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REALIZATION THEORY FOR DETERMINISTIC
BOUNDARY-VALUE DESCRIPTOR SYSTEMS

Ramine Nikoukhah, Bernard C. Levy, and Alan S. Willsky

Abstract

This paper examines the realization of acausal weighting patterns with two-point
boundary-value descriptor systems (TPBVDSs). We restrict our attention to the
subclass of TPBVDSs which are extendible, i.e., whose input-output weighting
pattern can be extended outwards indefinitely, and stationary, so that their
weighting pattern is shift-invariant. Then, given an infinite acausal shift-invariant
weighting pattern, the realization problem consists in constructing a minimal
TPBVDS over a fixed interval, whose extended weighting pattern matches the
given pattern. The realization method which is proposed relies on a new
transform, the (s,t) transform, which is used to determine the dimension of a
minimal realization, and to construct a minimal realization by factoring two
homogeneous rational matrices in the variables s and ¢.

1. Introduction

There exists an extensive literature [1]-[3] on the state-space realization prob-
lem for linear time-invariant causal systems, i.e., for systems which admit an
input-output description of the form

o0

y(k) = >3 W(k=l)u(l) (1.1)

l=—00

where the impulse response (weighting pattern) W(.) satisfies
W(m)=0 for m <0. (1.2)

However, for many physical systems, in particular when the independent variable
is space rather than time, the causality condition (1.2) does not hold. For exam-
ple, if we consider the temperature of a heated rod, there is no reason to assume
that the temperature at any point of the rod depends exclusively on the applied
heat on one side of that point. Weighting patterns that do not satisfy (1.2) are
called acausal. In this paper, we develop a realization theory for acausal weighting
patterns in terms of two-point boundary-value descriptor systems (TPBVDSs).

The motivation for considering this class of systems is that the dynamics of
discrete-time descriptor systems are noncausal, in the sense that they contain com-
ponents which propagate in both time directions [4]. The boundary conditions are
another source of noncausality, since they are expressed symmetrically in terms of
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the system variables at both ends of the interval of definition. Thus, TPBVDSs
have a totally acausal structure [5]-[6], which is ideally suited to model noncausal
systems. Motivated by the earlier work of Krener [7], and Gohberg, Kaashoek and
Lerer [8] for acausal systems with standard dynamics, a complete system theory of
TPBVDSs has been developed recently in [9]-[11], including concepts such as
reachability, observability and minimality. In this paper, we restrict our attention
to stationary and extendible TPBVDSs, i.e, TPBVDSs whose weighting pattern
pattern is shift-invariant, and where the interval of definition of the TPBVDS can
be extended outwards indefinitely, without changing the weighting pattern.

The realization problem that we consider can be stated as follows: given an
infinite weighting pattern W{m), construct a minimal TPBVDS over a fixed inter-
val, which has W(m) for extended pattern. As for causal time-invariant systems,
where the z-transform plays a useful role in transforming the realization problem
into a factorization problem for proper rational matrix transfer functions, it is
shown that the TPBVDS realization problem can be formulated as a factorization
problem. However, instead of using the z-transform, we introduce a new
transform, the (s,t) transform, which handles zero and and infinite frequencies
symmetrically, and is therefore well adapted to the analysis of descriptor systems.
The (s,t) transform is used here to characterize the dimension of TPBVDS reali-
zations in terms of the McMillan degree for rational matrices in s and ¢, and to
formulate the TPBVDS realization problem as a factorization problem for not
one, but two homogeneous rational matrices in two variables. Due to space limita-
tions, most results are stated without proof. The reader is referred to [12] for a
complete account.

2. Two-point Boundary-value Descriptor Systems

In this section, we review several properties of TPBVDSs, such as stationar-
ity, minimality and extendibility, that will be needed in the development of our
TPBVDS realization procedure.

