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Abstract
Fractal geometry arises in a truly extraordinary range of natural and man-made phenom-
ena. The 1/f family of fractal random processes, in particular, are appealing candidates
for data modeling in a wide variety of signal processing scenarios involving such phenom-
ena. In contrast to the well-studied family of ARMA processes, 1/f processes are typically
characterized by persistent long-term correlation structure. However, the mathematical in-
tractability of such processes has largely precluded their use in signal processing. We intro-
duce and develop a powerful Karhunen-Loeve-like representation for 1/f processes in terms
of orthonormal wavelet bases that considerably simplifies their analysis. Wavelet-based rep-
resentations yield highly convenient synthesis and whitening filters for 1/f processes, and
allow a number of fundamental detection and estimation problems involving 1/f processes
to be readily solved. In particular, we obtain robust and computationally efficient algo-
rithms for parameter and signal estimation with 1/f signals in noisy backgrounds, coherent
detection in 1/f backgrounds, and optimal discrimination between 1/f signals. Results
from a variety of simulations are presented to demonstrate the viability of the algorithms.

In contrast to the statistically self-similar 1/f processes, homogeneous signals are gov-
erned by deterministic self-similarity. Orthonormal wavelet bases play an equally important
role in the representation of these signals, and, in fact, are used to construct orthonormal
"self-similar" bases. The spectral and fractal characteristics of homogeneous signals make
them appealing candidates for use in a number of applications. As one potential example,
we consider the use of homogeneous signal sets in a communications-based context. In
particular, we develop a strategy for embedding information into a homogeneous waveform
on all time-scales. The result is a unique multirate modulation strategy that is well-suited
for use with noisy channels of simultaneously unknown duration and bandwidth. Com-
putationally efficient modulators and demodulators are developed for the scheme, and the
results of a preliminary performance evaluation are presented. Although not yet a fully
developed protocol, "fractal modulation" represents a novel and compelling paradigm for
communication.

Thesis Supervisor: Alan V. Oppenheim
Title: Distinguished Professor of Electrical Engineering
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Chapter 1

Introduction

There are a wide range of contexts in which there is a need to be able to synthe-

size, analyze and process fractal signals. Indeed, fractal geometry abounds in nature.

Fractal structure can be found, for example, in natural landscapes, in the distribu-

tion of earthquakes, in ocean waves, in turbulent flow, in the pattern of errors on

communication channels, in the bronchi of the human lung, and even in fluctuations

of the stock market. In many applications, we are interested in modeling the inher-

ent fractal behavior in order that we might perform some form of signal processing.

For example, there are many problems of detection, classification, smoothing, and

prediction that involve fractal signals. Likewise, that fractal behavior is so prevalent

suggests that fractal geometry is somehow optimal or efficient. Consequently, there is

increasing interest in the design of communication, telemetry, and other engineering

systems based on the use of fractal signals.

This thesis is about the development and exploitation of a framework for represent-

ing and characterizing fractal signals. But what is a fractal signal? Most generally,

a fractal signal is a function possessing structure at every scale of detail. However,

the fractals of most interest, and those to which we restrict our attention in this

thesis, are those for which the detail at each scale is similar. In this case we say that

the fractal is self-similar or, alternatively, scale-invariant, reflecting the fact that the

signal has no absolute scale of reference. Fractal signals may be classified into one

of two broad categories: those in which the self-similarity is statistical, and those in

11
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which it is deterministic. For statistically self-similar signals, the detail at all scales

have the same statistics, while for deterministically self-similar signals the detail at

all scales is identical.

Various representations for self-similar signals can be found in the literature; how-

ever, none have been particularly suitable for engineering applications either for rea-

sons of mathematical intractability or computationally complexity. In this thesis, we

introduce and develop highly efficient representations for some important classes of

fractal signals based on the use of orthonormal wavelet bases. Orthonormal wavelet

bases, having the property that all basis functions are dilations and translations of

some prototype function, are in many respects ideally suited for use with self-similar

signals. In fact, as will become apparent in the ensuing chapters, wavelet-based rep-

resentations are as convenient and natural for self-similar signals as Fourier-based

representations are for stationary and periodic signals. Furthermore, because wave-

let transformations can be implemented in a computationally efficient manner, the

wavelet transform is not only a theoretically important tool, but a practical one as

well.

We specifically consider two families of self-similar signals. The first is the family

of 1/f processes. These statistically self-similar processes, specifically, are important

candidates for modeling a wide range of natural and man-made phenomena. Due

to their generally nonstationary character, 1/f processes have properties that are

rather distinct from the traditional models used in signal processing. In contrast

to the well-studied family of ARMA processes, for example, 1/f processes typically

exhibit long-term statistical dependence. Yet despite their apparent applicability in

many contexts, 1/f models have not enjoyed widespread use in the signal processing

community. In large part, this has been due to the lack of a sufficiently convenient

mathematical characterization. The introduction of wavelet-based representations

for 1/f processes in this thesis allows us to address a wide range of signal modeling

and signal processing problems involving 1/f processes in a highly straightforward

manner. In particular, we are able to obtain computationally efficient algorithms both

for classifying, parametrizing, and isolating 1/f signals. Furthermore, in contrast to
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previous algorithms, those we develop are robust with respect to both measurement

noise and modeling errors.

The second family of self-similar signals we consider are homogeneous signals,

which we characterize in terms of a novel deterministic self-similarity relation. Ho-

mogeneous signals, too, have highly efficient wavelet-based representations, and are

potentially useful in a wide range of engineering applications. As an example of one

promising direction for applications, we consider the use of homogeneous signal sets

in a communications-based context. Specifically, we develop an approach for embed-

ding information into homogeneous waveforms which we term "fractal modulation."

Because the resulting waveforms have the property that the information can be re-

covered with either arbitrarily little duration or arbitrarily little bandwidth, we are

able to show that such signals are well-suited for transmission over noisy channels

of simultaneously unknown duration and bandwidth. Not only is this a reasonable

model for many physical channels, but also of the receiver constraints inherent in

many point-to-point and broadcast communication scenarios. As a consequence of

its special fractal and spectral properties, fractal modulation is potentially useful in a

range of military and commercial communication contexts. Indeed, the concepts un-

derlying fractal modulation may ultimately lead to novel and important approaches

for both low probability of intercept and shared-spectrum communications.

1.1 Outline of the Thesis

The detailed structure of the thesis is as follows. Chapter 2 is a review of wavelet the-

ory. In addition to establishing notation and summarizing the important results, this

review provides a particular perspective on wavelets and their relationship to signal

processing that is central to the thesis. Orthonormal wavelet basis signal decompo-

sitions are interpreted first in terms of an octave-band filter bank structure that is

familiar to signal processors, and then in terms of a multiresolution signal analysis

from which new insights are obtained. In particular, we show how this interpretation

leads naturally to the computationally efficient discrete-time implementation via the

13
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discrete wavelet transform.

Chapter 3 reviews the 1/f-family of statistically self-similar random processes, and

develops some important new models for 1/f-like behavior in signals. In particular,

early in the chapter, we introduce a novel and useful frequency-based characterization

for 1/f processes, while in the latter half of the chapter we develop wavelet-based rep-

resentations for 1lf processes. Specifically, we demonstrate that orthonormal wave-

let basis expansions are Karhunen-Loeve-like expansions for 1/f-type processes, i.e.,

when 1/f processes are expanded in terms of orthonormal wavelet bases, the coeffi-

cients of the expansion are effectively uncorrelated. This powerful result is supported

both theoretically and empirically, and examples involving both simulated and real

data are included.

Exploiting the efficiency of wavelet basis expansions for 1/f processes, Chapter 4

develops solutions to some fundamental problems of detection and estimation involv-

ing 1/f-type signals. In particular, we develop both maximum likelihood parameter

estimation algorithms and minimum mean-square error signal estimation algorithms

for 1/f processes embedded in white measurement noise. Additionally, we address the

problem of coherent detection in 1/f backgrounds, as well as the problem of discrimi-

nating between l/f signals with different parameters. In each case, we provide useful

interpretations of the solutions to these problems in terms of wavelet-based synthesis

and whitening filters for 1/f processes. Results from a variety of simulations are

presented.

Chapter 5 introduces and develops our new family of homogeneous signals defined

in terms of a dyadic scale-invariance property. We distinguish between two classes:

energy-dominated and power-dominated, and develop their spectral properties. We

show that orthonormal self-similar bases can be constructed for homogeneous signals

using wavelets. Using these representations, we then derive highly efficient discrete-

time algorithms for synthesizing and analyzing homogeneous signals.

Chapter 6 develops the concept of fractal modulation. In particular, we use the or-

thonormal self-similar basis expansions derived in Chapter 5 to develop an approach

for modulating discrete- or continuous-valued information sequences onto homoge-
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neous signals. After developing the corresponding optimal receivers, we evaluate the

performance of the resulting scheme in the context of a particular channel model.

Our analysis includes comparisons to more traditional forms of modulation.

Chapter 7 represents a rather preliminary and cursory investigation into the sys-

tem theoretic foundations of the thesis. In particular, after defining scale-invariant

systems, we explore the relationships between such systems, self-similar signals, and

the wavelet transform. We observe that synthesis filters for the self-similar signals

we consider in the thesis are exactly or approximately linear jointly time- and scale-

invariant systems. Furthermore, we demonstrate that while the Laplace and Fourier

representations are natural for linear time-invariant systems, and while the Mellin

representation is natural for linear scale-invariant systems, it is the wavelet transform

that is most natural for linear systems that are jointly time- and scale-invariant. We

show, in fact, that wavelet representations lead to some very efficient and practical

computational structures for characterizing and implementing such systems.

Finally, Chapter 8 summarizes the principal contributions of the thesis and sug-

gests some interesting and potentially important directions for future research.

15
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Chapter 2

Wavelet Transformations

Wavelet transformations play a central role in the study of self-similar signals and

systems. Indeed, as we shall see, the wavelet transform constitutes as natural a

tool for the manipulation of self-similar or scale-invariant signals as the Fourier

transform does for translation-invariant signals such as stationary, cyclostationary,

and periodic signals. Furthermore, just as the discovery of fast Fourier transform

(FFT) algorithms dramatically increased the viability the Fourier-based processing

of translation-invariant signals in real systems, the existence of fast discrete wave-

let transform (DWT) algorithms for implementing wavelet transformations means

that wavelet-based representations of self-similar signals are also of great practical

significance.

The theory of wavelet transformations dates back to the work of Grossmann and

Morlet [21, and was motivated by applications in seismic data analysis [3]. Many key

results in the theory of nonorthogonal wavelet expansions are described by Daubechies

in [4]. In this thesis, however, we shall be primarily interested in orthonormal wave-

let bases. The development of such bases, and their interpretation in the context

of multiresolution signal analysis, is generally attributed to Meyer [5] and Mallat

[6]. However, it was Daubechies who introduced the first highly practical families of

orthonormal wavelet bases in her landmark paper [1].

Yet although wavelet theory is rather new, it is important to note at the outset

that many of the ideas underlying wavelets are not new. Indeed, wavelet theory can

16
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be viewed as a convenient and useful mathematical framework for formalizing and

relating some well-established methodologies from a number of diverse areas within

mathematics, physics, and engineering. Examples include:

- pyramidal image decompositions in computer vision [7],

- multigrid methods in the solution of partial-differential and integral equations

[8],

- spectrogram methods in speech recognition [9],

- progressive transmission algorithms and embedded coding in communications

[10] [11], and

- multirate filtering algorithms in digital audio [12], speech and image coding [13],

voice scrambling [12], and frequency division data multiplexing [14].

In fact, wavelet transformations are closely associated with a number of topics that

have been extensively explored in the signal processing literature in particular, includ-

ing constant-Q filter banks and time-frequency analysis [15], and quadrature mirror

and conjugate quadrature filter banks [12].

This chapter is designed as a self-contained overview of wavelet transformations

in general and of orthonormal wavelet transformations in particular. Although it

presents essentially no new results, it serves three main purposes. First, it establishes

the notational conventions for wavelets we adopt for the thesis. Second, it summarizes

the key results from wavelet theory we shall exploit in the applications in subsequent

chapters of the thesis. However, the third purpose of the chapter is to introduce

wavelet transformations from a signal processing perspective, and it is this objective

which has lead to the rather tutorial style of this chapter. While a number of excellent

introductions to wavelet theory tutorials can be found in the literature-see, e.g., [6]

[41 [16] [17]-we stress that the one presented here emphasizes a perspective that is

particularly important in light of the applications we consider in this thesis.

17
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2.1 Wavelet Bases

Most generally, the wavelet transformation of a signal x(t)

x(t) X~

is defined in terms of projections of x(t) onto a family of functions that are all nor-

malized dilations and translations of a prototype "wavelet" function ;b(t), i.e.,

{x(t)} = X = L x(t) ,(t) dt (2.1)

where

In this notation, /i and are the continuous dilation and translation parameters,

respectively, and take values in the range -oc < , v < o, p O. A necessary and

sufficient condition for this transformation to be invertible is that 6(t) satisfy the

admissibility condition

j I(W)12 1w-1 dw = C < 0, (2.2)

where (w) is the wavelet's Fourier transform. Provided +(t) has reasonable decay

at infinity, (2.2) is equivalent to the admissibility condition

f 0 V(t)dt = 0. (2.3a)

For any admissible 0(t), the synthesis formula corresponding to the analysis formula

(2.1) is then

x(t) = W-, {X} - J X (t) -2 dpt dv. (2.4)

Under certain circumstances, it is also possible to reconstruct x(t) solely from

18
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samples of IK on some lattice defined by

.• -- a-Mn

v = nba -m

where -oo < m < oo and -oo < n < oo are the integer dilation and translation

indices, respectively, and a and b are the corresponding dilation and translation in-

crements. In such cases, the collection of samples is termed a "frame." A general

theory and some iterative reconstruction algorithms are presented in [4]. However,

it is also possible to construct wavelets and lattices such that the resulting trans-

formation is not only invertible, but orthonormal as well. In general, orthonormal

transformations are extremely convenient analytically, and possess very nice numer-

ical properties. Consequently, it is this class of wavelet transformations that is of

primary interest in this work, and the theory is summarized in the sequel.

2.2 Orthonormal Wavelet Bases

Our focus in this section is on the particular case of dyadic orthonormal wavxelet bases,

corresponding to the case a = 2 and b = 1 for which the theory is comparatively better

developed. In Section 2.2.7, however, we construct a simple family of orthonormal

wavelet bases corresponding to lattices defined by a = (L + 1)/L and b = L where

L > 1 is an integer.

An orthonormal wavelet transformation of a signal x(t)

x(t) - x,

can be described in terms of the synthesis/analysis equations

x(t) = W; 1 ={ } = E xn Vxn (t) (2.5a)
m n

mxn = d {x(t)} = x(t) e(t)dt (2.5b)
-O
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and has the special property that the orthogonal basis functions are all dilations and

translations of a single function referred to as the basic wavelet +(t). In particular,

m~(t) = 2m/2 (2mt - n) (2.6)

where m and n are the dilation and translation indices, respectively.

An important example of a wavelet basis, and one to which we will refer on

numerous occasions throughout the thesis, is that derived from the ideal bandpass

wavelet +(t). This wavelet is the impulse response of an ideal bandpass filter with

frequency response

1 ir< jwl < 2r
(2.7)

0 otherwise

It is straightforward to verify that the dilations and translations of 4(t) constitute

an orthonormal basis for the space of finite energy functions, L 2(R). However, there

are many other examples of orthonormal wavelet bases.

The basic (or "mother") wavelet, ip(t) typically has a Fourier transform (w) that

satisfies several more general properties. First, because, for a fixed m the {n2(t)}

constitute an orthonormal set we get the Poisson formula

E (w - 2k)12 = 1
k

whence

(w~)l < 1. (2.8a)

Moreover, from (2.3) we have immediately

9(0) = 0. (2.8b)

Finally, we are generally interested in regular bases, i.e., bases comprised of regular

basis functions. Regularity is a measure of the smoothness of a function. In particular,

a function f(t) will be said to be Rth-order regular if its Fourier transform F(w) decays

20



according tol

F(w) 7 (IwLI-R) jw - 00.

We use the term "regular" to denote a function that is at least first-order regular, and

note that an Rth-order regular function has R - 1 regular derivatives. Consequently,

in order for our wavelet basis to be regular we require that

@(w) C (1w 1- ) I1I - . (2.8c)

As implied by (2.8a)-(2.8c), /(t) is often the impulse response of an at least

roughly bandpass filter. Consequently, the wavelet transformation can usually be

interpreted either in terms of a generalized constant-Q (specifically, octave-band)

filter bank, or, as we shall see later, in terms of a multiresolution signal analysis.

NWhile we will restrict our attention to this class of wavelet bases, it is important to

remark, however, that wavelets need not correspond to either an octave-band filter

bank or a multiresolution analysis. For example, the following wavelet due to Mallat

[18]

|(1 if 4r/7 < Iwl < -x or 47r < jIw < 327r/7

0 O otherwise

generates a perfectly valid orthonormal wavelet basis.

'The order notation 0 (.) used in this thesis is to be understood in the following sense. If

F(w) = 0 (G(w)), -, o00

then

lim - < oo.w-w G(w)
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2.2.1 An Octave-Band Filter Bank Interpretation

The filter bank interpretation of the wavelet transform arises by viewing the analysis

equation (2.5b) as a filter-and-sample operation, viz.,

n = {X(t) * o (-_t)}lt=2_mn

Although the interpretation applies more generally, it is often convenient to visualize

the basis associated with the ideal bandpass wavelet (2.7). In this case, the output of

each filter in the bank is sampled at the corresponding Nyquist rate. More generally,

we say that the filter bank is critically-sampled [15], in that reconstruction is not pos-

sible if any of the sampling rates are reduced regardless of the choice of wavelet. The

critically-sampled filter bank corresponding to the wavelet decomposition is depicted

in Fig. 2-1.

For a particular choice of wavelet basis, the magnitude of the frequency response

of the filters in such a filter bank is portrayed in Fig. 2-2. As this figure illustrates,

there can be significant spectral overlap in the magnitude responses while preserving

the orthogonality of the decomposition. In essence, while the frequency response

magnitudes are not supported on disjoint frequency intervals, aliasing is avoided-

i.e., perfect reconstruction and orthogonality are achieved-due to the characteristics

of the phase in the filters. However, it is possible to construct wavelet bases such that

the spectral overlap between channels is much smaller in applications where this is

important.

A filter bank decomposition is closely related to the notion of a local time-

frequency analysis. Provided the filters are reasonably bandpass in character, the

output of each filter in the bank is an estimate of the frequency content in the signal

localized to the corresponding frequency band. Likewise, provided the filter impulse

responses are localized in time, the sequence of output samples from each filter gives a

picture of the time-evolution of frequency content within the corresponding frequency

band. In the case of the wavelet decomposition, (x-) 2 represents an estimate of the

energy of the signal x(t) in the vicinity of t 2-mn, and for a band of frequencies

22
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Figure 2-1: Critically-sampled filter bank interpretation of an orthonormal wavelet
decomposition.
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frequency o

Figure 2-2: The octave band filters corresponding to an orthonormal wavelet decom-
position. The wavelet basis in this example is one due to Daubechies [1].

in the neighborhood of w 2mr. This is graphically depicted in the time-frequency

plane of Fig. 2-3(a). Note that the octave-band frequency partitioning leads to a

partitioning of the time axis that is finer in the higher (and wider) frequency bands.

We emphasize that the partitioning in this figure is idealized: in accordance with the

Fourier transform uncertainty principle, one cannot have perfect localization in both

time and frequency. Nevertheless, one can construct wavelet bases whose basis func-

tions have their energy concentrated at least roughly according to this partitioning.

In contrast to the wavelet transform, the familiar short-time Fourier transform

(STFT) representation of a signal corresponds to a filter bank in which the filters

are modulated versions of one another and, hence, have equal bandwidth. As a

consequence, the outputs are sampled at identical rates, and the corresponding time-

frequency analysis is one in which there is uniform partitioning of both the time and

frequency axes in the time-frequency plane, as depicted in Fig. 2-3(b).

While the wavelet transform analysis equation (2.5b) can be interpreted in terms

of a filter bank decomposition, the corresponding synthesis equation (2.5a) may be

interpreted, as depicted in Fig. 2-4, as multirate modulation in which for a given m

each sequence of coefficients xn is modulated onto the corresponding wavelet dilate
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(a) Wavelet transformation
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(b) Short-time Fourier transformation

Figure 2-3: Time-frequency portraits corresponding to two signal analyses.
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Figure 2-4: Interpretation of an orthonormal
ulation scheme.

6' (t) at rate 2m . For the case of the ideal

modulating each such sequence x, into the

w < 2m+lr.

The filter bank interpretation allows us to

tity

wavelet expansion as a nultirate mod-

bandpass wavelet, this corresponds to

distinct octave frequency band 2"7r <

readily derive the following useful iden-

1 (2.9)E i(2-,) 2 =
m

valid for all orthonormal wavelet bases and any w £ 0. Specifically, consider an

arbitrary finite-energy signal x(t) with Fourier transform X(w), which is decomposed
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into an orthonormal wavelet basis via the filter bank of Fig. 2-1, then immediately re-

synthesized according to the filter bank of Fig. 2-4. It is a straightforward application

of sampling theory to show that the Fourier transform of the output of this cascade

can be expressed as

X(w) E I(2-mw) 2 + E E X(w - 27rk 2r),P(2-w),*(2-mw - 27rk).
m k#O m

Since this must be equal to X(w), the terms on the right must all be zero, while the

factor multiplying X(w) must be unity, yielding the identity (2.9) as desired.

While the filter bank interpretation provides a natural, convenient, and familiar

framework in which to view orthonormal wavelet transformations, it is also possible to

view the transformation in the context of a multiresolution signal analysis framework

[5] [61 [11. This perspective, which we consider next, provides a number of additional,

rich insights into orthonormal wavelet bases.

2.2.2 Multiresolution Signal Analysis Interpretation

In general, a multiresolution signal analysis is a framework for analyzing signals based

on isolating variations in the signal that occur on different temporal or spatial scales.

This strategy underlies a variety of diverse signal processing algorithms including

pyramidal methods used in the solution of computer vision problems [19] and multi-

grid methods used in the solution of boundary value problems [8]. The basic analysis

algorithm involves approximating the signal at successively coarser scales through

repeated application of a smoothing or averaging operator. At each stage, a differ-

encing operation is used to extract a detail signal capturing the information between

consecutive approximations. The matching synthesis algorithm involves a succes-

sive refinement procedure in which, starting from some coarsest scale approximation,

detail signals are accumulated in order to generate successively finer scale signal ap-

proximations.

Specifically, orthonormal wavelet bases can be interpreted in the context of a par-

ticular class of linear multiresolution signal analyses in which signal approximations
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at all resolutions of the form 2 (for m an integer) are defined. In describing this

class, we begin formally by considering the Hilbert space of square-integrable signals

V= L 2 (R). A multiresolution signal analysis is then defined as a decomposition of

this signal space V into a sequence of subspaces

... v_,,v, V .VV ..2

such that each Vm defines signal approximations at a resolution 2
m . Associated with

each Vm is a linear operator Am that defines projections from anywhere in Vonto

Vm. That is, for each signal x(t) E V, the projection Amx(t) E Vm defines the closest

signal of resolution 2m to x(t),

Amx(t) = arg min lIx(t) - v(t)ll.
v(t)EVm

Central to the concept of multiresolution analysis is the notion of being able to

construct successively coarser resolution approximations by repeated application of a

smoothing operator. Mathematically, this characteristic is obtained by imposing the

nesting or causality relation

Vm C Vm+l, (2.10a)

which specifically ensures that the approximation of a signal at resolution 2 m+ l con-

tains all the information necessary to approximate the signal at the coarser resolution

2m:

Am {Am+ix(t)} = AmX(t)

The relations

00

U Vm = V (2.10b)
m--oo

m=-oo

ensure that a complete range of approximations is defined by the analysis. In the
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process, these completeness relations define arbitrarily good and arbitrarily poor ap-

proximations that are consistent with any intuitive notion of resolution, i.e.,

lim Amx(t) = x(t)
m--+oo

lim Amx(t) = 0.
m-_-oo

An additional relation is required to fully define the notion of resolution: signals

in Vm must be characterized by 2 samples per unit length. Mathematically, this

can be interpreted as requiring that there exist an isometry between each space of

functions Vm and the space of square-summable sequences I = 12(Z)

Vm ~I )(2.10d)

such that each sequence represents samples of the corresponding signal following some

potentially rather arbitrary linear processing:

x(t) E Vm v ~ pmX(t)lt=2--m E I (2.10e)

where m is a linear operator.

In general, eqs. (2.10a) - (2.10e) are adequate to define a multiresolution signal

analysis. However, imposing two additional constraints leads to an analysis with some

nice structure. The first is a translation-invariance constraint, viz.,

x(t) E Vm x(t - 2-n) E Vm (2.10f)

which ensures that the nature of the approximation of the signal x(t) is the same for

any time interval. It is this condition that shall lead to the translational relationships

among basis functions in the corresponding wavelet expansion. The second is a scale-

invariance constraint

x(t) E Vm x(2t) E Vm+l (2.10g)
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which ensures that the nature of the approximation at each resolution is the same.

In turn, it is this condition that shall give rise to the dilational relationships among

basis functions in the corresponding wavelet expansion.

It can be shown [18] that every multiresolution analysis of L 2(R), i.e., every

collection of subspaces Vm defined in accordance with (2.10a) - (2.10g), is completely

characterized in terms of a scaling function (or "father" wavelet) q(t). Consequently,

from the scaling function one can construct an orthonormal basis for each Vm, and,

hence, the approximation operator Am for each of these subspaces. In particular, for

each m,

*..., _(t), o (t), ; (t), O2 (t), ...

constitutes an orthonormal basis for Vm, where the basis functions, as a consequence

of the invariance constraints (2.10f) and (2.10g) imposed on the multiresolution anal-

ysis, are all dilations and translations of one another, i.e.,

, (t) = 2m/2,(2mt - n). (2.11)

The corresponding resolution-2m approximation of a signal x(t) is then obtained

as the projection of x(t) onto Vm, which, exploiting the convenience of an orthonormal

basis expansion, is expressed as

AmX(t) = E an m (t) (2.12)
n

with the coefficients a computed according to the individual projections

am x= J(t)mt)dt. (2.13)

In general, +(t) has a Fourier transform P(w) that is at least roughly lowpass.

Using an argument similar to that which led to (2.8a), orthonormality of the basis

{(n(t)}n implies that

i(,)l < 1 (2.14a)

30

__I _ _ � __



Additionally, because this basis for Vm is asymptotically complete in V (cf. (2.10b))

we have

{I(o)I = 1. (2.14b)

Finally, since we are, again, generally interested in regular bases, we must have

'(w) (-l) W -+ 00. (2.14c)

Collectively, the properties (2.14a) - (2.14c) describe a scaling function that is con-

sistent with the notion that Am is an approximation or smoothing operator. Con-

sequently, we may interpret the projection (2.13) as a lowpass-like filter-and-sample

operation, viz.,

an= {(t) * o (t)}llt=2.mn (2.15)

Moreover, (2.12) can be interpreted as a modulation of these samples onto a lowpass-

like waveform.

In fact, one example of a multiresolution analysis is generated from the ideal

lowpass scaling function ¢(t), whose Fourier transform is the frequence response of

an ideal lowpass filter, i.e.,

(I) - < - .(2.16)

In this case, the corresponding multiresolution analysis is based upon perfectly ban-

dlimited signal approximations. Specifically, for a signal x(t), Amx(t) represents x(t)

bandlimited to w = 2m7r. Furthermore, we may interpret (2.15) and (2.12) in the

context of classical sampling theory [20]. In particular, (t) in (2.15) plays the role

of an anti-aliasing filter [21], while (2.12) is the interpolation formula associated with

the sampling theorem.

Of course, there are practical difficulties associated with the implementation of a

multiresolution analysis based upon perfectly bandlimited approximations, foremost

of which is that the sampling and reconstruction filters, i.e., the ~b (t), are unrealiz-
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able. For this reason, this analysis is more of pedagogical than practical interest.

To derive the wavelet basis associated with each multiresolution analysis defined

via (2.10), we now shift our attention from the sequence of increasingly coarse scale

approximation signals Amx(t) to the detail signals representing the information lost

at each stage as the resolution is halved. The collection of resolution-limited signal

approximations constitutes a highly redundant representation of the signal. By con-

trast, the collection of detail signals constitutes a much more efficient representation.

Formally, we proceed by decomposing each space Vm,+ into the subspace Vm and its

orthogonal complement subspace ,, i.e., Om satisfies

Om I Vm (2.17a)

om E V= Vm+1 (2.17b)

where we recognize that it is in this orthogonal complement subspace that the detail

signal resides.

Associated with every multiresolution analysis is a basic wavelet 0p(t) which yields

the following orthonormal basis for each O:

.. M , I0 (t), ( (t), (t) ...

where An (t) is as defined in terms of dilations and translations of 4p(t) as per (2.6).

In turn, this leads to a convenient description of the projection operator Dm from

anywhere in Vonto Om as

Dmx(t) = x mXbm(t)
n

in terms of the individual projections (cf. (2.5b))

Xon x (t) wvm(t)dt.n -lso

Hence, we have the interpretation that the wavelet coefficients xm for a fixed m corre-
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spond to the detail signal Dmx(t) at scale 2
m , or, more specifically, to the information

in the signal x(t) between the resolution-2m and resolution-2m+l approximations, i.e.,

Dmx(t) = Am+lx(t) - AmX(t).

At this point, we recognize the wavelet associated with the bandlimited multires-

olution analysis defined via (2.16) to be the ideal bandpass wavelet (2.7); it suffices

to consider a frequency domain perspective. To complete the discussion, we observe

that via (2.17) we can recursively decompose any of the approximation subspaces VM,

for some M, into the direct sum of a sequence of orthogonal subspaces, i.e.,

VM = OM-1 e VM-1 = OM-1 E (OM-2 E VM-2) = = e Om. (2.18)
m<M

from which we see that for every x(t)

AMx(t) = E Dmx(t) = E ZEx z1 (t). (2.19)
m<M m<M n

This leads naturally to the interpretation of AMx(t) as an approximation in which

details on scales smaller than 2M are discarded. Letting M - oo in (2.19) yields

X(t) = E E n (t)
m n

the synthesis formula (2.5a), and corresponds to the subspace decomposition

00

V= () O,.
m=-00oo

This completes our interpretation of an orthonormal wavelet basis as a multiresolution

signal analysis.
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2.2.3 Discrete Wavelet Transform

The discrete wavelet transform (DWT) refers to a discrete-time framework for im-

plementing the orthonormal wavelet transform. The basic notion is that rather

than implementing the analysis directly as a sequence of continuous-time filter-and-

sample operations according to (2.2.1), one can reformulate the analysis into a single

continuous-to-discrete conversion procedure followed by some iterative discrete-time

processing. Likewise, the synthesis can be reformulated from a series of conven-

tional modulations (2.5a) into an iterative discrete-time procedure followed by a single

discrete-to-continuous conversion.

The implementation is based upon the discrete-time filters

h[n = j (t) 4(t) dt (2.20a)
00

gin] = J t(t) o(t) dt. (2.20b)

Typically, h[n] and g[n] have Fourier transforms H(w) and G(w) that have roughly

halfband lowpass and highpass characteristics, respectively. In fact, for the case of

the bandlimited multiresolution signal analysis, h[n] and g[n are ideal lowpass and

highpass filters, specifically

H(w) = { < l < /2
o 7r/2 < < 

G() o 0 < < /2
eG(w t1 7r/2 < i < 

More generally, as we shall see, the filters h[n] and g[n] form a quadrature mirror

filter (QMF) or conjugate quadrature filter (CQF) pair.

The analysis algorithm is structured as follows. Given a signal x(t) V from

which we would like to extract x' for m < M, we can obtain the approximation

coefficients aM +l via the filter-and-sample procedure of (2.15), then recursively apply
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the following filter-downsample algorithm

m= h[l - 2n] a'+' (2.21a)

xn = g[- 2n] a + l1 (2.21b)

to extract the transform coefficients xm corresponding to successively coarser scales

m. A detailed derivation of this algorithm is presented in Appendix A.

The synthesis algorithm is structured in a complementary fashion. In particular,

to reconstruct x(t) to resolution 2M+1 from xm for m < M, we can recursively apply

the upsample-filter-merge algorithm

a +1 = {h[n- 21] a + g[n - 2] x} (2.21c)

to compute the coefficients am of successively finer scale approximations until level

in = M is reached, after which AM+1x(t) may be constructed by modulating al

according to (2.12). A detailed derivation of this algorithm is also left to Appendix A.

Fig. 2-5 depicts the discrete-time relationships between approximation and detail

coefficients corresponding to adjacent scales. The complete algorithm for computing

wavelet coefficients based on the discrete wavelet transform is depicted in Fig. 2-6.

The DWT may be computed extremely efficiently using polyphase forms [17].

Indeed, if the filters h[n] and g[n] have length L, an implementation of the DWT

via an FFT-based algorithm generally has an asymptotic computational complexity

of O(logL) per input sample [22]. However, as discussed in [17] this figure can

be somewhat misleading as there are many subtle issues associated with measuring

complexity of the algorithm.

2.2.4 Finite Data Length and Resolution Effects

In most applications, the data consists of a finite collection of samples

x[n], n = 0, l, ... ,N.
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am+l
n= ... 1,0,1,2

xm
n = ...,-1,0,1,2 ....

