for 10 min at 2000 rpm. The separated organic

phase was dried in an N2 stream and heated in 1 ml 2 M

methanolic HCl [11 ml methanol with dropwise addition of

2.5 ml acetyl chloride (Sigma)] at 85jC for 18 h in a screw-

capped tube. The fatty acid methyl esters which formed were

then extracted into heptane for GC-MS analysis. Samples

were analyzed on a Hewlett-Packard 6890 plus GC equipped

with 7683 auto-injector. The injection port was held at

constant 280jC with 2 Al injected in the spitless mode onto

a DB-5 ms capillary column with 30 m � 0.25 mm ID �
0.25 Am film thickness (J&W Scientific, Folsom, CA). Initial

oven temperature was 80jC with a ramp of 40jC/min to a

final temperature of 290jC and hold for 0.75 min. Helium

was used as the carrier gas at a constant velocity of 41 cm/s.

Electron impact ionization at 70 eV was performed using

standard autotune conditions. The source temperature was

maintained at 230jC while the quadrupoles were maintained

at 150jC. FAMEs were analyzed in full scan mode for

qualitative identification as well as in selected ion monitor-

ing mode for ratio determination. Location of the analyzed

two fatty acids in the obtained chromatograms was ascer-

tained by standards of hexa- and heptadecanoic acid methyl

esters (Sigma). The ratio of heptadecanoic acid to hexade-

canoic acid methyl esters was determined since heptadeca-

noic acid was used to treat the cells and the hexadecanoic

acid content of cells was assumed to be constant. This ratio is

defined as the area under the peak for hexadecanoic acid/area

under the peak for heptadecanoic acid methyl esters.

Visualization of distribution of K+ channels in cells by

immunofluorescence microscopy

For visualization of distribution of K+ channels in cells,

cells were grown on 189-mm glass coverslips in petri

dishes. Cells were fixed with 3.5% formaldehyde in PBS

for 10 min, followed by 0.1% Triton X-100 treatment for 5

min for permeabilization. After washing, cells were treated

with 3% BSA in PBS for 30 min and subsequently treated

with the primary antibody (Ab) for 1 h. The Ab was TW1K-

2 (P-19) goat polyclonal Ab (Santa Cruz Biotechnology,

Santa Cruz, CA). After five washings, cells were incubated

with CyTM3-conjugated affinity pure donkey anti-goat,

secondary Ab (1:100 dilution) (Jackson Immuno-research

Laboratory). Cells were washed extensively after the sec-

ondary Ab treatment. The slides with the treated cells were

mounted on microscope slides with fluorescence mounting

medium (Dako, Carpinteria, CA). Background fluorescence

was determined from cells treated only with the secondary

Ab, but otherwise treated the same way as described with

the primary Ab. Fluorescent images were collected with a

Bio-Rad 1024 confocal scan head mounted on a Nikon

Optiphot microscope with a 60� planapochromat lens.

Excitation at 568 nm was provided by a krypton–argon

gas laser. An emission filter of 598/40 was used for

collecting red fluorescence in channel one and phase con-

trast images of the same cell were collected in another

channel using a transmitted light detector.

Results

Membrane potential of cisplatin-sensitive and -resistant

cells

Membrane potential was measured using several series of

independently grown cell cultures. For each measurement at

different times and with the different cell lines, we observed

the same pattern of membrane potentials. Fig. 1 shows one

typical result of several measurements with the series of the

cells. The KCP-20 cells, which are highly resistant to

cisplatin, had lower fluorescence intensities and thus are

hyperpolarized as compared to cisplatin sensitive and sin-

gle-step, low-level resistant cells (KB-CP.5). Oxonol is a

negatively charged membrane potential sensing dye and

therefore less dye diffuses into membranes of cells which

are more negative, and thus are hyperpolarized.

Fig. 1. Relative membrane potential of cisplatin-sensitive KB-3-1 and

-resistant cells is indicated by the fluorescence of oxonol (150 mM)-stained

cells. Oxonol is a negatively charged membrane potential sensing dye and

was used as detailed in Materials and methods. One typical series of

measurement of cells were grown simultaneously in culture (n = 2�3). P <

0.05 between KB-3-1 and KCP-20 cells. No statistical difference exists

between KB-3-1 and KB-CP.5 cells.
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Polarity of the fluorescent TMA-DPH molecule in the

plasma membrane of live cells

The TMA-DPH fluorescence probe was used to measure

the fluidity of plasma membranes because it has been shown

that this probe does not penetrate into the cells and probes at

the upper leaflet of the membrane [13]. Table 1 shows the

results obtained with sensitive KB-3-1 and resistant KB-20

cells treated or not treated with heptadecanoic acid. Cisplat-

in-resistant KCP-20 cells were found to have membranes

which were more fluid; the calculated polarization number,

P, was of lower value. These results parallel those obtained

with ESR measurements (see below). Also, polarization

numbers obtained with the TMA-DPH probe indicate that

heptadecanoic acid treatment of the cells results in lower

polarization numbers. Therefore, the plasma membranes

become more fluid. These results also parallel those

obtained by ESR measurements (see below).

ESR studies on the motional freedom of ESR probes,

5-doxyl-SA and T -SASL, in the plasma membranes of cells

Two ESR probes were used to measure membrane

fluidity in cisplatin-sensitive KB-3-1 and -resistant KCP-

20 cells. 5-doxyl-SA probes at 5 carbon depth in the outer

leaflet, while the T-SASL probes at the surface of the plasma

membrane [14,15]. Table 2 shows both results. The calcu-

lated order parameters, S, for the 5-doxyl-SA yielded lower

numbers for the cisplatin-resistant KCP-20 cells, indicating

more ‘‘fluid’’ membranes of these cells at 24jC. The

calculated h0/h�1 parameters also indicate a more fluid

membrane for the cisplatin-resistant KCP-20 cells. These

results are in line with those of the polarization experiments.

To measure membrane fluidity changes of heptadecanoic

acid treated KB-3-1 and KCP-20 cells, we employed the 5-

doxyl-SA ESR probe. Fig. 2 shows the results and indicates

that both types of cells became more fluid (had lower S

values) after heptadecanoic acid treatment. The heptadeca-

noic acid-treated KCP-20 cells were shown to be more

resistant than the nontreated KCP-20 cells. This result is

consistent with the fact that the cisplatin-resistant KCP-20

cells were found to have more fluid plasma membranes than

the sensitive KB-3-1 cells by both ESR and polarization

techniques (Tables 1 and 2). Contrary to this, the cisplatin-

sensitive KB-3-1 cells became even more sensitive after

heptadecanoic acid treatment, despite the fact that their

plasma membranes became more fluid after this treatment

(data not shown).

Membrane packing as determined by fluorescence intensity

of merocyanine 540-stained cells

Merocyanine (MRC) 540 staining was found to be

indicative of the lipid packing density of cell plasma

membranes [16]. We applied this measurement to cisplat-

in-sensitive KB-3-1 and -resistant KCP-20 cells as detailed

in Materials and methods, and found that cisplatin resistant

cells had lower fluorescence intensity than the sensitive KB-

3-1 cells. The fluorescence intensity of merocyanine540-

stained KB-3-1 cells was 95 F 10 while that of the resistant

KCP-20 cells was 58 F 12 in a typical cell preparation (n =

3). We interpret these results to mean that in KB-3-1 cell

membrane lipids are more tightly packed and intercalate

MRC 540 more tightly than in KCP-20 cells. These results

parallel those of membrane fluidity measurements by the

polarization and ESR methods (Tables 1 and 2).

Table 1

Polaritya of TMA-DPH fluorescence probe, inserted into plasma mem-

branes of heptadecanoic acidb-treated and untreated cisplatin-sensitive (KB-

3-1) and -resistant (KCP-20) cells

Cells/treatment Polarity FSD

KB-3-1 untreated 0.3668 0.0018

KB-3-1 treated 0.3590 0.0013

KCP-20 untreated 0.3612 0.0018

KCP-20 treated 0.3556 0.0016

a Mean polarization numbers are calculated from six independent

measurements.
b Heptadecanoic acid treatment is detailed in Materials and methods.

Heptadecanoic acid (40 AM) was used in each experiment. P < 0.05

between treated and untreated cells as well as between KB-3-1 and KCP-20

cells.

Table 2

Motional freedoma of 5-doxyl-SA and T-SASL ESR probes inserted into

the plasma membranes of cisplatin-sensitive and -resistant cells

Cells Temp, 5-doxyl-SA, order parameter, S T-SASL, h0/h�1

jC
S FSD h0/h�1 FSD

KB-3-1 24 0.6443 0.0038 2.423 0.093

KCP-20 24 0.6208 0.0111 1.820 0.147

a Order parameter, S, and h0/h�1 were calculated as described in Materials

and methods. Experiments were done with several cultures (n = 2–4), and

ESR measurements were in triplicate; P < 0.05.

Fig. 2. Membrane ‘‘fluidity’’ as expressed by the order parameter, S, of

cisplatin-sensitive KB-3-1 and -resistant KCP-20 cells, treated or not treated

with heptadecanoic acid. Order parameters, S, were calculated from ESR

spectra obtained as described in Materials and methods. Heptadecanoic acid

treatment is also described in Materials and methods. Average of three to

four measurements are shown with SDs. There is a statistically significant

difference between S values of heptadecanoic acid treated and untreated

cells for both types of cells ( P < 0.05).
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Assessment of phospholipids in cisplatin-sensitive KB-3-1

and -resistant KCP-20 cells by 31P NMR spectrometry

Spectra obtained by 400-MHz NMR spectrometry were

compared to detect any difference in phospholipid composi-

tion between cisplatin-sensitive KB-3-1 and -resistant KCP-

20 cells. The two cell line types were grown in the same

media, harvested before confluence, and spectra were

obtained as described in Materials and methods. Similar

experiments have been performed for the detection of such

differences between P-glycoprotein expressing and nonex-

pressing cells [23,24]. Spectra from both cells detected

phospho-ethanolamine, 4.11 ppm; -choline, 3.6 ppm; -crea-

tine, �2.69 ppm; glycerophospoethanolamine, 0.7 ppm, and

choline, 0.1 ppm, besides inorganic phosphate and different

adenosintriphosphates (Fig. 3). No significant differences

could be detected between the two cell lines in the above

listed phospholipid signals with the applied NMR technique.

Cell proliferation of heptadecanoic acid-treated and

untreated cells

Cell proliferation studies were done as described in

Materials and methods. Relative cell counts are shown in

Table 3. Results indicate that heptadecanoic acid treatment

increased resistance of the KCP-20 cells to cisplatin, since the cells grew better in the combination of cisplatin and

heptadecanoic acid than would have been mediated from the

growth of these cells in either agent alone. In contrast,

heptadecanoic acid treatment of the sensitive KB-3-1 cells

increased their sensitivity to cisplatin.

Fatty acid analysis in heptadecanoic acid-treated and

nontreated plasma membranes

Results of the fatty acid analysis are shown in Table 4.

Two sets of membrane preparations were made from

Fig. 3. 31P NMR spectra (400 MHz) of cisplatin-sensitive KB-3-l (A) and

-resistant KCP-20 (B) cells. Cells (9 � 107) from each culture were

embedded in agarose and packed in 10-mm NMR tubes. Many water-

soluble phosphates were identified, including phosphocholine (PC, 3.57

ppm), inorganic phosphate (Pi, 2.59 ppm), glycerophosphoethanolamine

(GPE, 0.81 ppm), glycerophosphocholine (GPC, 0.26 ppm), phosphoc-

reatine (PCr, �2.69 ppm), g-adenosine triphosphate (g-ATP, �5.12

ppm), a-adenosine triphosphate (a-ATP, �10.19 ppm), diphosphodiesters

(dPdE, �10.86 ppm, �12.58 ppm), and h-adenosinetriphosphate (h-ATP,
�18.70 ppm).

Table 3

Cell proliferation as expressed in percentage F SD cell growth relative to

nontreated KB-3-1 and KCP-20 cells in the presence and absence of

treatment with heptadecanoic acid or cisplatin or the combination of both

Cells Treatment % Proliferation

Expected Found

KB-3-1 [a] cisplatin (0.8 Ag/ml) – 85 F 6

[b] HADa (20 AM) – 97 F 3

[c] HDA (40 AM) – 94 F 4

[a] � [b] 82 F 8 49 F 15

[a] � [c] 80 F 10 68 F 12

KCP-20b [d] cisplatin (5 Ag/ml) – 67 F 10

[e] HDA (40 AM) – 68 F 5

[f] HDA (50 AM) – 41 F 11

[d] � [e] 45 F 14 62 F 6

[d] � [f] 27 F 20 46 F 5

[g] cisplatin (6 Ag/ml) – 51 F 8

[h] HDA (40 AM) – 68 F 13

[i] HDA (50 AM) – 41 F 7

[g] � [h] 34 F 21 47 F 5

[g] � [i] 19 F 19 23 F 7

a HDA: heptadecanoic acid.
b KCP-20 cells: Each measurement of cell growth was done in triplicate

wells and each dose was used in multiple experiments with separately

grown cell cultures (n = 3–5). P < 0.05 for the difference between expected

growth and actual growth for all experiments, except for KCP20 cells

treated with cisplatin, 6 Ag/ml and 50 AM HDA.