2.1. Model Description
A linear time-invariant TPBVDS is described by the difference equation

Ez(k+1) = Az(k) + Bu(k), 0<k <N-1 (2.1)
with boundary condition
 Viz(0) + Vys(N) = (2.2)
and output equation
y(k)=Cz(k), 0<k<N. (2.3)

Here, z and v are n-dimensional, u is m-dimensional, y is p-dimensional, and F,
A, B and C are constant matrices. We also assume that N > 2n, so that all
modes can be excited and observed. In [9] it was shown that if the system (2.1)-
(2.2) is well-posed, we can assume without loss of generality that (2.1)-(2.2) is in




normalized form, i.e., that there exists scalars o and [ such that

aF + A =1 (2.4)
(this is referred to as the standard form for the pencil {E, A }) and in addition
V;EN + vV, AN =1 . (2.5)
Then, the map from {u,v} to x has the form
s(k) = AFENFy 4+ '3 G (k,1)Bu(l) (2.6)
=0

where G(k,l) is the Green’s function associated to the descriptor dynamics (2.1)
and boundary condition (2.2). The map from inputs u to outputs y specifies the
weighting pattern W of the system. Setting v = 0 in (2.6) yields

N-1
y(k) = EJO W(k,)u(l), (2.7)

with
W(k,l) = CG(k,)B . (2.8)

2.2. Stationarity

In contrast with the causal case, where time-invariant state-space models
have a time-invariant impulse response, the weighting pattern W(k,!) is not in
general a function of the difference £—I. TPBVDSs that have this property are
called stationary.

Theorem 2.1 [10]: The TPBVDS (2.1)-(2.3) is stationary if and only if

Os[Vi, EIR, = O,[V; AR, (2.92)
O,[Vy, EIR, = O,[V,; A|R,, (2.9D)
where [X, Y] denotes the commutator product of X and Y
(X, Y] =XY — YX (2.10)
and .
R, =[E™'B AE"2B - - - A""1B] (2.11a)
of =B HTcT (AE*HTcT - - (am )T cT]. (2.11b)

The matrices R, and O, in (2.11) are respectively the strong reachability and
strong observability matrices of the TPBVDS, as discussed in [9]. The stationarity
conditions (2.92) and (2.9b) state that V; and V; must commute with £ and 4,
except for parts that are either in the left null space of R, or the right null space
of O,. Consequently, if B, and O, have full rank, i.e., if the TPBVDS is strongly

reachable and strongly observable, V; and V; must commute with F and A.

It is shown in [10] that the weighting pattern of a stationary TPBVDS
defined over [0,N] is given by




CV,A*1EN-kBp 1<k <N

Wik) = —CV; E7FANt-1p 1N <k <o0.

(2.12)

2.3. Minimality

Since our goal is to realize shift-invariant acausal weighting patterns with
stationary TPBVDSs, we need to be able to determine whether a system in this
class is minimal or not. This issue was studied in detail in [10]-[11], leading to the
following characterization of minimality.

Theorem 2.2: The stationary TPBVDS (2.1)-(2.3) is minimal if and only if

(a) [ViR, V;R,] has full row rank, (2.13a)
0, V;

(b) 0,7, has full column rank, (2.13b)

(c) Ker(O,) CIm(R,) . (2.13¢)

It was also shown in [10, Corollary 5.1] that Theorem 2.2 implies:
Corollary: Let (Cj,V,j, V)f Ej,A;,N) with j = 1,2 be two minimal and sta-
tionary realizations of the same weighting pattern, where {E]-, A; }, 7 =12arein

standard form for the same « and f. Then, there exists an invertible matrix T
such that

oMV = T7WWEAT)R! = OV} — T7'VAT)R! =0, (2.14b)
and
(A, — T'A,T)R} = (E, — TT'E,T)R} =0 (2.14c)

where Rs1 and O,! are the strong reachability and observability matrices for sys-
tem 1.

2.4. Extendibility

The concept of extendibility for stationary TPBVDSs was introduced in [10].

Definition 2.1: The stationary TPBVDS (2.1)-(2.3) is exztendible (or input-
output extendible) if given any interval [K,L] containing [0,N], there exists a sta-
tionary TPBVDS over this larger interval with the same dynamics as in (2.1), but
with new boundary matrices V,;(K,L) and V;(K,L) such that the weighting pat-
tern Wy(k) of the original system is the restriction of the weighting pattern
Wi, _g (k) of the new extended system, i.e.,
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Theorem 2.3 [10]: A stationary TPBVDS is extendible if and only if
O,(V; — V,EPE)R, =0 (2.16a)
0,(V; —V;APA)R, =0 (2.16b)
where E? and A? denote the Drazin inverses (13, p.8] of F and A.