(a) The analysis step: filter-downsample.

m+l
a n=...1,12..

(b) The synthesis step: upsample-filter-merge.

Figure 2-5: A single stage of discrete-wavelet transform algorithm.
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(a) The analysis algorithm.
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n

(b) The synthesis algorithm

Figure 2-6: An efficient implementation of the orthonormal wavelet transformation
based on the discrete wavelet transform.
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While it is usually assumed that the x[n] correspond to samples of a resolution-limited

approximation of a continuous-time signal x(t), i.e.,

X[l]= a+ = {M+n * X(t)}lt=2(M+l)n

for some M, this cannot always be justified. Nevertheless, if the signal x(t) was

processed by an a typical anti-aliasing filter prior to sampling, then it is often a

useful approximation, particularly if the anti-aliasing filter has characteristics similar

to that of the smoothing filter XOM+'(t) associated with the approximation operator.

Note that while the discrete-time nature of the data limits access to the finer scales

of detail, the length of the observations limits access to the coarser scales of detail.

Hence, in practice we typically have access to wavelet coefficients over a finite range

of scales for a given signal. Moreover, because the effective width of the wavelet basis

functions halves at each finer scale, we expect roughly a doubling of the number of

available coefficients at each successively finer scale. In a typical scenario, for a data

record of N = N0o 2A1 samples, we would expect to be able to extract x"' corresponding

to

m = 1,2, ... ,M

n = 0,1, ... ,No2m-l-1

via the DJWT, where No is a constant that depends on the particular wavelet basis.

Note that while there are a number of ways to handle the unusual data window-

ing problem inherent in the wavelet decomposition, an assumption that the data is

periodic outside the observation window leads to a computationally convenient im-

plementation, and one we shall use in the context of this thesis. See [23] for some

discussion and alternative approaches for addressing issues of windowing.
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2.2.5 Orthonormal Wavelet Basis Constructions

As we have indicated, for every multiresolution analysis characterized by a scaling

function, there exists an associated wavelet basis. In fact, it is possible to exploit

the structure of the discrete wavelet transform to show how the wavelet 4'(t) may

always be derived directly from the scaling function (t). In this section we describe

how this is accomplished. More generally, we show how one can construct a family

of orthonormal wavelet bases directly from a class of discrete-time filters.

We begin by observing that there are a number of properties that the discrete-

time filters h[n] and g[n] corresponding to a multiresolution signal must satisfy. For

instance, as a consequence of orthogonality constraints between the {l(t)} and

{4,(t)}, one can show [18] that h[n] and g[n] must be related by

g[n] = (-1)" h[l - n]

which, expressed in the frequency domain, is

G(w) = e-j'H*(w + r). (2.22)

Furthermore, orthonormality of the {n' (t)} require that h[n] satisfy

IH(0)12 = 2 (2.23a)

IH(w)l2 + H(w + r)l2 = 2. (2.23b)

Filter pairs that satisfy both (2.22) and (2.23) are termed conjugate quadrature or

quadrature mirror filters and have been discussed extensively in the signal processing

literature [12].

Note that (2.22) leads immediately to an algorithm for constructing the wavelet

corresponding to a particular scaling function: one can generate h[n] from ¢(t) via

(2.20a), g[n] from h[n] via (2.22), then 0(t) from g[n] and (t) via (A.lb).

Ho-wever, note that h[n] alone is also sufficient to fully characterize a wavelet basis

39

____ _·I_�I I 1_ __1_----·�·--·1111�··-··I^--·-··--·-·--·



through a multiresolution analysis. Indeed, given h[n], the dilation equation 2 (A.la)

can be solved for the corresponding scaling function b(t). In particular, (t) has

Fourier transform

4(w) = [2-1/2H(2-m)] (2.24)
m=l

which is intuitively reasonable from a recursive decomposition of the corresponding

frequency domain equation, viz., (A.2a).

In fact, the conditions (2.23) on h[n] are necessary but not sufficient for (2.24) to

generate a regular wavelet basis. However, choosing h[n] to satisfy both (2.23) and

to have a Fourier transform H(w) with R zeros at w = r, i.e.,

H(r)(0) = 0, r = 0, 1,...,R-1

is sufficient to generate a wavelet basis with Rth-order regularity. Moreover, in this

case, we find, via (A.2a), that the wavelet has R vanishing moments:

T00an m p(t)dt= (j)p (r)(O)= O,

This vanishing moment property has been exploited in applications involving the

implementation of linear operators [24] as well as in image coding. In the context

of this work, we will provide evidence to suggest that this property may also be

important when wavelet bases are used in representations for self-similar signals. It

is important to note, however, that the vanishing moment condition is not necessary

for regularity. For a more detailed discussion of necessary and sufficient conditions,

see, e.g., [251.

A variety of useful wavelet bases have been constructed from filter formulations of

this type. In fact, this approach has been extremely useful in designing orthonormal

wavelets with compact support, i.e., wavelets for which

(t = 0, Itl > T

2 For a further discussion of dilation equations, see, e.g., [16].
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for some 0 < T < oo. This is a consequence of the natural correspondence between

compactly-supported wavelets and the extensively developed theory of finite impulse

response (FIR) digital filters. A more detailed discussion of relationships between

wavelet theory and filter bank theory can be found in [17].

2.2.6 Examples

In this section, we briefly review some standard examples of wavelet bases. Thus

far, we have discussed only one example, the wavelet basis corresponding to the ideal

bandpass wavelet (2.7). This basis has excellent frequency localization properties, but

very poor time-domain localization. Indeed, the corresponding wavelet 0p(t) decays

only like 1/t for large t, and the QMF filters h[n] and gin] decay only like 1/n for

large n. More seriously, this basis is unrealizable.

At the other extreme, consider a Haa'r-based multiresolution analysis in which the

approximations at resolution 2m are piecewise constant on intervals of length 2 - m .

Here the scaling function is given by

1 O<t<l

0O otherwise

and the corresponding wavelet is

1 O<t<1/2

2b(t) = g-1 1/2 < t < 1

O otherwise

This analysis is realizable and exhibits excellent time localization but very poor fre-

quency localization due to the abrupt time-domain transitions of the approximations.

Indeed, T1(w) falls off only like 1/w for w - oo.

More generally, we can consider the family of Battle-Lemarie wavelet bases [18] [1].

These bases may be derived from a multiresolution analysis based upon orthogonalized

Pth-order spline functions. For these bases, the corresponding scaling function is
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given by

WP+1 L (w + 2irk)2(P+1)

For example, the first-order (P = 1) Battle-Lemarie multiresolution analysis corre-

sponds to piecewise-linear but continuous signal approximations. In this context, it

is trivial to show that the Haar-based wavelet basis we have discussed corresponds to

the case P = 0. Similarly, using an argument based on the central limit theorem, it is

possible to show that the bandpass wavelet basis corresponds to P --. oo. The Battle-

Lemarie bases have very reasonable localization properties: they are characterized by

exponential decay in the time domain and decay like /llwlP+ in the frequency do-

main. Hence while they are, strictly-speaking, unrealizable, the exponential decay

property ensures that good approximations may be realized via truncation.

Daubechies has designed an important class of compactly-supported wavelet bases

[1] based upon discrete-time FIR filters. In addition to fulfilling a practical require-

ment of having finite-extent basis functions, these bases exhibit good localization in

both time and frequency. The Rth-order Daubechies basis is characterized by QMF

filters h[n] and gin] of length 2R for R = 1,2,..., where the case R = 1 corresponds

to the Haar-based wavelet basis. Moreover, the basis functions are maximally-regular,

in the sense that they have the maximum number of vanishing moments (R) for a

given order.

In general, the development of other families of wavelet-based multiresolution

analyses continues to receive considerable attention in the literature, as described in,

e.g., [171.

2.2.7 Non-Dyadic Orthonormal Wavelet Bases

While we have focussed largely upon dyadic wavelet bases, for which the dilation

and translation increments are a = 2 and b = 1, there are many other non-dyadic

choices. In many applications, including those within the context of this thesis, such

generalizations are potentially very useful particularly for 1 < a < 2. This is because

these correspond to an analysis with finer frequency resolution on the logarithmic
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frequency scale. For instance, to have flexibility choosing from among a family of

bases corresponding to the lattice

a= (L + 1)/L

b = L,

where L = 1, 2, ... is a parameter, would be highly convenient. An at least concep-

tually useful class of such bases arises out of a generalization of the bandpass basis

defined by

(,) _ { , Z < I W < + 7r

0 otherwise

where the case L = 1 corresponds to the usual bandpass basis. It is a straightforward

exercise in analysis to verify that for each L the corresponding set {V?"l(t)}, for which

= L ( + 1 m/2 ( L+ 1 m )~2(t) L L t - nL

is complete and orthonormal. Unfortunately, however, the poor time-domain local-

ization of these bases considerably reduces their practical value.
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Chapter 3

Statistically Self-Similar Signals

Some of the most prevalent forms of fractal geometry in nature arise out of statistical

scaling behavior in the underlying physical phenomena. In this chapter, we study an

important class of statistically scale-invariant or self-similar random processes known

as 1/f processes. These empirically defined processes, in particular, model a wide

range of natural signals.

In first half of this chapter we first review the empirical properties of 1/f pro-

cesses and a traditional mathematical model for 1/f behavior based on the fractional

Brownian motion framework of Mandelbrot and Van Ness 26]. We then introduce

and study a new and potentially important mathematical characterization for 1/f

processes. The novelty and power of this characterization is its basis in the frequency

domain, which admits a broader range of Fourier tools in the analysis of 1/f pro-

cesses. In addition, we are able to show that our characterization includes the models

of Mandelbrot and Van Ness, yet appears to avoid some of their limitations.

The latter half of the chapter develops models for the more broadly defined class

of nearly-l/f models, which constitute equally useful models for many natural sig-

nals. For completeness, we first review some well-known ARMA-based constructions

for nearly-1/f processes. However, the principal focus in this section is on devel-

oping some new, powerful and efficient wavelet-based nearly-1/f models. Using our

frequency-based characterization of 1/f processes, we are able to show that a rather

broad class of wavelet bases yield Karhunen-Lokve-like expansions for nearly-1/f
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processes. As a consequence, it is reasonable to model 1/f processes as orthonor-

mal wavelet basis expansions in terms of uncorrelated coefficients. This suggests

that wavelet-based analysis of 1/f-type behavior is not only convenient, but, in some

sense, statistically optimal. In fact, in Chapter 4, we show how these wavelet-based

representations are extremely useful in addressing problems of optimum detection

and estimation involving 1/f-type signals.

We begin with a rather universally accepted definition. A random process x(t)

defined on -oo < t < oo is said to be statistically self-similar if its statistics are

invariant to dilations and compressions of the waveform in time. More specifically, a

random process x(t) is statistically self-similar with parameter H if for any real a > 0

it obeys the scaling relation

x(t) a-Hx(at) (3.1)

where - denotes equality in a statistical sense. For strict-sense self-similar processes,

this equality is in the sense of all finite-dimensional joint probability distributions.

For wide-sense self-similar processes, the equality may be interpreted in the sense of

second-order statistics, i.e., mean and covariance functions. In this latter case, the

self-similarity relation (3.1) may be alternately expressed as

Mx(t) AE [x(t)] = a-HM (at) (3.2a)

R,(t, s) - E [x(t)x(s)] = a-2HR(at, as). (3.21,)

We will restrict our attention to Gaussian processes, for which the two definitions

are, of course, equivalent. Furthermore, we will consider only zero-mean processes.

Even Gaussian processes satisfying (3.1) can exhibit great diversity in behavior.

Some are stationary, as is the case with the classical generalized process w(t) corre-

sponding to zero-mean, stationary, white Gaussian noise. This process, whose auto-

correlation function is an impulse, is self-similar with parameter H = -1/2. More

typically, though, self-similar processes are nonstationary. For example, the Wiener
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process (Brownian motion) z(t) related to w(t) by'

z(t) = w(r) dr, (3.3)

and extended to t < 0 through the convention

-- - .° (3.4)

for all t is statistically self-similar with H = 1/2 and nonstationary but, evidently,

has a stationary derivative. As a final example, the Gaussian process

x(t) = tlHO°-/ 2z(t) (3.5)

is self-similar with parameter Ho for all values of Ho, is nonstationary, and has a

nonstationary derivative except for H = 1/2. In fact, when x(t) in (3.5) is filtered

by virtually any non-trivial linear time-invariant filter, the output is a nonstationary

process. However, while most physical processes that exhibit self-similarity are fun-

damentally nonstationary, they retain a stationary quality to them. For this reason,

processes such as (3.5) generally constitute rather poor models for such phenomena.

By contrast, perhaps the most important class of models for such phenomena are the

empirically characterized "l/f processes."

3.1 1lf Processes

The 1/f family of statistically self-similar random processes are generally defined as

processes having measured power spectra obeying a power law relationship of the

'Throughout this chapter, integrals with respect to the differential element w(t) dt, where w(t) is a
stationary white Gaussian noise, should be interpreted more precisely as integrals with respect to the
differential element dz(t), where z(t) is the corresponding Wiener process. While it is customary to
consider w(t) to be the derivative of z(t), recall that the non-differentiability of z(t) means that w(t)
is its derivative only in a generalized sense. It is for this reason that an ordinary Riemann integral is
technically inadequate, and the corresponding Riemann-Stieltjes is required. Nevertheless, we retain
the notation w(t) dt for conceptual convenience.
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form
2

S(w) (3.6)

for some spectral parameter y related to H according to

= 2H+ 1. (3.7)

Generally, the power law relationship (3.6) extends over several decades of frequency.

While data length generally limits access to spectral information at lower frequencies,

data resolution limits access to spectral content at higher frequencies. Nevertheless,

there are many examples of phenomena for which arbitrarily large data records justify

a 1/f spectrum of the form (3.6) over all accessible frequencies. However, (3.6) is not

integrable and, hence, strictly speaking, does not constitute a valid power spectrum

in the theory of stationary random processes. As a consequence, there have been

numerous attempts to attach an interpretation to such spectra based on notions of

generalized spectra [27] [26] [28] [29].

As a consequence of their inherent self-similarity, the sample paths of 1/f processes

are typically fractals, and have a fractal dimension in the sense of Mandelbrot [30]

which characterizes their roughness. In fact, for the fractional Brownian motion

models for 1/f processes we discuss in Section 3.1.1, the dependence of the fractal

dimension D on the self-similarity parameter H can be derived analytically. More

generally, the relationship between D and H, whereby increasing the parameter H

yields a decrease in the fractal dimension D, may be obtained empirically. This is

intuitively reasonable: an increase in H corresponds to an increase in y, which, in

turn, reflects a redistribution of power from high to low frequencies and leads to

sample functions that are increasingly smooth in appearance. Fig. 3-1 illustrates

some sample paths of 1/f processes corresponding to various values of y. Note that

what we have plotted are, in some sense, bandpass filtered versions of the sample

functions, since the finite data length constrains the lowest accessible frequency and

the discretization of the time-axis constrains the highest accessible frequency.

A truly enormous and tremendously varied collection of natural phenomena ex-
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500

Figure 3-1: Sample paths of 1/f processes corresponding to different values of y.

48

I__ � � _____ _ __ _ _ _ _ _ _

0



hibit 1/f-type spectral behavior over many decades of frequency. A partial list in-

cludes (see, e.g., [28] [31] [32] [30] [33] [34] and the references therein):

- geophysical time series such as variation in temperature and rainfall records,

measurements of oceanic flows, flood level variation in the Nile river, wobble

in the Earth's axis, frequency variation in the Earth's rotation, and sunspot

variations;

- economic time series such as the Dow Jones Industrial Average;

physiological time series such as instantaneous heart rate records for healthy

patients, EEG variations under pleasing stimuli, and insulin uptake rate data

for diabetics;

- biological time series such as voltages across nerve and synthetic membranes;

electromagnetic fluctuations such as in galactic radiation noise, the intensity of

light sources, and flux flow in superconductors;

electronic device noises in field effect and bipolar transistors, vacuum tubes,

and Schottky, Zener and tunnel diodes;

resistance fluctuations in metal film, semiconductor films and contacts, germa-

nium filaments in carbon and aqueous solution, thermocells, and concentrations

cells;

frequency variation in hourglasses, quartz crystal oscillators, atomic clocks, and

superconducting cavity resonators;

man-induced phenomena including variations in traffic flow and amplitude and

frequency variation in Western, African, Asian and Indian music, both modern

and traditional;

generation of perceptually-pleasing physiological stimuli, such as artificial music

and breezes;
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- burst errors on communication channels;

- texture variation in natural terrain, landscapes, and cloud formations.

While y - 1 in many of these examples, more generally 0 < y < 2. However,

there are many examples of phenomena in which ? lies well outside this range. For

-y > 1, the lack of integrability of (3.6) in a neighborhood of the spectral origin re-

flects the preponderance of low-frequency energy in the corresponding processes. This

phenomenon is termed the infrared (IR) catastrophe. For many physical phenomena,

measurements corresponding to very small frequencies show no low-frequency roll off,

which is usually understood to reveal an inherent nonstationarity in the underlying

process. Such is the case for the Wiener process discussed earlier. For y < 1, the lack

of integrability in the tails of the spectrum reflects a preponderance of high-frequency

energy and is termed the ultraviolet (UV) catastrophe. Such behavior is familiar for

generalized Gaussian processes such as stationary white Gaussian noise and its usual

derivatives.

An important property of 1/f processes is their persistent statistical dependence.

Indeed, the generalized Fourier pair [35]

1
,-t ---- (3.8)

2r(y) cos(-y/2) wl.8)

valid for y > 0 but y 1, 2, 3, ... , suggests that the autocorrelation R(Tr) associated

with the spectrum (3.6) for 0 < y < 1 is characterized by slow decay of the form

R.(,) 117-l.

This power law decay in correlation structure distinguishes 1/f processes from many

traditional models for time series analysis. Indeed, the well-studied family of au-

toregressive moving-average (ARMA) models have a correlation structure invariably

characterized by exponential decay. As a consequence, ARMA models are generally

inadequate for capturing long-term dependence in data.

Perhaps the most important families of 1/f processes are those which are non-
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Gaussian. Indeed, a number of rich and interesting examples of non-Gaussian self-

similar behavior can be constructed by exploiting the theory of stable distributions

[26] [36] [37] [381. Nevertheless, Gaussian models are generally applicable in a broad

range of contexts, and are analytically highly tractable. For these reasons, we focus

principally on Gaussian 1/f processes in this thesis. In the next section, we review

what are perhaps the most popular mathematical models for Gaussian 1/f processes:

fractional Brownian motion and fractional Gaussian noise.

3.1.1 Fractional Brownian Motion and Fractional Gaussian

Noise

It is generally agreed [38] [26] [30] that fractional Brownian motion (fBm) and frac-

tional Gaussian noise (fGn) models were first proposed by Kolmogorov, although their

current popularity is undoubtedly due to Mandelbrot who independently derived the

theory with Van Ness in [26] and promoted their use in numerous subsequent publi-

cations (see, e.g., the references in [30]). An extensive bibliographic guide to various

subsequent developments of the theory, principally in the mathematics literature, is

presented by Taqqu in [38].

In this framework, processes corresponding to 1 < < 3, for which there is

infinite low-frequency power, are developed as nonstationary random processes having

finite-power in any finite time interval. These processes are the fractional Brownian

motions, and classical Brownian motion is a special case corresponding to ' = 2.

By contrast, processes corresponding to -1 < y < 1, for which there is infinite

high-frequency power, are developed as generalized stationary Gaussian processes

corresponding to the derivative of a fractional Brownian motion. These processes are

the fractional Gaussian noises, and stationary white Gaussian noise is a special case

corresponding to y = 0. The theory does not accommodate the cases y > 3 and

y < -1. Furthermore, the models are degenerate for the cases = -1, y = 1, and

= 3.

A reasonable approach for developing 1/f models would appear to be to consider
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driving stationary white Gaussian noise through a linear time-invariant system with

impulse response

v(t) = tH-(H /2(t) (3.9)

where r(-) is the gamma function. Indeed, (3.9) has the generalized Laplace transform

[39]
1

T(s) = s+l/'SH+1/2'

which suggests that if the input has spectral density ao, the output will have a power

spectrum, in some sense, of the form (3.6) where y is given via (3.7). As we will

discuss in Chapter 7, (3.9) represents an example of a linear jointly time- and scale-

invariant system of degree H + 1/2. However, the system defined via (3.9) is unstable

except for the degenerate case H = -1/2. Consequently, the convolution

x(t) = v(t) * w(t) = (H + 1/2) (t 1 -. )1-/2 w(r) dr (3.10)

is not well-defined.

In developing their 1/f model, Barnes and Allan [40] addressed this dilemma by

keying the integration in (3.10) to the time origin, defining their self-similar process

by

(t) = r(H + 1/2) It - rl ' 2 w(r) dr (3.11)

where this definition is extended for t < 0 through the convention (3.4). It is interest-

ing to remark that (3.11) is familiar in mathematics as the Riemann-Liouville integral

of w(r) over the interval 0 < r < t. In fractional calculus theory [41], it often is used

to define the fractional integral of w(t) of order A = H + 1/2 > 0, usually denoted

d->
x(t) = - - (t)

The resulting process is well-defined, satisfies x(0) = 0, and is statistically self-
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similar with parameter H, i.e.,

R(t, s) - ]m() (max(t, s) - )H - 1/2 d = a- 2 HR(at, as) (3.12)

for a > 0. However, the Barnes-Allan process constitutes a rather poor model for 1/f

behavior. In fact, it lacks any kind of stationary quality. For instance, the increment

process

Ax(t;e) & (t + E) - (t) (3.13)

while statistically self-similar, satisfying

Ax(t; ) _ a-(H-l)Ax(at; a) (3.14)

for every e > 0, is nonstationary. Consequently, one cannot associate a stationary

generalized derivative with the process. In effect, the underlying problem is that the

Barnes-Allan process places too much emphasis on the time origin [26].

Fractional Brownian motion represents a very useful refinement of the Barnes-

Allan process. Specifically, fractional Brownian motion is a nonstationary Gaussian

self-similar process x(t) also satisfying x(O) = 0, but defined in such a way that

its corresponding increment process Ax(t; e) is self-similar and stationary for every

E > 0. Imposing these constraints on increments of fractional Brownian motion leads

to a comparatively better model for 1/f behavior.

A convenient though specialized definition of fractional Brownian motion is given

by [42]

I(t) 1/2)1 [i _ IH 1/2 _ TIrH-1 / 2 ) w(r) dF(H + 1/2) 00(It-

+ | It _ rIHl/2 w?(r) dT (3.15)

for 0 < H < 1, where w(t) is a zero-mean, stationary white Gaussian noise process

with unit spectral density. Again, for t < 0, x(t) is defined through the convention

(3.4). Note that with H = 1/2, (3.15) specializes to the Wiener process (3.3), i.e.,
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classical Brownian motion.

Fractional Brownian motions are, in fact, fractals. Specifically, sample functions

of fractional Brownian motions whose self-similarity parameters lie in the range 0 <

H < 1 (i.e., 1 < < 3) have a fractal (Hausdorff-Besicovitch) dimension given by

[30o]
D=2-H

that gives a quantitative measure of their roughness.

The correlation function for fractional Brownian motion can be readily derived as

2
R.(t, s) = E [x(t)x(s)] = (s 2 n + t[2 _ It-l2H) (316)

where
cos(irH)

a2 = Varx(l) = r(1 - 2H) crH (3.17)

from which it is straightforward to verify that the process is statistically self-similar

with parameter H.

It is likewise straightforward to verify that the normalized increments of fractional

Brownian motion are stationary and self-similar, and have the autocorrelation

Ran(7; E) - E [x(t; e)Ax(t - r; E)]

a 2 [( + 1 2 ( + l - 1 (3.18)

At large lags (171 > E), the correlation is asymptotically given by

RA(Tr) - a2H(2H - 1)rl2H- 2 (3.19)

Letting E - 0, and defining

H'= H-1, (3.20)
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we can reason that fractional Brownian motion has the generalized derivative [421

d()= 1 t'(t) = Tx(t) = lim(H' 1/2) I t- rl -l/2w()dr (3.21)

which is termed fractional Gaussian noise. Note that (3.21) is precisely a convolution

of the form (3.10), for which we now have an interpretation. Furthermore, from this

observation we deduce that the derivative process x'(t) is stationary and statistically

self-similar with parameter H'.

From (3.1 ) it is apparent that the character of x'(t) depends strongly on the

value of H. Note that the r:it side of (3.19) has the same algebraic sign as H - 1/2.

Hence, for 1/2 < H < 1 this derivative process exhibits long-term dependence, i.e.,

persistent correlation structure. For H = 1/2, this derivative is the usual stationary

white Gaussian noise, which has no correlation, while for 0 < H < 1/2, the deriva-

tive exhibits persistent anti-correlation. For 1/2 < H < 1, x'(t) is zero-mean and

stationary with covariance

Rx,(Tr) = E [x'(t)x'(t - r)] = a2 (H' + 1)H + 12H' (3.22)

and we note that the generalized Fourier pair (3.8) suggests that the corresponding

power spectral density of the derivative process can be expressed, for w 0 0, as

1
S,,(w) la, (3.23)

where

y' = 2H' + 1.

A conceptually useful synthesis for fractional Brownian motion is depicted in

Fig. 3-2. In particular, driving a linear time-invariant system with impulse response

v(t)= P(H 1 tH-3 / 2 (t)
with stationary white Gaussian noise - 1/2)

with stationary white Gaussian noise w(t) generates a fractional Gaussian noise x'(t),
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w(t) x(t)

Figure 3-2: Synthesis of fractional Brownian motion x(t) in terms of fiactional Gaus-
sian noise x'(t) and stationary white Gaussian noise w(t).

from which fractional Brownian motion x(t) is obtained by routine integration:

x(t) = x '(t) dt.

The fractional Brownian motion framework provides a useful construction for

some models of 1/f-type spectral behavior corresponding to spectral exponents in

the range -1 < y < 1 and 1 < y < 3. In fact, they uniquely model certain classes

of 1/f behavior. One can show, for instance, that for 0 < H < 1, fractional Brow-

nian motion constitutes the only statistically self-similar, zero-mean, mean-square

continuous, finite-variance, Gaussian random process satisfying x(0) = 0 and having

stationary increments. While these are somewhat restrictive conditions, this frame-

work has, in general, become a popular one for modeling a variety of phenomena with

1/f behavior-see, e.g., [30] [32] [43] [42]. However, fractional Brownian motion and

fractional Gaussian noise are not the only models for 1/f behavior, even within the

respective parameter ranges -1 < 'y < 1 and 1 < y < 3. In fact, in some cases they

constitute rather poor models for 1/f behavior.

One unsatisfying characteristic of fractional Brownian motion is its pronounced

time origin. Indeed, fractional Brownian motion satisfies not only x(0) = 0, but also

power law growth in variance as a function of time, i.e.,

Varx(t) = a Itl2 .

In modeling many physical phenomena having empirical spectra corresponding to y

in this range, the notion of such a time origin is not only rarely observed, but rather
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unnatural as well.

Additionally, the fractional Brownian motion framework has a number of limita-

tions. In particular, it does not lead to useful models for 1/f processes corresponding

to y < -1, -y > 3, and perhaps the most important and ubiquitous case, y = 1. In-

deed, for y = 3 (H = 1), fractional Brownian motion as defined by (3.15) degenerates

to a process whose sample paths are all lines through the origin, viz.,

(t)= tlx(1).

For -y = 1 (H = 0), fractional Brownian motion degenerates to the trivial process

x(t)- 0.

More generally, choosing H < 0 in (3.15) leads to processes that are not mean-square

continuous, while choosing H > 1 in (3.15) leads to processes whose increments are

not stationary [26] [37].

In the next section, we consider a more general but non-constructive model for

1/f processes that includes both fractional Brownian motions and fractional Gaus-

sian noises, yet appears to avoid some of the restrictions imposed by the fractional

Brownian motion framework.

3.1.2 A New Mathematical Characterization of 1/f Pro-

cesses

The notion that measurements of spectra for physical processes can only be obtained

over a range of frequencies governed by data length and resolution limitations suggests

a potentially useful approach for defining 1/f processes. In particular, it would appear

reasonable to define 1/f processes in terms of their characteristics under bandpass

filtering. As a consequence, we propose the following definition.

Definition 3.1 A wide-sense statistically self-similar zero-mean random process x(t)

shall be said to be a 1/f process if when x(t) is filtered by an ideal bandpass filter with
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frequency response

B1 () ir < wI < 2r (3.24)

O otherwise

the resulting process yl(t) is wide-sense stationary and has finite variance.

In fact, the choice of passband 7r < jw[ < 2r in this definition is rather arbitrary.

More generally, replacing this passband with any other passband that contains neither

w = 0 nor w = oo constitutes an equivalent characterization for this class of self-

similar processes. Furthermore, one might speculate that choosing an ideal bandpass

filter in this definition is not critical. In particular, it might suffice to choose any

filter whose frequency response B(w) with sufficient decay as w - 0 and w - 0.

Nevertheless, our choice is at least a convenient as we shall see. The appeal of

Definition 3.1 as a characterization for 1/f processes is its basis in the frequency-

domain. As a consequence, this allows us to extend the well-established tools of

Fourier analysis to this important class of nonstationary processes. In turn, this

allows us to derive an number of new properties of 1/f processes in a highly efficient

manner.

The following theorem justifies designating processes satisfying Definition 3.1 as

1/f processes, and leads to an important interpretation of the spectrum (3.6) for 1/f

processes. A detailed but straightforward proof is provided in Appendix B.1.

Theorem 3.2 A 1/f process x(t), when filtered by an ideal bandpass filter with fre-

quency response

B(w) = JL<Wt•<WU (3.25)
0 otherwise

for arbitrary 0 < WL < wu < 00, yields a wide-sense stationary random process y(t)

with finite variance and having power spectrum

y(W) ={ /lJJ WL < IWI < WU (3.26)
0 otherwise
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for some a2 > 0, and where the spectral exponent y is related to the self-similarity

parameter H according to (3.7).

An important question that must be addressed concerns whether there exist any

non-trivial random processes satisfying Definition 3.1. The following theorem consti-

tutes such an existence proof by verifying that Definition 3.1 is non-degenerate for

at least some values of y. In particular, it establishes that it is possible to construct

families of Gaussian processes that satisfy this definition. A straightforward proof is

provided in Appendix B.2.

Theorem 3.3 Fractional Brownian motions corresponding to 0 < H < 1 and the

associated fractional Gaussian noises are 1/f processes.

We remark that, based on our discussion of Section 3.1.1, an immediate corollary is

that the Wiener process and stationary white Gaussian noise are also 1/f processes.

However, the Barnes-Allan process we described at the outset of Section 3.1.1 is

not a 1/f process in the sense of Definition 3.1. This is to be expected, given the

shortcomings of the Barnes-Allan process in modeling 1/f-type behavior.

The other question that naturally arises concerns whether there are any other

Gaussian 1/f processes besides those of Theorem 3.3. For instance, is it possible to

construct non-trivial Gaussian processes that satisfy Definition 3.1 for values of H

outside 0 < H < 1? And, are there other Gaussian processes satisfying this definition

for 0 < H < 1? The very recent work of Ramanathan and Zeitouni [44] indirectly

suggests that the answer may perhaps be negative, although they do not prove such

a result. In effect, these authors show that if we were to replace the bandpass filter

(3.24) in Definition 3.1 with a roughly bandpass filter whose frequency response is

differentiable, has a simple zero at w = 0, and decays sufficiently quickly as w - c,

then the definition uniquely characterizes fractional Brownian motion. However, the

constraints on the filter they consider are overly restrictive to answer our questions.

Furthermore, it may be that the technical definition of a random process they consider

is too narrowly chosen to accommodate 1/f behavior.
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In any event, a practical difficulty with both the fractional Brownian motion frame-

work and our new frequency-based characterization for 1/f processes is that while

mathematically well-defined, neither is analytically convenient in many contexts. In

fact, there are many very basic signal processing problems that are effectively in-

tractable using these models.

To address this limitation, we next consider some more general classes of 1/f-like

models. While these models typically do not give rise to exactly-/f spectra, they

give rise to spectra that are nearly-1 /f. As we shall see, these processes retain most of

the fundamental characteristics of 1/f processes, yet are considerably more amenable

to analysis.

3.2 Nearly-1/f Processes

Perhaps the best-known class of nearly-1/f processes have been those based upon

a generalized, infinite-order autoregressive moving-average (ARMA) framework. We

shall review two such formulations before developing a wavelet-based model for 1/f-

like behavior that constitutes the principle contribution of the chapter.

3.2.1 ARMA Models

There have been a variety of attempts to exploit a generalized autoregressive moving-

average framework in modeling 1/f processes. Perhaps the earliest such framework,

based on a "distribution of time constants" formulation, arose in the physics literature

and dates back at least to the work of Bernamont [45]. However, it was really the

seminal paper of van der Ziel [46] that sparked substantial interest in this approach,

and much subsequent development.