Table 4

Areaa and ratios of area of hexadecanoic and heptadecanoic acids as

measured by GC-MS in the membranes of heptadecanoic acid-treated and

untreated KB-3-1 and KCP-20 cells

Cells/treatment Area at m/z 270

heptadecanoic

acida

Area at m/z 284

m/z 270/m/z 284

Ratio of

hexadecanoic

acid

KB-3-1 5,243,334 65,763 79.73

KB-3-1 +

treatment

14,684,547 1,998,304 7.35

KB-3-1 13,859,715 260,720 53.16

KB-3-1 +

treatment

15,527,957 1,789,737 8.68

KCP-20 17,554,572 321,183 54.66

KCP-20 +

treatment

11,695,325 2,260,349 5.17

KCP-20 6,596,479 122,458 53.87

KCP-20 +

treatment

7,656,383 1,332,033 5.75

a Area under peaks obtained by GCMS represents fatty acid methyl esters

analyzed in full scan mode with the instrument software.
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treated and untreated sensitive and resistant cells. For each

preparation, Western blot analyses indicated that only

plasma membranes were collected (not shown). Results

indicated that heptadecanoic acid treatment increased this

fatty acid relative concentration to hexadecanoic acid in

both cell lines. The hexadecanoic acid content of cell

membranes was used to normalize the relative concentra-

tion of heptadecanoic acid.

Fluorescence visualization of K+ channels in human

epidermal carcinoma KB cells

Fig. 4 shows fluorescence images of the KB-3-1 and

KCP-20 cells stained with the CyMB3-conjugated affinity

pure donkey anti-goat Ab after incubation of the cells with

the primary TW1K-2 (P-19) goat polyclonal Ab. The red

fluorescence intensities indicate that there are substantially

more K+ channels on the plasma membranes of KCP-20

cells than of KB-3-1 cells.

Discussion

We used five different methods to study biophysical

differences in the plasma membranes of cisplatin-sensitive

KB-3-1 adenocarcinoma cells and their cisplatin-resistant

counterparts. We also influenced these biophysical differ-

ences in the plasma membranes of KB cells by inserting

heptadecanoic acid into the cell membranes. The alteration

of lipid composition by addition of heptadecanoic acid

resulted in changes in some biophysical parameters of the

membranes along with changes in the cells’ resistance to

cisplatin.

First, we showed that the highly resistant KCP-20 cells

have higher membrane potential, and are therefore more

hyperpolarized than the sensitive, parental KB-3-1 cells and

the low level resistant KCP.5 cells (Fig. 1). We have

attributed this increased membrane potential of KCP-20

cells to the increased expression of K+ channels on their

plasma membranes (Fig. 4). Our results are in line with the

observation of Thomson et al. [25] that cisplatin treatment

of cells influences K+ channel activity and that of Mahas-

wari et al. [26] that cisplatin can change ion conductivity in

bilayer lipid membranes. Efflux of K+ from cells can elevate

membrane potential. Second, polarization studied with the

TMA-DPH fluorescence probe, which probes at the outer

leaflet of plasma membranes, indicates that the resistant

KCP-20 cells have lower polarization values, and thus have

more fluid plasma membranes than the sensitive KB-3-1

cells (Table 1). Third, similar conclusions could be drawn

from the ESR studies, performed with two types of ESR

probes. Results indicate that the order parameter, S, and

parameters of the measurements with the second probe, h0/

h�1, are lower for the resistant cells, indicating more fluid

membranes for these cells as compared to the sensitive cells

(Table 2).

Fourth, more MRC 540 fluorescent dye is packed into

the plasma membranes of the sensitive KB-3-1 cells than

into the plasma membranes of the resistant KCP-20 cells

(see Results). We have interpreted this difference by assum-

ing that more ‘‘rigid’’ membranes can bind more of this dye

tightly than the more loosely packed membranes. Both cells

are equal in size, so more dye incorporation into a cell

cannot be interpreted from different cell sizes. Our interpre-

tation, based on our polarization and ESR measurements

done with the same cells with which we performed our

MRC 540 lipid packing experiment, is seemingly contrary

to the interpretation of Schlegel et al. [16] and Stillwell et al.

[17]. However, Schlegel’s experiments with lymphocytes

could not be interpreted in terms of the ability of MRC 540

to distinguish between loosely or tightly packed membranes.

Stillwell found that more MRC 540 dye intercalates into

loosely packed membranes of phospholipid vesicles, but he

made no such comparison with live cells. His experiments

with the T27A leukemia cells demonstrated only that MRC

540 intercalates into docosahexanoic acid modified cells

differently than into the nonmodified cells and no interpre-

Fig. 4. Confocal visualization of K+ channels as detected by TW1K-2

primary and CyTM3-conjugated donkey anti-goat secondary Ab. Ab

treatment and confocal microscopy are detailed in Materials and methods.

Several fields of cells were captured and one representative field of each is

shown (n = 5–8). Control: KCP-20 cells treated only with secondary Ab.
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tation was given for the relationship between membrane

fluidity and dye packing. In a previous study [27], MRC 540

intercalated into cisplatin-sensitive and -resistant lung ade-

nocarcinoma cells with the same relative dye ratio as in our

study. Unfortunately, no correlation was made between dye

packing and membrane fluidity in that study.

We have not detected any significant difference between

the 400 MHz 31P NMR spectra of KB-3-1 and KCP-20 cells

(Fig. 3), suggesting that there are no major differences in

measured water-soluble phosphates, including phospholipid

precursors in the cisplatin-sensitive and -resistant cell lines.

Our results reflect relative peak intensities of individual

phosphates which depend on their T1 relaxation times and

the repetition time (2 s) of the applied NMR technique.

Spellman [8] found that phosphatidylserine binds cisplatin

in vitro, but formation of a phosphatidylserine–cisplatin

complex could not be found when experiments were con-

ducted with intact cells [28]. Kaplan et al. [23] found that

there are differences in the glycerophosphocholine and

glycerophosphoethanolamine ratio in some MCF-7 wild

type and P-glycoprotein expressing cell lines by their 31P

NMR studies. However, these differences proved not con-

sistently present in all such cell lines.

We found differences in biophysical parameters between

the KB-3-1-sensitive and the KB-20-resistant cells, as

described above. Therefore, our next experiment focused

on the introduction of biophysical changes to the plasma

membrane of the sensitive and the resistant KB cells and

determining the cisplatin sensitivity of the altered cells. In a

previous study, Callaghan et al. [20] found that the incor-

poration of heptadecanoic acid into plasma membranes can

hinder the function of a transmembrane protein, P-glyco-

protein, possibly by altering the biophysical milieu of this

transmembrane protein. Therefore, we incorporated this

fatty acid into the plasma membrane of KB-3-1 and KCP-

20 cells. We demonstrated that during a short treatment

period of the cells with this fatty acid, other components of

the plasma membrane, such as the cholesterol content, did

not change significantly.

After heptadecanoic acid treatment of our cells, we

determined changes in membrane biophysical status, rela-

tive heptadecanoic acid content, and sensitivity of the

treated cells to cisplatin. We found that heptadecanoic acid

treatment of the cells increases the relative content of this

fatty acid in cell membranes (Table 4). Simultaneously, this

treatment increased the fluidity of plasma membranes of

both KB-3-1 and KCP-20 cells as measured by polarization

(Table 1) and by ESR (Fig. 2). We also measured the

influence of heptadecanoic acid treatment on cell prolifer-

ation (Table 3). After heptadecanoic acid treatment of KCP-

20 cells, their resistance to cisplatin increased (Table 3) and

their plasma membrane fluidity increased (Fig. 2). This

finding is in accord with our results that the resistant

KCP-20 cells have more fluid plasma membranes than the

sensitive KB-3-1 cells, as discussed above. That a bile acid

derivative increased sensitivity of monoclonal cells to cis-

platin, as reported by Briz et al. [9], is not a direct

contradiction to our findings. First, it was not shown by

Briz et al. whether the bile acid derivative was incorporated

into plasma membranes, and second, no determination was

made on the biophysical status of the membranes of the cells

before and after the treatment.

Contrary to the results with the KCP-20 cells, KB-3-1

cells became more sensitive to cisplatin after heptadecanoic

acid treatment (Table 3). In this case, increasing the fluidity

of the plasma membrane did not result in higher resistance

to cisplatin, as it did with the KCP-20 cells. Nevertheless,

cisplatin sensitivity was altered by heptadecanoic acid

treatment in these cells also. Further experiments with cell

lines of different plasma membrane fluidity and sensitivity

to cisplatin may explain these results. Results detailed

above, that incorporation of heptadecanoic acid into plasma

membranes of KB-3-1 and KCP-20 cells resulted in oppo-

site sensitivity to cisplatin, indicate that this fatty acid per se

is not involved in cisplatin binding. Somewhat different

results were obtained by Timmer-Bosscha et al. [29] who

found that incorporation of docosahexaenonoic acid into the

membranes of a human small cell lung carcinoma line,

GLC4 and its resistant subline, GLC4-CP, decreased resis-

tance of the resistant cells but had no influence on the parent

cell line. However, their experimental results suggested that

DNA-related effects, and not alteration in the plasma

membrane, are the reasons for changes in resistance. Inter-

estingly, these authors also found that their treatment does

not cause the same change in cisplatin resistance in the

parental as in the resistant cells. Our results parallel this

different effect on sensitive and resistant cells. In both cases,

this difference suggests that increased fluidity per se may

not be responsible for cisplatin resistance, but may facilitate

a mechanism of resistance found only in the selected cell

line.

Recent physiological studies on the mechanism of resis-

tance of KCP-20 cells to cisplatin (and cross-resistance to

other compounds such as methotrexate) have revealed the

following phenotype: (1) decreased drug accumulation for

many drugs associated with decreased expression on the cell

membrane of many different transporters, carriers, and

channels [11]; (2) neutralization of the usual acidic pH of

lysosomes and endosomes [30]; (3) hypermethylation of

genes whose expression is decreased in KCP-20 cells (Shen,

D.-W., Liang, X.-J., Pai-Panandiker, A., and Gottesman,

M.M., unpublished data); and (4) mislocalization of mem-

brane proteins with accumulation of certain transporters in

the cytoplasm [31]. Although a single molecular defect is

unlikely to account for all of these changes in cells selected

in multiple steps, alteration of the biophysical properties of

plasma membranes in cisplatin-resistant cells could facilitate

defects in membrane protein trafficking which might under-

lie cisplatin resistance due to decreased accumulation. If

increased membrane fluidity amplifies the effect of another

defect in KB-CP20 cell membranes, rather than indepen-

dently causing resistance to cisplatin, this could explain why
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measured membrane fluidity in the KB-3-1 parental, drug-

sensitive cells does not result in resistance.

To summarize, we have determined that there are differ-

ences in biophysical parameters, membrane potential, mo-

tional freedom of polarization and ESR probes, and MRC

540 dye packing between cisplatin-sensitive and -resistant

human epidermal carcinoma cells in vitro. 31P NMR studies

indicated no essential differences in water-soluble phos-

phates. Modification of the plasma membrane fluidity of

these cells by incorporation of heptadecanoic acid resulted

in changes in their sensitivity to cisplatin. Whether changes

in membrane fluidity transmitted to some membrane mole-

cules in sensitive and resistant cells cause alterations in

cisplatin sensitivity remains to be determined.
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Our purpose in this work was to develop an automatic boundary detection method for mammo-
graphic masses and to rigorously test this method via statistical analysis. The segmentation method
utilized a steepest change analysis technique for determining the mass boundaries based on a
composed probability density cost function. Previous investigators have shown that this function
can be utilized to determine the border of the mass body. We have further analyzed this method and
have discovered that the steepest changes in this function can produce mass delineations that
include extended projections. The method was tested on 124 digitized mammograms selected from
the University of South Florida’s Digital Database for Screening Mammography �DDSM�. The
segmentation results were validated using overlap, accuracy, sensitivity, and specificity statistics,
where the gold standards were manual traces provided by two expert radiologists. We have con-
cluded that the best intensity threshold corresponds to a particular steepest change location within
the composed probability density function. We also found that our results are more closely corre-
lated with one expert than with the second expert. These findings were verified via Analysis of
Variance �ANOVA� testing. The ANOVA tests obtained p-values ranging from 1.03�10�2 – 7.51
�10�17 for the single observer studies and 2.03�10�2 – 9.43�10�4 for the two observer studies.
Results were categorized using three significance levels, i.e., p�0.001 �extremely significant�, p
�0.01 �very significant�, and p�0.05 �significant�, respectively. © 2004 American Association of
Physicists in Medicine. �DOI: 10.1118/1.1781551�
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I. INTRODUCTION

In the United States, breast cancer accounts for one-third of
all cancer diagnoses among women and it has the second
highest mortality rate of all cancer deaths in women.1 Breast
cancer studies are therefore essential for its ultimate eradica-
tion. Several studies show that only 13%–29% of suspicious
masses are determined to be malignant,2–4 indicating that
there are high false positive rates for biopsied breast masses.
A higher predictive rate is anticipated by combining the
mammographer’s interpretation and the computer analysis.