From conditions (2.16), by using the E-, A-, E?-, and A”- invariance of
Im(R,) [10] and the generalized Cayley-Hamilton theorem for the pencil {E,A }
[9], it is easy to check that for an extendible stationary TPBVDS, the weighting
pattern (2.12) can be rewritten as

CV;ENEP(AEPY¥-'B 1<

E<N
Wik) = —CV; ANAP(EAPY*B 1-N <k <o0.

(2.17)

Given an extendible stationary TPBVDS over [0,N] with weighting pattern
Wy(k), it is of interest to ask whether it is possible to extend this TPBVDS in a

consistent way over intervals of increasing lengths, so that this progressive exten-
sion process gives rise to a unique extended weighting pattern W(k) defined for all
k. It is shown in [12] that for an interval of length M > N, if we select

Vi =V;ENEPWM | V, = v, AN’ (2.18)

as the new boundary matrices over this larger interval, the TPBVDS
(C,Vi,Vf ,E,A,B,M) is an extension of (C,V;,V;,E,A,B,N) which is normal-

ized, stationary and extendible. By using this extension procedure, we find that

C(V,EN)EP? (AEP)*1B k>0

WE)=1_cir — (v;EV)AP (BAPY B k <0,

(2.19)

is the desired eztended weighting pattern.

3. Internal Description of a Weighting Pattern

The matrix ViEN specifies entirely the effect of the boundary conditions on
the extended weighting pattern W (k) given by (2.19). This motivates the intro-
duction of the following concept.

Definition 3.1: Let (C,V;,V;,E,A,B,N) be a stationary and extendible
TPBVDS. Then, P is a projection matriz of this system if

O,PR, = O,(ENV,)R, . (3.1)
The extended weighting pattern (2.19) can be expresssed in terms of P as
- CPEP (AEPY-1B k>0
(k) = —C(I-P)AP(EAPY*B k <o0.

Also, by using (2.9), (2.16), (3.1), and the fact that Im(R,) and Ker(O,) are E-
and A - invariant, it is easy to check that a projection matrix P satisfies

(3.2)
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O,(PA — AP)R, = O,(PE — EP)R, =0 (3.3a)
O,(P — PEE®)R, = O,[(I — P) — (I-P)AAP]R, =0 . (3.3b)

As is clear from Definition 3.1, one particular choice of projection matrix is
P =V,E N This choice is not unique in general. If P is a projection matrix, so is
P + @, where @ is any matrix such that O, QR, equals zero.

The expression (3.2) for the extended weighting pattern W(k) motivates the
introduction of the following concept.

Definition 3.2: A 5-tuple (C,P,E,A,B) is said to be an internal description
of the acausal weighting pattern W(k) if it satisfies (3.2) and (3.3), and if {F,4 }
is in standard form. Furthermore, (C,P,E,A,B) is minimal is it has the smallest
dimension among all internal descriptions of W (k).

Given an acausal weighting pattern W(k), a possible procedure for construct-
ing a minimal, extendible, stationary TPBVDS (C Vi, Vi B AB,N ) which
admits W(k) as extended weighting pattern consists therefore in dividing the real-
ization problem into two steps. First, find a minimal internal description
(C,P,E,A,B) of W(k). Next, given a finite interval [0,N], find some appropriate
boundary matrices V; and V; such that the corresponding TPBVDS is extendible
and stationary, and such that P is a projection matrix associated to these
matrices. The following result guarantees the validity of this two-step realization

approach.

Theorem 3.1: Let (C,P,E,A,B) be an internal description of W (k). Then,
for any interval length N, there exists matrices V; and V; such that the
TPBVDS (C,V;,V;,E,A,B,N) is normalized, extendible, stationary, and has for
extended weighting pattern W(k). P is a projection matrix of
(C,V;,Vs,E,A,B,N). Furthermore, this TPBVDS is minimal if and only if the
internal description (C,P,E,A,B) of W(k) is minimal.