Van der Ziel's basic approach was to model a 1/f process as the weighted super-

position of an infinite number of uncorrelated random processes, each governed by a

distinct characteristic time-constant i/a > 0. Each of these random processes has

correlation function

R,(r) = e- ITrl
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corresponding to a Lorenzian spectra of the form

2a
a2 + w 2

and can be modeled as the output of a causal LTI filter with system function

T(s) =

driven by an independent stationary white noise source. The weighted superposition

of a continuum of such processes has an effective spectrum

s,(w) = j S(w) f (a) da (3.27)

where the weights f(a) correspond to the density of poles or, equivalently, relaxation

times. If an unnormalizable, scale-invariant density of the form

f(a) = a - 7 (3.28)

for 0 < ? < 2 is chosen, the resulting spectrum (3.27) is l/f, i.e.,

S(w) 0c 

This mathematical identity suggests a useful and practical approach to modeling

1/f-like behavior using the superposition of a countable collection of single time-

constant processes whose poles are appropriately distributed. In fact, the density

(3.28) implies that the poles should be uniformly distributed along a logarithmic

frequency axis. The resulting process x(t) synthesized in this manner then has a

nearly-1/f spectrum in the following sense: when x(t) is filtered by ally bandpass

filter of the form (3.25) the result is a stationary process whose spectrum within

the passband is 1/f with superimposed ripple that is uniform-spaced and of uniform

amplitude on a log-log frequency plot.
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As an example, consider exponentially-spaced poles according to

a, = A m, -00 < nm < oo, (3.29)

for some 1 < A < oo. Then the limiting spectrum

A(2-)m

S() = m 2 + A 2 m

is bounded according to

ll < S,(w) < a (3.31)

for some -oc < a 2 < aU < co, and has ripple such that for all integers k

|IwjSr(w) = |AwI|Sx(/Ak). (3.32)

As A is chosen closer to unity, the pole spacing decreases, which results in a decrease

in both the amplitude and spacing of the spectral ripple on a log-log plot.

Note that we may interpret the 1/f model that results from this discretization

as an infinite-order ARMA process. That is, x(t) can be viewed as the output of a

rational LTI system with a countably infinite number of both poles and zeros driven

by a stationary white noise source. There has been a substantial body of literature

that has attempted to exploit this distribution-of-time-constants model in an effort

to explain the ubiquity of 1/f spectra in nature. In essence, [47] [48] [49] construct

mathematical arguments to the effect that 1/f spectra are the result of large, complex

systems in nature favoring scale-invariant time-constant distributions of the form

(3.28).

Somewhat more recently, Keshner [28] [31] developed an alternative ARMA-based

model for 1/f-like behavior from an engineering perspective. This approach, which

has also received considerable attention in the literature, is based on the observation

that an infinite-length continuous RC transmission line when driven with a stationary

white noise current i(t) yields a measured voltage v(t) whose power spectrum is of

the form (3.6) for 0 < a < 2. That is, in some sense, the impedance function of the
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line is of the form
V(s) 1
1(s) S/2-

By considering an infinite-length, lumped-parameter RC line as an approximation,

Keshner showed that this gave rise to nearly-1/f behavior in much the same manner

as was obtained in the van der Ziel model. It is possible to interpret 1/f processes

obtained in this manner as the result of driving stationary white noise through an

LTI system with a rational system function

T(s)= - +m+ (3.33)[. [ + 'm+/2

which, in turn, leads to a spectrum of the form

S(W) oc 1m=- [2 + An + (3.34)

This nearly-/f spectrum has the same properties as the van der Ziel spectrum,

satisfying both (3.31) and (3.32). In fact, comparing the spectra (3.34) and (3.30),

we see that the pole placement strategy for both is identical. However, the zeros in

the two models are, in general, distributed much differently. This, in turn, leads to

differing degrees of ripple amplitude for a given pole spacing for the two different

models [50].

It is interesting to remark that the ideal of using infinite lumped RC line to re-

alize such systems was independently developed in the context of fractional calculus.

Indeed, Oldham and Spanier [41] describe precisely such an implementation for frac-

tional integration operators of the type used in the construction of the Barnes-Allan

process (3.11).

The structure of the system function (3.33) of Keshner's synthesis filter provides

additional insights into 1/f-like behavior. For example, the infinity of poles sug-

gests that a state space characterization of 1/f processes would generally require

uncountably many state variables, consistent with the notion of long term correlation

structure in such processes.
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Also, this system function lends useful insight into the limiting behavior of 1/f

processes as - 0 and y - 1. Note that the poles and zeros of (3.33) lie along

the negative real axis in the s-plane. On a logarithmic scale, the poles and zeros are

each spaced uniformly along this half line. Furthermore, in general, to the left of each

pole in the s-plane lies a matching zero, so that poles and zeros are alternating along

the half line. However, for certain values of y, pole-zero cancellation takes place.

In particular, as - - 2, the zero pattern shifts left canceling all poles except the

limiting pole at s = 0. The resulting system is therefore an integrator, characterized

by a single state variable, and generates a Wiener process as anticipated. By contrast,

as - 0, the zero pattern shifts right canceling all poles. The resulting system is

therefore a multiple of the identity system, requires no state variables, and generates

stationary white noise as anticipated.

Finally, note that the model may be interpreted in terms of a Bode plot. In

general, stable, rational system functions comprised of real poles and zeros are only

capable of generating transfer functions whose Bode plots have slopes that are integer

multiples of

20 logl0 2 : 6

dB per octave. However, a 1/f synthesis filter must fall off at

107 logl 2 37

dB per octave where 0 < < 2 is generally not an integer. To accommodate such

slopes using rational system functions requires an alternating sequence of poles and

zeros to generate a stepped approximation to a -37 dB/octave slope from segments

that alternate between slopes of -6 dB/octave and 0 dB/octave.

Unfortunately, neither of the ARMA-based models have been particularly useful

in addressing basic problems of detection and estimation involving 1/f processes.

However, both have been used extensively as 1/f noise simulators. A discrete-time

implementation of the van der Ziel model is described in [51], while details of a

discrete-time implementation of Keshner's model due to Corsini and Saletti appears
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in [52]. A comparison of the two approaches is presented in [50]. In virtually all the

simulations of described in this thesis, the Corsini-Saletti implementation of Keshner's

model will be used to synthesize 1if processes. In particular, the 1/f sample paths

of Fig. 3-1 are obtained via this algorithm.

3.2.2 Wavelet-Based Models

In this section, we explore the relationship between orthonormal wavelet bases and

nearly-1/f models. In particular, we shall show that wavelet basis expansions are both

natural and convenient representations for processes exhibiting 1/f-like behavior. Our

main result is that orthonormal wavelet basis expansions play the role of IKarhunen-

Loeve-like expansions for 1/f-type processes. That is, wavelet basis expansions in

terms of uncorrelated random variables constitute good models for / f-type behavior.

Synthesis

In this section, we demonstrate that nearly-1/f behavior may be generated from

orthonormal wavelet basis expansions in terms of a collections of uncorrelated wavelet

coefficients. In particular we establish the following theorem, an earlier version of

which appears in [53], and whose proof is provided in Appendix B.3.

Theorem 3.4 Consider any orthonormal wavelet basis with Rth-order regularity for

some R > 1. Then the random process constructed via the expansion

x(t) = y n fx>I4(t), (3.35)
m n

where the x' are a collection of mutually uncorrelated, zero-mean random variables

with variances

Var xn = a22- Tn

for some parameter 0 < y < 2R, has a time-averaged spectrum

S,(w) = a2 2-Yml(2-mw)l 2 (3.36)
m
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that is nearly-l/f, i.e.,
o2 o.2

L < S(W) < (3.37)

for some 0 < < 0.2 < oo, and has octave-spaced ripple, i.e., for any integer k

IwIlS(w) = I2kwIYS(2k). (3.38)

In Fig. 3-3 we illustrate the time-averaged spectrum of a process constructed in

the manner of this theorem for y = 1 using the first order Battle-Lemarie wavelet

basis. Note the characteristic octave-spaced ripple. The bounding constants in this

case correspond to 2U /0L = 1.103.

The result established by this theorem is certainly an intuitively reasonable one

if, for example, we view the orthonormal wavelet decomposition as a generalized

octave-band filter bank as described in Section 2.2.1. In fact, for the case of the ideal

bandpass wavelet basis, it can be readily established from simple geometric arguments

that the tightest bounding constants are

2 = a2 7T

C2 = o2 (2r).

Note, too, the special interpretation that may be derived from the model for the

case y = 1, arguably the most prevalent of the 1/f-type processes. Here the choice

of the variance progression

Varxnm = a22-m

corresponds to distributing power equally among the detail signals at all resolution

scales, since we have for each m

- L| P.m(w)l(2-mw)l2dw = 1. (3.39)
TZ 00-o
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Figure 3-3: The time-averaged spectrum of a process synthesized from the first-
order Battle-Lemarie orthonormal wavelet basis. The parameters of the nearly-1/f
spectrum are y = 1 and a/a2 = 1.103 in this case.
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There are two aspects of this theorem that warrant further discussion. First,

the nearly-1/f spectrum (3.36) is to be interpreted in the same manner that the

1lf spectrum (3.6) is for exactly-1/f processes. That is, if x(t) is filtered by an

ideal bandpass filter with frequency response of the form (3.25), the output of the

filter will have finite-power and correspond to a spectrum of the form (3.36) over the

passband WL < wJl < wu. However, it is important to emphasize that this spectrum

is a time-averaged one. Indeed, the output of such a bandpass filter will not, in

general, be stationary in any sense, which is a consequence of the discrete nature of

the synthesis. This behavior is in constrast to the ARMA-based nearly-1/f processes

discussed in Section 3.2.1, which, when bandpass filtered, yield stationary processes

with nearly-1/f spectra.

One approach to extending this model so as to incorporate this property of sta-

tionarity is to add phase jitter in the synthesis process. Specifically, we may consider

randomizing the time-origin of our processes generated via (3.35) by applying a ran-

dom (positive or negative) delay to the process. In fact, this is one way of interpreting

(3.36) as the generalized spectrum of a stationary process. However, the random pro-

cess x(t) constructed in this way is not ergodic. Furthermore, if the coefficients xn

in Theorem 3.4 are chosen to be Gaussian, x(t) will be necessarily a Gaussian pro-

cess, but (t) will not. For these reasons, the phase-jittered process, while perhaps

useful for synthesizing 1/f-like behavior, is difficult to exploit in analyzing 1/f-like

behavior.

Some remarks concerning the conditions on the wavelet basis are also appropriate.

We begin by noting that to generate 1/f-like behavior for 0 < < 2, it suffices to

use a wavelet basis for which the corresponding multiresolution analysis is at least

regular. Again, virtually any practical wavelet basis satisfies this condition, even

the Haar basis. However, the theorem implies that to generate 1/f-like behavior for

y > 2, higher regularity (R > 1) is required. This can be verified experimentally as

well. We find, for instance, that when we attempt to synthesis 1/f-like behavior for

y = 5 using bases with R > 3, the sample functions are characterized by a smoothness

consistent with the decay in their spectra. However, when bases corresponding to R <
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3 are used in the synthesis, the sample functions lose their characteristic smoothness.

Specifically, using a Haar-based synthesis (R = 1), the sample functions exhibit

abrupt discontinuities, while using a second-order (R = 2) Daubechies basis leads

to sample functions exhibiting abrupt discontinuities in their derivatives. In effect,

unless there is sufficient regularity, the characteristics of the basis functions manifest

themselves in the sample functions generated by the expansion. However, at least

in this context, there would appear to be no benefit to using bases that have more

regularity than required by the theorem.

We also remark that a much stronger theorem holds for the case y = 0 in which

the coefficients not are not only uncorrelated but have identical variances. In this

case, constructing an expansion from such a collection of random variables in any

any orthonormal basis yields stationary white noise whose spectral density is the

variance of the coefficients. In particular, for any wavelet basis we have

Sz(w) = 2 = a2 E II(2-m)12
m

when ? = 0 where the last equality is a restatement of the identity (2.9) and demon-

strates the consistency of this case with (3.36).

Finally, we remark that Theorem 3.4 may, in principle, be extended to < 0

provided the wavelet basis used in the synthesis has a sufficient number of vanishing

moments. This cal be deduced from the proof in Appendix B.3. However, this

extension to the theorem was not incorporated principally because there would appear

to be relatively few, if any, physical processes corresponding to negative y.

Analysis

In this section, we derive a collection of complementary results to suggest that wavelet

bases are equally useful in the analysis of 1/f processes. In particular, we provide

both theoretical and empirical evidence suggesting that when 1/f-like processes are

expanded in terms of orthonormal wavelet bases, the resulting wavelet coefficients

are typically rather weakly correlated, particularly in contrast to the rather strong
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correlation present in the original process. These results, combined with those of the

last section, provide evidence of that such wavelet-based representations are robust

characterizations of 1/f-like behavior.

Virtually all the results we obtain in this section are derived conveniently and

efficiently in the frequency-domain. In anticipation of these derivations, we first

establish the following proposition, whose proof is outlined in Appendix B.4.

Proposition 3.5 Let x(t) be a 1lf process whose spectral parameters, in the sense

of Theorem 3.2, are o' and y > O. Furthermore, let the wavelet coefficients x be

the projections of x(t) onto some orthonormal wavelet basis. Then the correlation

between an arbitrary pair of such coefficients x' and x'l is given by

_, _, 2-(m+,')/2 00 2 - n2-'-n'2-mA
E [x ] = 2-(m)/2 t(2-m w) -*(2-m ) en2 n2) dw (3.40)I : = 27rIW /o

for any choice of tp(t) and 7 such that this integral is convergent.

This principal shortcoming of this proposition is that it fails to establish condi-

tions on the wavelet basis and a under which (3.40) is defined. Nevertheless, we

may generally use Proposition 3.5 to derive properties of the second-order statistics

of wavelet coefficients of 1/f processes for y > 0. For instance, an immediate con-

sequence of the proposition is that we can show the variance of the x to be of the

form

Var xT = a 2 2- *m

where

2= r IV (w>2dw.

To obtain this result, it suffices to let m' = m and n' = n in (3.40) and effect a change

of variables.

Defining
.,,m, _~ E [x-x-'l
n n- (3.41)

as ti(Varxz)(Varx ') (3.41 

as the normalized wavelet correlation, a second consequence is that the wavelet co-
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efficients are wide-sense stationary at each scale, i.e., for a fixed scale m, Pnn' is a

function only of n - n'. Specifically, we may readily establish that

m m 10 I(w)12 e-j(n-n )wdw. (3.42)
Pn,n' = 2 0a FW -IcY

Again, this result may be obtained by specializing (3.40) to the case m' = m and

effecting a change of variables.

We can also show that the normalized wavelet coefficients possess a kind of sta-

tionarity across scales as well. Recalling from Section 2.2.1 the critically-sampled

filter bank interpretation of the wavelet decomposition, whereby the output of the

nmth filter was sampled at rate t = 2-mn for n = ... ,-1,0,1,2,..., we note that

a pair of wavelet coefficients ox and xn, at distinct scales nz and m' correspond to

synchronous time-instants precisely when

2- m n = 2-m'n '. (3.43)

Our stationarity result in this case is that the normalized correlation among time-

synchronous wavelet coefficients corresponding to scales mi and m' is a function only

of m - nz'. More precisely, we can show that whenever (3.43) holds,

m,m' _ 1 2-(m-m')/2 f00 a (2(m-m) ) . (3
~P ~'~'f = 2Ira -' - w) T (w)(3.44)nn- 27ra2 1- 17 1()w

Again, this result follows from specializing (3.40) and effecting a change of variables.

The above results verify that the wavelet coefficients of 1/f processes obey the

variance progression anticipated from the synthesis result. Moreover, the stationar-

ity results provide insight into the correlation structure among wavelet coefficients.

However, what we seek ideally are good bounds on the magnitude of the correlation

among wavelet coefficients both in the case that they reside at the same scale, and in

the case they reside at distinct scales. Certainly, as we will see, there is strong empiri-

cal evidence that the correlation among coefficients is rather small and, in most cases,

negligible. The following theorem provides some theoretical evidence by establishing
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an asymptotic result. A proof is provided in Appendix B.5.

Theorem 3.6 Consider an orthonormal wavelet basis such that '(t) has R vanishing

moments, i.e.,

()(w) = 0, r = 0, 1, ,R- 1 (3.45)

for some integer R > 1. Then provided 0 < y < 2R, the wavelet coefficients obtained

by projecting a 1/f process onto this basis have a correlation whose magnitude decays

according to2

pn,, 0 (12 m n 2-ml-r2R-"'l) (3.46)

as

12-mn - 2-mIn1 -X .

Wlhile this theorem makes an interesting statement about the relative correlation

among some wavelet coefficients well-separated in (m, n)-space, we must avoid infer-

ring some stronger statements. First, it says nothing about the correlation among

time-synchronous wavelet coefficients (i.e., those satisfying (3.43)), regardless of how

well-separated they are. Furthermore, while plausible, the theorem itself does not

assert that choosing an analysis wavelet with a larger number of vanishing moments

can reduce the correlation among wavelet coefficients in the analysis of 1lf pro-

cesses. Likewise, the theorem does not actually validate the reasonable hypothesis

that choosing a wavelet with an insufficient number of vanishing moments will lead

to strong correlation among the wavelet coefficients of 1lf processes. In fact, the

theorem identifies neither a range of m, m', n, n' over which (3.46) holds, nor a lead-

ing multiplicative constant in (3.46). Consequently, this precludes us from inferring

anything about the absolute correlation between any particular pair of coefficients.

For the case of the ideal bandpass wavelet basis, however, we may obtain some

more useful bounds on the correlation among wavelet coefficients. In this case, the ba-

sis functions corresponding to distinct scales have non-overlapping frequency support.

Hence, carefully exploiting the stationarity properties of 1/f processes developed in

2 The ceiling function [x] denotes the smallest integer greater than or equal to x.
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Theorem 3.2, we conclude that the wavelet coefficients corresponding to distinct scales

are uncorrelated, However, at a given scale the correlation at integral lag I > 0 is non-

zero and may be expressed as

a2 2z
Pn,n-l 2 W- e cos(wl) dw (3.47)

where

r2 _ (21-Y - 1)/(7t(1 -)) $ 1 (3.48)

at2 (ln2)/(7r) -y = 1

'While (3.47) cannot be evaluated in closed form, integrating by parts twice and using

the triangle inequality gives the useful closed-form bound

Ipn" 1 {2 + {1+ 1+') [- ] }- (3.49)o2 127r2+ 1 +7 1

valid for y > 0 and integer-valued I > 1.

In Fig. 3-4, we plot the exact magnitude of the normalized correlation (3.47)

obtained by numerical integration as a function of lag I together with the bound

(3.49). Note that correlation among wavelet coefficients is extremely small: adjacent

coefficients have a correlation coefficient of less than 15 percent, and more widely

separated coefficients have a correlation coefficient less than three percent. Hence,

it is not an unreasonable approximation to neglect the inter-coefficient correlation in

any analysis using this wavelet basis.

On the same plot we superimpose the average along-scale sample-correlation be-

tween wavelet coefficients obtained from a 1/f-type process generated using Keshner's

synthesis. In this simulation, a 65 536-sample segment of a 1/f process was gener-

ated for 'y = 1 and analyzed using Daubechies 5th-order wavelet basis. Here, the

sample-correlation function of the coefficients at each scale was computed, and aver-

aged appropriately with the sample-correlation functions at the other scales. That

the experimental result so closely matches the exact result for the bandlimited ba-

sis suggests that our analysis result for the bandlimited basis may, in fact, be more

broadly applicable.
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Figure 3-4: Along-scale correlation between wavelet coefficients for an exactly-1/f
process for which 'y = 1. The squares 0 indicate a numerical estimate of the exact
magnitude of the normalized correlation between wavelet coefficients as a function of
the lag I between them. The ideal bandpass wavelet was assumed in the analysis.
The triangles A indicate the corresponding values of the closed-form bound obtained
in the text. The circles O show the average sample-correlation as computed fionom
a projections of a 1/f process generated using Keshner's synthesis onto a 5th-order
Daubechies wavelet basis.
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Before concluding this analysis section, it is appropriate to note that several of the

results we have described herein have been derived independently for the particular

case of fractional Brownian motion using a time-domain approach. For instance, the

stationarity of the wavelet coefficients at a fixed scale was first established by Flandrin

in [29], while the inter-scale stationarity property was described by Flandrin (after

Vergassola and Frisch [54]) in the recent work [551. Likewise, the expression for the

asymptotic rate-of-decay of correlation among wavelet coefficients is essentially the

same as that first derived by Tewfik and Kim [56]. We also mention that Flandrin [55]

is able to provide stronger statements about the correlation amlong wavelet coefficients

of fractional Brownian motion for the specific case of the Haar wavelet basis. Finally,

we remark that it ought to be possible to interpret the decorrelation results presented

both here and in the works of the above authors in the context of more general

results that have emerged concerning the effectiveness of wavelet decompositions in

decorrelating a broad class of smooth covariance kernels [24].

Finally, it is useful to remark that through the octave-band filter bank interpre-

tation of wavelet bases, we may view wavelet-based analysis as spectral analysis on

a logarithmic frequency scale. The results of this section, together with our obser-

vations of the spectral characteristics of 1/f processes earlier in the chapter, suggest

that this kind of spectral analysis is, in some sense, ideally matched to 1/f-type be-

havior. In the final section of this chapter, we undertake such a log-based spectral

analysis of some real data sets using wavelets and show additional evidence that such

analysis is potentially both useful and important in these cases.

Experiments

In this section, we undertake a very preliminary investigation of the properties of

wavelet coefficients derived from some physical data sets. In the process, we identify

two instances of time series that are would appear to be well-modeled as 1 /f processes.

The first is an example involving economic data. Fig. 3-5 shows the time series

corresponding to raw weekly Dow Jones Industrial Average data accumulated over the

past 80 years. As shown in Fig. 3-6(a), the sample-variance of wavelet coefficients from
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Figure 3-5: Weekly Dow Jones Industrial Average data, to present.

scale to scale obeys a geometric progression consistent with a 1/f process for which

7 2. In Fig. 3-6(b), we see that the average along-scale sample-correlation among

wavelet coefficients is rather weak. Since adjacent coefficients have a correlation of

less than 8 percent, and more widely separated coefficients have a correlation of less

than 3 percent, it would appear reasonable to neglect the inter-coefficient correlation

in the analysis of such data. While this behavior is also consistent with a 1/f-type

-model for the data, we note that to justify such a model more fully, it would be

necessary to study the correlation among coefficients between scales as well.

The second example involves physiological data. Fig. 3-7 shows a record of heart

beat interarrival times for a healthy human patient corresponding to approximately

11 hours of continuously-acquired data. The quantization levels of the interarrival

times are spaced four milliseconds apart. In this example, as shown in Fig. 3-8(a)

the sample-variances of wavelet coefficients from scale to scale obeys a geometric

progression consistent with a 1/f process ofy - 1. When viewing these progressions it

is important to note that the number of samples available to make a variance estimate

doubles at each successively finer scale. Hence, the standard deviation of the sample-

variance measurement decreases by a factor of X for each successive increase in m.

As a result, 1/f behavior manifests itself in the form of log-variance characteristic
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(b) Average magnitude of the normalized along-scale sample-correlation between wavelet coef-
ficients.

Figure 3-6: Wavelet-based analysis of weekly Dow Jones Industrial Average data.
The time-series is analyzed using a 5th-order Daubechies wavelet basis.
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Figure 3-7: Heartbeat interarrival times for a healthy patient.

that must be asymptotically linear in the limit of large m. In Fig. 3-8(b), we show

the weak average along-scale sample-correlation between wavelet coefficients. In this

case, coefficients separated by lags of two or more are correlated less than 2 percent,

again suggesting that it is reasonable to neglect such inter-coefficient correlation in

any wavelet-based analysis. Again, we caution that no attempt was made to study

the correlation structure among coefficients between scales.

Together, our theoretical and empirical results suggest that the orthonormal wave-

let transform is a potentially useful and convenient tool in the synthesis and analysis

of 1/f-type processes. In the next chapter we will explore how the wavelet transform

plays an equally valuable role in the processing of such signals.
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Figure 3-8: Wavelet-based analysis of the heartbeat interarrival times for a health
patient. The time-series is analyzed using a 5th-order Daubechies wavelet basis.
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Chapter 4

Detection and Estimation with 1/f

Processes

Given the ubiquity of physical signals exhibiting 1/f-type behavior, there are many

application contexts in which one is interested in developing efficient algorithms for

processing such signals. For instance, one is frequently interested in problems of

- detection and classification

- characterization and parametrization

- prediction and interpolation, and

- separation of 1/f signals both from one another as well as from other types of

known or partially-known signals.

In some cases, the 1/f signal itself is of primary interest. An example would be the

problem of modeling stock market data such as the Dow Jones Industrial Average as a

1/f process. In other cases, the 1/f signal represents a noise process obscuring some

other signal of interest. This is more likely to be the case in optical and electronic

systems, for example, where 1/f is a predominant form of background noise.

Even when the 1/f signal is of primary interest, one rarely has perfect access to

such signals. Typically, our observations are incomplete. Indeed, they will generally

be time-limited and resolution-limited. More generally, the observations may contain
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gaps, or there may be multiple observations. Additionally, any observations of 1/f

signals will invariably be corrupted by some degree of broadband measurement noise1

It is important to both recognize and accommodate such measurement noise in any al-

gorithms for processing such data. Indeed, because 1/f signals have a spectral density

that vanishes for sufficiently high frequencies, there necessarily exists some frequency

threshold beyond which the broadband noise is predominant. As a consequence, such

noise can strongly affect the performance of signal processing algorithms.

In this chapter, we develop some optimal algorithms for addressing a number of

basic signal processing problems involving detection and estimation with 1/f-type sig-

nals. Our basic approach is to exploit the properties of wavelet-based representations

of 1/f-type processes. In particular, based upon the synthesis result of Theorem 3.4

and supported by the subsequent analysis results, our model for 1/f signals will be

signals which when expanded into an orthonormal wavelet basis, yield coefficients that

are effectively uncorrelated and obey the appropriate variance progression. That is,

we will exploit the role of the wavelet expansion as a Karhunen-Loeve-like expansion

for 1/f-type processes. Because extremely efficient algorithms exist for computing or-

thonormal wavelet transformations as discussed in Section 2.2.3, this approach is not

only analytically convenient for solving these signal processing problems, but leads to

computationally highly efficient structures for implementing the resulting algorithms.

Throughout we will be careful to incorporate additive stationary white measure-

ment noise for ensuring the robustness of our models as described above. Further-

more, most of the algorithms we develop will be designed specifically for the case of

Gaussian 1/f processes and Gaussian measurement noises. While this requirement is

principally motivated by tractability requirements, there are, in fact, many contexts

in which this is a physically reasonable assumption. Furthermore, several of the al-

gorithms we develop retain many of their important properties in the more general

non-Gaussian case.

1Actually, the coexistence of 1/f and white noises in electronic and optical systems is well-
documented. In electronic systems, for instance, the predominant noise is 1/f noise at frequencies
below about 1 kHz, while at higher frequencies, it is white noise in the form of thermal (i.e., Johnson)
and shot noise [57].
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Accompanying each of the algorithms we develop is an evaluation of its perfor-

mance in various settings. It is important to realize that such evaluations are neces-

sarily of a highly preliminary nature, and are not meant to be interpreted as in any

way comprehensive. Their primary function is to establish the basic viability of the

algorithms, and to reveal some of their basic properties. Many of these performance

studies involve Monte Carlo simulations with synthetic data. For these simulations,

we generate 1/f processes using the Corsini-Saletti implementation of Keshner's syn-

thesis described in [52]. Because this synthesis is fundamentally different from a

wavelet-based synthesis, such simulations play an important role in verifying the ro-

bustness of the wavelet-based algorithms with respect to our particular model for

1/f-type behavior. However, by their design, these simulations will generally not

enable us to isolate the effects of modeling error alone.

Additionally, there are a large number of wavelet bases from which to select for

our algorithms. However, given the apparent insensitivity of the wavelet-based model

for 1/f-type behavior to the choice of basis, for our simulations we choose, some-

what arbitrarily, to use the basis corresponding to Daubechies' 5th-order finite-extent

maximally-regular wavelet for which the corresponding conjugate quadrature filters

have 10 non-zero coefficients. We remark that in addition to being realizable, this

basis satisfies the conditions of the theorems of Section 3.2.2 concerning the synthe-

sis and analysis of 1/f-type behavior using wavelets. Specifically, the basis has more

than enough vanishing moments to accommodate spectral parameters in our principal

range of interest, 0 < y < 2.

Until recently, such problems of detection and estimation involving 1/f-type pro-

cesses received relatively little attention in the literature. However, there has been

strongly increasing interest in the topic and a number of interesting and useful related

results have been developed. An important instance is the elegant work of Barton

and Poor [42], who consider problems of detection in the presence of fractional Gaus-

sian noise using reproducing kernel Hilbert space theory. Using this framework, the

authors are able to develop both infinite- and finite-interval whitening filters for this

class of 1/f noises, which, in turn, allow them to obtain some important results on
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the detection of deterministic and Gaussian signals in the presence of such noise.

There is also a substantial and growing body of recent literature on the general

topic of multiresolution stochastic processes, systems, and signal processing. An ex-

cellent overview of work in this area is contained in [58] and the references therein. In

this work, the authors develop a clever tree- or lattice-based framework for modeling

multiscale processes and problems, and introduce some novel notions of "stationarity

in scale" for such processes. Treating multiscale processes as "dynamical systems in

scale," lead to several highly efficient algorithms for addressing a variety of problems

involving parameter estimation, signal smoothing and interpolation, and data fusion.

The 1/f-type models we exploit in this chapter constitute a special class of the mul-

tiresolution stochastic processes developed by these authors. In particular, they are

examples of processes characterized by a "Markov scale-to-scale" property. As a con-

sequence, many of the multiresolution signal processing algorithms they develop are

directly applicable to 1/f processes as shown, e.g., in [23].

There are also interesting parallels between the results of this chapter and recent

work by Tewfik and Kim. For example, in [59], these authors develop the notion

suggested by Beylkin, Coifinan and Rokhlin in [24], that wavelet-based and other,

more general, filter bank decompositions are useful in transforming the correlation

structure in a broad class of stationary and nonstationary processes (including, e.g., a

class of 1/f processes) into a form more convenient for signal processing. Specifically,

they show how the structure of the correlation in such decompositions leads directly

to computationally efficient, general purpose algorithms for signal processing. As an

example, [60] summarizes how their results can be applied to the problem of signal

detection in the presence of fractional Brownian motion.

4.1 1lf Synthesis and Whitening Filters

Many of the results on detection and estimation we will derive in this chapter are

conveniently interpreted in a canonical form through the concept of a reversible (or

invertible) whitening filter for 1/f processes. In this section, we derive such whitening
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filters and their inverses for the particular wavelet-based model for 1/f-type behavior

which we intend to exploit in this chapter.

To begin, if x(t) is a 1/f signal corresponding to some spectral exponent -y, we

model the corresponding wavelet coefficients x n as zero-mean random variables hav-

ing negligible correlation and obeying a variance progression of the form

Var. x = a2, - m

where, for notational convenience, we define

,/ = 2. (4.1)

In turn, we may express the xm as

x = ,o,-m/2m

where the vm are then zero-mean, unit-variance, uncorrelated random variables.

Hence, the process v(t) defined according to

v(t) = E E vn n (t)
m n

is a wide-sense stationary white noise process since the V)1 (t) constitute a complete

orthonormal set. This suggests that we may model x(t) as the output of a linear

system driven by stationary white noise v(t). In particular, the system performs

an orthonormal wavelet transform on the input v(t), scales each of the resulting

coefficients vm by a factor

k = f-"/ 2

then inverse wavelet transforms the resulting x m to generate the output process x(t).

This 1If synthesis filter, defined via

x(t) = Wd' {ai-m/2Wd {v(t)}} (4.2)

84

111



is a linear filter whose kernel2 is

Kf(t, r) = ZE E 0(t)0fB-1n 2. ( 4.3a)
m n

NWe emphasize that viewing x(t) as the output of a linear system with kernel (4.3a)

driven by stationary white noise v(t) is especially useful in the Gaussian scenario,

in which case w(t) is a stationary white Gaussian process. Nevertheless, for non-

Gaussian processes this characterization remains useful at least insofar as modeling

the second-order properties of x(t) is concerned.

From the wavelet-based characterization of the synthesis filter (4.2) we readily

deduce that this filter is invertible, and that its inverse has kernel

1
K,(t, r) = (t) /2n (T) (4.3b)

mn m/ 2

This is, therefore, the corresponding whitening filter for our model of 1/f-type behav-

ior. Indeed, when this filter is driven by a process obtained as the output of our 1/f

synthesis filter, the output is, evidently, a wide-sense stationary white process. When

driven by an exactly-1/f process, the properties of the output are readily described

in terms of the analysis results of Section 3.2.2.

As discussed at the outset of the chapter, any 1/f-type process we consider shall

invariably be accompanied by an additive stationary white observation noise compo-

nent. Consequently, we shall frequently find the notion of synthesis and whitening

filters for the combined 1/f-plus-white processes convenient in interpreting our algo-

rithms. These filters are, of course, closely related to the filters derived above. In

fact, it is straightforward to establish that synthesis and whitening filters for 1/f-

2In our notation, the kernel k(t, T) of a linear system defines the response of the system at time
t to a unit impulse at time r. Consequently the response of the system to a suitable input x(t) is
expressed as

y(t) = J r() k(t, r) dr.
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plus-white processes are characterized by the respective kernels

Ks(t,1) = ZZ On (t) 0rn n () (4.4a)
m n

1
;z(t,r) = ~E y~Oh(t) -n (r) (4.4b)

m n amrn

where U, > 0 is defined by

a2 = 2P-m + 02 (4.5)

and a2 is the spectral density of the white noise component. The canonical wavelet-

based realization of these filters is depicted in Fig. 4-1.