Other studies show that 7.6%–14% of the patients have
mammograms that produce false negative diagnoses.5,6 Alter-
natively, a Computer Assisted Diagnosis (CADx) system can
serve as a clinical tool for the radiologist and consequently
lower the rate of missed breast cancer.

Generally, CADx systems consist of three major stages,
namely, segmentation, feature calculation, and classification.
Segmentation is arguably one of the most important aspects
of CADx—particularly for masses—because a strong diag-
nostic predictor for masses is shape. Specifically, many ma-
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lignant masses have ill-defined, and/or spiculated borders
and many benign masses have well-defined, rounded bor-
ders. Furthermore, breast masses can have unclear borders
and are sometimes obscured by glandular tissue in mammo-
grams. During the search for suspicious areas masses of this
type may be overlooked by radiologists. When a specific area
is deemed to be suspicious, the radiologist analyzes the over-
all mass, including its shape and margin characteristics. The
margin of a mass is defined as the interface between the mass
and surrounding tissue, and is regarded by some as one of
the most important factors in determining its significance.7

Specifically, a spiculated mass consists of a central mass
body surrounded by fibrous extensions, hence the resulting
stellate shape. In this context, ‘‘extension’’ refers to those
portions of the mass containing ill-defined borders, spicula-
tions, fibrous borders, and projections. Although the diam-
eters of these cancers are measured across the central portion
of the mass, microscopic analysis of the extensions also re-
veals associated cancer cells, in other words, the extended
projections may contain active mass growth.7,8 In addition,
the features of the extended projections and ill-defined bor-
ders are highly useful for identifying masses. Hence, proper
segmentation—including the body and periphery—is essen-
tial for the computer to analyze, and in turn, determine the
malignancy of the mass in mammographic CADx systems.

Te Brake and Karssemeijer9 implemented a discrete dy-
namic contour model, a method similar to snakes, which
begins as a set of vertices connected by edges �initial con-
tour� and grows subject to internal and external forces. Li10

developed a method that employs k-means classification to
categorize pixels as belonging to the region of interest �ROI�
or background. Petrick et al.11 developed the Density
Weighted Contrast Enhancement �DWCE� method, in which
series of filters are applied to the image in an attempt to
extract masses. Pohlman et al.12 developed an adaptive re-
gion growing method whose similarity criterion is deter-
mined from calculations made in 5�5 windows surrounding
the pixel of interest. Mendez et al.13 developed a method,
which combined bilateral image subtraction and region
growing.

Several studies have also used probability-based analysis
to segment digitized mammograms. Li et al.14 developed a
segmentation method that first models the histogram of
mammograms using a finite generalized Gaussian mixture
�FGGM� and then uses a contextual Bayesian relaxation la-
beling �CBRL� technique to find suspected masses. Further-
more, this method uses the Expectation-Maximization �EM�
technique in developing the FGGM model. Comer et al.15

utilized an EM technique to segment digitized mammograms
into homogeneous texture regions by assigning each pixel to
one of a set of classes such that the number of incorrectly
classified pixels was minimized. Kupinski and Giger16 devel-
oped a method, which combines region growing with prob-
ability analysis to determine final segmentation. In their
method, the probability-based function is formed from a spe-
cific composed probability density function, determined by a
set of image contours produced by the region growing
method. This method is a highly effective one and it was

implemented by Te Brake and Karssemeijer in their work9

that compared the results of a model of the discrete dynamic
contour model with those of the probability-based method.
For this reason, we chose to investigate its use as a possible
starting point from which a second method could be devel-
oped. Consequently for our implementation of this work we
discovered an important result, i.e., the steepest changes of a
cost function composed from two probability density func-
tions of the regions. It appears that in many cases this result
produces contour choices that encapsulate important borders
such as mass spiculations and ill-defined borders.

Several CADx classification techniques have been devel-
oped. They are described here to underscore the importance
of accurate segmentation in CADx studies. Lo et al.17 devel-
oped an effective analysis method using the circular path
neural network technique that was specifically designed to
classify the segmented objects, and it can certainly be ex-
tended for the applications related to mass classification. Po-
lakowski et al.18 used a multilayer perceptron �MLP� neural
network to distinguish malignant and benign masses. Both
Sahiner et al.19 and Rangayyan et al.20 used linear discrimi-
nant analysis to distinguish benign masses from malignant
masses. While many CADx systems have been developed,
the development of fully-automated image segmentation al-
gorithms for breast masses has proven to be a daunting task.

II. METHODS

A. Segmentation method—Maximum change of cost
function as a continuation of probability-based
function analysis

As a point of clarification, the function used to find opti-
mal region growing contours in the Kupinski and Giger
study16 is referred to as the probability-based function and
our function is referred to as the cost function. The two func-
tions are similar, however they differ in terms of the images
used in their formation. As an initial segmentation step, the
region growing is used to aggregate the area of
interest,12,13,21 where grayscale intensity is the similarity cri-
terion. This phase of the algorithm starts with a seed point
whose intensity is high, and nearby pixels with values greater
than or equal to this value are included in the region of
interest. As the intensity threshold decreases, the region in-
creases in size, therefore there is an inverse relationship be-
tween intensity value and contour size. In many cases the
region growing method is extremely effective in producing
contours that are excellent delineations of mammographic
masses. However, the computer is not able to choose the
contour that is most highly correlated with the experts’ de-
lineations, specifically, those masses that contain ill-defined
margins or margins that extend into surrounding fibroglan-
dular tissue. Furthermore, the task of asking a radiologist to
visually choose the best contour would be both time inten-
sive and extremely subjective from one radiologist to an-
other.

The segmentation technique described in this work at-
tempts to solve and automate this process by adding a two-
dimensional �2-D� shadow and probability-based compo-
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nents to the segmentation algorithm. Furthermore, we have
devised a steepest descent change analysis method that
chooses the best contour which delineates the mass body
contour as well as its extended borders, i.e., extensions into
spiculations and areas in which the borders are ill-defined or
obscured. It has been discovered that the probability-based
function is capable of extracting the central portion of the
mass density as demonstrated by the previous investigators,16

and in this work the method has been advanced further such
that it can include the extensions of the masses. The en-
hanced method can produce contours, which closely match
expert radiologist traces. Specifically, it has been observed
that this technique can select the contour that accurately rep-
resents the mass body contour for a given set of parameters.
However, a further analysis of the cost function composed
from the probability density functions inside and outside of a
given contour revealed that the computer could choose a set
of three segmentation contour choices from the entire set of
contour choices, and latter make a final decision from these
three choices.

1. Region growing and preprocessing

Initially, a 512�512 pixel area surrounding the mass was
cropped. The region growing technique12,13,21 to aggregate
the region of interest was employed, where the similarity
criterion for our region growing algorithm is grayscale inten-
sity. To start the growth of the first region, a seed point was
placed at the center of the 512�512 ROI. The region grow-
ing process continues by decreasing the intensity value until
we have grown a sufficiently large set of contours.

Next, the image is multiplied by a 2-D trapezoidal mem-
bership function with rounded corners whose upper base
measures 40 pixels and lower base measures 250 pixels
(1 pixel�50 microns). This function was chosen because it
is a good model of the mammographic mass’ intensity distri-
bution. Since the ROI’s have been cropped such that the
mass’ center was located at the center of the 512 pixel
�512 pixel area, shadow multiplication emphasizes pixel
values at the center of the ROI and suppresses background
pixels. The image to which the shadow has been applied is
henceforth referred to as the ‘‘processed’’ image. The origi-
nal image and its processed version were used to compute
the highest possibility of its boundaries. The computation
method is comprised of two components for a given bound-
ary: �1� formulation of the composed probability as a cost
function and �2� evaluation of the cost function.

The contours were grown using the original image as op-
posed to the processed image, and this choice accounts for a
major difference between the current implementation and
that of the previous investigators.16 By using contours gen-
erated from the original image, a cost function composed
from the probability density functions inside and outside of
the contours was produced. In many situations, the greatest
changes in contour shape and size occur at sudden decreases
within the function. In analyzing these steep changes it was
observed that the intensity values corresponding to the steep
changes typically produced contours that encapsulated both

the mass body as well as its spiculated projections or ill-
defined margins. This phenomenon would be suppressed if
the processed image was used to generate the contour. A
more detailed discussion of steep changes within the cost
function is forthcoming in Sec. II A 2 C.

The processed image was mainly used to construct the
cost function. A common technique used in mass segmenta-
tion studies is to pre-process the images using some type of
filtering mechanism11,16 in an effort to separate the mass
from surrounding fibroglandular tissue. This method could
be particularly beneficial to the region growing process be-
cause it would aid in preventing the regions from growing
into surrounding tissue. Alternatively, the filtering process
could impede our goal of attempting to encapsulate a mass’s
extended borders as well as borders that are ill-defined due to
the filtering process’s a tendency to create rounded edges on
margins that are actually jagged or spiculated. This phenom-
enon could potentially defeat the goal of extracting mass
borders. For these reasons, we have chosen to aggregate the
contours using the original ROI rather its processed version.

2. Formulation of the composed probability as a
cost function

In the context of this work, the composed probability is
defined as the probability density functions of the pixels in-
side and outside a contour using a processed and nonproc-
essed version of an image. Specifically, for a contour (Si),
the composed probability (Ci) is calculated:

Ci�Si��
j�0

h

p„f ,�x ,y ��Si…��
j�0

h

p„mi�x ,y ��Si…. �1�

The quantity f i(x ,y) is the set of pixels, which lie inside the
contour Si �see Fig. 1�a��, and this area contained processed
pixel values. The quantity p„f i(x ,y)�Si… is the probability
density function of the pixels inside Si „f i(x ,y)…, where ‘‘i’’
is the intensity threshold used to produce the contours given
by the region growing step, and ‘‘h’’ is the maximum inten-
sity value. The quantity mi(x ,y) is the set of pixels, which
lie outside the contour Si �see Fig. 1�b��, and this area con-
tained nonprocessed pixels. The quantity p„mi(x ,y)�Si… is

FIG. 1. Four grown contours used to construct the cost function: starts from
high intensity thresholds and moves towards low intensity thresholds. Each
contour separates the ROI into two parts: �a� Segmented image �based on
processed image� used to compute density function p( f i(x ,y)�Si) and �b�
masked image �based on the nonprocessed original image� used to compute
density function p„mi(x ,y)�Si… for four intensity threshold values.
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the probability density function of the pixels outside Si ,
where ‘‘i’’ is the intensity threshold used to produce the con-
tours given by the region growing step, and ‘‘h’’ is the maxi-
mum intensity value. For implementation purposes, the loga-
rithm of the composed probability of the two regions, Ci was
used:

Log�Ci�Si��log� �
j�0

h

p„f i�x ,y ��Si…�
�log� �

j�0

h

p„mi�x ,y ��Si…� . �2�

3. The cost function based on the composed
probability density functions

To select the contour that represents the fibrous portion of
the mass, it is appropriate to examine the maximum value of
the cost function:

arg max„Log�Ci�Si�;Si ,i�1,...,n…. �3�

It has been assessed �also by other investigators9,16� that the
intensity value corresponding to this maximum value is the
optimal intensity needed to delineate the mass body contour.
However, in the current implementation it was discovered
that the intensity threshold corresponding to the maximum
value confines the contour to the fibrous portion of the mass,
or, the mass body. In this study many of these contours did
not include the extended borders. It is therefore hypothesized
that the contour representing the mass extended borders may

well be determined by assessing the greatest changes of the
cost function, or locating the steepest value changes within
the function

d

di
„Log�Ci�Si�;Si ,i�1,...,n…. �4�

Based on this assumption, cost functions associated with
masses were analyzed. The analysis reveals that the most
likely boundaries of masses associated with expert radiolo-
gist traces are usually produced by the intensity value corre-
sponding to the first or second steepest change of value im-
mediately following the maximum value on the cost function
�see Fig. 2�a��. The description of this discovery is given
below. It is followed by a validation study described in Sec.
II B and by results shown in Sec. III. The overarching goal of
the steep descent method is to determine whether a certain
contour is the best contour, and whether it represents the
mass and its extended borders.

4. The definition of steepest change

The term ‘‘steepest change’’ is rather subjective. In this
work we define it as a location between two or more points
in the cost function where the values experience a significant
change. When the values are plotted as a function of inten-
sity, these significant changes are often visible in the func-
tion. In some cases the cost function increases at a slow rate,
therefore a potential steepest change location could be
missed. The algorithm design compensates for this issue by

FIG. 2. �a� Example of cost function with steepest
change location indicators. �b� Example of a
probability-based function without an obvious steepest
change location.
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calculating the difference between values in steps over sev-
eral values and comparing the results to two threshold val-
ues. The difference equation is given by

d� t �� f �z�wt �� f „z�w� t�1 �…, t�0,m , �5�

where f is the cost function, z is the maximum intensity, w is
the width of the interval over which the cost function differ-
ences are calculated �e.g.—for w�5 differences are calcu-
lated every 5 points�, and m is the total number of points in
the searchable area divided by w. Note that ‘‘wt’’ is associ-
ated with a specific contour ‘‘i’’ described earlier. If the value
of d(t) yields a value greater than or equal to a given thresh-
old, then the intensity corresponding to this location is deter-
mined to be a steepest change location. The threshold algo-
rithm occurs as follows:

If „d� t ��TV1); t�0,...,m

Then choice 1�intensity where that condition is sat-
isfied.