Proof: Let

V; = P(EP)N 4 oX(cEN + AN)? (3.4a)
V; =(I —P)A?)N + X(cEN 4+ ANy, (3.4b)

where
X =1~ PEE? — (I — P)AA® =(I — P)EE? + PAA? — EEP AA? | (3.5)
and where o is any scalar such that cEY + AY is invertible. The relations (3.4)-
(3.5) specify a TPBVDS (C,V;,V;,E,A,B,N). By direct calculation, it is easy to
check that V; and V; are normalized, and that this TPBVDS is stationary,

extendible, and realizes W (k). Noting that O, XR, = 0, we can also verify that P
is a projection matrix of the TPBVDS. By construction, the minimality of the
TPBVDS (C ,Vz-,Vf ,E,A,B,N) is equivalent to that of the internal description
(c,P,E,A,B). O

Given an internal description (C,P,E,A,B) of the weighting pattern W(k),
the following result, which was derived in [12], shows that it is possible to
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characterize the minimality of this internal description directly, without invoking
minimality conditions for an associated TPBVDS.

Theorem 3.2: The internal description (C,P,E,A,B) of W(k) is minimal if
and only if

(a) R, = [R,; PR,] has full row rank (3.6a)
Os

(b) 0, = 0,P has full column rank (3.6b)

(¢) Ker(O;) CIm(R,) . (3.8¢)

By analogy with the weak reachability and observability matrices which were
introduced in [9]-[10] to characterize the concepts of weak reachability and obser-
vability for a TPBVDS (C,V;,V;,E,A,B,N), the matrices R,, and O, are called
the weak reachability and weak observability matrices of the internal description
(C,P,E,A,B). '

It is also shown in [12] that Theorem 3.2 implies that two minimal internal
descriptions of a weighting pattern can be related as follows.

Corollary: Consider two minimal internal descriptions (Cj,Pj,Ej,A]-,BJ-),
with j = 1,2, of the same weighting pattern W(k), which are in standard form
for the same o and f. Then, there exists an invertible matrix 7 such that rela-
tions (2.14a), (2.14¢)-(2.14d), and

OoMP, — T7'P,T)R =0 (3.7)
are satisfied.

The procedure that we develop here for constructing a minimal internal
description (C,P,E,A,B) of W(k) relies on the introduction of a new transform,
the (s,t) transform, and on formulating the realization problem as a factorization
problem for rational matrices in s and ¢.

4. (s,t)-Transform and Rational Matrix Factorization

One difficulty associated with the use of the z-transform for analyzing
discrete-time descriptor systems, is that since the dynamics of such systems are
singular, infinite frequencies cannot be handled in the same way as other frequen-
cies [14]. This motivates the introduction of the transform

o0
H(s,t)= Y H(k)t*1/sk . (4.1)
k=—00
It can be expressed in terms of the standard z-transform H(z) as
H(s,t)=H(s/t)/t . (4.2)

From this observation, we see that when H(s,t) exists, it is always stricly proper
in (s,t) in the sense that

lim H(es,ct) =0 . (4.3)

¢ —00
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Note however that it is not necessarily strictly proper in s and ¢ separately, so
that the corresponding z-transform may not be proper.

In the following, we shall restrict our attention to the case when H(z) and
H(s,t) are rational. Then, from (4.2), we see that the numerator and denominator
polynomials of all entries of H(s,t) are homogeneous. Furthermore, the relative
degree in s and t of all entries of H(s,t), i.e., the difference between the denomi-
nator and numerator degrees, is exactly one. Thus, the transformation (4.2) has
the effect of transforming rational matrices H(z), proper or not, into strictly
proper homogeneous rational matrices in the two variables s and ¢ with relative
degree one.