4.2 Parameter Estimation for 1lf Signals

In this section, we consider the problem of estimating the parameters of a Gaussian

1/f signal from observations corrupted by stationary white Gaussian noise. Since,

typically, we lack a priori knowledge of the spectral density of the noise, we consider,

more generally, the problem of jointly estimating signal and noise parameters for this

scenario.

Such parameter estimates, in addition to providing a solution to the associated

1/f spectrum estimation problem, are frequently of interest in their own right. In-

deed, fromn the parameter estimates, we can directly compute the fractal dimension

of the underlying signal, when defined. Robust estimation of the fractal dimension

of 1/f processes is important in a number of applications such as in signal detection

and classification. For example, in image processing, where 2-D extensions of 1/f

processes are used to model natural terrain and other patterns and textures [32] [43],

fractal dimension can be of use in distinguishing among various man-made and nat-

ural objects. While several approaches to the fractal dimension estimation problem

have been presented previously in the literature (see [43], [61], [62], and the references

therein), to date none has been able to adequately handle the presence of broadband

noise in the observation data. In fact, the quality of the estimates generally deterio-

rates dramatically in the presence of such noise even at high SNR [43]. Since noise is
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1 2 -'Y lm 2 
1 [ 2 + wI
I_________________ _ _ _

(a) Synthesis filter, kernel K.(t, r).

x(t)+w(t)

x(t)+w(t)

v(t)

(b) Whitening filter, kernel K(t, r).

Figure 4-1: Canonical form realizations of synthesis and whitening filters for processes
that are the superposition of 1/f-type and white components, i.e., 1/f-plus-rwhite
processes.
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inherently present in any real data, this lack of robustness has limited the usefulness

of these algorithms. In this section we obtain, indirectly, fractal dimension estimators

for Gaussian 1/f processes that explicitly take into account the presence of additive

white Gaussian observation noise. The resulting iterative estimation algorithms are

computationally efficient, robust, and statistically consistent.

Our basic approach is to apply the method of Maximum Likelihood (ML) esti-

mation, exploiting the wavelet-based characterization of our 1/f model. And, while

we specifically consider the case of Gaussian 1/f processes corrupted by additive

stationary white Gaussian measurement noise in our formulation of the problem, we

emphasize that the resulting estimators are, in fact, applicable to a broader class of

non-Gaussian 1/f processes and measurement noise models, and retain many desir-

able properties.

We formulate our problem as follows. Suppose we have observations r (t) of a

zero-mean Gaussian 1/f process x(t) embedded in zero-mean additive stationary

white Gaussian noise w(t) that is statistically independent of x(t), so

r(t) = x(t) + w(t), -oo < t < oo. (4.6)

From this continuous-time data, we assume we have extracted a number of wavelet

coefficients, rm. In theory, we may assume these coefficients are obtained by projecting

the wavelet basis functions onto the observed data:

00

r = m 1(t) r(t) dt.
-oo

However, in practice, these coefficients can be obtained by applying the computation-

ally efficient DWT to the samples of a segment of data which is both time-limited

and resolution-limited, as described in Section 2.2.3. Let us assume that the finite

set of available distinct scales, M, is, in increasing order,

M = {ml, m 2 , .. ,mM}, (4.7a)
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and that at each scale m the set of available coefficients A/(m) is 3

Af(m) = {nl(m), n 2(m),... , nN()(m)} (4.7b)

Hence, the data available to the estimation algorithm is

r = {rn E } = {r, m E M,n E f(m)}. (4.8)

We remark before proceeding that, based on the discussion in Section 2.2.4, for

an implementation via the DWT with N = N02M samples of observed data, we have,

typically,

M = {1,2,...,M} (4.9a)

J/(m) = {1,2,...,No2m-1}, (4.9b)

where N 0 is a constant that depends on the length of the filter h[n]. Consequently,

while many of the results we derive will be applicable to the more general scenario,

we will frequently specialize our results to this case.

Exploiting the Karhunen-Loave-like properties of the wavelet decomposition for

1/f-type processes, and using the fact that the wm are independent of the xm and

are decorrelated for any wavelet basis, the resulting observation coefficients

rn = n + Wn

can be modeled as mutually-independent zero-mean, Gaussian random variables with

variance

Var r = = a 2 -- m + a2

where is defined in terms of the spectral exponent -y of the 1/f process according

3 Note that, without loss of generality we may assume A'(m) # 0, any m, or else the corresponding
scale m could be deleted from M.
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to (4.1). Hence, it is the parameter set

e = (, a 2 , a 2 )

we wish to estimate. As discussed at the outset, it is often the case that only d or

some function of 3 such as the spectral exponent 7, the fractal dimension D, or the

self-similarity parameter H, is of interest. Nevertheless, a 2 and a, will still need to

be estimated simultaneously as they are rarely known a priori. Furthermore, ML

estimates of y, D, H are readily derived from the ML estimate ML. Indeed, since

each of these parameters is related to ,3 through an invertible transformation, we

have

?ML = 10g2 ML (4.10a)

DML = (5 - ML)/ 2 (4.1 b)

HML = (ML - 1)/2. (4.10c)

Proceeding, we express the likelihood as a function of the parameters by

1 ( r mn )2

C() =pr (r; ) = Ir 1 exp [ )2]m,nElZ '2wa L 

for which the log-likelihood function is

L(O) = lnpr(r; ) )= -2 {-2 (rn ) + ln(27ra;)} 
m,n °m

Equivalently,

L(O) - m N(m) 2 + (2ra2)} (4.11)

where the M sample-variances

(rmn2 (4.12)
N(m)E(m)
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summarize the aspects of the data required in the estimation. It is straightforward

to show that the likelihood function in this case is well-behaved and bounded from

above on

> 0, 0a2 > 0, a2 >0

so that, indeed, maximizing the likelihood function is reasonable.

While we shall assume that 13, a 2 a are all unknown, it wiare all unknown, it will be appropriate during

the development to also specialize results to the case in which a, is known. Still more

specific results will be described when a2 = O0 corresponding to the case of noise-free

observations. We may also assume, where necessary, that all m E M are positive

without loss of generality. Indeed, if, for example, ml < 0, then we could define new

parameters through the invertible transformation

~2 2aw

a2 = a2fi-1

for which the observations correspond to positive scales

M = {1,m 2 - ml +1,...,rmM - ml + 1}

and which lead to the same ML estimates for 13, a 2, a2.

4.2.1 Case I: /3, 2 , 2 Unknown

Differentiating L(E) with respect to ,2 7a2, and 3, respectively, it follows that the

stationary points of L(O) are given as the solutions to the equations

T = 0
mEM

> 1-mTm = O
mEM

E mZ3m T = O
mEM
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where
T & N(m) F 2

I I

However, these equations are difficult to solve, except in special cases. Consequently,

we utilize an iterative estimate-maximize (EM) algorithm [63].

A detailed development of the EM algorithm for our problem is given in Ap-

pendix C. The essential steps of the algorithm are summarized below, where we

denote the estimates of the parameters , a2, a generated on the Ith iteration by

p[1, 2[], 2 [1]

E step: As shown in Appendix C, this step reduces to estimating the noise and signal

portions of the wavelet coefficient variances at each scale m E M using current

estimates of the parameters /l'],& 2 [I'l], 2 ':

S[(O [1 ) = Am(' 111) + Bw(e 11 )&2 (4.13a)

Sx(O1") = Am(( 111 ) + B(B 1])['1 )& (4.13b)

where

A(([=]) a2w/' a2111 [[]-m (4.14a)
B2(e [1]) 211] [ (4.b)

2 11
Bmw@l])= (6111) )2 2ll -m (4.14b)

M step: This step reduces to using these signal and noise variance estimates to

obtain the new parameter estimates [1+l],682+l1],2 I1+]:

[+l] _ Z CmN(m)S(e[l]),3m = 0 (4.15a)
mEM
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N(m)S ([11) [pt+ll] m

&21+1] = mEM N(m) (4.15b)

inEM

&2 [+1] mEM (4.15c)pu >: N(m)
mEM

where
cm m 1

Cm ~ m (4.16)
mN(mj n N(m) (4.16)

mEM mEM

4.2.2 Case II: Pa, 2 Unknown; a2 Known

If a2 is known, the above algorithm simplifies somewhat. In particular, we may omit

the estimation (4.15c) and replace occurrences of &2 [' in the algorithm with the true

value a2. This eliminates the need to compute Sw(®[11) and, hence, B,(61[l). The

rellting algorithm is as follows.

E step: Estimate the signal portion of the wavelet coefficient variances at each scale

m E M using current estimates of the parameters ~[,-&2[tl1:

Sm({[ tl) = Am(e [1 ) + B, (l(l)&2 (4.17)

where

2 0&2[11' [P[,']]-'
An(e + 211 =[11] m (4.18a)

Bx(el]) = (8 2+ &[i] [] -m (4.18b)

M step: Use these signal variance estimates to obtain the new parameter estimates

/[+1] &2[+1]:

+ll . E CmN(nl)Sx(6er)[])m - 0 (4.19a)
mEM
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E N(m)S:,(b1'1) [1+1]]m
2[1+1 =- mM N(m) (4.19b)

E N(m)
mEM

where Cm is as in (4.16).

4.2.3 Case III: 3, a2 Unknown; aU = o

If a2 is known (or assumed) to be zero, the EM algorithm becomes unnecessary

as the likelihood may be maximized directly. Specifically, with a2 = 0, the signal

variance estimates are available directly as 2 i. Hence the estimation simplifies to the

following:

/ML - E CmN(m)a2 m = 0 (4.20a)
meg4mEM

> N(n)& [ML]

M2hL = mEM (4.20b)

mEM

with C, still as in (4.16).

It is worth discussing this special case in more detail not only for its own sake,

but also because it characterizes one of the components of each iteration of the EM

algorithm. The derivation of the parameter estimates in this case is essentially the

same as the derivation of the M step in the Appendix. We begin by differentiating the

likelihood function to find equations for its stationary points. This leads to a pair of

equations in terms of a 2 and 3. Eliminating a 2 from these equations is straightforward

and gives (4.20a) directly. Having determined O/ML as the solution to this polynomial

equation, 2rL is obtained by back substitution.

From Lemma C.1 in Appendix C, it is apparent that (4.20a) has exactly one

positive real solution, which is the ML estimate ML. Hence, L has a unique local

and hence global maximum. Moreover, we may use bisection as a method to find

the solution to this equation, provided we start with an initial interval containing

A/ML. For instance, when we expect 0 < y < 2, an appropriate initial interval is
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1 < < 4. Naturally, with some caution, Newton iterations may be used to accelerate

convergence.

Again, since solving equations of the form of (4.20) constitutes the M step of

the iterative algorithm for the more general problem, the above remarks are equally

applicable in those contexts.

4.2.4 Properties of the Estimators

In this section, we consider two principal issues:

- how the parameter estimates of the EM algorithm converge to the ML parameter

estimates, and

- how the ML parameter estimates converge to the true parameter values.

Regarding the first of these issues, we are assured that the EM algorithm always

adjusts the parameter estimates at each iteration so as to increase the likelihood

function until a stationary point is reached. It can be shown that in our problem,

the likelihood function has multiple stationary points, one of which corresponds to

the desired ML parameter estimates. Others correspond to rather pathological saddle

points of the likelihood function at the boundaries of the parameter space:

0= I3MIU0o

2 A
ML =0

6-2 0

and

arbitrary

2 =0

E N(m)&2
^ 2 mEM

= E N(m)
mEM
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That they are saddle points is rather fortunate, for the only way they are reached

is if the starting value for any one of /, &2, &2 is chosen to be exactly zero. Given

arbitrarily small positive choices for these initial parameters, the algorithm will iterate

towards the ML parameters.

The preceding discussion suggests that the EM algorithm is fundamentally rather

robust in this application. However, the selection of the initial parameter values will

naturally affect the rate of convergence of the algorithm. Moreover, it should be

noted that the EM algorithm converges substantially faster for the case in which ao,

is known. In essence, for the general algorithm much of the iteration is spent locating

the noise threshold in the data.

We now turn to a discussion of the properties of the ML estimates themselves. It

is well-known that ML estimates are generally asymptotically efficient and consistent.

This, specifically, turns out to be the case here. It is also the case that at least in

some higher signal-to-noise ratio (SNR) scenarios, the Cramer-Rao bounds closely

approximate the true estimation error variances.

To compute the Cram6r-Rao bounds for the estimates of 7, a2, and aw2, we con-

struct the corresponding Fisher matrix

[ln 2 m a 2 6 -m]2 - ln 2m 2 [f-m]2 - l 2 ma2p l

N. 2( m)2 1n2mu2[-m] 2 [-m]2 0-m (4.21)
nEM 2(,2)2

- In 2ma 2 3- m /-" 1

from which we get

Var5_ > Ill

Var &2 > I22

Var 2 > I33

for any unbiased estimates ty &2, 2 ,, and where I k k is the kth element on the diagonal

of I-1. However, local bounds such as these are of limited value in general both

because our estimates are biased and because the bounds involve the true parameter
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values, which are unknown.

When a,2 is known, the Fisher information matrix

trix

N(m)[0-m] 2 [ln 2mO2] 2

mEM 2(aT) 2 - In 2ma2

simplifies to the upper subma-

- ln 2ma 2

1
(4.22)

from which we get

Var j > I l l

Var &2 > 122.

As one would expect, both the actual error variances and the Cramer-Rao bounds

are smaller for this case. Note that because the bounds are still a function of the

parameters in this case, their usefulness remains limited. Nevertheless, except in very

low SNR settings, the estimate biases are small in a relative sense and the estimation

error variance is reasonably-well approximated by these bounds. Hence, the bounds

are at least useful in reflecting the quality of estimation that can be expected in

various scenarios.

When 2 = 0, we get still further simplification, and we can writeWna=

(1n2) 2/2 E rn2N(n)
I = niEM

-(n 2)/(2a2 ) E a mN(m)
L i mEM

-(ln2)/(2a 2) E mN(m)

mEM I
from which we get

Var'y > 2/ [(ln2)2J] E N(m)
mEM

Var(&2/a2) > 2/J E mn2N(m)
mEM

where

J= [E m2N(m)] [1 N(m)]- mN(m)]
MEM mEM mEM
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In this case, the bounds no longer depend on the parameters. Moreover, in prac-

tice, these expressions give an excellent approximation to the variances of the ML

estimates. Evaluating the Cramr-Rao bounds asymptotically for the usual imple-

mentation scenario described by (4.9), we get

VarML '- 2/ [(ln2)2N] (4.24a)

Var (&aL/2 ) - 2(log2 N)2)/N (4.24b)

where N is the number of observation samples.

4.2.5 Simulations

For the Monte Carlo simulations of this section, we synthesize discrete samples of

resolution-limited Gaussian 1/f processes embedded in stationary white Gaussian

noise. In general, we vary the length N and SNR of the observations sequence as

well as the spectral exponent a of the underlying 1/f processes. We then perform

parameter estimation using algorithms for the most general scenario, corresponding

to the case in which all signal and noise parameters 3, a2, a 2 are unknown.

In Fig. 4-2, we plot the RMS error of the estimates of and a2 for various values of

q, as a function of SNR where the observation sequence length is fixed to N = 2048.

The results from 64 trials were averaged to obtain the error estimates shown. As

the results suggest, the quality of the estimates of both parameters is bounded as

a consequence of the finite length of the observations. Moreover, the bounds are

virtually independent of the value of a and are achieved asymptotically. For increasing

values of y, the bounds would appear to be attained at increasing SNR thresholds.

In Fig. 4-3, we plot the RMS error of the estimates of y and 2 for various values

of y as a function of observation sequence length N where the SNR is fixed to 20 dB.

Again, results from 64 trials were averaged to obtain the error estimates shown. While

the results show that the estimation error decreases with data length as expected,

they also suggest, particularly for the case of a 2 , that the convergence toward the

true parameters can be rather slow. Note, too, that a rather large amount of data is
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(a) Absolute RMS error in YML.

Figure 4-2: RMS Errors in the estimates of the signal parameters as a function of
the SNR of the observations. The symbols associated with each y mark the actual
empirical measurements; dashed lines are provided as visual aides only.
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required before the relative estimation error in a2 can be made reasonably small.

We conclude this section with a demonstration of the tracking capabilities of the

parameter estimation algorithm. Specifically, Fig 4-4 illustrates the performance of

the parameter estimation in tracking a step-change in the spectral exponent y of

a noise-free 1/f signal. The signal was constructed such that the left and right

halves of the signal correspond to ? = 0.90 and y = 1.10, respectively, but identical

variances. Local estimates of y are computed by applying the Case III parameter

estimation algorithm to the signal under a sliding window of length 16 384 centered

about the point of interest. Note that the algorithm not only accurately resolves the

appropriate spectral exponents, but accurately locates the point of transition as well.

Finally, we remark that, as in any such tracking algorithm, using a wider estimation

window would reduce the variance in the parameter estimates within each half of the

waveform, but at the expense of an increase in the width of the transition zone.

4.3 Smoothing of 1/f Signals

In this section, we consider the problem of extracting a 1/f signal from a background

of additive stationary white noise. There are many potential problems involving

signal enhancement and restoration to which the resulting smoothing algorithms can

be applied. For this signal estimation problem, we use a Bayesian framework to

derive algorithms that are optimal with respect to a mean-square error criterion. We

specifically consider the Gaussian case, for which the resulting algorithms not only

yield estimates having the minimum possible mean-square error, but correspond to

linear data processors as well. However, more generally, for non-Gaussian scenarios

the estimators we derive are optimal in a linear least-squares sense, i.e., no other linear

data processor will be capable of yielding signal estimates with a smaller mean-square

error [64].

While we do not specifically derive our signal estimation in terms of Wiener fil-

tering in the frequency domain, interpretations in this domain provide useful insight.

In particular, it is clear that at high frequencies the white noise spectrum will dom-

101

� __ _I_



0.5

0.4

0

Ui)

0.3

0.2

0.1

0
0 2000 4000 6000 8000 10000

Data Length N

(a) Absolute RMS error in ?ML.

Figure 4-3: RMS Errors in the estimates of the signal parameters as a function of the
data length N of the observations. Again, the symbols associated with each -y mark
the actual empirical measurements; dashed lines are provided as visual aides only.
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(a) 1/f signal with step change in y.
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(b) Estimate of y under a time-limited window.

Figure 4-4: Tracking the time-varying spectral exponent of a noise-free 1/f-type
signal. For the left half of the signal, = 0.90, while for right half, = 1.10.
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inate, while at low frequencies the 1/f signal spectrum will dominate. In fact, at

sufficiently low frequencies, there will always be arbitrarily high SNR regardless of

the noise threshold. Consequently, Wiener filtering for this problem involves a form

of low-pass filtering, where the exact filter shape and "cut-off" are governed by the

particular parameters of the noise and signal spectra.

Our basic formulation is to consider the estimation of a 1/f signal x(t) from noisy

observations r(t) of the form (4.6), viz.,

r(t) = x(t) + w(t)

where w(t) is stationary white noise, and where we still consider zero-mean processes.

We shall assume in our derivation that the signal and noise parameters , a2, 2 are

all known, though, in practice they are typically estimated using the parameter algo-

rithms of the last section. In fact, the parameter and signal estimation problems are

quite closely coupled. Indeed it will become apparent in our subsequent development

that smoothing was inherently involved in the parameter estimation process as well.

We, again, exploit the wavelet decomposition to obtain our results. Specifically,

we begin with the set of wavelet coefficients (4.8). Then, since

r = + m

n n n

where the x and wn are all mutually independent with variances a 2/p-n and a2

respectively, it follows immediately using classical estimation theory that the estimate

of xm that minimizes the mean-square estimation error is given by

= E [ = E [ Iml] m, n E

0 otherwise

Furthermore, when x'n and rm are jointly Gaussian, it is straightforward to establish
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that the least-squares estimates are linear and given by

E [xnIrn] = [2i-m + a2] (4.25)

From these estimates, we can express our optimal estimate of the 1/f signal as

x(t)= m ~pnm(t) = [ 2i-m 1) rm (t). (4.26)
m,n m,nEZ 2j-m + or 

Note that, consistent with our earlier discussion of Wiener filtering for this prob-

lem, the smoothing factor

.2,f-m + a2

in (4.26) has a thresholding role: at coarser scales where the signal predominates

the coefficients are retained, while at finer scales where noise predominates, the co-

efficients are discarded. Note, too, that this factor appears in (4.14c), which allows

us to interpret (4.13b) in terms of sample-variance estimates of the smoothed data.

Evidently, smoothing is inherently involved in the parameter estimation problem.

Interpreting the optimal estimator (4.26) in terms of the whitening filters of Sec-

tion 4.1 leads to a conceptually convenient and familiar realization. In particular,

as depicted in Fig. 4-5, the optimal linear processor consists of two stages. In the

first stage, the noisy observations r(t) are processed by a whitening filter with kernel

Kw(t, r) given by (4.4b) to generate an intermediate white innovations process v(t)

whose wavelet coefficients are
m rmVn = - .

n rm

In the second stage, v(t) is processed by an innovations filter with kernel

Ki(t, ) = E E ?P (t) 1a2-m] a(r) (4.27)
m n a rn

to generate the optimal estimate x(t) with wavelet coefficients given by (4.25). This

innovations-based implementation is a classical estimation structure [65].

In practice, good performance is achieved by these estimators even in very poor
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v(t) A
r(t) X(t)

Figure 4-5: A canonic form implementation of the optimal linear filter for estimating
a 1/f signal x(t) from noisy observations r(t). The linear least-squares filter is the
cascade of a whitening filter followed by an innovations filter. The intermediate
innovations process v(t) is stationary and white.

SNR scenarios. This is not surprising given the preponderance of energy at low

frequencies (coarse scales) in 1/f-type processes. Let us, then, turn to a quantitative

analysis of the estimation error. First, we note that because our set of observations

is finite the total mean-square estimation error

OO E [((t)-(t))2] dt

is infinite. Nevertheless, when we define

x(t) = E XV en (t)
m,nE1Z

as the best possible approximation to x(t) from the finite data set, we can express

the total mean-square error in our estimate with respect to i(t) as

£= E [(i(t)-_(t))2 ] dt

= Z E [(M - xm)2]
m,nERZ

= Z, E [Var(xIr71 )]
m,nERZ

which, through routine manipulation, reduces to

mEM - a,
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4.3.1 Simulations

For the simulations of this section, we synthesize discrete samples of resolution-limited

Gaussian 1/f processes embedded in Gaussian white noise. In general, we vary the

SNR of the observations sequence as well as the spectral exponent y of the underlying

1/f processes. We then perform parameter estimation, followed by signal estimation,

using algorithms for the most general scenario, corresponding to the case in which all

signal and noise parameters A, a 2, a are unknown. Note that by using the estimated

parameters in the signal estimation algorithm, our experiments do not allow us to

distinguish between those components of signal estimation error due to errors in the

estimated parameter values and those due to the smoothing process itself. However,

it turns out that the quality of the signal estimation is generally rather insensitive to

errors in the parameter estimates used.

In Fig. 4-6, we plot the SNR gain of our smoothed signal estimates for various

values of 'y as a function of the SNR of the observations where the sequence length

is fixed to N = 2048. Again, results from 64 trials were averaged to obtain the

error estimates shown. The SNR gains predicted by the total mean-square error

formula (4.28) are also superimposed on each plot. As the results indicate, the actual

SNR gain is typically no more than 1 dB below the predicted gain, as would be

expected. However, under some circumstances the deviation can be more than 3

dB. Worse, the SNR gain can be negative, i.e., the net effect of smoothing can be

to increase the overall distortion in the signal. Such degradations in performance

are due primarily to limitations on the accuracy to which the wavelet coefficients at

coarser scales can be extracted via the DWT. In particular, they arise as a result of

undesired effects introduced by modeling the data outside the observation interval as

periodic to accommodate the inherent data-windowing problem. By contrast, error

in the parameter estimates is a much less significant factor in these degradations at

reasonably high SNR. The plots also indicate that better gains are achieved for larger

values of y for a given SNR. This is to be expected since for larger values of y there

is more signal energy at coarser scales and correspondingly less at finer scales where

the noise predominates and the most attenuation takes place.
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Figure 4-6: SNR gain (dB) of the signal estimate as a function of the SNR of the
observations. Both the gains predicted by eq. (4.28) and gains actually obtained are
indicated.
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We conclude this section with a signal estimation example. In Fig. 4-7 we show

a segment of a 65 536-sample 1/f signal, the same signal embedded in noise, and the

signal estimate. In this example, the spectral exponent is = 1.67, and the SNR

in the observations of 0 dB. The estimated spectral exponent is YML = 1.66, and

the SNR gain of the signal estimate is 13.9 dB. As anticipated, the signal estimate

effectively preserves detail at the coarse scales where the SNR was high, while detail

at fine scales is lost where the SNR was low.

4.4 Coherent Detection in 1lf Noise

In this section we consider the problem of detecting a known signal of finite energy in

a background of Gaussian 1/f and white noise. In general, the detection algorithms

we shall derive are applicable to many potential problems involving synchronous com-

munication and pattern recognition.

This rather fundamental problem has received some prior attention in the litera-

ture. Indeed, Barton and Poor considered the detection of known signals in fractional

Gaussian noise backgrounds in [42]. Nevertheless, our formulation has a few distin-

guishing features, an example of which is that we consider 1/f processes correspond-

ing to a much broader range of spectral exponents y. However, perhaps the principal

distinction, apart from one of approach, is the inclusion of stationary white Gaussian

measurement noise in our model. In general, this refinement improves the robust-

ness properties of the resulting algorithms and precludes certain singular detection

scenarios. Furthermore, it shall become apparent that the wavelet-based approach

we follow is not only analytically and conceptually convenient, but leads to practical

implementation structures as well.

Let us pose our detection problem in terms of a binary hypothesis test with a

Neyman-Pearson optimality criterion. Given noisy observations r(t), we wish to de-

termine a rule for deciding whether or not a known signal is present in the observa-

tions. For our test formulation, under hypothesis HI we observe a signal of energy

Eo > 0 against a background of Gaussian 1/f and white noise, while under hypothesis
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Figure 4-7: Optimal smoothing of a noisy 1/f signal.
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Ho we observe only the background noise, i.e.,

H: r(t) = os(t) +x(t) + w(t)

Ho: r(t) = x(t) + w(t)

where w(t) is stationary white Gaussian noise and x(t) is Gaussian 1/f-type noise,

and s(t) is a unit energy signal:

J 2(t) dt = 1.
0

We shall assume w(t) and x(t) to be statistically independent processes under either

hypothesis. Let us further assume our observations generally extend over the infinite

interval -oo < t < oo. The problem is then to design a decision rule that maximizes

the probability of detecting s(t)

PD = Pr(decide H 1 I H 1 true)

subject to a constraint on the maximum allowable false alarm probability

PF = Pr(decide H 1 I Ho true).

As is well-known, the solution to this problem takes the form of a likelihood ratio test

[641].

An equivalent hypothesis test can be constructed in terms of observations of the

respective wavelet coefficients

r = {r m

as

HI: r = oS + m + _m

HO:rm m= +Wn
n n n
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for -oo < m < oo and -oo < n < oo. According to our model, under each

hypothesis, the coefficients w' and x' are all statistically independent, and have

variances a2 and a2 1-m, respectively.

In this case, since joint distributions of the observations under the respective

hypotheses are

1 [ ( [ 'm - ESm)2 ]
PrlH(r) = II 2AR exp - 2an 

m L
1 [ (r)2

the likelihood ratio
rlH, (r)

PrlHo(r)

can be simplified substantially to yield a test of the form

H 1

eZ= ra, > a (4.29)
mn m

H0

where a is the threshold of the test.

This optimal detector may be realized using a whitening filter based implementa-

tion as shown in Fig. 4-8. The statistic e is constructed by processing both r(t) and

/s(t) with a prewhitening filter whose kernel is given by (4.4b), and correlating

the respective outputs r(t) and s(t). It is straightforward to verify this implemen-

tation: since the prewhitened signals r(t) and s(t) have wavelet coefficients r'/a,,

and VEAs Tm / a m, respectively, it suffices to recognize the expression for e in (4.29) as

the inner product between s.(t)//o and r(t), which allows us to rewrite (4.29) as

H 1

e = r.(t) s(.( t)/ dt > oa.

Ho
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Figure 4-8: Canonical prewhitening implementation of the optimal receiver for de-
tection of a known s(t) in the presence of both Gaussian 1/f and stationary white
Gaussian noise, where K,(t, r) is the kernel of the whitening filter for 1/f-plus-white
noise.

This is, of course, a canonical form receiver for optimal detection in the presence of

colored noise as described in [64].

Let us turn now to a discussion of performance of this optimal receiver. Via the

implementation of this receiver in terms of the whitened observations r.(t), we note

that the performance is necessarily equivalent to that of an optimal detector for s,(t)

in the presence of stationary white Gaussian noise of unit variance. Indeed, if we

define the performance index d according to

d2_ s2(t)dt = (s (4.30)

then

E [elHo] = 0

E[ejlH] = d2/X/o

Var{elHo} = Var{elH 1 } = d2 /Eo.

Hence, expressing our arbitrary threshold in the form

d In- 1 d

114

_



for some -oo < at < oo, the performance of the test can be described in terms of the

detection and false alarm probabilities, respectively

PD = Q d (4.31a)

PF = Q (ln77 + d (4.31b)

where

Q (x) : j e _ 2/2 dv. (4.32)

The familiar receiver operating characteristic (ROC) associated with such Gaus-

sian detection problems is as shown in Fig. 4-9 for various values of d. However,

while such performance projections are generally useful and suggest the viability of

detection in 1/f-type backgrounds, there is need for substantiation of these results

through a comprehensive set of Monte Carlo simulations. Indeed, it is only through

such an evaluation that we can ultimately verify the anticipated insensitivity of the

algorithms to our particular 1/f model.

In concluding this section, we makes some brief remarks on the problem of opti-

mum signal design for use in 1/f-plus-white backgrounds. Based on our analysis, it

is apparent that we can optimize performance if we choose s(t), or equivalently s,

to maximize d2 in (4.30) subject to the energy constraint

J s2(t) dt = Z (sm)2 = 1.
foo m n

However, this signal optimization problem is not well-posed. Indeed, because of the

spectral distribution of the background noise, the optimization will attempt to con-

struct a signal whose energy is at frequencies sufficiently high that the 1lf noise

is negligible compared to the white component. Consequently, to preclude the gen-

eration of an arbitrarily high frequency signal, generally some form of bandwidth

constraint is necessary. For an example of how this is accommodated in a communi-

cations scenario, see [66].
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Figure 4-9: The receiver operating characteristic for the detection of a known signal
in a background of 1/f plus white noise for various thresholds determined via the
performance index d.
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4.5 Discriminating Between 1/f Signals

In this section, we consider the ability of an optimal Bayesian detector to discriminate

between Gaussian 1/f processes of distinct parameters in a background of station-

ary white Gaussian noise. The signal classification algorithms we derive are useful

in a variety of potential applications. The problem of distinguishing 1/f processes

is, of course, very closely related to the parameter estimation problem treated in

Section 4.2. Indeed, parameter estimation can be viewed as distinguishing among

an arbitrarily large number of 1/f processes with incrementally different parameters.

Nevertheless, as we shall see, approaching the problem from a detection perspective

affords a number of new and useful insights.

It is, again, convenient to formulate our problem in terms of a binary hypothesis

test in which under each hypothesis we have noisy observations r(t) of distinct 1/f

signals. Specifically, we have as our two hypotheses

H0 r(t) = (t) + w(t) (4.33a)

H 1: r(t) = i(t) + w(t) (4.33b)

where x(t) and x(t) are Gaussian 1lf processes4 with distinct parameters and w(t) is

a white measurement noise, statistically independent of x(t) or i(t), whose variance is

the same under both hypotheses. For this test we will develop a minimum probability

of error (Pr(e)) decision rule under the assumption of equally likely hypotheses.

Once again, our optimum receiver is best developed and analyzed in the wavelet

domain. Rewriting the hypothesis test in terms of the corresponding wavelet coeffi-

cients as

Ho:rm = -m + Wn

H1: rm = + wm

4Ve use the notation ' and" to distinguish the 1/f processes and their respective parameters
under the two hypotheses. These symbols should not be confused with differentiation operators, for
which we have generally reserved the notation ' and ".
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we model the r under each hypothesis as a collection of zero-mean statistically

independent Gaussian random variables with variances

Var {rjHo} :

Var{r Hi} :

where

In our derivation we shall assume

observation coefficients of the form

*2; = & '3 m+ '

=a2 = 2:-m + 2m 

(4.34a)

(4.34b)

= 2.

that, in general, only a finite collection of

r = {rm E 7Z} = {r-,m E M,n E J(m)},

where M and MA(m) are as defined in (4.7), are available. In fact, as we shall see,

the problem turns out to be singular (i.e., perfect detection is achievable) if complete

observations over the infinite interval are available. In our simulations, we shall

assume our observation set R to be of the particular form (4.9), which corresponds

to the collection of coefficients generally available from time- and resolution-limited

observations of r(t) via a DWT algorithm as discussed in Section 2.2.4

The likelihood ratio test for this problem can be simplified to a test of the form

1 1 1 ..2
mEM = M ' ) - m

H1

Ho

0 (4.35)

where the a are, again, the sample-variances defined via (4.12) which summarize

the aspects of interest in the data. It is straightforward to show that this test can

be implemented in the canonical form shown in Fig. 4-10. Here the observations r(t)
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r(t)
A

H

Figure 4-10: A canonical form implementation of the optimal receiver for discriminat-
ing between 1/f models with distinct parameters based on noisy observations r(t).

are processed by 1/f-plus-white whitening filters corresponding to each hypothesis,

for which the respective kernels are

1
~ktu ~~E1,(t,) = (T)

m n n

kw(t, r) = EE'(t) - b2(T).
mn m

Consequently, only one of the residual processes (t) and (t) is white, depending on

which hypothesis is true. To decide between the two hypotheses, the receiver com-

putes the difference in energy in the two residuals and compares it to the appropriate

threshold.