If „d� t ��TV2…; t�m , . . . ,z

Then choice 2�intensity where that condition is sat-
isfied.

where TV1 and TV2 are pre-defined threshold values, m is
the location in the function where the choice 1 condition is
satisfied, and z is the location in the function where the
choice 2 condition is satisfied. During the examination of the
contour growth with respect to the cost function, the first
steepest change �d(t)MC1 as choice 1� is determined by TV1

immediately after the location of the maximum cost function
value �corresponding to the mass body discussed earlier�.
The second the steepest change �d(t)MC2 as choice 2� is de-
termined by TV2 after the first steepest change has been
established.

Figure 1�a� illustrates how the algorithm is carried out. In
this figure, the maximum value on the cost function occurs
for a grayscale intensity value of approximately 3330. The
searching process begins from this maximum point and it is
discovered that the first steepest change �d(t)MC1 as choice
1� occurs for a grayscale intensity value approximately equal
to 3200. From this point the searching process continues and
it is discovered that the second steepest change �d(t)MC2 as
choice 2� occurs for a grayscale intensity value approxi-
mately equal to 3175. In summary, intensity values of 3330,
3200, and 3175 can be used to grow 3 potential mass delin-
eation candidates, and the large set of intensity choices has
been narrowed to 3 choices. The following scenarios oc-
curred when the three contour choices produced by the �1�
maximum intensity value on the cost function �2� the inten-
sity corresponding to the first steepest change on the cost
function, and �3� the intensity corresponding to the second
steepest change on the cost function.

�1� Intensity corresponding to the maximum value on the
cost function: The central body of the mass was encap-
sulated.

�2� Intensity corresponding to the first steepest change on
the cost function: The central body of the mass�some of
its extended borders �i.e., projections and spiculations�
was encapsulated.

�3� Intensity corresponding to the second steepest change on
the cost function: The central body of the mass�more
extended borders�surrounding fibroglandular tissue was
encapsulated.

The intensity corresponding to the first steepest change
provides the best choice, and an examination of this obser-
vation is shown and discussed in Secs. III and IV of this
work.

As stated previously, the steep changes within the cost
function would be suppressed if the processed image was
used to generate the contour; therefore, the function would
be relatively smooth. Figure 2�b�, which shows a probability-
based function produced by contours that were grown using
a processed ROI, demonstrates this issue.

B. Validation method

In several segmentation studies the results were validated
using the overlap statistic alone, however, it was necessary to
analyze the performance of the steepest change algorithm on
the basis of four statistics to verify that the algorithm is in-
deed capable of categorizing mass and background pixels
correctly. This type of analysis provides helpful information
regarding necessary changes for the algorithm’s design and
can possibly aid in its optimization.

The segmentation method was validated on the basis of
overlap, accuracy, sensitivity, and specificity.22,23 These sta-
tistics are calculated as follows:

Overlap�
NTP

NFN�NTP�NFP
, �6�

Accuracy�
NTP�NTN

NTP�NTN�NFP�NFN
, �7�

Sensitivity�
NTP

NTP�NFN
, �8�

Specificity�
NTN

NTN�NFP
, �9�

where NTP is the true positive fraction �part of the image
correctly classified as mass�, NTN true negative fraction �part
of the image correctly classified as surrounding tissue�, NFP

TABLE I. Distribution of DDSM masses studied according to their subtlety
ratings.

Subtlety category Cancer Benign

Number of masses with a rating�1 5 3
Number of masses with a rating�2 12 12
Number of masses with a rating�3 18 17
Number of masses with a rating�4 9 23
Number of masses with a rating�5 15 10
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is the false positive fraction �part of the image incorrectly
classified as mass�, and NFN is the false negative fraction
�part of the image incorrectly classified as surrounding tis-
sue�. This method requires a gold standard, or, a contour to
which the segmentation results can be compared. The gold
standards for the experiments performed in this work were
mass contours, which have been traced by expert radiolo-
gists.

The experiments produced contours for the intensity val-
ues resulting from three locations within the cost functions:
�1� The intensity of the maximum value within the cost func-
tion; �2� the intensity for which the cost function experiences
its first steepest change; and �3� the intensity for which the
cost function experiences its second steepest change. It has
been observed that the intensity for which the cost function
experiences its first steepest change produces the contour
trace that is most highly correlated with the gold standard
traces, regarding overlap and accuracy. In cases for which
better results occur at the second steepest change location,
there is no significant difference between these results and
the results calculated for the first steepest change location.
Second, it has been observed that the results are more closely
correlated with one expert than with the second expert. These
hypotheses were tested using the one-way Analysis of Vari-

ance �ANOVA� test.24,25 In this study, three significance lev-
els �i.e., p�0.001, p�0.01, and p�0.05) were used to cat-
egorize the ANOVA results as described in the next section.

III. EXPERIMENTS AND RESULTS

The following sections describe the database and experi-
ments, and provide segmentation results and ANOVA test
results.

A. Database

For this study, a total of 124 masses were chosen from the
University of South Florida’s Digital Database for Screening
Mammography �DDSM�.26 The DDSM films were digitized
at 43.5 or 50 �m’s using either the Howtek or Lumisys digi-
tizers, respectively. The DDSM cases have been ranked by
expert radiologists on a scale from 1 to 5, where 1 represents
the most subtle masses and 5 represents the most obvious
masses. Table I lists the distribution of the masses studied
according to their subtlety ratings. The images were of vary-
ing contrasts and the masses were of varying sizes.

FIG. 3. �a� Segmentation results for a malignant mass with spiculated mar-
gins (subtlety�2) �b� the corresponding cost function.

FIG. 4. �a� Segmentation results for a malignant mass with ill-defined mar-
gins (subtlety�3); �b� the corresponding cost function.
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The first set of expert traces was provided by an attending
physician at Georgetown University Medical Center
�GUMC�, and is hereafter referred to as the Expert A traces.
The second set of expert traces was provided by the DDSM,
and is hereafter referred to as the Expert B traces.

B. Experiments

As mentioned previously, the term ‘‘steepest change’’ is
very subjective. Therefore, a set of thresholds needed to be
set in an effort to define a particular location within the cost
function as a ‘‘steepest change location.’’ For this study
the following thresholds were experimentally chosen:
TV1�1800, TV2�1300, where TV1 equals the threshold for
steepest change location 1 for the cost function, and TV2

equals the threshold for steepest change location 2 for the
cost function. A number of experiments were performed in
an effort to prove that �1� the intensity for which the cost
function experiences the first steepest change location pro-
duces the contour trace, which is most highly correlated with
the gold standard traces with regard to overlap and accuracy.
In cases for which the second steepest change location
achieves better results, there are no significant differences
between the values obtained from the first steepest change

location and the second steepest change location. The experi-
ments linked with these hypotheses comprise the studies for
a single observer. We have also set out to prove that �2� our
results are more closely correlated with one expert than with
the second expert. The experiments linked with this hypoth-
esis comprise the studies between two observers. First seg-
mentation results for two malignant cases are presented, fol-
lowed by segmentation results for two benign cases. Second,
the ANOVA results for a set of hypotheses are presented. The
contours produced by the maximum value as well as by the
steepest change locations within the cost functions are la-
beled as follows: �1� group 1: The intensity for which a value
within the cost function is maximum; �2� group 2: The inten-
sity for which the cost function experiences its first steepest
change; �3� group 3: The intensity for which the cost func-
tion experiences its second steepest change.

C. Results

Figures 3–6 display the results for two malignant cases
accompanied by their cost functions as well as results for two
be--nign cases accompanied by their cost functions. The
ANOVA results appear in a set of tables �Secs. II–IV�, where
each table lists the hypothesis tested along with p-values and
their corresponding categorizations. The p-values are catego-

FIG. 5. �a� Segmentation results for a benign mass with ill-defined margins
(subtlety�3); �b� the corresponding cost function.

FIG. 6. �a� Segmentation results for a benign mass with circumscribed mar-
gins (subtlety�4); �b� the corresponding cost function.
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rized in the following way: not significant �NS for p
�0.05), significant �S for p�0.05), very significant �VS for
p�0.01), and extremely significant �ES for p�0.001). Each
p-value table is followed by a second table, which contains
the mean values of overlap, accuracy, sensitivity, and speci-
ficity for each group. Sections II and III are identical regard-
ing the experiments, however, the pathologies of the masses

are different �Sec. II—malignant masses, Sec. III—benign
masses�. Although the experiments are identical they have
been separated for clarity purposes.

A larger set of segmentation results has been placed in an
image gallery containing 7 malignant mass results �Fig. 7�
and 7� benign mass results �Fig. 8�. These figures are located
in the Appendix.

1. Segmentation results

2. ANOVA test results for comparison of contour groups with single observer: Malignant cases

TABLE II. Single observer results �expert A gold standard, malignant masses�.

ANOVA test

P-value
�group 1 vs

group 2�

P-value
�group 2 vs

group 3�

P-value
�group 1 vs

group 3�

Difference between groups �overlap� 1.78�10�4 (ES) 2.91�10�2 (S) NS
Difference between groups �accuracy� NS 3.14�10�2 (S) NS
Difference between groups �sensitivity� 1.88�10�9 (ES) NS 1.85�10�13 (ES)
Difference between groups �specificity� 5.12�10�4 (ES) 2.40�10�3 (VS) 2.71�10�9 (ES)

TABLE III. Mean values for overlap, accuracy, sensitivity, and specificity �expert A gold standard, malignant
masses�.

Measurement
Mean value
�group 1�

Mean value
�group 2�

Mean value
�group 3�

Overlap 0.47 0.60 0.53
Accuracy 0.88 0.90 0.87
Sensitivity 0.49 0.75 0.81
Specificity 0.99 0.94 0.88

TABLE IV. Single observer results �expert B gold standard, malignant masses�.

ANOVA test

P-value
�group 1 vs

group 2�

P-value
�group 2 vs

group 3�

P-value
�group 1 vs

group 3�

Difference between groups �overlap� 3.96�10�6 (ES) NS 1.58�10�4

Difference between groups �accuracy� NS NS NS
Difference between groups �sensitivity� 4.88�10�8 (ES) 4.31�10�2 (S) 4.25�10�12 (ES)
Difference between groups �specificity� 2.70�10�4 (ES) 4.36�10�4 (ES) 1.44�10�7 (ES)

TABLE V. Mean values for overlap, accuracy, sensitivity, and specificity
�expert B gold standard, malignant masses�.

Measurement
Mean value
�group 1�

Mean value
�group 2�

Mean value
�group 3�

Overlap 0.38 0.54 0.51
Accuracy 0.83 0.86 0.84
Sensitivity 0.38 0.56 0.60
Specificity 1.00 0.98 0.94
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3. ANOVA test results for comparison of contour groups with single observer: Benign cases

TABLE VI. Single observer results �expert A gold standard, benign masses�.

ANOVA test

P-value
�group 1 vs

group 2�

P-value
�group 2 vs

group 3�

P-value
�group 1 vs

group 3�

Difference between groups �overlap� 3.19�10�4 (ES) 8.38�10�4 (ES) NS
Difference between groups �accuracy� NS 4.73�10�3 (VS) 2.51�10�3 (VS)
Difference between groups �sensitivity� 1.14�10�9 (ES) 1.89�10�2 (S) 7.51�10�17 (ES)
Difference between groups �specificity� 8.93�10�3 (VS) 1.24�10�3 (VS) 3.32�10�10 (ES)

TABLE VII. Mean values for overlap, accuracy, sensitivity, and specificity
�expert A gold standard, benign masses�.

Measurement
Mean value
�group 1�

Mean value
�group 2�

Mean value
�group 3�

Overlap 0.46 0.58 0.45
Accuracy 0.90 0.91 0.85
Sensitivity 0.49 0.73 0.82
Specificity 0.99 0.94 0.86

TABLE VIII. Single observer results �expert B gold standard, benign masses�.

ANOVA test

P-value
�group 1 vs

group 2�

P-value
�group 2 vs

group 3�

P-value
�group 1 vs

group 3�

Difference between groups �overlap� 8.82�10�5 (ES) NS 1.62�10�2 (S)
Difference between groups �accuracy� NS 2.62�10�2 (S) 2.48�10�2 (S)
Difference between groups �sensitivity� 1.61�10�7 (ES) NS 3.14�10�12 (ES)
Difference between groups �specificity� 1.18�10�2 (S) 1.27�10�2 (S) 1.25�10�7 (ES)

TABLE IX. Mean values for overlap, accuracy, sensitivity, and specificity
�expert B gold standard, benign masses�.

Measurement
Mean value
�group 1�

Mean value
�group 2�

Mean value
�group 3�

Overlap 0.36 0.51 0.44
Accuracy 0.88 0.89 0.83
Sensitivity 0.36 0.61 0.69
Specificity 0.99 0.94 0.86
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4. ANOVA test results for comparison of contour groups between two observers

TABLE X. Two observer results: expert A vs expert B, malignant masses.