4.1. Formulation of the Realization Problem

In the causal case, the z-transform plays an important role in the solution of
the minimal realization problem. Specifically, given a causal weighting pattern
W(k), the minimal realization problem is equivalent to finding matrices (C,A ,B)
of minimal dimension such that the z-transform W{(z) admits the the factoriza-
tion

W(z)=C(A — A)'B . (4.4)

For the case of acausal weighting patterns, the situation is more complex. If
(C,P,E,A,B) is an internal description of the weighting pattern W(k), and if
Wi (k) and W, (k) are the causal and anticausal parts of W(k), the (s,t)-
transforms of Wy (k) and W, (k) can be expressed as

[ee]
Wi (s,t) = >, CPEP(AEP Y-1BtF~1/sk
k=1

= CPE?(sI — tAE?)™'B = CP(sE — tA)™'B (4.52)
0
Wy(s,t)= 3. —C(I — P)AP(EAP)Btk-1/s*

= C(I — P)AP(sEAP? —tI)™'B = C(I — P)(sE —tA)'B . (4.5a)

Note that Wy (s,t) and W,(s,t) do not have in general the same regions of con-
vergence. However, by analytic continuation, it is possible to extend their domains
of definition to the whole plane, while using the same notation. This yields the

factorizations
W, (s,t) + Wy(s,t) = C(sE —tA)"'B (4.8)
[W; (s,t) Wy(s,t)] = C(sE — tA)"'[PB (I — P)B] (4.7)
[Wf (s,t)] cp )
w,(s,¢) | = | e = P) (sE —tA)'B . (4.8)

Since the specification of an acausal weighting pattern W(k) is equivalent to the
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specification of Wy (s,t) and W (s,t), we see from (4.6)-(4.8) that the construction
of an internal description (C,P,E,A,B) of W(k) involves the factorization of
three homogeneous rational matrices in s and ¢, instead of a single rational
matrix for causal systems.

4.2. Factorization of Homogeneous Rational Matrices in s and ¢

The above discussion motivates the following minimal factorization problem:
given an homogeneous rational matrix function H(s,t) of relative degree one, find
matrices (K,D,F,G) of lowest possible dimension such that

H(s,t)=K(sD — tF)1G . (4.9)

An important feature of this factorization problem, is that even if we impose the
additional requirement that {D,F} should be in standard form, i.e., that there
exists o and B such that

oD +6F =1, (4.10)

the matrices (K,D,F,G) are not unique. To insure uniqueness, @ and £ must be
chosen a priori. They can be chosen arbitrarily, as long as H(o,—f) is defined.

Theorem 4.1: A matrix function H(s,t) admits a factorization of the form
(4.9) if and only if it is homogeneous in s and ¢ with relative degree one. Under
these conditions, if (o,f) is a pair of scalars such that H(c,—f) exists, H(s,t)
admits a unique minimal factorization, up to a similarity transform, satisfying
(4.9)-(4.10). The dimension r of this minimal realization, i.e., the size of D and F,
is given by

r =d(H(az,1 — f2)), (4.11)
where d(.) denotes the usual McMillan degree, and where H(oz,1 — fz) is a
strictly proper rational matrix in z.

Proof: Necessity is obvious. To prove sufficiency, let & and & be such that
H(c,—f) exists. Then, consider the rational matrix H(az,1 — Bz). This matrix is
strictly proper in z because

lim H(az,1 — fz) = lim H(o,—f)/z =0. (4.12)

VAasde el Z2—>00

It can be realized as

H(az,1 — fz) = K(z — F)'G . (4.13)
Now, assume that o # 0 (otherwise, reverse the roles of D and F), and let
w=oqaflat +Ps) , z=s/(at + fs). (4.14)
In this case
s=azfw , t=01-pz)/w, (4.15)

which implies that
H(s,t) = wH(oz,1l — fBz)=wK(zl — F)'G = K(sD —tF)"'G , (4.16)
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where
D =(I —fF)/c. (4.17)

Since there is a one to one correspondence between the factorization (4.13) of
H(az,1 — fz) and the factorization (4.16)-(4.17) of H(s,t), the dimension and
uniqueness properties of these two factorizations are the same. This implies that
minimal factorizations of H(s,t) of the form (4.9)-(4.10) are related by a similar-
ity transform, and have a dimension r equal to the McMillan degree of
H(az,1 — pz). O

Corollary: The factorization (4.9)-(4.10) is minimal if and only if (D,F,G)
is strongly reachable and (K ,D,F) is strongly observable. Furthermore, the
dimension of a minimal factorization is equal to the rank of the Hankel matrix
O,R,, where O, and R, are the strong observability and reachability matrices
associated respectively to (K,D,F) and (D,F,G).