Although the detection problem is Gaussian, it is apparent that the the log-

likelihood e is not conditionally Gaussian under either hypothesis. Consequently,

evaluating the performance of such receivers is rather difficult in general. Neverthe-

less, it is possible to obtain approximate performance results by exploiting a procedure

described in [64] based upon the use of the Chernoff bound. Specifically, defining

u(s) E [estlHo],

for an arbitrary real parameter s, we can bound the performance of our optimal

detector according to

Pr(e) 5 e"(s ) (4.36)
2
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where s is the parameter value yielding the best possible bound, i.e.,

s = arg rnmin (s).

When there are sufficiently many observations to justify modeling e as Gaussian

via a central limit theorem (CLT) argument, we can also obtain the following asymp-

totic expression for the error probability

Pr(e) 1 ei)
2s.(1 - s)V27rit"(s.)

(4.37)

which is a more optimistic and accurate estimate of the achievable performance [64]

In our case, pi(s) and its first two derivatives are given by

s)]}

A'(S)

1= -
2mE

mEM

1

mE.mfM

N(m) In
ni

'2
m I

,2ir2N(m) 2 m

{sm+ (1 - s)

(4.38a)

(4.38b)

(4.38c)

It is generally not possible to derive a closed form expression for the minimum value of

it(s) via either (4.38a) or (4.38b) for this asymmetric detection problem. Fortunately,

though, a numerical optimization is reasonable: it suffices to consider a numerical

search over values of s within a limited range. Indeed, since

P(0) = P(1) = 0,

and since from (4.38c) we have that p(s) is convex

I" (s) > 0
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it follows that the minimum of yj(s) can be found in the range 0 < s < 1.

4.5.1 Simulations

In this section, we obtain, via (4.36) and (4.37), numerical estimates of the probability

of error performance. For our scenario, we assume that coefficients r are available

in the range (4.9) consistent with what could be extracted from N = 2 M samples of

time- and resolution-limited observations via a DWT algorithm. In our simulations,

we consider the ability of the optimal receiver to distinguish between 1/f processes of

different spectral exponents y (or, equivalently, fractal dimensions D, or self-similarity

parameters H). In particular, we do not consider the capabilities of the algorithms

to discriminate on the basis of variance differences. Consequently, in all our tests, we

choose the variance parameters &2 and 52 such that the variance of the observations

is identical under either hypothesis.

In our first set of simulations, the bound (4.36) is used as an estimate of the

probability of error performance of an optimal detector in discriminating between

two equal-variance 1/f processes whose spectral exponents differ by Ay based on

noisy observations of length N corresponding to a prescribed SNR. In the tests,

three different spectral exponent regimes are considered, corresponding to a = 0.33,

-y = 1.00, and a = 1.67.

In Fig. 4-11, performance is measured as a function of SNR for noisy observa-

tions of length N = 128 and a parameter separation Ay = 0.1. Note that there is

a threshold phenomenon: above a certain y-dependent SNR, Pr(e) drops dramati-

cally. Moreover, the threshold is lower for larger values of y. This is to be expected

since larger values of y correspond to an effective 1/f power spectrum that is in-

creasingly peaked at the w = 0, so that a correspondingly greater proportion of the

total signal power is not masked by the white observation noise. Beyond this thresh-

old performance saturates as the data is essentially noise-free. However, note that

there is crossover behavior: at SNR values above the thresholds, better performance

is obtained for smaller values of y. In subsequent tests, we restrict our attention to

performance in this high SNR regime.
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Ay= 0.1
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Figure 4-11: Optimal discriminator performance as a function of SNR, as estimated
via the Chernoff bound.
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In Fig. 4-12, performance is plotted as a function of the number of samples N of

observed data corresponding to an SNR of 20 dB and hypotheses whose parameter

separation is A-y = 0.1. In this case, there is thresholding behavior as well. For data

lengths beyond a critical order-of-magnitude we get strongly increasing performance

as a function of data length. Again, because we are in the high SNR regime, we

observe that the best performance is achieved for the smallest values of -y.

Finally, in Fig. 4-13, performance is plotted as a function of the separation between

the two hypotheses-specifically, the difference between the spectral parameters for

noisy observations of length N = 128 corresponding to an SNR of 20 dB. As we would

expect, the results illustrate that the larger the distinction between the hypotheses,

the better the performance achievable by the receiver. Again, as we are in the high

SNR regime, we find that the best performance is achieved for the smallest values of

Y.

Whenever the probability of error is low-i.e., either when the SNR is high, large

data lengths are involved, or the hypotheses are well-separated-it turns out that the

CLT-based approximation (4.37) represents a more optimistic estimate of performance

than does (4.36). However, in high Pr(E) scenarios, (4.36) constitutes a more useful

measure of system performance than does (4.36). This behavior is illustrated in

Figs. 4-14, 4-15, and 4-16 for hypotheses in the y = 1 regime. Note that only at

sufficiently high SNR, data lengths, and parameter separations does the CLT-based

approximation actually yield a Pr(s) estimate that is below the bound. We cannot,

of course, assess whether the CLT-based approximation is overly optimistic in the

high SNR regime. In general, we can only expect the estimate to be asymptotically

accurate as N -, oo. Nevertheless, the fact that the rate of change of Pr(E) with

respect to SNR, data length N, and parameter separation A'y has a similar form for

both the bound and the approximation gives us additional confidence that the earlier

plots of Pr(E) do suggest the correct form of the functional dependence upon these

parameters.

It is important to emphasize once again that the simulations of this section consti-

tute a highly preliminary performance study. Indeed, any comprehensive evaluation of
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Figure 4-12: Optimal discriminator performance as a function of the number of sam-
ples N of noisy observations, as estimated by the Chernoff bound. The symbols 0,
A and O correspond to actual estimates; the lines are provided as visual aides only
in this case.
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Figure 4-13: Optimal discriminator performance as a function of the parameter sep-
aration Ay' between the two hypotheses, as estimated via the Chernloff bound.
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Figure 4-14: Optimal discriminator performance as a function of SNR, as estimated
via both the Chernoff-bound (4.36) and the CLT-based approximation (4.37).
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Figure 4-15: Optimal discriminator performance as a function of the number of sam-
ples of observed data, as estimated via both the Chernoff-bound (4.36) and the CLT-
based approximation (4.37). The A symbols correspond to actual estimates; the lines
are provided as visual aides only.
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Figure 4-16: Optimal discriminator performance as a function of the parameter sep-
aration A-y, as estimated via both the Chernoff-bound (4.36) and the CLT-based
approximation (4.37).
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the system must ultimately involve a series of Monte Carlo simulations using synthetic

and real data. Such tests are critical to exploring issues pertaining to robustness of

the algorithms to modeling errors. Nevertheless, the numerical results presented here

lend some valuable insights into the performance potential and anticipated behavior

of optimal discriminators for 1/f-type processes.

Before concluding this section, we consider a potentially useful and practical re-

finement of the optimal discrimination problem. There are a number of application

contexts in which we would be more interested in distinguishing 1/f processes strictly

on the basis of their spectral exponents, fractal dimensions, or self-similarity parame-

ters. This would correspond to a hypothesis test (4.33) in which &2, /2 and oa would

be unwanted parameters of the problem. In this case, a solution could be obtained

using a generalized likelihood ratio test [641 of the form

max f 1 exp [r ) H1
w m,nElZ m m > 1 A qn\

1
max TI 1 exp

2 m,nEZ ,/27r 2&22jm2

< 1. .0u /

Ho
- V 

In general, expressions for the maxima involved in the construction of the likelihood

function of (4.39) cannot be obtained in closed form. However, a practical imple-

mentation of this receiver could potentially exploit an EM algorithm of the general

type developed in Section 4.2. In terms of performance, we would anticipate that,

in general, it would only be possible to adequately evaluate such a receiver through

Monte Carlo simulations.

4.6 Outstanding Issues

A number of outstanding issues remain to be addressed concerning wavelet-based

representations of 1/f processes and their use in signal processing. As an example,

while we rely on both theoretical and empirical evidence that the wavelet coefficients

of 1/f processes are decorrelated, we recall that the theoretical justification of this

analysis result was rather weak. An important contribution would be to establish
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both tight bounds on the correlation between wavelet coefficients and conditions on

the wavelet basis underwhich such bounds are valid.

A complementary issue concerns our synthesis result, which established that wave-

let expansions in terms of uncorrelated random variables give rise to nearly-1/f spec-

tra. An interesting and potentially important question concerns whether there exist

wavelets giving rise to an exactly-1/f spectrum. While the answer may well be neg-

ative, perhaps sequences of dyadic or non-dyadic wavelets can chosen to approach a

1/f spectrum arbitrarily closely.

Another issue pertains to the unusual data-windowing problem inherent in the

wavelet decomposition. In the experiments described in this work, we have avoided

the problem by modeling the data as periodic outside the finite observation interval

during computation of the DWT. However, this leads to a number of rather unde-

sirable effects, some of which manifested themselves in the smoothing simulations as

we noted. More effective approaches to accommodating observations on the finite

interval need to be developed.

Finally, a number of interesting, straightforward and useful extensions to this

work are suggested by the approaches described here. Specifically, the problem of

distinguishing and isolating two superimposed fractal signals is, in principle, readily

solved by the methods of this work. In addition, the separable extension of the

results presented herein to two and higher dimensions is likewise straightforward. In

each case, we anticipate that a number of powerful yet practical algorithms can be

developed.

Although a general treatment of incoherent detection problems involving I/f back-

grounds is beyond the scope of this thesis, a variety of such problems can be addressed

using some straightforward extensions to the approaches of the chapter. In general,

to model these scenarios we can consider the detection of signals known to within a

collection of parameters. Optimal detection schemes for such scenarios typically in-

volve generalized likelihood ratio tests in which there are both parameter estimation

and signal detection components. An example of such an extension was outlined at

the end of Section 4.5.1.
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Chapter 5

Deterministically Self-Similar

Signals

Signals x(t) satisfying the deterministic scale-invariance property

x(t) = a-Hx(at) (5.1)

for all a > 0, are generally referred to in mathematics as homogeneous functions (of

degree H). Homogeneous functions can be regular or nearly so, for example x(t) = 1

or x(t) = u(t), or they can be generalized functions, such as x(t) = 6(t). In any case,

as shown by Gel'fand [67], homogeneous functions can be parameterized with only

a few constants. As such, they constitute a rather limited class of signal models in

many contexts.

A comparatively richer class of signal models is obtained by considering waveforms

which are required to satisfy (5.1) only for values of a that are integer powers of

two. This broader class of homogeneous signals then satisfy the dyadic self-similarity

property

x(t) = 2 -kHx(2 kt) (5.2)

for all integers k. It is this, more general, family of homogeneous signals of degree H

whose properties and characterizations we study in this chapter. When there is risk

of confusion in our subsequent development, we will denote signals satisfying (5.1) as
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strict-sense homogeneous, and signals satisfying (5.2) as wide-sense homogeneous.

Homogeneous signals constitute an interesting and potentially important class of

signals for use in a number of communications-based applications. In Chapter 6 we

shall see that when we develop a strategy for embedding information into a waveform

"on all time scales," the resulting waveforms are homogeneous signals. As a conse-

quence of intrinsic self-similarity, these modulated waveforms have the property that

an arbitrarily short duration time-segment is sufficient to recover the entire wave-

form, and hence the information, given adequate bandwidth. Likewise an arbitrarily

low-bandwidth approximation to the waveform is sufficient to recover the undistorted

waveform, and hence the information, given adequate duration. Furthermore, we will

see that these homogeneous waveforms have spectral characteristics very much like

those of 1/f processes, and, in fact, have fractal properties as well.

Collectively, such properties make this modulation scheme an intriguing paradigm

for communication over highly unreliable channels of uncertain duration, bandwidth,

and SNR, as well as in a variety of other contexts. We shall explore these and other

issues in the next chapter. In the meantime, we turn our attention to developing

a convenient mathematical framework for characterizing homogeneous signals that

shall prove useful in the sequel.

While all non-trivial homogeneous signals have infinite energy, and many have

infinite power, there are nevertheless some such signals with which one can associate

a generalized 1/f-like Fourier transform, and others with which one can associate a

generalized 1/f-like power spectrum. We distinguish between these two classes of

homogeneous signals in our subsequent treatment, denoting them energy-dominated

and power-dominated homogeneous signals, respectively. We begin our theoretical

development by more rigorously defining the notion of an energy-dominated homo-

geneous signal, and constructing some Hilbert space characterizations. This will lead

to some useful constructions for orthonormal "self-similar bases" for homogeneous

signals. It will become apparent that, as in the case of statistically self-similar 1/f-

type processes, orthonormal wavelet basis expansions constitute natural and efficient

representations for these signals as well.
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5.1 Energy-Dominated Homogeneous Signals

Our definition of an energy-dominated homogeneous signal is reminiscent of the one

we proposed for 1/f processes in Section 3.1. Specifically,

Definition 5.1 A wide-sense homogeneous signal x(t) is said to be energy-dominated

if when x(t) is filtered by an ideal bandpass filter with frequency response

Bo (0 ) 1 (r < W3 < 2)r

0 otherwise

the resulting signal io(t) has finite-energy, i.e.,

L 2(t)dt < oo.

As with 1/f processes, the choice of passband edges at r and 27r in our definition is

somewhat arbitrary. In particular, substituting in the definition any passband that

does not include w = 0 or w = oo but includes one entire frequency octave leads

to precisely the same class of signals. Nevertheless, our particular choice is both

sufficient and convenient.

We remark that the class of energy-dominated homogeneous signals includes both

reasonably regular functions, such as the constant x(t) = 1, the ramp x(t) = t, the

time-warped sinusoid x(t) = cos[2r log 2 t], and the unit step function x(t) = u(t), as

well as singular functions, such as x(t) = 6(t) and its derivatives. However, although

we will not always be able to actually "plot" signals of this class, we will be able to

suitably characterize such functions in some useful ways. Let us begin by using EH

to denote the collection of all energy-dominated homogeneous signals of degree H.

The following theorem allows us to interpret the notion of spectra for such signals.

A straightforward but detailed proof is provided in Appendix D.1.
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Theorem 5.2 When an energy-dominated homogeneous signal x(t) is filtered by an

ideal bandpass filter with frequency response

w1 < IWI U < U(5.4)

0 otherwise

for arbitrary 0 < WL < WU < 00, the resulting signal y(t) has finite energy and a

Fourier transform of the form

Y(w) = { X() WL < < WU (5.5)
0 otherwise

where X(w) is some function that is independent of WL and Wu and has octave-spaced

ripple, i.e., for all integers k,

IW"H+X(w) = 12 kWIH+X(2 kW). (5.6)

Note that since X(w) in this theorem does not depend on WL or wv, this function

may be interpreted as the generalized Fourier transform of x(t). Furthermore, (5.6)

implies that the generalized Fourier transform of signals in EH obeys a 1/f-like

(power-law) relationship, viz.,

IX()l H

However, we shall continue to reserve the term "l1/f process" or "l/f signal" for the

statistically self-similar random processes defined in Chapter 3.

re also remark that X(w) does not uniquely specify x(t) E EH, i.e., the mapping

x(t) , , X(S)

is not one to one. As an example, x(t) = 1 and x(t) = 2 are both in EH for H = 0,

yet both have X(w) = 0 for w > 0. In order to accommodate this pathological

134

____ ._ __� _ __



behavior in our subsequent theoretical development we shall exploit the notion of an

equivalence class. In particular, we shall consider all signals having a common X(w)

as equivalent or indistinguishable.

Indirectly, Theorem 5.2 suggests that an energy-dominated homogeneous signal

x(t) has a convenient representation in terms of the ideal bandpass wavelet basis. In

particular, if we sample the output xo(t) of the filter in Definition 5.1 at unit rate we

obtain the sequence

n] = x(t) bo(t - n) dt = x(t) +° (t) dt = 

where 4(t) is the ideal bandpass wavelet whose frequency response is given by (2.7).

Furthermore, the self-similarity of x(t) according to (5.2) implies

p-m/2q[n]= i x(t) m (t) dt = x'
-00

where, as in earlier chapters, 3 is defined by

= 22H+1 = 2. (5.7)

Consequently, using the orthonormal wavelet synthesis formula (2.5a), x(t) can be

expressed as1

x(t) = j C InI 2 [n]nl(t), (5.8)
m n

from which we see that x(t) is completely specified in terms of l[n]. We term q[n]

a generating sequence for x(t) since, as we shall see, this representation leads to

techniques for synthesizing useful approximations to homogeneous signals in practice.

More generally, as we shall see,(5.8) is a useful expansion for a broad family of

homogeneous functions. However, a homogeneous function x(t) defined by (5.8) is,

'Henceforth, we shall assume in this chapter, and in the associated appendix, that all summations
over m and n extend from -oo to oo unless otherwise noted.
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specifically, energy-dominated if and only if [n] has finite energy, i.e.,

f 2 [n] < 00.
n

This follows from the fact that since o(t) in Definition 5.1 has the orthonormal

expansion

0o(t) = E [n]° (t) (5.9)
n

we have

f 0 (t) dt = E [n]. (5.10)

In turn, this observation implies that we may use (5.10) to define the following norm

on EH:

Ix , = 02(t) dt = 2[n]. (5.11)

This is a valid norm provided we adopt the convention that two homogeneous func-

tions f(t) and g(t) in EH are equivalent if their generalized Fourier transforms F(w)

and G(w), respectively, are identical on 0 < w < oo. In turn, this implies that f(t)

and g(t) are equivalent if they differ by a homogeneous function whose frequency

content is concentrated at the origin w = 0. In the case that H is an integer k > 0,

this would correspond to

f(t) - g(t) = Ct k, (5.12)

for an arbitrary constant C. Whether (5.12) characterizes all equivalent functions for

H = k > 0, and whether there are equivalent functions for other values of H are

open questions. In any case, with this notion of an equivalence class, EH is, in fact,

complete with respect to the norm (5.11) and, hence, constitutes a Banach space.

This is an immediate consequence of the isomorphism between EH and 12(Z).

More generally, we may define an inner product between two energy-dominated

homogeneous signals f(t) and g(t), whose generating sequences under the bandpass

136



basis are 5[n] and b[n], respectively, as

(f g)$ - J fo(t) go(t)dt = a[n] b[n] (5.13)
oo n

where fo(t) and go(t) are the outputs of the bandpass filter (5.3), and where the last

equality is a consequence, again, of the orthonormality of the expansion (5.9). With

this inner product, the induced norm is, of course, (5.11). Since EH is complete,

EH therefore constitutes a Hilbert space. Furthermore, one can readily construct

"self-similar" bases within EH. Indeed, (5.8) immediately provides an orthonormal

basis for EH. In particular, for any x(t) E EH, we have the synthesis and analysis

pair

x(t) = E c[n] OH(t) (5.14a)
n

4[n] = (x, H) (5.14b)

where one can easily verify that the basis functions

H-(t) = Ed-m/2 ~m(t) (5.15)
m

are self-similar, orthogonal, and have unit norm.

The fact that the ideal bandpass basis is unrealizable means that (5.14a) is not

a practical mechanism for synthesizing or analyzing homogeneous signals. However,

as we will show, more practical wavelet bases are equally suitable for defining an

inner product for the Hilbert space EH. Specifically, we next show, that a broad

class of wavelet bases can be used to construct such inner products, and that, as

a consequence, some highly efficient algorithms arise for processing homogeneous

signals.
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In order to determine which orthonormal wavelet bases can be used to define inner

products for EH, we must determine for which wavelets V)(t) the homogeneous signal

x(t) = -,m/2q[n]V)r(t) (5.16)
m n

is energy-dominated when q[n] has finite energy and, simultaneously, the sequence

q[n] = x(t) ?°(t)dt

has finite energy when x(t) is an energy-dominated homogeneous signal. In other

words, we seek conditions on a wavelet basis such that q[n] E 12(Z) will be isomorphic

to EH. Our main result is a corollary of the following theorem. A proof of this

theorem is provided in Appendix D.2.

Theorem 5.3 Consider an orthonormal wavelet basis such that V)(t) has R vanishing

moments for some integer R > 1, i.e.,

(r)(o) = 0, r = 0,1,...,R- 1. (5.17)

Then when any homogeneous signal x(t) whose degree H is such that y = 2H + 1

satisfies 0 < 7 < 2R is filtered by an LTI system with impulse response i(-t), the

resulting process xo(t) has finite energy if and only if x(t) is energy-dominated.

When the output xo(t) of the filter in Theorem 5.3 is sampled at unit rate, we

obtain the sequence of wavelet coefficients

q[n] = JO x(t) 0°(t)dt = x0. (5.18)
-00

Furthermore, from the self-similarity of x(t) we have also

-m/2 q[n] = x(t) m (t) dt= x. (5.19)F~~~~~n
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Clearly then, associated with each +(t) satisfying (5.17) is a generating sequence q[n]

for the homogeneous signal x(t). Also, again because of the orthogonality of '(t)

with respect to its unit translates, we have

L| x(t) = q[n].

Combining this result with that of Theorem 5.3 allows us to immediately deduce our

main result:

Corollary 5.4 For any wavelet basis satisfying the conditions of Theorem 5.3, the

homogeneous signal x(t)

x(t) = Z Z -m/2 q[] ' (t) (5.20)
m n

is energy-dominated (i.e., x(t) E EH) if and only if q[n] has finite energy (i.e.,

q[n] 12 (Z)).

This corollary implies that we may choose for our Hilbert space EH from among a

large number of inner products whose induced norms are all equivalent. In particular,

for any wavelet (t) with sufficient vanishing moments, we may define the inner

product between two functions f(t) and g(t) in EH whose generating sequences are

a[n] and bn], respectively, as

(f, g), = a[nb[n]. (5.21)
n

It is important to emphasize that this collection of inner products is not necessarily

exhaustive. Even for wavelet-based inner products, Corollary 5.4 asserts only that the

vanishing moment condition is sufficient to ensure that the inner product generates

an equivalent norm. It is conceivable, however, that the vanishing moment condition

is not a necessary condition.
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In any case, each wavelet-based inner product leads immediately to an orthonor-

mal self-similar basis for EH: if x(t) E EH, then

x(t) = Eq[n] 9H(t) (5.22a)
n

q[n] = (x, (5.22b)

where, again, the basis functions

OH (t) = Z -m / 2 Vpm(t) (5.23)
m

are all self-similar, mutually orthogonal, and have unit norm. For the case H = 0,

Fig. 5-1 depicts the self-similar basis functions 4(t), 8(t), 0O(t), and 87(t) correspond-

ing to the Daubechies 5th-order compactly-supported wavelet basis. These functions

were generated by evaluating the summation (5.23) over a large but finite range of

scales m. We emphasize that q[n] is only a unique characterization of x(t) when we

associate it with a particular choice of wavelet 0(t). In general, every different wavelet

decomposition of x(t) will yield a different q[n], though all will have finite-energy.

For an arbitrary non-homogeneous signal x(t), the sequence

q[n] = (x,On })

defines the projections of x(t) onto EH, so that

x(t) - q[n] H(t) dt
-00

represents the closest homogeneous signal to x(t)

x(t) = arg min Iy- xlIk
y(t)EEH

with respect to the induced norm 11p II. In Chapter 6, it will be apparent how such

projections arise rather naturally in treating problems of estimation with homoge-
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neous signals.

Finally, we remark that wavelet-based characterizations give rise to a convenient

expression for the generalized Fourier transform of an energy-dominated homogeneous

signal, x(t). In particular, if we take the Fourier transform of (5.16) we get, via some

routine algebra,

X(w) = E 2 (H+l)m"(2-mw)Q(2-mw) (5.24)
m

where Q(w) is the Fourier transform of q[n]. This spectrum is to be interpreted in

the sense of Theorem 5.1, i.e., X(w) defines the spectral content of the output of a

bandpass filter at every frequency w within the passband.

In summary, we have shown that a broad class of wavelet-based norms are equiva-

lent for EH in a mathematical sense, and that each of these norms is associated with

a particular inner product. This leads one to speculate whether every equivalent.

norm for EH can be associated with a wavelet basis, in which case the basis functions

associated with every orthonormal basis for EH could be expressed in terms of some

wavelet according to (5.23). This issue remains unresolved. In any case, regardless

of whether the collection of inner products we construct is exhaustive or not, they at

least constitute an highly convenient and practical collection from which to choose in

any given application involving the use of homogeneous signals.

5.2 Power-Dominated Homogeneous Signals

Energy-dominated homogeneous signals have infinite energy. In fact, most have in-

finite power as well. However, there are other infinite power homogeneous signals

that are not energy-dominated. In this section, we consider a more general class of

infinite-power homogeneous signals that will be of interest in Chapter 6. W\?e begin

with what is a natural definition.

Definition 5.5 A wide-sense homogeneous signal x(t) is said to be power-dominated

if when x(t) is filtered by an ideal bandpass filter with frequency response (5.3) the
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resulting signal o(t) has finite power, i.e.,

lim 1i ~ i(t)dt < o.
T-aoo 2T J-T

We use the notation pH to designate the class of power-dominated homogeneous

signals of degree H. Note that while our definition necessarily includes the energy-

dominated signals, which have zero power, insofar as our discussion is concerned they

constitute a degenerate case.

Before proceeding, we recall some basic definitions and useful relationships for

deterministic finite-power signals. Reference [68] contains a more thorough exposition

of these results. A finite-power signal f(t) has a (deterministic) autocorrelation

1 T
Rf(r) = lim T / f(t) f(t - r) dt

whose Fourier transform is the (deterministic) power spectrum

Sf(w) = Rf(T) e - j r dr

T- oo f2(t) e- jt dt 

Analogous formulae are obtained for finite power sequences. The deterministic au-

tocorrelation and power spectrum satisfy many of the LTI filtering and sampling

properties satisfied by the corresponding quantities for stationary random processes.

Analogous to the energy-dominated case, we can establish the following theorem

describing the spectral properties of power-dominated homogeneous signals.

Theorem 5.6 When a power-dominated homogeneous signal x(t) is filtered by an

ideal bandpass filter with frequency response (5.4), the resulting signal y(t) has finite

power and a power spectrum of the form

Sy(WL) S(W) L <W < WU (5.25)
0 otherwise
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where S.(w) is some function that is independent of WL and wu and has octave-spaced

ripple, i.e., for all integers k,

Iwl2H+lS.(w) = 2kw2 +l1 S(2kw). (5.26)

The details of the proof of this theorem are contained in Appendix D.3, although

it is identical in style to the proof of its counterpart, Theorem 5.2. Note that since

S,(w) in this theorem does not depend on WL or wu, this function may be interpreted

as the generalized power spectrum of x(t). Furthermore, the relation (5.26) implies

that signals in pH have a generalized time-averaged power spectrum that is 1/f-like,

z.e.
1

where y is as defined in (5.7). However, we again emphasize that we reserve the

term "l1/f process" or "l1/f signal" for the statistically self-similar random processes

defined in Chapter 3. Note too that there is no notion of time-averaging in the

spectrum defining a 1/f process.

In turn, Theorem 5.6 directly implies that a homogeneous signal x(t) is power-

dominated if and only if its generating sequence [n] in the ideal bandpass wavelet

basis has finite power, i.e.,

1 : 2[71]< 
L--oo 2L + 1 =-L

Similarly we can readily deduce from the results of Section 5.1 that, in fact, for any

orthonormal wavelet basis with sufficient vanishing moments R that 0 < < 2R

(where y = 2H + 1), the generating sequence for a homogeneous signal of degree

H in that basis has finite power if and only if the signal is power-dominated. This

implies that, for such bases, when we use (5.22a) to synthesize a homogeneous signal

x(t) using an arbitrary finite power sequence q[n], we are assured that x(t) E pH.

Likewise, when we use (5.22b) to analyze any signal x(t) E pH, we are assured that

q[nl has finite power. Again we emphasize that different choices of wavelet basis in
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such an analysis will yield different generating sequences, all of which, however, have

finite power.

Energy-dominated homogeneous signals of arbitrary degree H can be highly reg-

ular, at least away from t = 0. In contrast, power-dominated homogeneous signals

typically have a fractal structure similar to 1/f processes of corresponding degree H.

In fact, it is a reasonable conjecture that the Hausdorff-Besicovitch dimension, when

defined, is identical for the two types of signals. Indeed, despite their obvious struc-

tural differences, power-dominated homogeneous signals and 1/f processes "look" re-

markably similar in a qualitative sense. This is apparent in Fig. 5-2, where we depict

the sample path of a 1/f process along side a randomly-generated power-dominated

homogeneous signal of the same degree. We reiterate that in Fig. 5-2(a), the self-

similarity of the 1/f process is statistical, while in Fig. 5-2(b), the self-similarity of

the homogeneous signal is deterministic.

We can quantify the similarity between the two types of signals through an obser-

vation about their spectra. In general, we remarked that for a given H, both exhibit

power law spectral relationships with the same parameter -y. The following theo-

rem further substantiates this for the case of randomly-generated power-dominated

homogeneous signals. The details of the proof are contained in Appendix D.4.

Theorem 5.7 For any orthonormal wavelet basis in which (t) has Rth order regu-

larity for some R > 1, the random process x(t) synthesized according to

x(t) = 0 -t-m/2 q[n]Om(t), (5.27)
m n

using a correlation-ergodic (e.g., Gaussian), zero-mean, stationary white random se-

quence q[n] of variance a2 , has a generalized time-averaged power spectrum of the

form

S () = a2 2-mlX(2-mw) 2 (5.28)
m

Note that the time-averaged spectrum (5.28) is identical to the time-averaged

spectrum (3.36) for the wavelet-based synthesis of 1/f processes described in Sec-

tion 3.2.2. However, we must be careful not to misinterpret this result. It does not
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(a) A sample function of a 1/f process.

0 200 400 600 800 1000

(b) A randomly-generated power-dominated homogeneous signal.

Figure 5-2: Comparison between the sample path of a 1/f process and a power-
dominated homogeneous signal. Both correspond to y = 1 (i.e., H = 0).
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suggest that (5.27) is a reasonable approach for synthesizing 1/f processes. Indeed,

it would constitute a very poor model for 1/f-type behavior based on the analysis

results of Section 3.2.2: when 1/f processes are decomposed into wavelet bases we get

statistical rather than deterministic similarity from scale to scale. Instead, the theo-

rem remarks that the time-averaged second order statistics of the two types of signals

are the same. Consequently, one would anticipate that distinguishing 1/f processes

from power-dominated homogeneous signals based on spectral analysis alone would

be rather difficult. Nevertheless, the tremendous structural differences between the

two means that they may be readily distinguished using other techniques such as, for

example, wavelet-based analysis.

Equation (5.28) corresponds to the superposition of the spectra associated with

each scale or octave-band in the wavelet-based synthesis. In general, we would expect

the spectrum of x(t) to be the superposition of the spectra of the individual channels

together with their cross-spectra. However, the time-averaged cross-spectra in this

scenario are zero, which is a consequence of the fact that the white sequence qn] is

modulated at different rates in each channel. Indeed, the time-averaged correlation

is zero between q[n] and q[2mn] for any m > 1; that is, white noise is uncorrelated

with dilated and compressed versions of itself.

Because (5.28) and (3.36) are identical, we can use Theorem 3.4 to conclude that

the spectra of a class of randomly generated power-dominated homogeneous signals

are bounded on any finite interval of the frequency axis that does not include w = 0.

However, there are many x(t) E pH whose spectra is not bounded in this manner. All

interesting and potentially important subclass of power-dominated homogeneous sig-

nals with such unbounded spectra are those for which x(t) as defined in Definition 5.5

is periodic. This class of power-dominated homogeneous signals will be referred to

as periodicity-dominated. It is straightforward to establish that these homogeneous

signals have the property that when passed through an arbitrary bandpass filter of

the form (5.4) the output is periodic as well. These processes have a power spectrum

consisting of impulses (spikes) whose areas decay according to a 1/lwl relationship.

An important class of periodicity-dominated homogeneous signals can be generated
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through a wavelet-based synthesis of the form (5.22) in which the generating sequence

q[n] is periodic.

5.3 Discrete-Time Algorithms for Processing Ho-

mogeneous Signals

Orthonormal wavelet representations provide some useful insights into homogeneous

signals x(t). For instance, because q[n] is replicated at each scale in the representation

(5.20), the detail signals Dmx(t), which represent q[n] modulated into a particular

octave-band, are simply amplitude-scaled and time-dilated or compressed versions of

one another. The corresponding time-frequency portrait of a homogeneous signal (of

degree H = -1/2, for convenience) is depicted in Fig. 5-3, from which the scaling

properties are apparent. 'We emphasize again that the partitioning in such time-

frequency portraits is idealized. In general, there is both spectral and temporal

overlap between cells.

Wavelet representations also lead to some highly efficient algorithms for synthe-

sizing, analyzing, and processing homogeneous signals, just as they did in the case

of 1/f processes. The signal processing structures we develop in this section are a

consequence of applying the DWT algorithm to the highly structured form of the

wavelet coefficients of homogeneous signals.