ANOVA test

P-value
�group 1 vs

group 2�

P-value
�group 2 vs

group 3�

P-value
�group 1 vs

group 3�

Expert A vs expert B �overlap� 3.12�10�3 (VS) 3.32�10�2 (S) NS
Expert A vs expert B �accuracy� 1.20�10�2 (S) 4.46�10�2 (S) NS
Expert A vs expert B �sensitivity� 9.43�10�4 (ES) 3.38�10�4 (ES) 3.67�10�4 (ES)
Expert A vs expert B �specificity� NS NS NS

TABLE XI. Mean values for overlap, accuracy, sensitivity, and specificity �expert A vs expert B, malignant masses�.

Measurement

Mean
value,

expert A
�group 1�

Mean
value,

expert B
�group 1�

Mean
value,

expert A
�group 2�

Mean
value,

expert B
�group 2�

Mean
value,

expert A
�group 3�

Mean
value,

expert B
�group 3�

Overlap 0.49 0.38 0.62 0.55 0.55 0.51
Accuracy 0.89 0.83 0.91 0.87 0.87 0.84
Sensitivity 0.52 0.38 0.75 0.60 0.82 0.68
Specificity 0.99 1.00 0.95 0.97 0.89 0.91

TABLE XII. Two observer results: expert A vs expert B, benign masses.

ANOVA test

P-value
�group 1 vs

group 2�

P-value
�group 2 vs

group 3�

P-value
�group 1 vs

group 3�

Expert A vs expert B �overlap� NS NS NS
Expert A vs expert B �accuracy� NS NS NS
Expert A vs expert B �sensitivity� 3.56�10�2 (S) 4.90�10�2 (S) 2.03�10�2 (S)
Expert A vs expert B �specificity� NS NS NS

TABLE XIII. Mean values for overlap, accuracy, sensitivity, and specificity: expert A vs expert B, benign masses.

Measurement

Mean
value,

expert A
�group 1�

Mean
value,

expert B
�group 1�

Mean
value,

expert A
�group 2�

Mean
value,

expert B
�group 2�

Mean
value,

expert A
�group 3�

Mean
value,

expert B
�group 3�

Overlap 0.42 0.35 0.57 0.50 0.48 0.44
Accuracy 0.90 0.88 0.91 0.89 0.85 0.83
Sensitivity 0.44 0.36 0.71 0.61 0.79 0.69
Specificity 0.99 0.99 0.94 0.94 0.86 0.86
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IV. DISCUSSION

A. Segmentation results

The ROI’s shown in Figs. 3 and 4 demonstrate that the
intensity produced by the maximum value is capable of ac-
curately delineating the mass body contour, and in some
cases this intensity corresponding to the maximum value
produces a contour, which falls inside the mass body contour.
This situation can be problematic because low segmentation
sensitivities can produce large errors during the feature cal-
culation and classification phases of CADx . Of the three
available segmentation choices for each mass, it appears that
the first steepest change location produces the contours with
the strongest correlation in comparison to both gold stan-
dards. These contours appear to cover both the mass body
contour as well as the extended borders. In some instances
the region grows into some areas that are not declared as
mass areas by the gold standards—we call this flooding—
and fails to grow into other areas that have been declared as
mass areas. Finally, the second steepest change location pro-
duces contours that also cover both the mass body contour as
well as the extended borders, and, these contours tend to also
include surrounding fibroglandular tissue; hence, the flood-
ing phenomenon is a common occurrence. In the cases
shown, it is clear that steepest change location 1 produces the
best contours, in comparison to the gold standards, however,
the ANOVA test results allow us to make such a claim. The
following discussion is divided into five sections: single ob-
server malignant results, single observer benign results, and
two observer results �malignant and benign�, algorithm per-
formance, and an additional discussion on methods.

B. Malignant cases with single observer

For both the expert A and expert B gold standards, Tables
II–V show a statistically significant difference between
groups 1 and 2 on the basis of overlap and sensitivity, where
the mean values of group 2 were higher than the mean values
of group 1 for these statistics. These results are expected
because as shown in the figures, the group 2 contours con-
sistently covered more of the mass area �and correctly cov-
ered this mass area� as compared to the group 1 contours,
according to both experts. There was a statistically signifi-
cant difference in sensitivity between group 1 and group 3,
where the mean of group 3 was higher than the mean of
group 1. This difference is an expected result because out of
all the groups, group 3 contours consistently covered the
most mass area. For the expert B gold standard there was a
statistically significant difference in overlap between group 1
and group 3, where the mean of group 3 was higher than the
mean of group 1. This difference is also an expected result
because, out of all the groups, the group 3 contours covered
the most mass area correctly.

C. Benign cases with single observer

For the expert A traces there were statistically significant
differences between the group 2 and group 3 traces on the

basis of overlap, accuracy, and sensitivity, where the group 2
mean values for overlap and accuracy were higher than those
of group 3 �see Tables VI–IX�. This difference is an ex-
pected result because it is likely that many of the group 3
contours contained flooded areas, which cause both of these
values to be lower than those values of contours without
flooded areas. The overlap and sensitivity values for group 2
were significantly higher than those of group 1. This differ-
ence is also an expected result because the group 2 contours
not only covered more mass area but also covered this area
correctly. Finally, the group 3 accuracy and sensitivity values
were significantly higher than those for group 1. Again this
difference is an expected result because the group 3 contours
not only covered more mass area but they also covered this
area correctly.

For the expert B gold standard there were statistically
significant differences between the group 2 and group 3
traces on the basis of accuracy and sensitivity, where the
group 2 mean values for overlap and accuracy were higher
than those of group 3. This difference is an expected result
because it is likely that many of the group 3 contours con-
tained flooded areas, which cause both of these values to be
lower than contours without flooded areas. There were sta-
tistically significant differences between group 1 and group 2
on the basis of overlap and sensitivity, where the mean val-
ues for group 2 were higher than the mean values for group
1. This is an expected result because the group 2 contours not
only covered more mass area but they also covered this area
correctly. There were statistically significant differences be-
tween group 3 and group 1 on the basis of overlap and sen-
sitivity, where the mean values for group 3 were higher than
those of group 1. Again this difference is an expected result
because the group 3 contours not only covered more mass
area but they covered this area correctly.

In nearly all cases for the single observer studies, it was
expected that the specificity values for group 1 would always
be higher than those for groups 2 and 3 because this contour
always covered the smallest mass area; consequently its
background was always highly correlated with the back-
ground areas dictated by the gold standards. Moreover, in
some cases the group 2 and group 3 contours grew into areas
that were not regarded as mass, but rather were regarded as
background; therefore, their specificity values had a lower
correlation with the gold standard as compared to the group
1 contours.

D. Malignant and benign cases with two observers

For the two observer studies, comparisons were made be-
tween experts A and B on a group-by-group basis in an effort
to prove that there were significant differences between the
two radiologists on the basis of overlap, accuracy, sensitivity,
and specificity �see Tables X–XIII�. For the malignant
masses, there were statistically significant differences be-
tween the two experts on the basis of overlap, accuracy, and
sensitivity. There was a statistically significant difference be-
tween the two experts for group 3 on the basis of sensitivity.
For the benign masses, there were statistically significant dif-
ferences between the two experts for all three groups on the
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basis of sensitivity. For all cases, expert A’s values were con-
sistently higher than those of expert B. These statistically
significant differences between the experts were expected
due to their differences in opinion. The fact that expert A’s
mean values were higher than those for expert B, however,
does not warrant the conclusion that expert A is a more reli-
able expert; however, it does warrant the conclusion that
there is stronger agreement between the computer’s results
and expert A’s traces. Furthermore, there were less statisti-
cally significant differences for the benign cases than for the
malignant cases. This result is expected because, in general,
benign masses have better defined borders, and thus the two
experts were more likely to agree.

E. Algorithm performance

Apparently the chosen thresholds produce first steepest
change location intensities that generate contours closely
correlated with the expert traces. In some instances the sec-
ond steepest change location is extremely far from the first
steepest change location, which implies that the function in
question increases very slowly; moreover, many of the sec-
ond steepest change location intensities produce contours
with flooded areas. For the majority of the cases in which the
second steepest change location contour achieves a higher
sensitivity value, but not a significantly higher sensitivity
value, we can still choose the first steepest change location
contour because the difference between the two contours is
likely to be negligible.

In analyzing the probability-based cost functions, we
found that those functions with very steep changes are typi-
cally associated with masses that have well-defined borders
while those functions that increase slowly are associated
with masses that have ill-defined borders. This phenomenon
may make it necessary to develop an adaptive threshold pro-
cess for the steepest change evaluation such that the func-
tions are grouped into various categories �e.g., smooth versus
steep�, because a threshold value that is optimal for a steep
function may not be optimal for a smooth function.

F. Additional discussion on methods used

In this study the steepest descent method appears to have
the advantage of locating ill-defined margins as well as ex-
tensions such as malignant spiculations and projections for
mammographic masses. If solely the human eye is used, it
can be difficult to separate the mass from the surrounding
fibroglandular tissue. Therefore, this method has the poten-
tial to complement the process of reading mammographic
films. One of the downfalls of the method is its dependence
upon the assumption that masses are generally light in color.
This assumption impedes the region growing process be-
cause masses that contain darker areas and are surrounded on
one or more sides by bright tissue can cause contours to
flood into areas that are not actual mass tissue. Typically, this
situation occurs for the mass located on the border of the
breast region on a mammogram.

All of the segmentation methods surveyed in the introduc-
tion of this paper are excellent solutions for the problems

their authors set out to solve, however, in some cases it is
difficult to make comparisons between different methods
without the availability of a set of several visual results. In
some studies, the focus was either to detect masses or to
distinguish malignant from benign masses. Thus, the valida-
tion process did not take the form of a comparison with
expert radiologist manual traces; but rather, features were
calculated on the potential mass candidates and they were
later classified as being mass tissue or normal tissue.10–13

The purpose of Li’s study14 was to distinguish between nor-
mal and abnormal tissue; thus the authors did not provide
any statistics such as overlap or accuracy. Nevertheless, the
study contains a figure of 60 masses that contain both com-
puter and radiologist annotations to give the reader an idea of
the computer algorithm’s performance. Te Brake and Karsse-
meijer’s study9 used the overlap statistic to test the efficacy
of their method. They indicated that the central mass area
was delineated by the radiologist and their computer results
were compared to these annotations. The Kupinski and Giger
study16 also used the overlap statistic to test the efficacy of
their method and set a threshold for which the mass was
considered to be successfully segmented. For example,
masses whose overlap values are greater than 0.7 imply that
there was successful segmentation.

The technical method presented herein shows that the re-
sults obtained from the maximization of the composed prob-
ability density function �i.e., the cost function� are equivalent
to those obtained from previous methods presented by pre-
vious investigators. However, the steepest change of the
composed probability density function is the closest to radi-
ologists’ determinations.

V. CONCLUSION

We have shown that our fully automatic boundary detec-
tion method for malignant and benign masses can effectively
delineate these masses using intensities, that correspond to
the first steepest change location within their cost functions.
Additionally, the method appears to be more highly corre-
lated with one set of expert traces than with a second set of
expert traces, regarding the accuracy and overlap statistics.
This result shows that inter-observer variability can be an
important factor in segmentation algorithm design, and it has
motivated us to seek the opinions of more expert radiologists
to test the robustness of our algorithm. The second steepest
change location intensity will always yield contours with
higher sensitivity values, however, it behooves us to choose
the first steepest change location intensity because it avoids
the risk of choosing contours that contain substantial flood-
ing. In future work, a worthwhile study would run the ex-
periments for different threshold values in an effort to dis-
cover the possibility of deriving an optimal threshold
procedure. We believe that such a procedure would improve
the method of choosing optimal contours.
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APPENDIX A—GALLERY OF SEGMENTATION RESULTS

FIG. 7. Segmentation results for a set
of malignant masses.
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Abstract
The development of improvements in magnetic resonance

imaging (MRI) that would enhance sensitivity, leading to

earlier detection of cancer and visualization of metastatic

disease, is an area of intense exploration. We have devised a

tumor-targeting, liposomal nanodelivery platform for use in

gene medicine. This systemically administered nanocomplex

has been shown to specifically and efficiently deliver both

genes and oligonucleotides to primary and metastatic tumor

cells, resulting in significant tumor growth inhibition and even

tumor regression. Here we examine the effect on MRI of

incorporating conventional MRI contrast agent Magnevist1

into our anti-transferrin receptor single-chain antibody

(TfRscFv) liposomal complex. Both in vitro and in an in vivo

orthotopic mouse model of pancreatic cancer, we show

increased resolution and image intensity with the complexed

Magnevist1. Using advanced microscopy techniques (scanning

electron microscopy and scanning probe microscopy), we also

established that the Magnevist1 is in fact encapsulated by the

liposome in the complex and that the complex still retains its

nanodimensional size. These results demonstrate that this

TfRscFv–liposome–Magnevist1 nanocomplex has the potential

to become a useful tool in early cancer detection. Mol Imaging

(2006) 5, 41–52.

Keywords: Nanocomplex, tumor targeting, Magnevist1, MRI, early detection.