One unsatisfactory aspect of Theorem 4.1 is that the dimension r of a
minimal factorization of H(s,t) is characterized in terms of the McMillan degree
of the 1-D rational matrix H(oz,1 — fBz), and not directly in terms of H(s,t). It
turns out that it is possible to characterize r directly from H(s,t) by extending
the concept of McMillan degree as follows.

Definition 4.1: Given a homogeneous and strictly proper rational matrix
H(s,t) in s and t, the McMillan degree of H(s,t) is defined as the degree of the
least common multiple of the denominators of all minors of H(s,?).

It was shown in [12] that:

Theorem 4.2: If H(s,t) is factorizable, i.e., if it is homogeneous of relative
degree one, the dimension of a minimal factorization of H(s,t) is equal to its
MecMillan degree.

5. Minimal Realization

In Section 4, it was shown that the specification of an internal description
(C,P,E,A,B) of a weighting pattern W(k) yields the three rational matrix fac-
torizations (4.6)-(4.8). This suggests that the construction of a minimal internal
description of W(k) can be formulated as a minimal factorization problem.

5.1. Dimension of a Minimal Realization
Theorem 5.1: The dimension n of a minimal internal description of W(k)
is given by
Wi (s,t)
Wb(s,t)}) — d(Wy (s,t) + Wy(s,2)) , (5.1)

where d(.) is the generalized McMillan degree introduced in Definition 4.1.
Proof: Let (C,P,E,A,B) be a minimal internal description of W(k), and let

w, p and T be defined as follows

w=d(C(sE —tA)[PB (I — P)B]) = d([W;(s,t) Wy(s,t)]) (5.2a)

n = d([Wy(s,t) Wy(s,8)]) + a(
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CP Wy (s,t)
p=d( C(I - P) (sE —tA)'B) = d( W, (s,t) ) (5.2b)
T=d(C(sE —tA)'B) = d(W(s,t) + W,(s,t)) - (5.2¢)

From the corollary of Theorem 4.1, it follows that w, p and 7 are the ranks of the
Hankel matrices O,R,,, O, R, and O,R,, respectively. Then, from the minimality
conditions (3.6a)-(3.6b), R, and O, have full rank, which implies that w and p
are the ranks of the strong observability and reachability matrices O, and R,,
respectively. From condition (3.6¢), we can also deduce that the rank of O,R,
equals the rank of O, plus that of R, minus n, so that

T=w+p—n, (5.3)
which implies (5.1). O
Example 5.1: Consider the weighting pattern

a* kE>1
WE) =110t & <1 (5.4)

where ¢ and b are scalar parameters with ¢ < 1. From Theorem 5.1, we find
that the dimension of a minimal internal description of W (k) is given by

a ° s —at —b)a
n=d(l—— - _bat]) +d(| _g P d(%——_?{“)
s — at

14+1—1=1 forb+#1
=li14+1—-0=2 ford £1. (5-5)

When b # 1, a minimal internal description of W (k) is
C=af/1—b) P=1/(1—b) E=1 A=a B=1, (5.6)
and for b =1, we can select

10

C=[aa] P = 00

E=I A=a B-=

1
1} . (5.7)

Thus, 6 = 1 can be viewed as a singularity, in the sense that the dimension of a
minimal internal description of W is 2 only when & is exactly equal to 1. O

5.2. Minimal Realization Procedure

One interesting aspect of Theorem 5.1 is that as an intermediate step in the
evaluation of the dimension n of a minimal internal description of W(k), we
obtain w and p, which are respectively the ranks of the strong observability and
reachability matrices of a minimal internal description. This observation was
used in [12] to obtain the following realization procedure.
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Step 1: Construct the minimal factorizations

[W) (s,t) Wy(s,t)] = C(sE — tA)™[B; B,] (5.8)
Wy (s,t) cr |l oL »
w0 |~ | 3, (sE —tA)'B , (5.9)

where if o and £ are such that W;(a,—f) and W,(o,—0) are defined, the pairs
{E,A} and {E A } satisfy the normalization condition (2.4) for the same o and S.