WVe have already encountered one discrete-time representation for a homogeneous

signal x(t), namely that in terms of a generating sequence q[n]

x(t) 4-, q[n] (5.29)

which corresponds to the coefficients of the expansion of x(t) in an orthonormal basis

{O'(t)} for E H . When the H9'(t) are derived from a wavelet basis, a second discrete-

time representation for x(t) is available, which we now discuss.

Consider the coefficients am characterizing the resolution-2m approximation of a

homogeneous signal x(t) with respect to a particular multiresolution signal analysis.
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Figure 5-3: The time-frequency portrait of a homogeneous signal of degree H = - 1/2.
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If O(t) is the scaling function associated with this analysis, then these coefficients are

defined through the projections (2.13), viz.,

a'"n x (t) Om (t) dt.

Using the self-similarity of x(t) it is straightforward to show that these coefficients

are identical at all scales to within a scale factor, i.e.,

am = -m/ 2a0 (5.30)

Consequently, the characteristic sequence associated with x(t), defined via

p[n] = a (5.31)

is an alternative discrete-time characterization of x(t), since knowledge of pin] is

sufficient to reconstruct x(t) to arbitrary accuracy. We stress that the characteristic

sequence associated with x(t) is not unique: distinct multiresolution signal analyses

generally yield different characteristic sequences for any given homogenous signal.

Furthermore, we shall require the wavelet associated with any multiresolution analysis

we consider to have sufficient vanishing moments that it meets the conditions of

Theorem 5.3.

The characteristic sequence p[n] is associated with a resolution-limited approxi-

mation to a homogeneous signal x(t). Specifically, p[n] represents unit-rate samples of

the output of a roughly lowpass filter with frequency response *(w) driven by x(t).

Because frequencies in the neighborhood of the spectral origin, where there is a pre-

ponderance of energy, are passed by such a filter, p[n] will often have infinite energy

or, worse, infinite power, even when q[n] has finite energy (x(t) E EH). Still more

severe, there will be cases in which p[n] is actually singular and, hence, cannot be

"plotted." In fact, the characteristic sequence pin] is typically a generalized sequence

in the same sense that its corresponding homogeneous signal x(t) is a generalized

function.
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p[n] h[-n] 2 p- p[n]

Figure 5-4: The discrete-time self-similarity identity for a characteristic sequence pln].

The characteristic sequence can be viewed as a discrete-time homogeneous signal.

As such it satisfies the discrete-time self-similarity relation2

0l/2p[n] = h[k - 2nip[k] (5.32)
k

which is readily obtained using (5.30) with (5.31) in the DWT analysis equation

(2.21a). Indeed, (5.32) is a statement that when p[n] is lowpass filtered with the

conjugate filter whose unit-sample response is hf-n] and then downsampled, we get

back an amplitude-scaled version of p[n], as depicted in Fig. 5-4. And although

characteristic sequences are generalized sequences, when highpass filtered with the

corresponding conjugate highpass filter whose unit-sample response is g[-n], the out-

put is a finite energy or finite power sequence, depending on whether p[n] corresponds

to a homogeneous signal x(t) that is energy-dominated or power-dominated, respec-

tively. Consequently, we can analogously classify p[n] as energy-dominated in the

former case, and power-dominated in the latter case. In fact, when the output of the

highpass filter is downsampled at rate two, we recover the characteristic sequence q[7n]

associated with the decomposition of x(t) into the corresponding wavelet basis, i.e.,

lI/2q[n] = g[k - 2n]p[k]. (5.33)

This can be readily verified by substituting (5.18) with (5.19), and (5.31) with (5.30),

into the DWT analysis equation (2.21b).

From a different perspective, (5.33) provides a convenient mechanism for obtaining

the representation for a homogeneous signal x(t) in terms of its generating sequence

2Relations of this type may be considered discrete-time counterparts of the dilation equations
considered by Strang in [16].
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q[n] from one in terms of its corresponding characteristic sequence p[n], i.e.,

p[n] - q[n].

To obtain the reverse mapping

q[n] - p[n]

is less straightforward. For an arbitrary sequence q[n], the associated characteristic

sequence p[n] is the solution to the linear equation

P-l/2p[n] - h[n - 2k]p[k] = g[n - 2k]q[kl, (5.34)
k k

as can be verified by specializing the DWT synthesis equation (2.21c) to the case of

homogeneous signals. There appears to be no direct method for solving this equation;

even in the frequency domain, where, for finite energy q[n], (5.34) becomes

-11/2p(W) = H(w) P(2w) + G(w) Q(2w)

with P(w) the generalized Fourier transform of p[n], the problem appears intractable.

However, the DWT synthesis pyramid of Fig. 2-6(b) suggests a convenient and effi-

cient iterative algorithm for constructing p[n] from q[n]. In particular, denoting the

estimate of p[n] on the ith iteration by p[il[n], the algorithm is

p[01[n] = 0 (5.35a)

p[i+l][n] = 31/2 E {h[n - 2k]p[l'[k] + g[n - 2k]q[k]}. (5.35b)
k

This recursive upsample-filter-merge algorithm, depicted in Fig. 5-5, can be inter-

preted as repeatedly modulating q[n] with the appropriate gain into successively

lower octave bands of the frequency interval 0 < Iwl < r, and we note that the
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'...... pil[n]

q[n]

pli+ll[n] ---------..........

Figure 5-5: Iterative algorithm for the synthesis of the characteristic equence p[n]
of a homogeneous signal x(t) from its generating sequence q[n]. The notation pl] [n]
denotes the value of p[n] at the ith iteration.

precomput a iAe quantity

q.[nt] = gin - 2k]q[k]
k

represents the q[n] modulated into essentially the upper half band of frequencies.

The modulation-based interpretation of the algorithm suggests that issues of con-

vergence as i -- cc are ultimately tied to issues of whether or not p[n] is a regular

sequence. In particular, when p[n] is well-behaved, the algorithm exhibits rapid con-

vergence. The Fourier transform of the error between iterations is readily derived

as

p[i+1J(w)_ p[il(w) = /(i+l)/2 [I(2kI HG(2w) )Q(2i+lw)

= (2/)i/2 /3/2D(2?w)G(2iw)Q(2i+1w)/((w)

for Iwl < r, where the last inequality follows from the repeated application of (A.2a).

In turn, using Parseval's relation, the total energy difference between iterates can be

obtained as

E pli+l ] - ptiMl[] 2 1 +A J pi+l1(w) _ p[iI(W) dw.

However, it is important to keep in mind that any practical application of homo-

geneous signals will ultimately only involve scaling behavior over a finite range of
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scales, corresponding to q[n] modulated into a finite range of adjacent octave bands.

Consequently, only a finite number of iterations would be used with the algorithm

(5.35). More generally, this also means that many of the theoretical issues associated

with homogeneous signals concerning singularities and convergence do not present

practical difficulties in the application of deterministically self-similar signals, as will

be apparent in our developments of the next chapter.

In our closing remarks, we mention that there would appear to be important

connections to be explored between the self-similar signal theory described here and

the work of Barnsley, et al., [69] on deterministically self-affine one-dimensional and

multi-dimensional signals. Interestingly, the recent work of Malassenet and Mersereau

[70] has shown that these iterated function systems have efficient representations in

terms of wavelet bases as well.
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Chapter 6

Fractal Modulation

There are a number of interesting potential applications for the wide-sense homo-

geneous signal theory developed in the last chapter. In this chapter, we consider a

specific one as an indication of the direction that some applications may take. In

particular, we explore the use of homogeneous signals as a modulating waveforms in

a communication-based context. We begin by considering an idealized but general

channel model, and proceed to demonstrate that the use of homogeneous waveforms

in such channels is at least natural, if not optimal, and leads to a novel multirate

modulation strategy in which data is transmitted simultaneously at multiple rates.

\We remark at the outset that while multirate modulation has received attention in

the recent literature (see, e.g., [14] [71] [72] [73]), the work is, at best, peripherally

related.

Consider the problem of designing a communication system for the transmission of

continuous- or discrete-valued data sequences over a noisy and unreliable continuous-

amplitude, continuous-time channel. As depicted in Fig. 6-1, the classical structure

for such a system involves a modulator at the transmitter that embeds the data

sequence q[n] into a signal x(t) which is sent over the channel. At the receiver, a

demodulator processes the distorted signal r(t) to extract an optimal estimate of the

data sequence [n].

In a typical scenario, the channel would be "open" for some time-interval T,

during which it has a particular bandwidth W and signal-to-noise ratio (SNR). In
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x(t) r(t)
q[n]--- modulator channel - demodulator q[n]

Figure 6-1: A communication system for transmitting a continuous- or discrete-
amplitude data sequence q[n] over a noisy and unreliable continuous-amplitude,
continuous-time channel.

x(t) +
t=T

I

r(t)

Figure 6-2: The channel model for a typical communications scenario.

general, this rather generic model can be used to capture both characteristics of the

transmission medium and constraints inherent in one or more receivers. When the

noise characteristics are additive, the overall channel model is as depicted in Fig. 6-2,

where z(t) represents the noise process.

When either the bandwidth or duration parameters of the channel are known a

priori, there are many well-established approaches for designing an optimum com-

munication system for transmitting q[n] reliably. However, there are a variety of

military and commercial communication contexts in which both the bandwidth and

duration parameters are either unknown or at least inaccessible to the transmitter'.

This case, by contrast, has received comparatively less attention in the communica-

tions literature, although it encompasses a range of both point-to-point and broadcast

communication scenarios, including

- channels subject to hostile jamming

'Equivalently, we might be interested in designing systems whose performance is optimal over a
range of possible bandwidth and duration parameter combinations.
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- broadcast communication involving disparate receivers

- multiple access channels involving time-, frequency-, or code-division multiplex-

ing (i.e., TDMA, FDMA, or CDMA)

- packet-switching

- fading channels, such as meteor burst, ocean acoustic, or mobile radio channels

- low probability of intercept (LPI) communication

In these situations, it is often desirable to have a system with the following per-

formance characteristics:

1. Given a duration-bandwidth product T x W that exceeds some threshold, we

must be able to transmit q[n] without error in the absence of noise (z(t) = 0).

2. Given increasing duration-bandwidth product in excess of this threshold, we

must be able to transmit q[n] with increasing fidelity in the presence of noise.

Furthermore, in the limit of infinite duration-bandwidth product, perfect trans-

mission should be achievable at any finite SNR.

Note that the first of these requirements implies we ought to be able, at least in

principle, to recover q[n] from arbitrarily little bandwidth given sufficient duration,

or, alternatively, from arbitrarily little duration given sufficient bandwidth. The

second requirement implies that we ought to be able to obtain better estimates of

q[n] the longer the receiver is able to listen, or the greater the bandwidth it has

available. Consequently, the modulation must contain redundancy to exploit for

this error correction capability. As we shall see, the use of homogeneous signals for

transmission is naturally suited to fulfilling these requirements.

In general, we would anticipate that the time-bandwidth threshold involved would

be a function of the length L of the data sequence. For this reason, it is more

convenient to phrase the discussion in terms of a rate-bandwidth ratio R/W. Indeed,

when the duration constraint T is transformed into a symbol rate constraint R defined
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as

R = L/T. (6.1)

our time-bandwidth threshold is transformed into a rate-bandwidth ratio R/W thresh-

old that is independent of sequence length.

In a conventional communication system in which the bandwidth is prescribed,

the information-bearing sequence q[n] is modulated into the available bandwidth W14

at some rate R such that in the absence of noise, perfect recovery of q[n] is possible.

The spectral efficiency rl of such a system is usually defined as the maximum rate R

achievable for a given bandwidth W, i.e.,

= max R (6.2)

which is measured in symbols/sec/Hz. More efficient systems can achieve a higher

rate for a given bandwidth, or, equivalently, support a given rate with less bandwidth.

A reasonable approach to spectrally efficient transmission can be constructed as

follows. A transmitter modulates the data sequence q[n] onto a lowpass waveform by

expanding it into an orthonormal basis to generate the lowpass transmitted waveform

x(t) = E q[n] Rosinc (Rot - n)
n

where

1 t=0
sinc (t)= sin 7rt

otherwise
7rt

and where Ro is a fixed parameter of the system. In turn, the receiver recovers q[n]

from the projections

q[n] = j x(t) iqosinc (Rot - n) dt
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which are implemented as a sequence of filter-and-sample operations. Since

. {Vsinc(Rot)} = I 1/ - < 7rRo
t Vo otherwise

this system achieves a rate of R = R 0 symbols/sec using a (double-sided) bandwidth

of WV = R0 Hz. Thus, the system is characterized by a spectral efficiency of

7/0 = 1 symbol/sec/Hz. (6.3)

Furthermore, it is power efficient in the presence of additive stationary white noise.

Needless to say, however, such a system is not practical. Indeed, the lack of temporal

localization in sinc t makes the system not only unrealizable, but have infinite delay as

well. Nevertheless, useful approximations can be implemented using other bases with

better time localization properties and with little penalty in spectral characteristics.

Consequently, the idealized system is a useful baseline for the purposes of compar-

ison, and (6.3) is the corresponding performance benchmark. We shall refer to this

modulation as uniformly most spectrally efficient (UMSE). Indeed, it represents the

potential performance of a system in which the transmitter has perfect knowledge of

the rate-bandwidth characteristics of the channel. Since under our requirements the

transmitter is constrained to have no knowledge of these parameters, and, hence, can-

not reconfigure itself accordingly, UMSE modulation provides a useful performance

bound in our analysis.

Note that choosing a different value of R0 effects a time-scaling of the system.

The new system has the same efficiency but attains it for a different combination of

rate and bandwidth. However, any one such system is only efficient when operating

at the rate and bandwidth for which it was designed. That is, given a doubling of the

available bandwidth, the system will still function properly, though it will not be able

to exploit the potential to double the symbol rate afforded by the excess bandwidth.

To do this would require a different, re-scaled system. Because this involves a re-

designed transmitter, this change requires that the transmitter have knowledge of the
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bandwidth available.

We now turn our attention to the design of a transmission scheme based upon

the concept of embedding the data to be transmitted into a wide-sense homogeneous

signal. As we shall see, this leads to a systems that maintains its spectral efficiency

over a broad range of rate-bandwidth combinations using a fixed transmitter con-

figuration. Due to the fractal properties of the transmitted signals, we refer to the

resulting scheme as fractal modulation.

6.1 Transmitter Design: Modulation

Consider a transmitter that expands q[n] in an orthonormal self-similar basis Ot'(t)

of arbitrary degree H

x(t) = E q[n]O'(t)
n

where the basis is constructed from the ideal bandpass wavelet (t) according to

(5.15), viz.,

On (t) = E13-m/2,n t
m

When q[n] has finite-power, as we shall generally assume, the resulting x(t) is a power-

dominated homogeneous signal and corresponds to a time-frequency portrait of the

form depicted in Fig. 5-3. More generally, we recognize this as a multirate modulation

of q[n]: in the mth channel, q[n] is modulated at rate 2 using a (double-sided)

bandwidth of 2 m Hz. Furthermore, the energy per symbol used in successively higher

channels (m) scales by

p = 2 = 2 2H+1

It is apparent that from such a transmission, a suitably designed receiver can recover

q[n] at rate 2 using a baseband bandwidth of 2 m+1 Hz, from which we deduce that

this modulation has a spectral efficiency

7F = (1/2) symbol/sec/Hz,
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which is half that of our baseline system2 . In effect, this loss in efficiency is the price

paid to enable a receiver to use any of an arbitrarily broad range of rate-bandwidth

combinations to accommodate the characteristics of the channel or its own internal

processing constraints.

In Fig. 6-3, we illustrate the rate-bandwidth tradeoffs that can be made at the

receiver in demodulating the transmitted data. In particular, in the absence of noise

a receiver can, in principle, perfectly recover the information sequence q[n] using rate-

bandwidth combinations that lie on or below the solid curve. Note that, according to

our definition, the rate corresponding to B = 1 Hz is R = OF, i.e., the spectral effi-

ciency of the modulation scheme. The stepped character of this curve reflects the fact

that only rates of the form 2"m can be accommodated, and that full octave increases in

signal bandwidth are required to enable q[n] to be demodulated at successively higher

rates. For reference, the performance bound corresponding to UMSE modulation is

superimposed on this plot as a dashed line. We emphasize that with UMSE modula-

tion, the transmitter has perfect knowledge of the rate-bandwidth characteristics of

the channel, while with fractal modulation the transmitter has no knowledge.

Clearly, this fractal modulation scheme is unrealizable for several reasons. First,

the basis functions used at the transmitter again have infinite length. Hence, not

only can such a transmitter not be implemented, but a corresponding receiver would

involve infinite delay. However, we may more generally replace the ideal bandpass

wavelet used to synthesize the orthonormal self-similar basis with one having compa-

rable frequency domain characteristics but better time localization properties. As we

have discussed, there are many suitable wavelets to choose from, among which are

those due to Daubechies [1].

Another reason that fractal modulation is impractical is associated with the fact

that q[n] is modulated into an infinite number of octave-bandwidth channels. As

a consequence, such a transmitter requires infinite power. However, in a practical

implementation, only a finite collection of contiguous channels M would be used byI

2We emphasize that it is the baseband bandwidth that is important in defining the spectral
efficiency in accordance with our our channel model of Fig. 6-2, since it defines the highest frequency
available at the receiver.
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Figure 6-3: Spectral efficiency of fractal modulation. At each bandwidth B, the solid
curve indicates the maximum rate at which transmitted data can be recovered. The
dashed curve, indicating the corresponding rate for UMSE modulation, represents a
performance bound.
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the transmitter. The resulting modulated waveform

x(t) = Eq[n] : /j-m/2 n(t) (6.4)
n mEM

then exhibits self-similarity only over a range of scales, and the data can be demodu-

lated at one of only a finite number of rates. In terms of Fig. 6-3, the rate-bandwidth

characteristic would extend over a finite range of bandwidths which have been chosen

to cover extremes anticipated for the system.

It is important to note that the fractal modulation transmitter can be implemented

in a computationally highly efficient manner. Indeed, much of the processing can be

performed using discrete-time algorithms of Section 5.3. Assuming the number of

scales to be used is I, the signal x(t) defined via (6.4) is synthesized from q[n] as

follows. First, the algorithm (5.35) is iterated 1 times to generate pIl[n] using

the QIMF filter pair h[n], g[n] appropriate to the wavelet basis. This modulates q[n]

into a sequence of Al contiguous discrete-time channels. Then the resulting sequence

p[Ml][n] is modulated into the desired bandwidth via the appropriate scaling function

according to

x(t)= Ep[M1 [n]= (t).
n

Here we have assumed, for convenience, the collection of scales

M = {0,1,...M-1}

where Al is some positive integer. It is important to point out that because a batch-

iterative algorithm is employed, potentially large amounts of data buffering may be

required. Hence, while the algorithm may be computationally efficient, in may be

considerably less so in terms of storage requirements. However, in the event that

q[n] is finite length, it is conceivable that the algorithm may be modified so as to be

memory-efficient as well.

In fact, the transmission of finite length sequences raises another issue: in trans-

mitting finite length messages, a direct implementation of fractal modulation is rather
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inefficient, principally because the successively higher channels are increasingly un-

derutilized. In particular, as is apparent from the time-frequency portrait of Fig. 5-3,

if q[n] has finite length, e.g.,

q[n] = 0, n < O, n > L-1

then the mth channel will have completed its transmission and go idle in half the time

it took the (m - 1)st channel to complete its transmission, and so forth. However,

finite length messages may be accommodated efficiently by modulating their periodic

extensions

d[n] = q[n mod L],

thereby generating a transmitted waveform

x(t) = Z[n]n (t)
n

which constitutes a periodicity-dominated homogeneous signal of the type discussed

in Section 5.2. If we let

q = {q[O] q[1] ..* q[L- 1]

denote the data vector, then the time-frequency portrait associated with this signal

is shown in Fig. 6-4. Note that not only do we retain the ability to make various rate-

bandwidth tradeoffs at the receiver with this modification, but we acquire a certain

flexibility in our choice of time origin as well. Specifically, as is apparent fiom Fig. 6-

4, the receiver need not begin demodulating the data at t = 0, but may choose a

time-origin that is some multiple of LR when operating at rate R. Additionally, this

strategy can, in principle, be extended to accommodate blocking of the data.

Before considering the problem of optimum demodulation, we consider one final

aspect of transmitter configuration. Having assumed an arbitrary choice for the

parameter H, we now consider how this parameter might be appropriately chosen

for a given operating scenario. From the point of view of spectral efficiency, it is

apparent that this parameter has no effect. Indeed, the rate-bandwidth tradeoffs
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Figure 6-4: A portion of the time-frequency portrait of the transmitted signal for
fractal modulation of a finite-length data vector q. The case H = -1/2 is shown for
convenience.
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available to a receiver are independent of the value of H. However, H controls the

relative distribution of power between channels. As such it affects the spectrum of

the fractal modulation signal. As we noted in our discussion of homogeneous signals

in Chapter 5, such power-dominated homogeneous signals have a power spectrum of

the form

S (W) (6.5)

where 3y = 2H + 1. Hence, the selection of H becomes important when we consider

the presence of additive noise z(t) in the channel of Fig. 6-2.

For more traditional additive stationary Gaussian noise channels in which, for

example, the bandwidth is known a priori, the appropriate spectral shaping of the

transmitted signal is governed by a "water-filling" procedure [14] [71]. In fact, this is

the method by which the capacity of such channels is computed [74]. Through this

procedure, the available signal power is distributed in such a way that proportionally

more power is located at frequencies where the noise power is smaller. The graphical

interpretation is one in which the available signal power is "poured" onto the noise

spectrum within the available bandwidth, so that the spectral density of the signal at

a given frequency is given by the distance from the noise floor to the "water level."

However, when there is uncertainty in the available bandwidth, the water-filling

approach is a less desirable strategy. Imagine a scenario in which the noise power is

spectrally flat except in some frequency band 0 < WL < cU < cc, where it is zero.

Then a water-filling procedure will locate the signal power predominantly within this

frequency band. Consequently, when the channel bandwidth is such that it includes

this band, the SNR in the channel will be much higher than if the bandwidth did

not include this band. Hence, the system performance would strongly depend on the

available bandwidth. A more reasonable power allocation strategy for the channel of

Fig. 6-2, therefore, is to distribute power according to a spectral-matching rule, i.e.,

so as to maintain an SNR that is independent of frequency. This leads to system

performance that is uniform with variations in bandwidth, as would naturally arise

out of a min-max type performance criterion. Note, too, that the spectral-matching
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rule leads to a transmitted signal that is potentially well-suited for covert and LPI

communication.

Since power-dominated homogeneous signals have a power spectrum of the form

of eq. (6.5), the spectral-matching rule suggests that fractal modulation may be nat-

urally matched to channels with additive 1/f-type noise. As discussed in Chapter 3,

this rather broad class of statistically self-similar noises includes both classical white

Gaussian noise and Brownian motion, as well as some more general and rather preva-

lent nonstationary processes characterized by strong long-term statistical dependence.

In this section, we have developed a strategy for embedding an information se-

quence q[n] into a homogeneous signal x(t) that satisfies the first of the two system

requirements described at the outset of the chapter. Next, we turn our attention to

the problem of designing receivers for fractal modulation, such that the second of our

system requirements are satisfied.

6.2 Receiver Design: Demodulation

In this section, we consider the problem of recovering the information sequence q[n]

from the observations r(t) available to the receiver. In general, r(t) is assumed to be

a band-limited, time-limited, and noisy version of x(t) consistent with our channel

model of Fig. 6-2, and where the noise z(t) is Gaussian 1/f-type noise. We shall as-

sume the degree H of the transmitted homogeneous signal has been chosen according

to our spectral-matching rule, i.e.,

H = Hsignal = Hnoise. (6.6)

We remark that if it is necessary that the transmitter measure Hnoise in order to per-

form this spectral matching, the robust and efficient parameter estimation algorithms

for 1/f processes developed in Section 4.2 may be exploited.

We shall also assume in our analysis that the ideal bandpass wavelet basis has

been used to synthesize x(t). While we recognize that realizable wavelet bases will be
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used in practice, we anticipate that the results we obtain will be generally applicable

to many of the approximately bandpass wavelet bases, such as those of Daubechies.

Finally, we shall assume q[n] to be of finite length L, and that its periodic extension

q[n mod L] is modulated as discussed in the previous section.

In our performance analyses exploring rate, bandwidth and SNR tradeoffs, we shall

compare fractal modulation to the performance of UMSE modulation with repetition-

coding. That is, we make comparisons to UMSE modulation where redundancy is

provided by transmitting each sample of sequence q[n] some number K times in

succession. This simple redundancy scheme provides for error correction capability

that is comparable to that of fractal modulation. However, with this coding, UMSE

modulation performance does not constitute a performance bound. Indeed, it is not

"uniformly most power efficient" in two respects. For one, using UMSE modula-

tion corresponds to distributing signal power uniformly over the available bandwidth,

which is inefficient except in the presence of stationary white noise (H = -1/2). This

follows from the the water-filling rule for power allocation. Secondly, even for the case

of white noise, there are much more effective (i.e., more power efficient) redundancy

schemes available for use with channels of known bandwidth; see, e.g., [75]. Never-

theless, with these caveats in mind, such comparisons do lend some insight into the

relative power efficiency of fractal modulation.

6.2.1 Minimum Mean-Square Error Demodulation

In this section, we assume that q[n] is a continuous-valued sequence of independent,

identically-distributed, zero-mean Gaussian random variables, each with variance

Var q[n] = a,

and develop a receiver yielding the minimum mean-square error (MSE) estimate of

q[n] based on our corrupted observations r(t). We begin by projecting our observa-

tions onto the ideal bandpass wavelet basis from which x(t) was synthesized, so that
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our observations may be expressed as

= -m/ 2 q[n mod L] + zm

where the zm are the Gaussian wavelet coefficients of the noise process z(t). Consistent

with the wavelet-based models of 1/f processes we developed in Section 3.2.2, we may

reasonably model the z, as independent zero-mean random variables with variances

Var z = a 2p- m (6.7)

for some variance parameter a2 > 0.

If the channel is bandlimited to 2MU Hz for some integer MU, this precludes access

to the observation coefficients rm at scales finer than mi = Mlu. Simultaneously, if we

translate the time-limiting in the channel into a constraint on the minimum allowable

rate of 2A'IL symbols/sec for some integer ML, this precludes access to the observation

coefficients at scales coarser than m = ML. Hence, the observation coefficients 7nr

available at the receiver will correspond to the range of scales

AML < m < Mu.

IWe have assumed Mu > MAL, which corresponds to the case in which we have at least

enough time-bandwidth product to recover q[n] in the absence of noise.

Consistent with both our rate constraint and the fact that we modulate the peri-

odic extension of q[n], we have available

K = 2 Mu-ML+1 -_ 1 (6.8)

measurements of each of the L non-zero samples of the sequence q[n] from which to

compute an optimal estimate. This can be inferred from Fig. 6-4. In particular, at

scale m we have 2 m-ML copies of q[n], so that there is a doubling of the number of

available copies at successive scales leading to the geometric sum (6.8). The specific
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relationship between rate, bandwidth and K in terms of the spectral efficiency of

fractal modulation can, therefore, be expressed as

-R = 2 F (6.9)W K + 1'

where we note that the case K = 1, for which Mu = ML and a single copy of q[n]

is available at the receiver, corresponds to the minimum time-bandwidth product for

which reconstruction is possible. In the case of the ideal bandpass wavelet, we estab-

lished earlier that rF = 1/2. Using more general wavelets, the spectral bandwidth

and hence efficiency of fractal modulation is less well-defined. Nevertheless, for any

reasonable definition of bandwidth, practical wavelets may be chosen for use with

fractal modulation that yield a spectral efficiency close to 1/2. We shall therefore

assume in general that 7F - 1/2 in our subsequent discussion.

It is a straightforward to derive minimum MSE estimates of q[n] for each n from

the collection of independent, noisy observations

r = {rm, m E M, n e Nn(m)}

where

M = {ML,ML + 1,...,MU} (6.10)

Af(m) = {0,1,...,L2m-AIL -
- 1}. (6.11)

The optimum estimator is given by

1 Mu 2-ML-1

4[n] = E [q[n]lr]= K + (1 /2) E /2 1 L (6.12)

where o,2 is the SNR in the channel, defined by

2
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In general the optimum estimate represents a blend of a priori information about

q[n], and information obtained from the observations. At high SNR ( 2 > 1/K), the

a priori information is essentially ignored, and the resulting estimator specializes to

the maximum likelihood estimator. At low SNR (a 2 << 1/K), the observations are

essentially ignored, and the estimator approaches the a priori estimate

4[n = E [q[n]] = 0.

We note that, as in the case of the transmitter, the receiver has a convenient,

computationally-efficient, hierarchical structure based on the DWT. Assuming r(t)

is bandlimited to resolution 2MU, it may be sampled at rate 2 IU, then successively

filtered and downsampled to level m = ML according to the wavelet decomposition

tree of Fig. 2-6(a). To produce the desired estimate, at each level m, the terms

from the detail sequence rrn corresponding to the same value of the q[n] are collected

together, weighted by
ml/2

K3rn /f2 ' (6.13)K + 1/us'

and accumulated with the weighted r from previous stages. Again, however, this is

a batch algorithm, and while computationally efficient, may not be efficient in terms

of storage requirements.

Finally, we remark that the receiver (6.12) we have designed is a linear data

processor, as would be anticipated since we have restricted the discussion to Gaussian

sequences and Gaussian noise. In non-Gaussian scenarios, the receivers we have

developed are the best linear data processors, i.e., no other linear data processor is

capable of generating an estimate of q[n] with a smaller mean-square error.

Performance

The normalized MSE associated with the optimum receiver (6.12) can be readily

derived as

E2 = E [(q[n] - q[n])2 _ E [Var (q[n]r)] 1 (6.14)
E [(q[n])2] Var q[n] 1 + (Ka2'

171

I _ I _ _ I _ I_·_^_IC ·I _�^·_ _ � I



Generally, it is convenient to substitute for K in (6.14) via (6.9) to get

1
2 = ] (6.15)

1+ [, R7- 1

where 'IF - 1/2, and where R/W < I7F by virtue of our definition of riF. From (6.15)

we see, then, that for R/W < F, the MSE is given asymptotically by

1
22 ~ 1F (6.16)

2 2 1F
CR/W

Note that fractal modulation performance (6.15) is independent of the parameter H

when we use spectral matching.

For comparison, let us consider the MSE performance of UMSE modulation with

repetition-coding in the presence of stationary white Gaussian noise. In this case,

incorporating redundancy reduces the effective rate-bandwidth ratio by a factor of

K, i.e.,
R to 'i(6.17)
W K'

where R is the rate at which the symbols q[n] are transmitted, and where 770 is the

efficiency of the modulation without coding, which is unity. The optimum Bayesian

receiver for this scheme, using a minimum MSE criterion, demodulates the repeated

sequence, and averages the terms corresponding to the same value of q[n] to generate

q[n]. Hence this K-fold redundancy leads to a normalized MSE of

2 E [(q[n - [n])2 ] = 1 (6.18)
E [(q[n])2] 1 + 6K

where o,2 is the SNR, i.e., the ratio of the power in q[n] to the density of the white

noise power spectrum. Combining (6.18) with (6.17) we get

E2 = (6.19)
l+c2 R/170
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whenever R/W < ro. By comparison with (6.16) we see that when R/W <' 170,

E22 10 (6.20)

cR/ i/

which is essentially (6.16) since the achievable r0o is unity and rF ~ 1/2 as discussed

earlier. This means that, at least asymptotically, the performance between the two

schemes is comparable in the presence of white noise.

This behavior is reflected in the performance curves for both fractal modulation

and UMSE modulation with repetition coding of Fig. 6-5. In Fig. 6-5(a), MSE is

shown as a function of R/W at a fixed SNR of 0 dB (a2 = 1), while in Fig. 6-5(b), MSE

is shown as a function of SNR at a fixed R/Wl = 0.1 symbols/sec/Hz. As we expect,

the longer the channel is open, or the greater the available bandwidth in the channel,

the better the performance of fractal modulation. Although comparisons between

the two modulation schemes is appropriate only for the special case of additive white

Gaussian noise channels, we reiterate that the performance of fractal modulation

(6.15) is independent of the spectral exponent of the 1/f noise. By contrast, we would

not, in general, expect (6.19) to describe the performance of UMSE modulation with

repetition-coding in the presence 1/f noise.

6.2.2 Minimum Probability-of-Error Demodulation

In this section, we address the closely related problem of designing and evaluating

optimal receivers for bit-by-bit signaling using fractal modulation. Specifically, let us

consider the transmission of a random binary data stream via the bi-valued sequence 3

q[n] with average energy Eo per bit:

q[n] E {+Fo -}, (6.21)

3 Although we do not explicitly consider it here, the extension to the case of L-ary signaling is
likewise straightforward.
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(a) MSE e2 as a function of Rate/Bandwidth ratio R/WI at 0 dB SNR.

Figure 6-5: Error-rate-bandwvidth tradeoffs for fractal modulation in noise with the
optimum receiver. The solid lines represent the performance of fiactal modulation,
while the dashed lines corresponds to the performance of UMSE modulation with
repetition coding.
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(b) MSE e2 as a function of SNR at R/W = 0.1 symbols/sec/Hz.

Figure 6-5: Continued.
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representing a 1-bit and a O-bit, respectively. Moreover, as before, we consider a

channel characterized by additive Gaussian 1/f noise.