Introduction

The ability to detect cancer, both primary and metastatic

disease, at an early stage would be a major step toward

the goal of ending the pain and suffering from the

disease. The development of tumor-targeted delivery

systems for gene therapy has opened the potential for

delivery of imaging agents more effectively than is

currently achievable. Magnetic resonance imaging

(MRI) can acquire 3-D anatomical images of organs.

Coupling these with paramagnetic images results in

the accurate localization of tumors as well as longitudi-

nal and quantitative monitoring of tumor growth and

angiogenesis [1,2].

One of the most common paramagnetic imaging

agents used in cancer diagnostics is Magnevist1 (gado-

pentetate dimeglumine). Gadolinium is a rare earth

element. It shows paramagnetic properties because its

ion (Gd2+) has seven unpaired electrons. The contrast

enhancement observed in MRI scans is due to the strong

effect of Gd2+ primarily on the hydrogen-proton spin–

lattice relaxation time (T1). Whereas free gadolinium is

highly toxic and thus unsuitable for clinical use, chela-

tion with diethylenetriamine pentacetic acid generates a

well-tolerated, stable, strongly paramagnetic complex.

This metal chelate is metabolically inert. However,

after intravenous (iv) injection of gadopentetate dime-

glumine, the meglumine ion dissociates from the hydro-

phobic gadopentetate, which is distributed only in the

extracellular water. It cannot cross an intact blood–brain

barrier and therefore does not accumulate in normal

brain tissue, cysts, postoperative scars, etc, and it is

rapidly excreted in the urine. It has a mean half-life of

about 1.6 hr. Approximately 80% of the dose is excreted

in the urine within 6 hr.

A systemically administered tumor-targeting delivery

system has been developed in our laboratory for use in

gene medicine [3–8]. This nanosized complex is com-

posed of a cationic liposome encapsulating the nucleic

acid payload, which can be either genes [3–6] or

oligonucleotides [7,8]. Decorating the surface of the

liposome is a targeting molecule that can be a ligand,

such as folate or transferrin, or an antibody or an

antibody fragment directed against a cell surface recep-

tor. The presence of the ligand/antibody on the lipo-

some facilitates the entry of the complex into the cells

through binding of the targeting molecule by its recep-

tor followed by internalization of the bound complex

via receptor-mediated endocytosis, a highly efficient
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internalization pathway [9,10]. This modification of the

liposomes results in their being able to not only se-

lectively deliver their payload to tumor cells, but also

increases the transfection efficacy of the liposome.

Transferrin receptor (TfR) levels are elevated in various

types of cancer including oral, prostate, breast, and pan-

creas [11–16]. Moreover, the TfR recycles during inter-

nalization in rapidly developing cells such as cancer cells

[16], thus contributing to the uptake of these transferrin-

targeted nanocomplexes even in cancer cells where TfR

levels are not elevated. The nanocomplex used in the

studies described here uses an anti-transferrin receptor

single-chain antibody fragment (TfRscFv) as the targeting

moiety [17,18]. TfRscFv contains the complete antibody-

binding site for the epitope of the TfR recognized by the

monoclonal antibody 5E9 [18]. TfRscFv has advantages

over the transferrin molecule itself, or an entire mono-

clonal antibody, in targeting liposomes to cancer cells

with elevated TfR levels: (1) The size of the scFv (28 kDa)

is much smaller than that of the transferrin molecule

(80 kDa) or the parental monoclonal antibody (155 kDa).

The scFv liposome–DNA complex may thus exhibit

better penetration into small capillaries characteristic of

solid tumors. (2) The smaller scFv has a practical advan-

tage related to the scaled-up production necessary for

the clinical trials. (3) The scFv is a recombinant mole-

cule and not a blood product like transferrin and thus

presents no danger of a potential contamination by

blood-borne pathogens. (4) Without the Fc region of the

monoclonal antibody, the issue of non-antigen-specific

binding through Fc receptors is eliminated [19]. Most im-

portantly, we have already shown that such an anti-TfR

single-chain antibody molecule can target an intra-

venously administered cationic liposome–DNA nano-

complex preferentially to tumors [5,6]. Encapsulating

Magnevist1 within such a tumor-targeted nanocomplex

offers potential advantages for enhanced sensitivity, de-

tection of metastases, and diagnosis of cancer.

In this article, using a mouse xenograft model of

human pancreatic cancer, we explore the use of this

nanocomplex for systemic delivery of the imaging agent

Magnevist1 to tumors. In addition, we used scanning

electron microscopy (SEM) and scanning probe micros-

copy (SPM) [20–25] to examine the physical structure

and size of these Magnevist1-carrying nanocomplexes.

Because gadolinium is a high-atomic-number element

and possesses a large magnetic moment, these proper-

ties can be exploited in a variety of ways to enhance

contrast in both SEM and SPM. The findings presented

below demonstrate that our ligand–liposome nanocom-

plex does indeed encapsulate Magnevist1 and that iv

administration of this complex results in enhanced

tumor imaging.

Materials and Methods

Cell Lines

Human lymphoblastic leukemia cell line K562 was

obtained from the Lombardi Comprehensive Cancer

Center Tissue Culture core facility (Washington, DC).

These suspension cells were maintained in RPMI 1640

supplemented with 10% heat-inactivated fetal bovine

serum (FBS) plus 2 mM L-glutamine, and 50 mg/mL

each of penicillin, streptomycin, and neomycin. Human

pancreatic cancer cell line CaPan-1 (obtained from

ATCC, Manassas, VA) was derived from a metastatic

adenocarcinoma of the pancreas. It was maintained in

Iscove’s modified Dulbecco’s medium containing 4 mM

L-glutamine and sodium bicarbonate, supplemented

with 20% non-heat-inactivated FBS, 2 mM L-glutamine,

and 50 mg/mL each of penicillin, streptomycin, and

neomycin. Human prostate cancer cell line DU145

(ATCC) was originally derived from a lesion in the

brain of a patient with widespread metastatic carcinoma

of the prostate. It was maintained in minimum essen-

tial medium with Earle’s salts supplemented with 10%

heat-inactivated FBS plus L-glutamine and antibiotics

as above.

Nanocomplex Formation

Cationic liposome (DOTAP:DOPE) was prepared by

the ethanol injection method as previously described

[6]. When delivering plasmid DNA, the full complex was

formed in a manner identical to that previously de-

scribed [26]. To encapsulate the imaging agent, the

TfRscFv was mixed with the liposome at a specific ratio

(identical to that used with DNA) and incubated at room

temperature for 10 min. Magnevist1 was added to this

solution, mixed, and again incubated at room tempera-

ture for 10 min. When stored at 2–8�C the complex is

stable for at least 8 days, as determined by size measure-

ments using a Malvern Zetasizer 3000H (Malvern, UK).

The average of the cumulants (Z average) measurements

over this time frame is 112.3 ± 4.67 (SE), whereas the

polydispersity (representing the reproducibility of the

values during repeat scans) is 0.445 ± 0.03. For in vitro

transfection, 2 mL of serum-free medium was added to

the complex before transfection. When prepared for

in vivo use, dextrose was added to a final concentration

of 5%. For both in vitro and in vivo complex formation,

the ratio of Magnevist1 to liposome was 1:7 (vol/vol).
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In Vitro Transfection

To transfect suspension cells K562, 15 � 106 cells in a

total volume of 4.0 mL of medium with all supplements

except serum (serum-free medium) were placed into a

100-mm2 tissue-culture dish. Two milliliters of the trans-

fection solution from above, containing varying amounts

of Magnevist1, was added to the cell suspension. The

plate was incubated at 37�C with gentle rocking for

the length of time given in the Results section (up to

90 min), after which the cells were gently pelleted

(600 � g for 7 min) at 4�C in 0.5 mL microcentrifuge

tubes and washed three times with 10 mL of serum free

medium to remove any excess transfection solution and

placed on wet ice until imaged.

In Vivo Tumor Targeting

To assess the tumor-selective targeting of the

TfRscFv–liposome (TfRscFv–Lip) nanocomplex to pri-

mary and metastatic tumors, an orthotopic metastasis

model using human pancreatic cancer cell line CaPan-1

was used. Subcutaneous xenograft tumors of CaPan-1

were induced in female athymic nude mice by injection

of 1 � 107 CaPan-1 cells suspended in Matrigel collagen

basement membrane matrix (BD Biosciences, San Jose,

CA). Approximately 8 weeks later, the tumors were

harvested and a single-cell suspension of the tumor

was prepared. Cells (1.2–1.5 � 107), also suspended in

Matrigel were injected into the surgically exposed pan-

creas of female athymic nude mice as previously de-

scribed [27]. Five weeks post surgery, the complex

carrying the LacZ gene was iv injected 3� over 24 hrs

(at 40 mg DNA per injection). Sixty hours later, the

animals were sacrificed and examined for the presence

of metastases and organs stained for b-galactosidase
expression using a previously described procedure [3].

Magnetic Resonance Imaging

For in vitro MRI, the cell pellets in microcentrifuge

tubes were positioned at the center of the magnet. The

MRI was performed at Howard University using a 4.7-T

horizontal bore NMR machine (Varian Inc, Palo Alto,

CA). The imaging protocols consist of a multislice T1-

weighted spin–echo imaging sequence and a satura-

tion–recovery sequence. For the T1-weighted imaging

technique, the repetition time (TR) was 1000 msec and

the echo time (TE) was 13 msec. The T1-weighted spin–

echo imaging technique was applied to verify the posi-

tive image enhancement. The saturation–recovery MR

sequence with variable echo times was used for the T1

measurement. The slice thickness of images was 0.5 mm.

The radiofrequency (RF) coil used was a 30-mm single-

loop coil. The RF coil serves as an RF transmitter and

receiver. The RF pulse was a selective 5-msec sinc pulse.

The number of phase-encoding steps was 256. The field

of view was 15 � 15 mm. The image area chosen in the

study was at the center of the RF coil for RF homoge-

neity. The MR images were taken in the cross-section

direction of the microcentrifuge tube. The height of the

cell pellet was 12 mm. The range of the multislice images

covers the whole pellet. The center slice images, which

were not influenced by the image distortion due to the

susceptibility effect from the air–pellet boundary, were

used for the studies. The image intensity was measured

using the Varian Image Browser software. The signal is

taken from a region of interest that is big enough to

cover two thirds of the image from each microcentrifuge

tube. The relative image intensities of the pellets from

these tubes were applied for contrast enhancement

evaluation and the T1 measurements.

For the in vivo studies, mice bearing CaPan-1 ortho-

topic tumors or DU145 subcutaneous xenograft tumors

were used. The CaPan-1 tumors were induced as de-

scribed above. DU145 tumors were induced by the

subcutaneous inoculation of 7 � 106 cells in Matrigel.

These studies were performed at Georgetown Univer-

sity. Animals to be imaged were anesthetized and placed

in a proprietary, in-house designed, animal management

system. This system incorporates a warm-water heating

system that maintains the temperature at 37�C, as well as
a four-channel, thermal optical monitoring system used

to monitor animals’ skin temperature, ambient temper-

ature, and wall temperature of the device. For imaging,

anesthesia was induced using isoflurane at 4%, with the

remaining gas composed of a 66% oxygen and 30%

nitrous oxide mixture. Maintenance of anesthesia was

achieved with 1.5% isoflurane under similar gaseous

conditions of oxygen and nitrous oxide as noted. The

anesthetized animal was positioned inside a cylindrical,

variable RF resonant antenna (birdcage resonator vol-

ume coil) and tuned to a center frequency of approxi-

mately 300 MHz (the resonant frequency of water

molecules when subject to a field strength of 7 T). The

imaging protocol used was T1-weighted Turbo-RARE

(rapid acquisition with rapid enhancement) 3-D imaging

sequences performed on a 7T Bruker BioSpin (Billerica,

MA) imaging console. The imaging parameters used

were as follows: T1-weighted Turbo-RARE 3-D, TE

13.3 msec, TR 229.5 sec, flipback on, four echoes with

a field of view of 8.0/3.5/3.5 cm and a 256 � 256 � 256

matrix. After a baseline image was acquired, the animal

was kept immobilized in the animal holder and the

Magnevist1 only [diluted to 400 mL with 1� phosphate-
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buffered saline (pH = 7.4)] or the TfRscFv–Lip–Mag

complex (total volume 400 mL) was systemically admin-

istered using a 27 G needle by iv injection into the tail

vein of the animal and the 3-D imaging sequence was

immediately initiated. The imaging with the two solu-

tions were performed on sequential days.

Scanning Electron Microscopy

Sample solutions of liposome-encapsulated Magne-

vist contrast agent and complete nanocomplex consist-

ing of a tumor-targeting single-chain transferrin receptor

protein coating the liposome-encapsulated complex,

TfRscFv–Lip–Mag, were prepared at Georgetown Uni-

versity Medical Center (GUMC), delivered to National

Institute of Standards and Technology (NIST) and were

stored under dark and refrigeration. For each imaging

session, a fresh dilution 1:3 by volume with deionized

water was prepared and a 5-mL droplet was micropi-

petted onto a standard 200-mesh transmission electron

microscopy grid consisting of 30–60 nm formvar and

15–20 nm carbon. The droplet was allowed to dry on

the grid in air for 5 min before being loaded into the

vacuum chamber of the microscope. Imaging was per-

formed using a Hitachi S-4800 field-emission micro-

scope at NIST. Of particular interest to applications of

SEM to nanocomplex imaging is a comparison of upper

and lower secondary electron detectors [SE9(U) and

SE(L)]—using the SEM in its usual mode—to the addi-

tion of a transmitted electron (TE) detector, transform-

ing the instrument into a low-voltage STEM.