Step 2: Let

B=B, +B, C=C;+G,. (5.10)
From (5.8)-(5.9), we find
W(s,t) = W;(s,t) + W,(s,t)
= C(sE —tA)'B = C(sE —tA)"'B, (5.11)

so that ( ,I_i’_,;i— ,E) and (~O,E' ,/1,5’) are two factorizations, in general non-
minimal, of W(s,t). The minimality of factorizations (5.8) and (5.9) implies that
(5,1—?— ,X ,E) and (b,E“ ,/I,é) are respectively strongly observable and strongly
reachable. By  decomposing these two  factorizations in  strongly
reachable/unreachable, and strongly observable/unobservable components, respec-
tively, we obtain

—_ —_— - —_ El E—2 —_ Al A2 — §1

and
. .. |BiEy| _ |AL A _ |B
C=l08) B=|, =lo 4,| 2=|5| ©

Step 3: From (5.11), we find that
W(s,t) = C,(sE, — TA,)"'B, = Cy(sk, — TA,) B, , (5.14)

where the factorizations (C,E;,A »B,) and (Cy,E,A,B,) are both strongly
reachable and observable. This implies that they must be related by a similarity
transformation, i.e., there exists a matrix T such that

C,=C,™' E,=TE, 7' A, =TA,T7' B, =TB,. (5.15)
The matrix T is given by
| T = M,MI(M,M5)1, (5.16)
Wl1er_e_ Z\Zs and zfls 3 dejlote respectively the strong reachability matrices of
(E1,A1,B,) and (E4A 4,B3).

Step 4: The matrices C, B, A and B of a minimal internal description can
be selected as
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E, E,T7! +# Ay A, T+
E=|0 E, E,| A=|0 4, A4, (5.17a)
0 0 E, 0 0 A,
By
c=1[C,Cy B=|B,], (5.17b)
0

where * indicates an arbitrary block entry. The role of the similarity transforma-
tion T is to guarantee that the component which is common to factorizations
(5.8) and (5.9) is expressed in the same coordinate system. Note that (5.17)
corresponds to a four part Kalman decomposition of (C,E,A,B) into strongly
reachable/unreachable and observable/unobservable parts, where there is no
unreachable and unobservable component, since the internal description that we
construct must be minimal.

Step 5: The matrix P is obtained by solving
O; VR, = H; , (5.18a)

where H; denotes the Hankel matrix associated to the causal part Wy (k) of the
weighting pattern, and setting

P = VE*~1, (5.18b)
Example 5.2: Let
{0 k=1
Wkh)=1_1 % =1. (5.19)
Then
Wi(s,t) =—t/s(s —t) Wy(s,t)=1/(s —1t), (5.20)

and according to Theorem 5.1, the dimension of a minimal internal description of
W(k) is

n=2+2-1=3 (5.21)

Since w = p = 2, we can also conclude that the minimal internal description is
neither strongly reachable nor strongly observable. To obtain a minimal descrip-
tion, the first step is to perform the minimal factorizations

_ 00 1 O
W, W] =[——" 1 ]:H1W1~401L4[4_J (5.22a)

s(s —t) s —t

. s(s — 1) 0 B |
[Wi}z ( 1 HE {—11 é](sf—tk 0])‘1[ 11], - (5:220)

s —t

which satisfy the normalization condition (2.4) with o = 1, § = 0. This yields
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B=|,l C=[0]. (5.23)
In this case, we can select T' = 1, and
10 % -1
C=[011] E=I A=|000|] B=]1], (5.24)
001 0

where * denotes an arbitrary entry. P is obtained from (5.18), which yields

* K ¥k

P=]01 *|. (5.25)
10 *
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