The problem of optimally decoding each bit can be described in terms of a binary

hypothesis test on the observations r(t), or equivalently, the coefficients r of these

observations decomposed into the wavelet basis used in the synthesis of x(t). Choosing

the latter of the options, our hypotheses are

Ho ': = -_/F3-m/2 + z (6.22a)

H1: r = + "f-m/2 + Z (6.22b)

where, again, z are the wavelet coefficients of the noise process. Again according

to our wavelet-based models for 1/f noise of Section 3.2.2, under each hypothesis

we may model the z as independent, zero-mean Gaussian random variables with

variances given by (6.7). Likewise, based on rate and bandwidth limitations in the

channel, the available observation coefficients are

r = {r, m E M,n E fn(m)}

where the ranges M and A/(m) are given by (6.11). We shall also assume in our

analysis that the ideal bandpass wavelet basis was used in the synthesis of x(t), with

the implication that the analysis applies more generally to a broader class of wavelets.

The likelihood ratio
PrlH (r)

PrrHo (r)

associated with this hypothesis testing problem is readily derived, and can be reduced

to the sufficient statistic

Mu 2 -ML-1 /-

e = E E r"+l V0 .-m/ 2 (6.23)
m=ML 1=0 r

For a minimum probability of error Pr(e) receiver and a random bit stream (i.e.,
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equally likely hypotheses), the optimum test can be derived as

H 1

e o,
Ho

which is intuitively reasonable from symmetry considerations. Indeed, e is condition-

ally Gaussian under each hypothesis, where the conditional means are

E [elH1l = -E [elHol = K2 (6.24)

and the conditional variances are

Var [H 1I] = Var [Ho] = Ka2 , (6.25)

where J,2 is the SNR, viz.,
2 Eo

z

Performance

The bit-error probability associated with this optimal receiver can be readily derived

as

Pr(E) = Pr( > OtHo) = Q ( In 2) (6.26)

where Q(.) is defined, as in Section 4.4, by

1 (x) = dQ (x) = 72- ~ e-v 2 d,f/~
and where we have exploited (6.24) and (6.25). Substituting for K in (6.26) via (6.9)

we can express this error probability in terms of the rate-bandwidth ratio as

Pr(E) = Q 1 2 2W7F
2 d c RIWlr (6.27)
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where 77F M 1/2. Again, the performance of fractal modulation is independent of the

spectral exponent of the noise process when we use spectral matching. Note, too,

that for R/WI << F, the bit error probability is asymptotically

(Pr(EQ( 2 2W ) (6.28)

For UMSE modulation with repetition coding in the presence of stationary white

Gaussian noise, to decode a bit, the optimal receiver naturally demodulates the re-

ceived data and averages together the K symbols associated with the transmitted bit,

thereby generating a sufficient statistic. When this statistic is positive, the receiver

decodes a 1-bit, and a O-bit otherwise. The corresponding performance is, therefore,

given by

Pr(,) =Q ( Vi[O ).

Substituting for Ki' via (6.17) yields the error expression

iPr(E) Q 02 [0 (6.29)

in terms of the rate-bandwidth ratio, where rlo = 1. Comparing (6.29) with (6.28),

we note that again since 770 2 F, the asymptotic performance of the two schemes

is effectively equivalent.

This is apparent in Fig. 6-6, where we plot the bit-error performance of fractal

modulation in bit-by-bit signaling along side corresponding performance of UMSE

modulation with repetition coding. In Fig. 6-6(a), Pr(E) is shown as a function of

R/WV at a fixed SNR of 0 dB ( 2 = 1), while in Fig. 6-5(b), Pr(E) is shown as a

function of SNR at a fixed R/W = 0.1 bits/sec/Hz. Both these plots reveal strong

thresholding behavior whereby the error probability falls off dramatically at high SNR

and low R/W. Although the comparison between the two modulations is generally

appropriate only for the special case of additive white Gaussian noise channels, we

reiterate that the performance of fractal modulation (6.27) is independent of the
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spectral exponent of the 1/f noise. By contrast, we would not expect (6.29) to

describe the performance of UMSE modulation with repetition-coding in the presence

1/f noise in general.

6.3 Outstanding Issues

This chapter constitutes a highly preliminary development of fractal modulation.

There are several aspects of the modulation that require further study and evalua-

tion. For example, of significant practical interest is the robustness of fractal modu-

lation with respect to channel modeling errors and numerical implementation errors.

A comprehensive evaluation of sensitivity to such errors w, olid involve both Monte

Carlo simulations with synthetic data, and experimental implementations with real

channels.

It is also important to consider whether fractal modulation constitutes an optimal

modulation strategy in some sense. Specifically, while the scheme is apparently well-

suited to channels cf the type illustrated in Fig. 6-2 in which the bandwidth and

duration are unavailable to the tra,;smitter, we have not established that it is optimal

with respect to any particular performance criterion. This question certainly deserves

attention, as does the associated problem of computing the capacity of channels of

this type.

In addition, there are a number of issues pertaining to fractal modulation that need

to be addressed before it can be applied in various contexts. For example, accurate

synchronization between transmitter and receiver would appear to be critical in the

scheme, perhaps more so than in other schemes. Consequently, we would anticipate

that the development of techniques for achieving the necessary synchronization would

be important for any practical implementation. Another issue pertains to the use of

fractal modulation in LPI applications. While we have argued that the second-order

statistics of homogeneous signals can be effectively indistinguishable from those of

1/f noises, a more comprehensive study of the detectability of homogeneous signals

is warranted. In particular, it would be important to study the vulnerability of

179

_ _I __ __ _I ___



107

lo,

u 10-5

10-11

i n-17
IU

10-3 10-2 10-1 100

R/W (symbols/sec/Hz)

(a) Probability of error Pr(e) as a function of Rate/Bandwidth ratio RI/t at 0 dB SNR.

Figure 6-6: Bit error probabilities for bit-by-bit signaling with fractal modulation
over noisy channels with the optimum receiver. Solid lines indicate the performance of
fractal modulation, while dashed lines indicate the performance of UMSE modulation
with repetition coding.
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(b) Probability of error Pr(-) as a function of SNR at R/W = 0.1 symbols/sec/Hz.

Figure 6-6: Continued.
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fractal modulation to traditional nonlinear feature detection techniques including

square-and-correlate processing [76].

This leads naturally to a consideration of some potentially important extensions

to the basic fractal modulation strategy. For example, in many spread spectrum sce-

narios, it is important to obscure the spreading technique. In direct-sequence spread

spectrum, not only is each symbol in the information sequence repeated K times

prior to transmission, but the redundant stream is premultiplied by a pseudorandom

bit stream known to both transmitter and receiver. This makes the transmitted se-

quence appear like white (or at least broadband) noise to a listener without detailed

knowledge of the pseudorandom sequence. For fractal modulation, the analogous

processing might involve premultiplying the entire wavelet coefficient field x'~~ of the

transmitted signal x(t) by a pseudorandom bit field known to both transmitter and

receiver. In turn, this would appear to have the effect of making x(t) appear like

1/f-type noise to a listener lacking detailed knowledge of the pseudorandom bit field.

Such an extension may well warrant investigation.

Another extension worth considering concerns the incorporation of efficient coding

techniques for use with fractal modulation. As developed, the redundancy in the

transmitted signal takes the form of multirate repetition in the time-frequency plane.

Perhaps block or trellis coding techniques [75] can be exploited in improving the power

efficiency of fractal modulation. At first glance, it would seem that coding of this type

cannot be incorporated without sacrificing properties of the transmission scheme.

Nevertheless, it would be important to clearly establish the tradeoffs involved.

Finally, fractal modulation would be of potential interest in a greater range of ap-

plications were it possible to accommodate a finer lattice of rate-bandwidth tradeoffs

than those prescribed by the dyadic grid we have considered. Indeed, from a commu-

nications perspective, it is rare to have channels whose bandwidth spans an octave,

much less multiple octaves. However, it is reasonable to expect that should practical

families of non-dyadic orthonormal wavelet bases of the type described in Section 2.2.7

emerge, the concept of fractal modulation could be accordingly extended.

In summary, while fractal modulation is not yet sufficiently developed that it
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constitutes a viable communication system in its own right, it does represent an

interesting, novel and potentially important paradigm for communication in many

contexts.
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Chapter 7

Linear Self-Similar Systems

This thesis has explored some important classes of statistically and deterministically

self-similar signals. This chapter represents a preliminary investigation into the re-

lationships between self-similar signals and self-similar systems. In particular, we

explore not only how we may interpret some of our methods for synthesizing self-

similar signals in the context of driven self-similar systems, but also the role that the

wavelet transform plays in characterizating such systems. In the end, this leads to

some interesting and potentially important insights and perspectives into the results

of the thesis, and suggests some promising future directions for work in this area.

The self-similar systems we discuss in this chapter have the property that they are

linear and jointly time- and scale-invariant. In the first half of the chapter we define

this class of systems, develop several properties, and show how both the Laplace

and MelIin transform can be used in studying these systems. In the latter half of the

chapter we develop wavelet-based characterizations of this class of systems to illustrate

that the wavelet transform is in some sense best matched to these systems-that

such characterizations are as natural and as useful for these systems as Fourier-based

characterizations are for linear time-invariant systems. We first briefly review some

results in the theory of linear time-invariant systems. For a comprehensive treatment,

see, e.g., [771 or [781.
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7.1 Linear Time-Invariant Systems

Suppose y(t), y 1(t), and y 2(t) are the responses of a system S {.} to arbitrary inputs

x(t), x(t), and x 2(t), respectively. Then the system is linear when it satisfies the

superposition principle

S {axl(t) + bx2 (t)} = ay1 (t) + by2(t) (7.1)

for any a and b, and time-invariant when it satisfies

S {x(t- r)} = y(t- r) (7.2)

for any constant r. Collectively the properties (7.1) and (7.2) characterize a linear

time-invariant (LTI) system.

A linear system is time-invariant if and only if its kernel

K(t, T) = S {6(t -)}

satisfies

c(t, r) = K(t - b,r- b) (7.3)

for any b. For this class of systems, the kernel has the form

K(t, r) = v(t- 7)

where v(t) is the impulse response of the system. Furthermore, the corresponding

input-output relation is, of course, the usual convolution,

y(t) = j x(r) v(t - T) dT = x(t) * ((t).

The eigenfunctions of LTI systems are complex exponentials of the form est, from

which we get that the Laplace transform possesses a convolution property, i.e., for
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signals x(t) and y(t) with Laplace transforms X(s) and Y(s), respectively, we have

x(t) * y(t) , X(s)Y(s).

7.2 Linear Scale-Invariant Systems

In contrast to linear time-invariant systems, linear scale-invariant system theory has

been comparatively less explored, though it has received occasional attention in the

systems [79] and pattern recognition [80] literature, and in the broader mathematics

literature in connection with the Mellin transform [81] [82] [83].

Suppose y(t) is the response of a system S {.) to an arbitrary input x(t). Then a

system S ({) is said to be scale-invariant whenever

S {x(t/l)) = y(t/T) (7.4)

for any constant r > 0. When there is risk of ambiguity, we will refer to such systems

as strict-sense scale-invariant systems to distinguish them from generalized scale-

invariant systems we will develop subsequently. A system satisfying both (7.1) and

(7.4) will be referred to as a linear scale-invariant (LSI) system.

It is straightforward to show that a necessary and sufficient condition for the kernel

K(t, r) of a linear system to correspond to a scale-invariant system is that it satisfy

K(t, r) = an(at, ar) (7.5)

for any a > 0.

A linear scale-invariant system is generally characterized in terms of the lagged-

impulse response pair

+(t) = S 6(t - 1)

g(t) = S {6(t + l)}.
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Indeed, when an input x(t) can be decomposed, except at t = 0, as

x(t) = | x(T) 6 1) -
too T7 7

= j T) 6 (- -) -+ x(-T) 6 + 1) - (7.6)

we can exploit the superposition principle (7.1) together with (7.4) to get the following

input-output relation

y(t) = x(T) - + j x(-r) (_ - -. (7.7)

For simplicity of exposition, we will restrict our subsequent discussion to the case

of causal inputs

x(t) = O, t < 

and LSI systems whose outputs are causal

y(t) = S {x(t)} = O, t < O.

From the development, it will be apparent how to accommodate the more general

scenario of (7.7). For causal signals, the input-output relation (7.7) simplifies to

y(t) = j x() ( (-) - x(t) * (t) (7.8)

where we let (t) = +(t) to simplify our notation, and where we use the symbol *

to distinguish this convolutional relationship from the usual convolution * associated

with LTI systems. Note that for these LSI systems the kernel is

Kc(t, ) = 

This new convolution operation possesses many of the properties of the usual con-

volution operation. For example, it is straightforward to show that it is commutative
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for well-behaved operands, i.e.,

x(t) * ((t) = ((t) * x(t) = x ((r) d. (7.9)

As a consequence, the cascade of two LSI systems with lagged-impulse responses E1 (t)

and 2(t), respectively, is equivalent to a single system with lagged-impulse response

l(t) * C2 (t). Furthermore, the systems may be cascaded in either order without

changing the overall system.

Likewise, it is straightforward to show that the new convolution operation is dis-

tributive for well-behaved operands, i.e.,

x(t) * {(l(t) + ( 2 (t)} = x(t) * 1l(t) + x(t) *6 2 (t). (7.10)

Hence, the parallel connection of two LSI systems with lagged-impulse responses (l(t)

and 2 (t), respectively, is equivalent to a single system with lagged-impulse response

1 (t) + 2(t) .

The eigenfunctions of linear scale-invariant systems are homogeneous functions of

degree s; specifically they are the complex power functions defined by

x(t) = t, (7.11)

where s is a complex number. Indeed, from (7.8) and (7.9) the response of an LSI

system to (7.11) is readily obtained as

y(t) = r(s) t8

with the associated complex eigenvalue given by

(s) = j E(r) =r - - dr (7.12)

whenever this integral converges. Eq. (7.12) is referred to as the Mellin transform of

the signal E(t).
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The eigenfunction property of the complex power functions implies that the Mellin

transform constitutes an important tool in the analysis of LSI systems1 . Indeed, it is

particularly convenient to compute the response of an LSI system to any input that

is the superposition of eigenfunctions. Fortunately, a broad class of signals x(t) can

be expressed as a superposition of eigenfunctions of LSI systems according to

x(t) = jc'jk(s) t ds (7.13a)

for t > 0, where

k(s) = x(r) r -1 dr (7.13b)

and c is in the region of convergence of .(s). Eqns. (7.13) collectively constitute

the Mellin representation of a signal x(t): the Mellin inverse formula (7.13a) is the

synthesis relation, while the Mellin transform (7.13b) is the analysis formula. Inter-

estingly, we may interpret the Mellin transformation as a representation of x(t) by

its "fractional" moments.

The Mellin inverse formula implies that a broad class of linear scale-invariant

systems are completely characterized by the Mellin transform of their lagged-impulse

response, -(s). Consequently, we can refer to this quantity as the system function

associated with the LSI system. As a consequence of the eigenfunction property of

the complex power functions, the input-output relation for a linear scale-invariant

system with system function _(s) can be expressed in the Mellin domain as

Y(s) = _(s)X(s) (7.14)

whenever both terms on the right-hand side have a common region of convergence.

Hence, via the Mellin transform, we can map our convolution operation (7.8) into a

convenient multiplicative operation (7.14).

The Mellin transform, its inversion formula, properties, and numerous transform

1Actually, we have chosen a slight but inconsequential variant of the Mellin transform-the usual
Mellin transform has s replaced by -s in our definition.
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pairs are well-documented in the literature. See, e.g., [83] [84] [85]. One basic Mellin

transform pair is given by

1
t - 0 u(t- 1) + , Re(s) > -so (7.15)

for arbitrary so.

From this pair we are able to show that the Mellin transform plays an important

role in the solution of a class of scale-differential equations that give rise to linear

scale-invariant systems. We begin by quantifying the notion of a "derivative operator

in scale." A reasonable definition of the derivative in scale of a signal x(t) is given by

Vx(t) _ lim x(Et) - x(t)
e-(t) In e

One can readily interpret this definition in the context of traditional derivatives as

V x(t) = dlnt(t) = t dx(t).

Differentiation in scale corresponds to a multiplication by s in the Mellin domain,

which suggests that the Mellin transform can be used to efficiently solve what can

be described as a class of "dynamical systems in scale." 2 Consider the following

Nth-order linear constant-coefficient scale-differential equation

N M

y akV)y (t)= E bkV.S(t),
k=O k=O

where we denote the kth derivative in scale, obtained by iterative application of

the derivative operator, by Vk. Then, via the convolution property of the Mellin

transform, we obtain

]T(s) = `(s)X(s)

2aVe remark that this development raises some interesting questions regarding connections to the
more general literature that is evolving on multiscale systems [861 [58]. Such relationships, however,
have yet to be explored.
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where _(s) is rational, i.e.,
M

JJ bkSk
$() k=O

H aks
k=O

in the corresponding region of convergence. The usual partial fraction expansion

approach, together with Mellin pairs of the form (7.15), can be used to derive y(t)

from its Mellin transform.

It is interesting to note that in the 1950s, Gerardi [79] developed such an approach

for the synthesis and analysis of time-varying networks governed by scale-differential

and Euler-Cauchy equations, although he did not recognize the relationship to a

linear scale-invariant system theory. In addition, he also derived the convolution

relationship (7.8).

Before we turn our attention to a more broadly defined class of LSI systems, we

remark that there is, in fact, a natural homomorphism between linear scale-invariant

and linear time-invariant (LTI) systems. This relationship allows us to derive virtually

all the results described in this section, in addition to many others, by mapping corre-

sponding properties from the theory of LTI systems. Specifically, by replacing time t

with exponential time et, we find, for example, that LSI systems become LTI systems,

complex power functions become complex exponentials, the Mellin transform becomes

the bilateral Laplace transform, and linear constant-coefficient scale-differential equa-

tions become familiar linear constant-coefficient differential equations.

7.2.1 Generalized Linear Scale-Invariant Systems

Suppose y(t) is the response of a system S {.} to an arbitrary input x(t). Then we

shall say the system S { } is scale-invariant with parameter A whenever

S {x(t/r)} = TAY(t/T) (7.16)

for any constant r 0. We will denote systems that satisfy the superposition prin-

ciple (7.1) and th( eneralized scale-invariance relation (7.16) as LSI(A) systems.
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Obviously, strict-sense LSI systems correspond to the special case A = O. It can be

easily established that a necessary and sufficient condition for a linear system to be

scale-invariant with parameter A is that the kernel satisfy

K(t, r) = a-(A-l)c(at, ar) (7.17)

for any a > 0.

Such generalized linear scale-invariant systems are also completely characterized

in terms of their lagged-impulse response pair

+(t) = S {6(t - 1)}

(_(t) = S{6(t + 1)}.

Again, when we are able to decompose our input according to (7.6) and restrict

our attention to the case of causal signals, we can exploit (7.1) and (7.16) to get the

following input-output relation

y(t) = x(rT) (-) d (7.18)

Rewriting (7.18) as

y(t) = . {x(r)A } d 

we observe that any LSI(A) system can be implemented as the cascade of a sys-

tem which multiplies the input by Itl', followed by a strict-sense LSI system with

lagged-impulse response (t). However, in many cases, this may not be a particularly

convenient implementation, either conceptually or practically.

7.3 Linear Time- and Scale-Invariant Systems

We will say that a system is linear time- and scale-invariant with parameter A, de-

noted LTSI(A), whenever it jointly satisfies the properties of superposition (7.1),

time-invariance (7.2) and generalized scale-invariance (7.16). In this case, the time-
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invariance constraint (7.3) requires the kernel to be of the form

K(t, T) = V(t -7)

for some impulse response v(-), while the scale-invariance constraint (7.17) imposes

that the impulse response be a generalized homogeneous function of degree AX- 1, i. e.,

v(t) = a-(,-l) v(at)

for all t and all a > 0. Following Gel'fand, et al.

entire class of impulse responses for such systems.

0,-1, -2, ... , we get that v(t) takes the form

[67], we can parameterize the

In particular, provided A 

v(t) = C1ltl - u(t) + C 2 ltl- u(-t). (7.19a)

For the special case A = -n for n = 0,1, 2, ... ,

v(t) = C 3ltl- (n-1) u(t) + c4 1tl - (n- ) U(-t) + C5 6(n)(t) (7.19b)

where 6(n)(t) denotes the nth derivative of the unit impulse and u(t) the unit step

function. In both cases, the C 1, ... C5 are arbitrary constants.

There are many familiar LTSI(A) systems. For example, the identity system, for

which

v(t) = 6(t)

corresponds to = 0, C 3 = C 4 = 0 and C 5 = 1. In fact, as is apparent from the

parameterizations (7.19), the identity system is the only stable LTSI(A) system. A

second example is the integrator. This system has a regular impulse response

v(t) = u(t)

and corresponds to A = 1, C 1 = 1, and C2 = 0. As a final example, consider a
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differentiator, which has for an impulse response the unit doublet

v(t) = 6'(t)

This choice corresponds to A = -1, C3 = C4 = 0, and C5 = 1.

Linear time- and scale-invariant systems are natural candidates for modeling and

processing self-similar signals as we begin to show in the next section.

7.3.1 Self-Similar Signals and LTSI(A) Systems

In this section, we explore some relationships between self-similar signals and systems.

In particular, we show how LTSI(A) systems preserve the time-invariance and scale-

invariance of their inputs, and point out how these properties have been exploited in

some of the models for self-similar signals described earlier in the thesis.

Our result in the determinisic case is as follows. Let v(t) be the impulse response

of an LTSI(A) system, so that v(t) is homogeneous of degree A - 1, i.e., for any a > 0

v(t) = a-(Al) v(at),

and consider driving the system with a scale-invariant input signal x(t) that is homo-

geneous of degree H. Then it is straightforward to establish that the output y(t) of

the system

y(t) = j- x(r) v(t - ) dT

when well-defined, is scale-invariant as well. In fact, it is homogeneous of degree

H + A, so that, for any a > 0

y(t) = a-(H + ) y(at). (7.20)

There are two obvious special cases. The first corresponds to the case in which

the system is the identity system (A = 0). Here the output and input are identical,

and (7.20) yields the appropriate result. The second corresponds to case in which
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the input is an impulse (H = -1). Here, the output is v(t), and, again, (7.20) yields

the correct result. This, of course, suggest that at least one synthesis for a class of

homogeneous signals is in terms of an LTSI(A) system driven by an impulse.

Note that we can derive analogous results for deterministically time-invariant

inputs. However, this time the results are somewhat degenerate. In particular, except

in trivial cases, for a time-invariant (i.e., constant) input, the output of such a system

is only well-defined if the system is an identity system since any other LTSI(A) system

is unstable. Nevertheless, in this unique case, the output is, obviously, time-invariant

as well.

Consider, next, the case of an input that is either wide-sense or strict-sense statis-

tically scale-invariant as defined in Chapter 3. In this case, it is also straightforward

to show that the output, when well-defined, is also statistically scale-invariant and

satisfies

y(t) _ a-(H+A) y(at)

with equality in the corresponding sense.

For wide- or strict-sense stationary (i.e., statistically time-invariant) inputs, the

outputs, when well-defined, are also stationary. This is, of course, a well-known result

from LTI system theory. Note, however, that, again from stability considerations, the

only non-trivial system for which the output is well-defined is the identity system.

This implies, for instance, that, in general, when driven with stationary white noise,

the outputs of such systems are not well-defined.

Many of these issues surfaced in Chapter 3, where we considered the modeling

of 1/f processes through a synthesis filter formulation. Specifically, the system with

impulse response (3.9) we first proposed as a synthesis filter for 1lf processes is

precisely an example of an LTSI(A) system with A = H+ 1/2. A similar filter with A =

H-1/2 appears in the conceptual synthesis for fractional Brownian motion illustrated

in Fig. 3-2. Furthermore, the fractional integrator used in the Barnes-Allan synthesis

for 1/f processes, which we described in Section 3-2, has properties similar to those of

an LTSI(A) system. More generally, there would appear to be a number of potentially
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important connections between the operators of fractional calculus [41] and linear

jointly time- and scale-invariant system theory. Finally, the ARMA filter used by

Keshner in his synthesis of 1/f-like behavior, which we discussed in Section 3.2.1,

can be viewed as an approximation to an LTSI(A) system. Specifically, this filter

is linear and time-invariant, but satisfies the scale-invariance relation (7.16) only for

dilation factors r of the form T = A m .

The impulse-response constitutes one important means of characterizing LTSI(A)

systems. However, from an implementational perspective, it is not always most conve-

nient. In the next section, we develop a canonical representation for a class of LTSI(A)

systems in terms of wavelet bases. As we shall see, this characterization not only pro-

vides additional insight into such systems, but ultimately leads to some important

techniques for realizing and approximating such systems. In fact, we will see that

it is possible to interpret many of the wavelet-based representations for self-similar

signals we derived in Chapters 3 and 5 in the context of these results.

7.4 Wavelet-Based LTSI(A) Systems

Consider a system which computes the wavelet transform of the input x(t) via (2.1),

multiplies the resulting field X' by some regular field ICK in time-scale space, then

inverts the result according to the synthesis formula (2.4), so that

y(t) = W-' {IVw {x(t)}) . (7.21)

It is straightforward to establish that such a linear system has a kernel

1 r" 00

,K(t,) = - j _(t) KI f (r) - 2 dldv. (7.22)

The structure of this kernel imposes certain constraints ol the linear system; for

example, such systems are symmetric, i.e.,

k(t,, ) = k(r,t). (7.23)
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However, the structure of the kernel is sufficiently general that one can implement

LTI, LSI, or LTSI systems using this framework.

For instance, using the readily derived identity

ip"(t - b) = f+b(t )

valid for all b, the system will be time-invariant (i.e., satisfy (7.2)) whenever the

multiplier field satisfies

K = i-b

for all b. In other words, (7.21) implements an LTI system whenever the field Ki is

independent of v. In this case, KIf can be expressed as

KI =k(1 ) (7.24)

for some regular function of scale k(.).

Likewise, using the identity

(at) = Ial'/2,/a() (7.25)

valid for a, the system will be scale-invariant with parameter (i.e., satisfy (7.16))

whenever the multiplier field satisfies

IC = a- Ka (7.26)

for all a > 0.

For the system to be jointly time- and scale-invariant with parameter A, (7.24)

and (7.26) require that

k(p) = a'k(apu),

i.e., that k(-) be homogeneous of degree A. The imposition of regularity on k(.) pre-

cludes it from containing impulses or derivatives of impulses. Again using Gel'fand's
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parameterization of the homogeneous functions, we conclude that the system (7.21)

is LTSI(A) whenever the multiplier field has the form

K, = k(p) = C~11l u(,u) + C2Jl', u(-1 u) (7.27)

for some constants C1 and C 2. Note that even if these constants are chosen so that

k(-) is asymmetric, the impulse response v(t) of the resulting system will be even:

v(t) = v(-t). (7.28)

This is a consequence of the symmetry constraint (7.23). In fact, since we can rewrite

(7.22) using (7.25) as

K(t, r) = -c d j 8(t) [k(v) + k(- 1 )] V)I (r) - 2d,

we see that the kernel of the system is really only a function of the even part of the

function k(.). Hence, without loss of generality we may set C2 = 0 in (7.27) and

choose

IV = k(ap) = C/X u(/) (7.29)

where C is an arbitrary constant.

Finally, combining (7.28) with (7.19), we can conclude that whenever (7.21) im-

plements an LTSI(A) system, i.e., whenever k(-) is chosen according to (7.29), the

impulse response of (7.21) must take the form

v(t) = Cltl~- 1

whenever A £ 0, -2, -4, ... , or the form

v(t) = Ctl-(n-1) + cs6(n)(t)

whenever A = -n for n = 0,2,4, .... In both cases, C, and C, are parameters
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Figure 7-1: Wavelet-based implementation of an LTSI(A) system.

determined by the constant C in (7.29). Note, in particular, that, at least for the

case A = 0 we must have

C =C

Cr = 0.

This follows from the fact that, since Kt = C, the overall system (7.21) is just a

scaled identity system. Fig. 7-1 summarizes the resulting wavelet-based realization

of a linear jointly time- and scale-invariant system with parameter . Note that

this is analogous to implementing an LTI system by computing the Fourier trans-

form of the input, multiplying by some frequency response, and applying the inverse

Fourier transform to the result. As is the case for Fourier-based implementations of

LTI systems, not all LTSI(A) systems may be realized using the wavelet-based im-

plementation of Fig.7-1. For example, the symmetry constraint (7.28) precludes us

from being able to implement either the differentiator or integrator system examples

discussed in Section 7.3 since these systems have impulse responses that are odd.

As a final remark, it is important to emphasize that the actual choice of wavelet

basis plays no significant role in the representation of LTSI(A) systems discussed in

this section. However, while the choice of basis does not enter into the theoretical de-
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velopment, it is reasonable to expect it to be a factor in any practical implementation.

In the next section, we consider a strategy for approximating LTSI(A) systems that

exploits orthonormal wavelet bases. As we shall see, these quasi-LTSI(A) systems are

particularly convenient to implement and can be made computationally efficient.

7.4.1 Dyadic Approximations to LTSI(A) Systems Based on

Orthonormal Wavelet Bases

A practical approximation to a linear time-scale invariant system can be constructed

via orthonormal wavelet bases of the type described in Section 2.2. Because signal

reconstructions in terms of such bases require only a countable collection of samples of

the wavelet coefficient field, the system turns out to be fundamentally more practical

from an implementational perspective. In addition, using an implementation based

on the DWT, the system can be made computationally highly efficient as well. In fact,

in some sense, using the discrete wavelet transform to implement an LTSI()\) system

is analogous to implementing an LTI system using the discrete Fourier transform

(DFT).

Consider a system which computes the orthonormal wavelet decomposition of the

input x(t) according to the analysis formula (2.5b), i.e.,

Xm - x(t) 'bt (t) dt,f-Oo

scales the resulting collection of wavelet coefficients by a factor k,

y = km m
Yn = kn n

then re-synthesizes a signal from these modified coefficients to generate an output

according to the synthesis formula (2.5a), i.e.,

y(t) = E xE nl (t).
m n
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It is a straightforward exercise to show that the overall system, described via

y(t) = W; 1' {kWd {x(t)}}, (7.30)

corresponds to a symmetric linear system with kernel

k(t, r) = E E (t)k M ()
m n

A close inspection reveals that, as a consequence of the nature of the discretization

inherent in the system, one cannot choose the multiplier coefficients km such that the

resulting system is time-invariant. Likewise, one cannot choose the coefficients so

that the overall system is scale-invariant for any degree A. However, we can show

that if the km are chosen in a manner consistent with the discussion of the previous

section, viz.,

k = C A = C2-m, (7.31)

then the system defined via (7.30) obeys some associated notions of time- and scale-

invariance.

We begin by noting that this system, which is depicted in Fig. 7-2, has a kernel

satisfying

R(t, ,) = 2-(A-l)mk(2mt, 2m7) (7.32)

for any m, where we have used the identity

On (2t) = 2-'/2n+i(t)

valid for any integer i. However, since (7.32) can be restated in terms of the general-

ized scale invariance condition (7.17) according to

R(t, r) = a-(x-l)i(at, ar), a = 2m

we see that the system obeys a weaker, dyadic scale invariance condition. In partic-

201

___ �__



x(t)

C 2" m

Figure 7-2:
orthonormal

IK
I 'K

y(t)

A dyadic approximation of a LTSI(A) system as implemented via an
wavelet basis.

ular, the system satisfies (7.16) only for dilations factors r of the form

, = 2m

for integers m.

Likewise, the system obeys a somewhat weaker time-invariance property. Consider

a class of input signals x(t) to the system which have no detail at scales coarser than

2" for some integer Ml, so that

m = 0,
n - m < Ml.

Then, the multiplier coefficients k for m < M for the system are irrelevant and we

may arbitrarily assume them to be zero. For this class of inputs then, the effective

kernel is

eff(t, ) = EE Z n (t)C2-Xmtn(r)
m>M n

Using the identity

n (t - 2'-AI) = ?n+l2m.-M(t)
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valid whenever for m > M and I an integer, we see that this kernel satisfies

k(t, 7) = ;(t - 12- M , - 12-M ) (7.33)

for all integers 1. Since (7.33) can be re-expressed as

R(t, r) = i(t - b, - b), b = 12-M

we see that or this class of input signals the system is periodically time-invariant3

i.e., satisfies (7.2) for any shift factor r of the form

T=12- M , = ... ,-1,0, 1,2,....

Note that the actual choice of wavelet affects the characteristics of the overall

system in contrast to the wavelet-based systems discussed in the previous section.

Indeed, with respect to scaling behavior, the choice of wavelet will affect how: the

system behaves under non-dyadic scale-changes at the input. Furthermore, the choice

of wavelet will affect the class of inputs for which our time-invariance relation is

applicable, as well as the behavior of the system under input translations that are

not multiples of 2 -M .

In summary, this chapter has used a system theory perspective in to suggest a

unifying framework for viewing various results of the thesis. For example, our re-

sults on LTSI(A) systems, their properties, and their wavelet-based representations

suggest that wavelet-based synthesis, analysis, and processing of self-similar signals

is rather natural. Indeed, the 1/f synthesis and whitening filters described in Sec-

tion 4.1 are specific examples of the quasi-LTSI(A) systems developed in this section.

As discussed, these filters play an important role in addressing problems of optimal

detection and estimation involving 1/f processes. It is conceivable that the trans-

mitter and receiver structures for fractal modulation discussed in Chapter 6 can also

3 Actually, the multirate systems literature typically refers to such systems as periodically time-
varying since they can be modeled as LTI systems whose parameters vary periodically in time.
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be interpreted in terms of such quasi-LTSI(A) systems. Such an interpretation could

lead to some potentially useful additional insights into both homogeneous signals and

fractal modulation.