Scanning Probe Microscopy

Sample solutions of liposome-encapsulated Magne-

vist contrast agent and complete nanocomplex were

prepared at GUMC, delivered to NIST, and were stored

under dark and refrigeration. For each imaging session,

a fresh dilution 1:3 by volume with deionized water was

prepared and a 5-mL droplet was micropipetted onto an

untrasonically cleaned silicon substrate used with native

oxide or with a poly-L-lysine coating. SPM imaging were

obtained using a Veeco (Santa Barbara, CA) MultiMode

microscope with a Nanoscope IV controller. Topography

by tapping mode with Z control [Veeco RTESP canti-

levers, of approximately 320–360 kHz and k approxi-

mately 20–60 N/m], phase imaging, and magnetic force

microscopy using magnetic-coated tips (Veeco MESP

68 kHz] were performed in life mode. Dynamic imaging

of dewetting and surface energy ‘‘phase separation’’ as

the solution evaporates to expose isolated nanoparti-

cles and aggregates were used to understand the conse-

quences of solvent drying on the stability of the particles

and its effect on the various SPM contrast mechanisms

available with the SPM system.

Results

Tumor-Specific Targeting by the Ligand–Liposome

Nanocomplex Carrying a Reporter Gene

To assess selective targeting of the TfRscFv–LipA

nanocomplex to primary tumor and metastases, an

orthotopic metastasis model, a closer approximation of

the clinical situation, using human PanCa cell line CaPan-

1 was used. Surgical orthotopic implantations of CaPan-1

xenograft tumor sections into nude mice have been

shown to produce, within 56 days, metastases in liver

and spleen [27]. Orthotopic tumors of CaPan-1 were

induced in female athymic nude mice as described in

Materials and Methods. Approximately 5 weeks later, the

animals were euthanized and necropsied to look for

tumor in the pancreas and other organs. As shown in

Figure 1A, extensive tumor growth is evident through-

out the pancreas. Metastases were present in various

organs in four of five mice including the spleen, liver,

lung, adrenal gland and even within the diaphragm. This

experiment was repeated with similar results.

To establish selective targeting tumor and metastasis,

before sacrificing the mice, the TfRscFv–LipA complex

carrying pSVb (LacZ) plasmid DNA for b-galactosidase
expression was iv injected into the mice three times over

a 24-hr period (40 mg of plasmid DNA per injection). All

five mice were sacrificed 60 hr after injection and various

organs, including the liver, lung, spleen, pancreas and

Figure 1. Tumor-specific targeting of a CaPan-1 orthotopic metastasis model

by the TfRscFv– Lip–DNA nanocomplex. Subcutaneous CaPan-1 xenograft

tumors were induced in female athymic nude mice as described in Materials

and Methods. The tumors were harvested and a single-cell suspension in

Matrigel was injected into the surgically exposed pancreas. Five weeks post

injection, the TfRscFv– Lip complex carrying the LacZ gene for �-galactosidase

expression (40 �g) was iv injected 3� over 24 hr. Sixty hours later, the animals

were sacrificed and examined for the presence of metastases and the organs

stained for �-galactosidase expression. The same tumor nodule in the liver

indicated by an arrow in A exhibits intense �-galactosidase expression in B. (A)

Gross necropsy; (B) tissues after staining for �-galactosidase.
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diaphragm, were harvested and examined for the pres-

ence of metastasis and tumor-specific staining. Fresh

samples, sliced at 1-mm thickness, were stained with

X-gal to produce a blue color where the gene is ex-

pressed. The tumor-targeting ability and high transfec-

tion efficiency of the complex is demonstrated by the

presence of the reporter gene in the various organs from

this animal (Figure 1B). In the liver, lung, adrenal gland,

and diaphragm, it is clearly shown that the reporter gene

is highly expressed only in the metastases, whereas in

the adjacent normal tissue, no blue color is evident. The

metastasis visible in the liver in Figure 1A (arrow) is the

same tumor nodule strongly expressing b-galactosidase
in Figure 1B (arrow) confirming the tumor-specific

nature of this nanocomplex. In some of the mice,

growth of the tumor in pancreas also resulted in extru-

sion of tumor through the original incision site used for

implantation. In Figure 1B, this strongly blue stained

subcutaneous tumor, surrounded by normal nonstained

skin, is also shown, again showing tumor cell specificity.

Similar results were observed in the rest of the mice and

in the repeat experiment. Thus, this systemically admin-

istrated nanocomplex will target tumor cells, both pri-

mary and metastatic, wherever they occur in the body,

and efficiently deliver plasmid DNA. We wished to

expand the potential of this delivery system to include

contrast agents. The ability to do so could result in

improved imaging and cancer detection.

In Vitro Studies Using TfRscFv–Lip Complex to

Deliver Magnevist1

As Magnevist1 is one of the most frequently used

contrast agents in the clinic, it was chosen for use in

these studies. In our initial experiments, we examined

whether the complex could be prepared with Magne-

vist1 and if doing so would enhance the MRI signal.

Because trypsinization could lead to membrane damage

and leakage of contrast agent from the cells, adherent

cells were not used in these studies. Instead, a human

lymphoblastic leukemia cell line, K562, which grows as a

suspension culture was used. Moreover, gentle pelleting

and washing of the cells would remove any excess

Magnevist1 or complex before imaging, allowing only

cell-associated signal to be detected.

Time-Dependent Image Enhancement by the

TfRscFv–Lip–Mag Nanocomplex

We examined the optimal time for transfection of the

TfRscFv–Lip–Mag nanocomplex. The suggested clinical

dose of Magnevist is 0.1 mmol/kg. In these initial studies,

we used a dose of 0.3 mmol/kg (corrected for the

smaller weight and blood volume of mouse vs. man)

in the complex per 250 mL of transfection solution. K562

cells were transfected for times ranging from 20 to

90 min. Twenty minutes showed very low transfection

activity based on the image intensity (data not shown).

However, as shown in Figure 2A, by 60 min the cells

transfected with the complex showed a large increase in

intensity as compared to the untreated cells. The inten-

sity of the untreated cells (202 ± 48) was not signifi-

cantly different from that of an empty marker tube

(194 ± 43), indicating that the cells themselves do not

contribute to the signal detected. More importantly, the

transfection efficiency plateaus at approximately 60 min

because the relative intensity of the cells transfected for

60 and 90 min were identical (317 ± 46 and 317 ± 47,

respectively).

Magnevist1 Dose-Dependent Image Enhancement

Using 60 min as the transfection time, we then

assessed the effect of increasing amounts of Magnevist1

on the TfRscFv–Lip–Mag complex image enhancement.

The doses tested were 0.05, 0.3, and 0.9 mmol/kg.

Corrected for size and blood volume of the mouse,

the volumes of Magnevist1 used in the complex per

250 mL of transfection solution were 0.25, 1.5, and 4.5 mL.
As shown in Figure 2B and Table 1, the image intensity

increases and the T1 relaxation time shortens as a

function of the amount of contrast agent included in

the complex.

Image Enhancement by TfRscFv–Lip–Mag as

Compared to Free Magnevist1

Based on the above experiments it appears that the

TfRscFv–Lip can complex with Magnevist1 and deliver it

to the cells for image enhancement. To assess the level

of enhancement of the complexed contrast agent as

compared to the agent alone and demonstrate that the

signal obtained is not due to the presence of unincor-

porated Magnevist1, we treated K562 cells with either

free Magnevist1 or the TfRscFv–Lip–Mag nanocomplex.

The identical amount of contrast agent (0.3 mmole/kg or

1.5 mL/250 mL transfection volume) and transfection time

(60 min) was used for both solutions. Whereas free

Magnevist1 showed enhanced contrast relative to the

untreated cells as expected, the cells treated with the

TfRscv–Lip–Magnevist complex demonstrated a much

greater increase in image intensity and shortened T1

relaxation time compared to both untreated and free-

Magnevist1-treated cells (Figure 2C, Table 2). These re-

sults not only demonstrate the increased efficiency of

contrast agent uptake by means of the targeted nano-

complex, but also indicate that the observed signal is
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likely not due to uncomplexed Magnevist1. Further evi-

dence of Magnevist1 encapsulation is given below.

In Vivo Image Enhancement with TfRscFv–Lip–Mag

The above studies established that the nanocomplex

could more efficiently image tumor cells in vitro than

Magnevist1 alone. However, to have potential for clin-

ical use, the complex must exhibit a similar effect in vivo.

We used the same human pancreatic cancer orthotopic

mouse model (CaPan-1) for these studies as was used

above to demonstrate tumor-specific targeting of the

complex carrying a reporter gene. In addition, a second

tumor model, a subcutaneous prostate xenograft mouse

model (DU145) was also used. Mice bearing CaPan-1 or

DU145 tumors were imaged on a 7T Bruker NMR as

described in Materials and Methods. Once positioned

in the coil, a baseline image was obtained using a T1-

weighted Turbo-RARE 3-D imaging sequence. To facili-

tate image alignment, after baseline acquisition the

animal was maintained in the animal holder while the

imaging solution was administered via iv injection. Signal

acquisition was begun within 3 min of the injection. The

amount of Magnevist1 administered to the mouse,

either free (as is performed in the clinic) or included

in the complex, was 10 mL. This amount is equivalent

to 0.2 mmole/kg or twice that used in humans. This

amount was selected because the standard human dose

of 0.1 mmole/kg Magnevist1 alone gave a very poor sig-

nal in the mice. The imaging with free Magnevist1 and

the TfRscFv–Lip–Mag complex were performed on two

consecutive days. A baseline scan was also performed

before administration of nanocomplex to confirm that

all of the Magnevist1 from the previous day had been

washed out. MR technique and windows were consistent

between the two sets of images with the windows
Figure 2. In vitro MRI of K564 cells after transfection with the TfRscFv– Lip–Mag

nanocomplex. After transfection with either free Magnevist1 or the noncomplex

encapsulating Magnevist1 the cells were pelleted and washed with serum-free

medium, and MRI performed using a 4.7T Varian NMR. The imaging protocol

consisted of T1-weighted spin– echo imaging sequences (TR/TE, 1000/13 msec) to

verify the image enhancement and a saturation– recovery MR sequence with

variable echo times for the T1 measurement. (A) Time-dependent transfection.

The values given are relative intensities. (B) Variation in relative intensity with

the amount of Magnevist1 included in the complex (in microliters). (C)

Comparison of relative intensity of the TfRscFv– Lip –Mag complex versus free

Magnevist1. The small circles in all images are markers for sample orientation.

Table 2. Comparison of the Relative Intensity and T1 Relaxation Time

between Free and Complexed Magnevist1

Treatment Relative Intensity T1 (sec)

Untreated 455 ± 47 1.80 ± 0.009

Free Magnevist1 538 ± 50 1.51 ± 0.007

Complexed Magnevist1 662 ± 52 1.40 ± 0.004

Table 1. Relative Intensity and T1 Relaxation Time as a Function of
Magnevist1 in the Complex

Dose of Contrast Agent (mM/kg) Relative Intensity T1 (sec)

0.05 (0.25 mL) 293 ± 50 1.43 ± 0.007

0.3 (1.5 mL) 379 ± 43 1.16 ± 0.004

0.9 (4.5 mL) 454 ± 51 1.01 ± 0.004
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adjusted to correct for an automatic windowing feature

of the scanner.

Images of the Magnevist1 and nanocomplex–Mag-

nevist in three separate mice are show in Figure 3. In

Figure 3A, 4 months after surgical implantation of the

CaPan-1 tumor cells, the animal is carrying a large

orthotopic tumor. The increased resolution and signal

intensity, as compared to the contrast agent alone is

quite evident. Similar results are observed in the second

mouse with a CaPan-1 tumor shown in Figure 3B. This

animal, only 2 months postsurgery, has a visible subcu-

taneous tumor growing through the site of the incision.

A small abdominal mass was also detected by palpation.

Not only is the signal in the subcutaneous tumor more

enhanced after administration of the complexed Mag-

nevist1, but what appears to be the small orthotopic

tumor (arrow) is evident in this scan and not in the one

in which the animal received the free Magnevist1.

Similarly, increased definition and contrast are evident

in the subcutaneous DU145 tumor (Figure 3C) after

injection with the TfRscFv–Lip–Mag complex as com-

pared to the free Magnevist1. Reconstruction and quan-

titation was performed on the images in Figure 3B and

C, representing the two different tumor models, pan-

creatic cancer (CaPan-1) and prostate cancer (DU145).

In both instances, there is an increased intensity (pixels)

by the free Magnevist1 over the baseline, as expected

(Table 3). However, delivery of the imaging agent by the

tumor-targeting nanocomplex results in an almost three-

fold further increase in signal intensity in both of these

tumor models. These studies thus demonstrate that

when Magnevist1 is incorporated within the TfRscFv–

Lip complex there is an improved tumor visualization in

an in vivo situation, and they suggest the potential

benefit of further developing this means of tumor

detection for clinical use.

Physical Characterization Studies

Whereas the in vitro studies offered circumstantial

evidence that complexed Magnevist1 is encapsulated

Figure 3. Improved MRI in two different models of cancer using the ligand– liposome–Mag nanocomplex. Human pancreatic cancer cells (CaPan-1) were surgically

implanted into the body of the pancreas, and human prostate cancer cells (DU145) were subcutaneously injected on the lower back of female athymic nude mice. Free

Magnevist1 or the TfRscFv– Lip nanocomplex containing the same dose of Magnevist1 was iv injected (via the tail vein) into each of the three mice on two consecutive

days. This amount of Magnevist1 is equivalent to twice the dose that would be administered to a human patient. The total volume of solution administered in all cases

was 400 �L. A baseline scan was performed just before administration of the nanocomplex to confirm that all of the Magnevist1 from the previous day had been

washed out. MR technique and windows were constant between the three sets of images, with the windows adjusted to correct for an automatic windowing feature of

the scanner. (A) Differences in MRI signal in a large pancreatic orthotopic tumor (arrow) (4 months after surgical implantation of the tumor) between the iv-

administered free contrast agent and the TfRscFv – Lip –Mag complex. (B) Similar effect in a second mouse with a subcutaneous pancreatic tumor and a much smaller

abdominal pancreatic tumor (arrows). (C) Images of a third animal with a subcutaneous prostate tumor (arrow) in which the same effect is evident.
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within the liposome, we have used sophisticated mi-

croscopy techniques (SEM and SPM) to confirm this

fact and further characterize (e.g., complex size) the

TfRscFv–Lip–Mag complex.

Imaging of Liposomes without Magnevist. High-reso-

lution imaging implies narrow depth of focus and so

requires relatively thin and flat samples. How thin varies

with technique, but surface and substrate effects—sur-

face energy and symmetry lowering—often dominate

the structural forces typical of biomaterials. This is

particularly true for liposomes given their tenuous na-

ture [28]. So an understanding of reliable methods for

preparing and characterizing the dimensional and me-

chanical stability of isolated liposomes is an essential

step. The goal of our present characterization efforts is

to perform direct sensing of the mechanical stiffness and

magnetic properties of nanoparticles to establish that

the contrast agent is indeed contained within the nano-

particle and not simply associated externally with the

liposomes.

The SPM images surface topography in tapping mode

by oscillating the tip and cantilever to which it is

attached close to the cantilever resonance frequency. A

feedback circuit maintains the oscillation of the cantile-

ver at constant amplitude. This constant amplitude is

given by a set point that is somewhat smaller than that of

the freely oscillating cantilever. Because the SPM tip

interacts with the surface through various small forces,

there is a phase shift between the cantilever excitation

and its response at a given point on the surface. For an

inhomogeneous surface, the tip–surface interactions

will vary according to surface charge, steep topograph-

ical changes, and mechanical stiffness variations, for

example. By changing the set point and observing how

certain features respond to softer or harder tapping, we

can correlate this with the response expected for a

specific structure such as a liposome. (The free oscilla-

tion amplitude signal is approximately 1.78 V.) A se-

quence of SPM phase images of a pair of isolated

liposomes without payload is shown in Figure 4.

Figure 4A was imaged at a set point of 1.68 V and the

corresponding negative phase difference between the

substrate and liposome indicates that the tip–sample

interaction is attractive for the liposome, given by a

phase value of �3.5�. In the case of an attractive

interaction and negative phase, the phase image of the

liposome appears dark, except for a topographically

keyed ring at the liposome edge. Figure 4B demon-

strates the effect of reducing the set point to 1.45 V: The

liposome now appears bright because the tip–sample

interaction becomes repulsive, and here the phase

difference between the liposome and substrate is +8�.
Finally, Figure 4C shows that the phase difference

recorded at a set point of 1.35 V increases further,

becoming +35�.

Imaging of Liposome-Encapsulated Magnevist. Fig-

ure 5 presents SPM and SEM images of isolated lipo-

Figure 4. SPM phase images of liposomes without Magnevist1. The images

appearing in A, B, and C were obtained at set points of 1.68, 1.45, and 1.35 V,

respectively. The corresponding phase differences between the noncompliant

substrate and the mechanically compliant liposome are �3.5�, +8�, and +40�.

The interaction of the SPM tip and liposome changes from attractive to

repulsive as the set point is decreased.

Table 3. Intensity Increase over Baseline by Free and Complexed
Magnevist1

CaPan-1 DU145

% Increase over Baseline

Complexed Magnevist1 99 215

Free Magnevist1 34.5 70
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some-encapsulated Magnevist (Lip+Mag) nanoparticles.

The size distribution of single (Lip+Mag) particles is in

the diameter range of 100–200 nm and scales according

to optical measurements that indicate that payload-

encapsulating liposomes are approximately 50% larger

than liposomes alone in their spherical state.

The SPM topograph in Figure 5A indicates that lipo-

somes containing Magnevist have a bimodal surface

shape after drying that is more complex than that of

the simple elliptical surface of a liposome containing

no payload (not shown). The SPM phase behavior dif-

fers markedly from that of payloadless liposomes, the

outer ring is repulsive relative to the center, and a corre-

sponding SPM phase image is shown in Figure 5B.

Regions of both attractive and repulsive tip–sample

interaction appear at moderate set point values. A

correlation between the SPM phase image obtained at

a set point of 1.6 and the SEM image in TE mode is

evident in Figure 5B and C. Liposomes appear uniformly

bright across the entire particle in SEM images (not

shown), similar to the uniform phase images we obtain

by SPM. Tips and cantilevers change with time and

usage. Moreover, it is important to verify that the images

produced are not affected by tip instabilities due to

foreign material on the tip. Thus, they are changed

frequently. Because each cantilever is somewhat differ-

ent with respect to its resonance properties, the set

points used in Figures 4 and 5 are different.

Imaging of TfRscFv–Lip–Mag Nanocomplex. The

complete TfRscFv–Lip–Mag nanocomplex was prepared

and imaged by SEM and SPM as described in Materials

and Methods. Results, shown in Figure 6 indicate that

the solvent film undergoes phase separation; however,

examples of isolated NDS can be readily observed on the

dried film. Note that the SEM beam clearly causes some

damage to the film, but the particles can be repeatedly

scanned several times before beam damage becomes

significant. The appearance of the full complex is differ-

ent from that of the (Lip+Mag) only. The shape is less

regular and considerable texturing of the liposome

surface following drying is consistent with protein dena-

turation. Also, SEM TE images indicate that the well-

defined boundary between the outer ring and center of

the liposome seen with the (Lip+Mag) particles is less

Figure 6. SPM topographic and phase imaging of TfRscFv – Lip –Mag nano-

complex. (A) 15 keV SEM (TE) (transmission-mode electron detector) image of

the full nanocomplex. A suitable choice of amplitude set point readily

distinguishes intact nanocomplex particles from decomposition products. It

is not known if the decomposed material was present in the solution before

sample preparation or is the direct result of interaction with the substrate. (B)

power image of the field. The boxed area is the image in A.

Figure 5. SPM and SEM images of liposome-encapsulated Magnevist1

(Lip+Mag). (A) Atomic force microscopy topographical image of the lip-

osome-encapsulated Magenvist1 particle. The SPM phase image (set point =

1.6) (B) and 15 keV SEM (TE) (transmission-mode electron detector) image (C)

possess similar contrast, although generated by entirely distinct complemen-

tary physical mechanisms.
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apparent and the shape much more variable. This is

consistent with the view that the presence of protein

within the liposome has altered the osmotic outflow

across the liposome during film drying.

It is possible to obtain additional information about

these NDS particles by using the magnetic force micros-

copy imaging capabilities of the SPM (MFM). Because

the magnetic moment of gadolinium-containing Mag-

nevist is quite large, it should be possible using a

magnetized SPM tip to interact with the oriented Mag-

nevist concentrated within the liposomes. This is shown

in Figure 7 for MFM of several approximately 100- to

200-nm-diameter nanocomplexes. We establish that, in

fact, we are producing an image that is truly magnetic in

nature by using the lift-mode capabilities of the SPM: In

this mode, a topographic image under normal tapping

mode conditions is obtained. The reference surface

information is then used to offset the tip by a specified

height away from the surface and the surface is then

scanned at this increased height. This removes the in-

fluence of topography on the signal. MFM images ob-

tained in lift mode at a height of 15 nm or more from

the surface are given by the magnetic phase image. The

appearance of a signal confirms the presence of gado-

linium encapsulated within the complex.

Discussion

The development of nanoparticle-sized delivery systems

that have greater tumor and tissue penetrance is a major

direction in medical research in general and cancer

research in particular. Combining the capabilities of

these small particles with the ability to home specifi-

cally to tumor cells wherever they occur in the body

could lead to significant advances in cancer treatment

and diagnosis. We have previously shown that our

ligand–liposome–DNA complex can specifically target

and efficiently transfect tumor cells (primary and meta-

static) [3–8]. When encapsulating plasmid DNA, this

targeted delivery system is truly a nanocomplex, with a

uniform size of less than 100 nm [29]. Used in combi-

nation with conventional radiation/chemotherapy, de-

livery of therapeutic genes such as wild-type p53 by

means of this nanodelivery system has resulted in

tumor growth inhibition and even tumor regression in

animal models [3–5,29]. This tumor regression and con-

comitant decrease in blood flow due to p53-mediated

antiangiogenesis have also been demonstrated using

Power Doppler ultrasound imaging [30]. Adapting such

a tumor-targeted nanocomplex to deliver imaging

agents would have the potential to improve early diag-

nosis as well as detection of metastatic disease. The

results described above demonstrate that we can en-

capsulate and deliver the commonly used MRI agent

Magnevist1 to tumor cells both in vitro and in an

orthotopic animal model and in doing so produce a

more defined and intense image than seen with uncom-

plexed Magnevist1.

Other nanometer-sized delivery systems for contrast

agents are being developed. A chylomicron-remnant-like

vehicle of approximately 90 nm containing polyiodi-

nated triglyceride analogs in a neutral lipid core has

been developed as a hepatocyte-selective contrast agent

for computed tomography in animals [31]. A paramag-

netic liquid perfluorocarbon nanoparticle of approxi-

mately 250 nm to which an anti-aVb3 antibody has

been conjugated is being developed for MRI to assess

angiogenesis and atherosclerosis [32,33]. However,

Figure 7. Cross-sectional comparison of SPM topographic and magnetic phase

image in lift mode using 25-nm height displacement. (A) SPM topographic/

magnetic phase image of the full TfRscFv – Lip –Mag nanocomplex. The

appearance of a double dipole-like signal in B consisting of attractive and

repulsive in-plane magnetic interactions suggests that the cause of this

interaction is the nonuniform toroidal distribution of Magnevist within the

NDS, consistent with SEM and nonmagnetic SPM phase images.
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none of these are tumor targeting or currently applica-

ble for cancer. However, given, as shown in Figure 1,

that our nanocomplex can target metastatic disease it is

anticipated that use of the nanocomplexed Magnevist1

would also enhance detection sensitivity for metastases.

The results shown here are with primary tumors. Studies

are currently under way to compare the sensitivity of

detection between free Magnevist1 and the TfRscFv–

Lip–Mag complex in metastases.

Using SEM and SPM we have also shown that the

TfRscFv–Lip complex maintains its nanometer size when

Magnevist1 is encapsulated (particles of approximately

100–200 nm are shown in Figures 6 and 7). We have also

demonstrated that the structural and mechanical prop-

erties of liposomes containing a payload are sufficiently

different from those without one for it to be possible to

confirm that Magnevist1 is indeed encapsulated with

the liposome. This was further confirmed by MFM

imaging of the complex.

A tentative explanation for the internal structure of

(Lip+Mag) is that the slight bulge in the SPM topo-

graphic image, represents a liposome-confined phase

separation, that is, formation of a dense Magnevist– lipid

toroidal distribution around the periphery of the particle

with a preferential aqueous phase at the particle’s

center. This response is probably attributable to several

important factors: First, the properties of Magnevist

solution are pH approximately 6.5–8, an osmolality of

1,960, and viscosity of 4.9 at 20�C according to the

manufacturer. A plausible chemical basis for this sepa-

ration of the solution noted in the Magnevist data sheet:

The meglumine salts dissociate completely from the

complex, so changes in the local osmotic conditions.

Coupled with the charge interaction of the gadolinium

complex and cationic lipid, these interactions may pro-

vide a strong driving force for a hypertonic phase

separation within the liposome. The charge distribution

between the cationic lipid and Magnevist solution is

effective at stabilizing the liposome and at providing

structural support in solution and apparently in the

bloodstream. This enhanced structural support is an

important benefit for our studies because it enables

most particles to remain intact during the film-drying

process, in contrast to the extensive decomposition

observed with the liposome-only solutions.

Therefore, we have been able to successfully encap-

sulate an MR contrast agent in our tumor-targeted nano-

delivery system. The image enhancement demonstrated

by the complex over conventionally delivered Magne-

vist1 indicates the potential of this system to improve

early detection of cancer via MRI.
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