More generally, a system theory perspective provides some novel insights into the

relationships between Laplace, Fourier, Mellin and wavelet transformations, both as

signal analysis tools and as representations for characterizing linear systems. In par-

ticular, we have shown results suggesting that while Laplace transforms are naturally

suited to the analysis of linear time-invariant systems, and while Mellin transforms are

naturally suited to the analysis of scale-invariant systems, it is the wavelet transform

that plays the corresonding role for linear systems that are simulataneously time- and

scale-invariant. However, this chapter represents a rather preliminary exploration of

self-similar systems and many topics and issues remain to be explored. Indeed, these

represent some interesting and potentially fruitful directions for further research.
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Chapter 8

Conclusions and Future Directions

In this thesis we have developed robust, efficient, and convenient wavelet-based rep-

resentations for two distinct families of fractal signals, and explored some potentially

important applications.

For the 1/f family of fractal signals, we established that orthonormal wavelet

expansions generally play the role of IKarhunen-Loeve-like expansions. That is, when

1/f processes are expanded in terms of orthonormal wavelet bases, the coefficients of

the expansion tend to be very weakly correlated. This conclusion was supported both

with theoretical evidence and with empirical evidence based upon real and simulated

data. Many of the results exploited a new frequency-based characterization for 1/f

processes introduced in the thesis.

Using this IKarhunen-Loeve-type representation for 1/f processes we were able to

solve many fundamental but previously intractable problems of detection and esti-

mation involving such processes. For example, we were able to develop maximum

likelihood parameter estimation algorithms for 1/f signals embedded in white back-

ground noise. We emphasize that while other parameter estimation algorithms for

1/f processes exist, our work is the first we are aware of to explicitly take into ac-

count the presence of background noise. As we pointed out, such noise is important

in ensuring that the algorithms are robust with respect to both measurement noise

and modeling errors. The resulting parameter estimation algorithms, which compute

both fractal dimension parameters and the accompanying signal and noise variance
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parameters, can be used for signal and texture classification or for signal detection in

a number of possible applications.

We were also able to develop what appear to be the first minimum mean-square

error signal estimation (smoothing) algorithms for 1/f processes corrupted by white

noise. There are many potential problems involving signal restoration and enhance-

ment to which the resulting wavelet-based Wiener filters may be applied.

As examples of other signal processing problems that can be addressed using our

new representation, we developed algorithms for coherent detection in the presence

of 1/f and white noise, and algorithms for. discriminating between distinct noise-

corrupted 1/f signals. The detection algorithms are potentially important in a num-

ber of communication and telemetry applications, while the discrimination algorithms

can be used for signal classification in a number of application contexts.

While a considerable amount of additional analysis and testing of these various

algorithms remains to be done, our preliminary theoretical and empirical studies

suggest that they are not only robust, but highly computationally efficient as well.

Indeed, the existence of high-speed discrete wavelet transform algorithms means that

wavelet representations are of both significant theoretical and practical importance.

In the second half of the thesis, we introduced and developed a novel family of

homogeneous signals that were defined in terms of a dyadic scale-invariance property.

NWe distinguished between two classes, energy-dominated and power-dominated, and

established that orthonormal wavelet basis representations are as important for these

signals as they are for 1/f signals. In particular, choosing a suitable wavelet-based

inner product, we showed that the energy-dominated homogeneous signals consti-

tute a Hilbert space for which we were able to construct wavelet-based orthonormal

"self-similar" bases. We discussed the spectral and fractal properties of homogeneous

signals, and developed efficient discrete-time algorithms for their synthesis and anal-

ysis.

As one potential application direction, we considered the used of homogeneous sig-

nal sets in a communications-based context. In particular, we developed a strategy

for embedding information sequences into homogeneous waveforms that we termed
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fractal modulation. With fractal modulation, the transmitted waveforms have the

property that the information can be recovered given either arbitrarily little duration

or arbitrarily little bandwidth. More generally, we were able to show that the resulting

multirate modulation scheme is well-suited for use with noisy channels of simultane-

ously uncertain duration and bandwidth. As we discussed, this model is useful not

only in describing a variety of physical channels, but also in capturing receiver con-

straints inherent in many point-to-point and broadcast communication scenarios. We

developed both minimum mean-square error receivers for demodulating continuous-

amplitude information and minimum probability-of-error receivers for demodulating

discrete-amplitude information. In each case, we evaluated the performance of the

overall communication scheme and made comparisons to more traditional modulation

strategies.

While our development of fractal modulation considered many issues, including

finite message length effects and computational complexity, many other issues, such as

synchronization and buffering, remain to be adequately explored. As a consequence,

fractal modulation does not yet constitute a fully-developed communication protocol.

Nevertheless, based on the results of our preliminary investigation, it does represent a

novel, compelling and potentially important paradigm for communication in a variety

of military and commercial communication contexts.

8.1 Future Directions

In general, there are numerous outstanding issues pertaining to the topics treated in

this thesis. Indeed, many of these issues have been identified within the appropriate

chapters of the thesis. Still others have yet to be identified. Such issues suggest

important future directions for work on the topic.

In the case of Chapter 7, which discussed connections between self-similar signals

and self-similar systems, our treatment was particularly cursory. Much work remains

to be done in developing a unified framework from which to view the various results of

the thesis, and in understanding the nature of the relationship between the Laplace,
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Fourier, Mellin, and wavelet transforms.

An example of a problem not considered within this thesis, but warranting inves-

tigation, is that of optimal prediction of 1lf processes. Naturally, one can envision

numerous applications involving economic, geophysical and other time series where

optimal forecasting algorithms could be exploited. However, given the particular

correlation structure within 1/f processes, we might reasonably speculate that such

processes are fundamentally unpredictable, i.e., that accurate prediction is impossi-

ble from observations corresponding to typical data lengths and SNRs. In this case,

a quantitative result on the predictability of 1/f processes would be an equally im-

portant result. It is certainly plausible that at least indirectly our wavelet-based

representations for 1/f processes can be used to obtain both prediction algorithms

and performance bounds for this class of signals.

The development of efficient representations for non-Gaussian fractal signal mod-

els represents another important direction for future research. In this thesis, we have

restricted our attention principally to Gaussian 1/f processes, largely for reasons of

tractability. And while Gaussian 1/f processes are valuable models for many real

signals, considerably richer behavior can be derived from non-Gaussian 1/f models

generated by nonlinear mechanisms. Consequently, techniques for modeling non-

Gaussian 1/f signals as well as algorithms for processing such signals would be po-

tentially useful in an apparently wide range of application contexts.

Finally, we remark that there would appear to be many other potential applica-

tions for the classes of homogeneous signals we have introduced in this thesis. Even

within the context of communications, one can imagine a whole host of additional

uses of homogeneous signals beyond the particular fractal modulation application we

consider in this thesis. In many respects, identifying and exploring new and poten-

tially promising applications represents perhaps the most exciting direction for future

research suggested by this thesis.
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Appendix A

Derivation of the Discrete Wavelet

Transform

A.1 Analysis Algorithm

The key to developing an efficient discrete-time implementation of the wavelet de-

composition lies in recognizing a useful recursion. Because

0(t), o0(t) E Vo C V,

there exists a pair of sequences h[n] and g[n] such that we can express these functions

in terms of a basis for V1, i.e.,

400(t)

o00(t)

= Zh[l]X (t)

= E 9[] 1 (t)

(A.la)

(A.lb)

where the coefficient h[n] and gin] are given by the appropriate projections, viz.,

(2.20). Equivalently, we may express (A.1) in the frequency domain as

4(w)

T(W)
= 2-1/2 H(w/2) 4o(w/2) (A.2a)

= 2-1/2 G(w/2) 4(w/2). (A.2b)
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In any case, multiplying both sides of (A.1) by 2m/2, replacing t with 2mt - n, and

effecting a change of variables we get, more generally,

nr(t) = h[l - 2n] 0l(t) (A.3a)
l

V (t t= ,g[1-2n] X1(t) (A.3b)

where, in turn, we may rewrite (2.20) as

h[I - 2n = '(t) (t) dt, (A.4a)
_00

g[l - 2] = L m(t) O>r+ 1 (t) dt. (A.4b)

The discrete-time algorithm for the fine-to-coarse decomposition associated with

the analysis follows readily. Specifically, substituting (A.3a) into (2.13) and (A.3b)

into (2.5b), we get, for each m, the filter-downsample relations (2.21a) and (2.21b)

defining the algorithm.

A.2 Synthesis Algorithm

The coarse-to-fine refinement algorithm associated with the synthesis can be derived

in a complementary manner. Since

+' (t) E {Vm Om},

we can write

Om+l(t)= Amm+'(t) + Dm +l(t)

= Z {h[n - 21] Om(t) + g[n - 21] O?'(t)} (A.5)

where the last equality follows by recognizing the projections in the respective expan-

sions as (A.4). The upsample-filter-merge relation (2.21c) then follows immediately
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by substituting (A.5) into

anm+ l = x(t)n+l(t) dt.
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Appendix B

Proofs for Chapter 3

B.1 Proof of Theorem 3.2

We first establish the following useful lemma.

Lemma B.1 When a 1/f process x(t) is passed through a filter with frequency re-

sponse

Ba (W) |= 1 7ra < wi < 2ra

{O otherwise
(B.1)

for any a > 0, the output ya(t) is wide-sense stationary, has finite variance and has

an autocorrelation satisfying

Ry a (r) = E [Ya(t) ya(t - r)] = a- 2HRyi(ar) (B.2)

for all a > O. Furthermore, for any distinct integers m7i and k, the processes 2"' (t)

and Y2k(t) are jointly wide-sense stationary.

Proof:

First, from Definition 3.1 we have immediately that yl(t) is wide-sense stationary. More
generally, consider the case a > O. Let ba(t) be the impulse response of the filter with
frequency response (B.1). To establish (B.2), it suffices to note that ya(t) has correlation
function

Rya (t,s) = E[ya(t) ya(s)]
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= J X ba(t-) ba(s-fa)Rx(a,fl)dadf:

= a 2 H J bl(at - ) bl(as - ) R,(a, f3) d do

= a- 2H R, (at, as) (B.3)

where we have exploited the identities (3.2b) and

ba(t) = abl(at).

However, since yl(t) is wide-sense stationary, the right side of (B.3) of a function only
of t - s. Hence, ya(t) is wide-sense stationary and (B.2) follows. Furthermore, ya(t) has
variance

Ry, (O, O) = a- 2HRy l (0, 0) < 0

where the inequality is a consequence of Definition 3.1. To establish our final result, since
B 2m (w) and B 2k (w) occupy disjoint frequency intervals for in k, the spectra of y2m (t) and
y2k (t) likewise occupy disjoint frequency intervals. Thus, y2m (t) and Y2k (t) are uncorrelated,
and, hence, jointly wide-sense sense stationary as well 

W\e now proceed to a proof of our main theorem.

First, let us establish that y(t) is wide-sense stationary. Let AML and AMu be any

pair of integers such that

2ML 7r < WL < WU < 2u+l1r.

and consider preceding the filter (3.25) with a filter whose frequency response is

B(w) = - (B.4)
0 otherwise

since this will not affect the output y(t).

Let y(t) be the output of the filter (B.4) when driven by x(t). Then since

Mu

B(w)= E B2 m(W)
m=ML

where B2m (w) is as defined in (B.1) of Lemma B.1, we can decompose y(t) according

to

=(t)= 7 y2m(t) (B.5)
m= AIL
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where y2m(t) is the response of the filter with frequency response B 2m(w) to x(t).

From Lemma B.1 we have that the

{Y 2m(t)}, ML < m _< Mu

are jointly wide-sense stationary. Hence, from (B.5) we see that (t) is wide-sense

stationary. Then since y(t) is obtained from y(t) through the filter (3.25), the sta-

tionarity of y(t) is an immediate consequence of the stationarity of y(t) [65].

Let us now derive the form of the spectrum of y(t), i.e., (3.26). We begin by

rewriting (B.2) of Lemma B.1 in the frequency domain as

Sy, (aw) = a-( 2H+l)Sy (w) (B.6)

where Sy. (w) is the power spectrum associated with ya(t). For 1 < a < 2, we observe

that Sy, (w) and Sya (w) have spectral overlap in the frequency range air < wI < 2r,

and can therefore conclude that the two spectra must be identical in this range. The

reasoning is as follows. If we pass either ya(t) or yl(t) through the band pass filter

with frequency response

Bt(w) {1a7r < wl < 2r
0 otherwise

whose impulse response is bt(t), the outputs must identical, i.e.,

bt(t) * ya(t) = bt(t) * yl(t) = bt(t) * x(t).

Since ya(t), and yl(t) are jointly wide-sense stationary, we then conclude

Sy.(w)lBt (w)12 = Sy(w) B t (W)12

whence

Sy (W) = Syl(W), ar < JwJ < 2r. (B.7)
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Combining (B.7) with (B.6) we get

Sy (aw) = a-(2H+l)Sy (w), a7r < wl < 2r

for any 1 < a < 2. Differentiating (B.8) with respect to a and letting a -- 1+, we

find that

wSy ~(w) = -(2H + 1)Sy (w), 7r < w < 27r,

and note that all positive, even, regular solutions solutions to this equation are of the

form

Syl (W) = oa/IwIl, Ir < wl 2r

for some a x > 0 and given by (3.7). Using (B.9) with (B.6) we find, further, that

Sy2m (W) =
2/

0

2"'r < Ijw < 2+ 1fr

otherwise

Via Lemma B.1, the y 2m(t) are uncorrelated, so we deduce that (t) has spectrum

Mu

Sg(w)= E
mE=nL

Sy2 () =

a'/1W1, 2AIL 1 < _ • 2"i'U+

0 otherwise

Finally, since

Sy(w) = B(w) 2 S ()

our desired result (3.26) follows 

B.2 Proof of Theorem 3.3

To show that a fractional Brownian motion x(t), for 0 < H < 1, is a 1/f process

according to Definition 3.1, it suffices to consider the effect on x(t) of any LTI filter

with a regular finite-energy impulse response b(t) and frequency response B(w) satis-

fying B(w) = 0. In particular, since x(t) has correlation given by (3.16), the output
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of the filter

y(t) = • b(t - r) x(T) d (B.10)

has autocorrelation

Ry(t, s) - E [y(t)y(s)]

- 2 b(v)dv It - s + u - v2H" b(u) du
2 -00 -

as first shown by Flandrin [29]. Since Ry(t, s) is a function only of t - s, the process

is stationary, and has spectrum

Sy(w) = IB(w)l 2 1IWI2H+1 °

When we restrict our attention to the case in which B(w) is the ideal bandpass filter

(3.24), we see that y(t) is not only stationary, but has finite variance. This establishes

that any fractional Brownian motion x(t) satisfies the definition of a 1/f process.

That the generalized derivative, fractional Gaussian noise x'(t), is also a 1/f

process follows almost immediately. Indeed, when x'(t) is processed by the LTI filter

with impulse response b(t) described above, the output is y'(t), the derivative of

(B.10). Since y(t) is stationary, so is y'(t). Moreover, y'(t) has spectrum

1
Sy,(w) = IB(w)l 2 1I1,.2H'+'

where H' is as given by (3.20). Again, when B(w) is given by (3.24), y'(t) is not only

stationary, but has finite variance, which is our desired result 

B.3 Proof of Theorem 3.4

Without loss of generality, let us assume a2 = 1. Next, we define

M

XM1(t)= y E xA= m (t) (B.11)
m=-A n
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as a resolution-limited approximation to x(t) in which information at resolutions

coarser than 2 -M and finer than 2M is discarded, so

x(t) = lim XM(t) = ZE E n '(t).
M-oo m n

Since for each m the wavelet coefficient sequence xn is wide-sense stationary with

spectrum 2 -- m, the approximation xM(t) is cyclostationary [65] with period 2 M, has

finite variance, and has the associated time-averaged spectrum

SI(w) = Z 2-l(2mw)A2. (B.12)
mn=-AM

The limiting time-averaged spectrum

Sz(w) = lim S(W)
M-0oo

gives the desired spectrum expression (3.36), and corresponds to the time-averaged

spectrum of x(t) as measured at the output of a bandpass filter for each frequency w'

in the passband. The desired octave-spaced ripple relation (3.38) for arbitrary integer

k follows immediately from (3.36).

To establish (3.37), we begin by noting that, given w, we can choose m 0 and w0

such that w = 2"'1 0wo and 1 < Iwol < 2. Hence, using (3.38) we see

S,(w) = 2-mosx(wo)

from which it follows that

[ inf S (W o)1< S [ sup S (o)T
[1<Iwoj<2 Sx~wo~j ~ • S~w) l<1<Iwol<2 ( Iw

It suffices, therefore, to find upper and lower bounds for S,(wo) on 1 < Iwol < 2.

Since b(t) is Rth-order regular, @(w) decays at least as fast as /wR as w oc.
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This, together with the fact that I(w) is bounded according to (2.8a), implies that

C
I(W)I < 1 + IIR '

for some C > 1. Using this with (2.14a) in (3.36) leads to the upper bound

00oo

S,(wo) < E 2-'" +
m=O

oo

E 2n2C 22- 2 Rm
m=1

To establish the lower bound it suffices to show S(w) > 0 for every 1 < w < 2,

which we establish by contradiction.

Suppose for some 1 < wo < 2,

S,(o) = E 2--Y" (2-"wo)l2 = 0
m

Then since all the terms in the sum are non-negative, this would imply that each

term is zero, from which we could conclude

E :I'(2 wo)l 2 = .

However, this contradicts the wavelet basis identity (2.9). Hence, we must hlave that

S(w) > 0 for every 7r < w0 < 27r. The complete theorem follows 

B.4 Proof of Proposition 3.5

We begin by defining the process xK(t) as the result of filtering x(t) with the ideal

bandpass filter whose frequency response is given by

BiK(w) = { 1

0

2 - K < IWI < 2
"

otherwise

so that

lim xJK(t) = x(t).
K--oo
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Then by Theorem 3.2, XK(t) is wide-sense stationary and has power spectrum

Si((w) = { 2- K' < I < 2"

otherwise

If we denote its corresponding autocorrelation by

R K ( r) = E [XK(t)xK(t - r)]

and its wavelet coefficients by

xn(K) = x ic(t) '1(t)dt,

the correlation between wavelet coefficients may be expressed as

E [x (K)x,' ()] = J mt -T) ¢", () dt dT

= ¢~ nm~) [R(t) RKt) · * ..., (t) dt.-00
Applying Parseval's theorem and exploiting (B.4), we may rewrite (B.13) in the fre-

quency domain as

E [m(I)xn1 (K)]n ' 

2-( m+m')/2

27r

f 2-h

1J 2A

a02

(2-m) *(2-") dwiWI1
+ IQ MI(2-"Lw) *(2-'L) dw}-K lud-,~~

Interchanging limits, we get

x = lim xnL(K)
K-*oo

and, in turn,

E [Xnx-m = lim E [x(K)4'(K)].n K--oo n

Finally, substituting (B.14) into (B.15) yields (3.40) as desired 
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B.5 Proof of Theorem 3.6

Let us define

A = 2-mn - 2m '

and

-(w) = -,,(2W)@,'(2 .)

for w > 0, so that (3.41) may be expressed, via (3.40), as

2

pn,n= 7rReI(

where

I(A) = j E(w) eJw dw.

Thus, to establish the desired result, it suffices to show that I(A) has the appropriate

deca-.

We first note that if y > 2R + 1, then we cannot even guarantee that I(A)

converges for any A. Indeed, since

-- w) 1 o (2R--y) w - O

we see that I(A) is not absolutely integrable. However, provided y < 2R, I(A) is

absolutely integrable, i.e.,

ot I-w(Q)(h)a db < oo.

In this case, we have, by the Riemann-Lebesgue lemma [35], that

I(A) 0, A -oo.

When 0 < y < 2R, we may integrate (B.17) by parts Q times, for some positive
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integer (. to obtain

_ 1
(j=A)Q

Q-1 1
+ 

'q=0 (j.I

-(Q)(w) e - ji dw
0=

[wO (Q)(w) e-jiw] lim [()(w) e-jAw] } (B.18)

Due to the vanishing moments of the wavelet we have

()(W) s (W2R 'Iy), w -O (iL !)

while due to the regularity of the wavelet, (w) decays at least as fast as 1/wR as

-+ 00, whence

-(q)(W) o (W-2R-a-) --4 00. (B.20)

Hence, the limit terms in (B.18) for which -2R - < q < 2R - y all vanish.

Moreover, when we substitute q = Q, (B.19) and (B.20) imply that (Q)(w) is

absolutely integrable, i.e.,

(B.21)100 I(Q)(w)i b, < 00,

whenever -2R - y + 1 < Q < 2R - + 1, which implies, again via the Riemann-

Lebesgue lemma, that the integral in (B.18) vanishes asymptotically, i.e.,

0 -(Q)(w) e - ji dw -- 0, A --+ o. (B.22)

Hence, choosing Q = [2R - yl in (B.18) (so 2R - y < Q < 2R - y + 1) allows us to

conclude

I - (-r2R--1) --, o00. (B.23)

Substituting (B.23) into (B.16) then yields the desired result 
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Appendix C

The EM Parameter Estimation

Algorithm

In this appendix, we derive the EM algorithm for the estimation of the signal and

noise parameters = {3, 2, a2} for the scenario described in Section 4.2.

We begin by defining our observed (incomplete) data to be

r= {rn', m, nE },

and our complete data to be (x, r) where

Consequently, the EM algorithm for the problem is defined as 63]

Consequently, the EM algorithm for the problem is defined as [63]

E step: Compute

U(E, 1' )

M step:

maxU(O, 11) 6[1+l]e
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where

U(, ) ' E [lnpr,x(r,x; O)r; ] .

For our case, U is obtained conveniently via

U(e, e) = E [lnp(rlx ; e) + lnpx(x; E))r; e]

with

Prlx(rlx; e) = n
m,nE

and

px(x; e) = nI
m,nE1Z

1

1
V/2-rd 2/- n ex

(r7 - xr )2

2a2

(ni )2

2a2p-ni '

Then

U(o, e) =
1
2 *Z N(n) { 2 S(e) + ln2raw

m EM
2 -m () + In 27r-,2 " }

(C.1)

where

1

N(7m)
1

Z
nEA(m)

N(n) nN (r1) nEr(mn)

E [(w")2 Ir; I3]

E [(x )217'n; e]

are (quasi) conditional sample-variance estimates from the data based upon the model

parameters e. Evaluating the expectations we get

Sm(Oe) = Am(e) + B(eO)a,

Sx(O) = A(O) + B(E)&

where

Am(O)
ao .a 2 3-77i

Ow + 2-m
W 2P"
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O'w

B () = ( 22p-n ) 2

which completes our derivation of the E step.

To derive the structure of the M step, we maximize U(O, O) as given by (C.1).

This maximization is always well-defined as U(®, O) < L(®) for any E, e.
The local extrema are obtained by differentiating U(O, O) with respect to each

of the parameters of e. Since (C.1) expresses U(O, O) as the sum of two terms, one

of which depends only on oa and the other of which depends only on P and a 2, the

maximization can be broken down into two independent parts.

Considering first our maximization over a2, we readily obtain the maximizing &2'

as the sample-average

Z N(m)Sw1 ,(e)
&^2 mEM

a E N(m)
mEM

Turning next to , and a 2, we find that the maximizing parameters 3 and &2

satisfy

E N(m)S (o)O'n = a2 E N(m) (C.2a)
mEM mEM

Z mN(m)S,,,(e)3m = a2 mNl\T(im) (C.2b)
mEM mEM

Eliminating a2 we obtain that is the solution of the polynomial equation

Z cmN(m)Sm(e)O3m = 0, (C.3)
mEM

iwhere Cm is as defined in (4.16). The eliminated variable &2 is trivially obtained' b1

back-substitution:

2 = mEM

E N(n)
mEM
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Finally, to show that the maximizing parameters are the only solution to (C.2) it

suffices to show that the solution to (C.3) is unique, which we establish via the

following lemma.

Lemma C.1 Any polynomial equation of the form

Z CmKmIMP = 0 (C.4)
mEM

where Cm is given by (4.16) and Km > 0 has a unique positive real solution provided

l > 2 and not all IKm are zero.

Proof:

Let
E. mN(m)

mEM

E N(m)
mEM

be a weighted average of the m E M, so ml < m. < 7mM. Then, from (4.16), for m > m.,
Cm > 0, while for m < m., Cm < 0. Hence, C,(m - m*) > 0 with strict inequality for
at least two values of mn E M from our hypothesis. Now let f () be the left-hand side of
(C.4), and observe that

f(i) af ()p - *

is increasing for 3f > 0, i.e.,

'(/) = Cm(m - .) N(i7m) 2p"' m- "1 "- 1 > 0.
mEM

Then, since f(O) = -oo and f(oo) = oo, we see f(/3) has a single real root on /3 > 0. Since
f () shares the same roots on /3 > 0, we have the desired result. 

This completes our derivation for the M step. The complete algorithm follows

directly.
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Appendix D

Proofs for Chapter 5

D.1 Proof of Theorem 5.2

AWe begin by noting that we may insert any ideal bandpass filter with a passband

that includes waL < I1 < Wv before the filter specified by (5.4) without changing the

overall system. We can construct such a filter as the finite parallel combination of

filters with adjacent, octave width passbands. In particular, let .i¥~(t) be the output,

when driven by x(t), of the filter with frequency response

1 2mTr < IwI < 2+17r
Bm() = -, (D.1)

0 otherwise

and corresponding impulse response bm(t). By definition of x(t) we then know that

io(t) has finite energy. Furthermore, we get

i(t) = j x(a) bm(t - a)dda = 2-mHro(2mt) (D.2)

where the last inequality results from using a change of variables together with the

self-similarity relation (5.2) and the identity

b,.(t) = 2bo(2m t).
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Hence, every :m(t) has finite energy.

Next, choose finite integers ML and Mu such that 2'L 7r < WL and WU < 2U+ 1
7r.

Then
Mu

b(t) = E bm(t)
m=ML

is the impulse response of an ideal bandpass filter with passband 2ML7r < I <

2alV+l7r. When this filter is driven by x(t) the output is

Mu

z(t) = E m(t).
m=ML

Because the rm(t) have Fourier transforms supported on disjoint frequency intervals,

they are orthogonal. Hence, z(t) has energy

oo Mu U

z2(t)dt= EM J (t) dt
-o0 ~ m=ML o

which is finite since each of the i,,(t) has finite energy.

Finally, when we cascade the filter having impulse response b(t) with the filter

having frequency response (5.4), the overall frequency response of the cascade is, of

course, (5.4) by our choice of ML and Mu. Hence, when the cascade is driven by x(t),

the intermediate signal is z(t) and the final output is necessarily y(t) as defined in

the statement of the theorem. We can then conclude that y(t) has finite energy since

1 I(w dw = IZ()1 2 dw < - IZ(w)' dw < o.

To show the spectrum relation (5.5), it suffices to note that

Y(w) = B(w) : 'm(w) = {WLIWI <W
m 0 otherwise

where
00

-X(w)- -0m=-oo
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Note that this sum is convergent because for each w only one term in the sum is

non-zero. Finally, applying the self-similarity relation (D.2) gives

X(w) = Z 2-m(H+l)X (2-mW),
m

which, as one call readily verify, satisfies (5.6) 

D.2 Proof of Theorem 5.3

WNe begin by noting that the energy in the output xo(t) can be expressed as

1 Al I.o(W)12 dw = 1 
1/ m 7 -Jm7r

Ix(w)12 I,()12 dw

where Xo(w) is the Fourier transform of xo(t), and where X(w) is as defined in The-

orem 5.2. Exploiting the ripple relation (5.6), we get, through a change of variables,

E-= I1:
7r 1r

IX(w)1 2 S(w) dw

where the non-negative spectrum S(w) is defined as

(D.3)S(w) - 2- m I (2mw) 12

m

Let us first show that xo(t) has finite energy if x(t) is energy-dominated. Since,

1 £
71'

IX(w)12 dw

it suffices to show that S(w) < oc on r < w < 27r. The vanishing moment condition

(5.17), together the fact that @(w) is bounded, implies there exists a C > 0 such that

C
!(j(w)l <1+

.+IWL1R
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for all w. Using this with (2.8a) in (D.3) gives the desired bound

S(w) < 2-m + f 2 mC22 -2Rm( 2 7r)2R < 
m=O m=l1

for w < 27r and 0 < y < 2R.

Let us now show the converse, i.e., that x(t) is energy dominated if xo(t) has finite

energy. Since

E> [ inf S(w)] lfIX(w)1 2dw

it suffices to show S(w) > 0 for every 7r < w < 27r, which we establish by contradiction.

Suppose for some r < wo < 27r,

S(wo) = E 2-*mI(2 mwo)12 = 0.
ni

Then since all the terms in the sum are non-negative, this would imply that each

term is zero, from which we could conclude

1(2mwo) 12 = 0.
m

However, this contradicts the wavelet basis identity (2.9). Hence, we must have that

S(w) > 0 for every r < wo < 27r. The theorem follows 

D.3 Proof of Theorem 5.6

Following the approach of the proof of Theorem 5.2 in Appendix D.1, we begin by

noting that we may insert any ideal bandpass filter with a passband that includes

WL < IWI < wU before the filter specified by (5.4) without changing the overall system.

\We can construct such a filter as the finite parallel combination of filters with adjacent,

octave width passbands. In particular, let ,,(t) be the output of the filter with

frequency response (D.1) and corresponding impulse response bm(t), when driven by

x(t). By definition of x(t) we then know that io(t) has finite power. Furthermore,

from (D.2) we get that every 5m(t) has finite power.
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Next, again choose finite integers ML and Au such that 2AILTr < WL and w <

2A"t'+l7r. Then
Mu

b(t)= Z bm(t)
m=MAIL

is the impulse response of an ideal bandpass filter with passband 2Lir < W <

2"'l+17r. 1When this filter is driven by x(t) the output is

Mu

z(t) = Z i m(t).
m=ML

Because the ~',(t) have power spectra supported on disjoint frequency intervals, their

cross-correlations are zero. Hence, z(t) has power

1 T 2 MU . i T
lira 1 r z( t ) d t= C ) line , (t) li

T--oc 2T JT T -oo 2T J T

which is finite since each of the 5re(t) has finite power.

When we cascade the filter with impulse response b(t) with the filter whose fie-

quency response is (5.4), the overall frequency response of the cascade is course (5.4)

by our choice of AlL and MU. Hence, when the cascade is driven by x(t), the interme-

diate signal is z(t) and the final output is necessarily y(t) as defined in the statement

of the theorem. We can then conclude that y(t) has power

sy(wJ ) d= j Sz(w)dw < I S (w) W
T7 0 7r 7'

iwhich is finite because the last term on the right is the power in z(t).

To show the spectrum relation (5.25), it suffices to note that

X() WL < IWI < WU
Sy(w) = IB(w)12 SZ (w) { X(w) Lewise

p1 0 otlherwise

where

Sz (W)-5 S (W)
Ynl
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Again, since for each value of w only one term is non-zero, the sum is convergent.

Finally, applying the self-similarity relation (D.2) gives

S.(w) = ~ 2- m S (2-m w)

which, as one can readily verify, satisfies (5.26) 

D.4 Proof of Theorem 5.7

We first establish some notation. Let us denote the cross-correlation between two

finite-power signals f(t) and g(t) by

Rf,g(i-) = lilll 1 T
T-oo 2T T

f(t) g(t - T) dt.

Its Fourier transform is the corresponding cross-spectrum Sf,g(w). Similarly

1 L
Ra,b[k] = lim 1 a b[ - kI

L--~ 2L + 1 ,=_L

will denote the cross-correlation between two finite-power sequences a[n] and b[n].

We begin by expressing x(t) as

x(t) = E Xn(t)

where

xm(t) = p-/: E q[n]W(t).
n

Then the deterministic power spectrum of x(t) is given by

(D.4)S(w) = Sm,Xml (W)
m m'

\Ve shall proceed to evaluate these various terms. Because of the dilational relation-
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ships among the xm(t), viz.,

zXm(t) = 2m/2-m/2X,(2mt)

it shall suffice to consider a single term of the form S,0,~ =(t), for some m > 0.

Hence, let

vm(t) = 3-m/2 E q[n]-(t- 2- m 2n)
n

and note that

vo(t) = , [n(t - 2-mn)
n

where [n] is an upsampled version of q[n], i.e.,

1 = 2 m1, 1= ... ,-1, 0, 1,2,...

otherwise

Hence,

R,v, () = Rq[k](t - 2-m k)
k

where

R4,q[k] = lim
L-'oo

1

,2L + 1 InL,n=2ml
q[2-mn] q[? - k]= lilll 1

L-oo 2L + 1 Z q[l] q[2 1 - k].
111<2-m L

Since q[n] is correlation-ergodic, we may replace this correlation with its expected

value:

111<2- m L

R.,q[k] = lim 1
L-oo 2L + 1

Hence,

So,vm (W) =

nm = O0

otherwise

{ 1

0

m = O0

otherwise
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where, without loss of generality, we have set a2 - 1. Then, using

Sz,, () = (2p)- m/ 2 (W) * J(2- w) S, , ,, ()

we get that

S.o,m ( =

Finally, we note that

{ I0p(w)12
0

m=O

otherwise

Sz,mZ,m (W) = Sm,,m(W)

and that

S.m,.m, (W) = P-- Sz, l (2 ).

Using these identities together with (D.5) in (D.4) yields

S(w) = L -ml'I(2-nW)1 2

m

as desired 
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