P L INSS

V /7 1 N\ N

STANFORD RESEARCH INSTITUTE

Menlo Park i i - U. .
S 4 , California 94025 - U.S.A

N

March 1976

QLISP: A LANGUAGE FOR THE INTERACTIVE DEVELOPMENT OF COMPLEX SYSTEMS
by

Earl D. Sacerdoti

Richard E. Fikes

; Rene Reboh

Daniel Sagalowicz
Richard J. Waldinger

B. Michael Wilber

Artificial Intelligence Center
Stanford Research Institute

Technical Note 120
SRI Projects 8721, 3805, and 4763

The work reported herein was supported by the Advanced Research Projects
Agency of the Department of Defense under Contracts DAHC04-75-C—-0005 and
DAAG29-76-C-0012. Additional support was provided by the National
Aeronautics and Space Administration under Contract NASW-2086.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
MAR 1976 2. REPORT TYPE 00-03-1976 to 00-03-1976
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

QLISP: A Language for the Interactive Development of Complex Systems | .\ nUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Artificial Intelligence Center ,SRI Inter national 333 Ravenswood REPORT NUMBER
Avenue,Menlo Park,CA,94025

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 26
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ABSTRACT

This paper presents a functijonal overview of the features and
capabilities of QLI1SP, one of the newest of the current ceneration of
very biagh level languages developed for use in artificial
intelligence (AI) research,

"QLISP {is both a programming language and an interactive
proaramming environment, Tt embeds an extended version of QA4, an
earlier AT language, in INTERLISP, a widely avallable version of LISP
with a variety of sophisticated programming aids.

The languade features provided by QLISP 1include a variety of
useful data types, an assocliative data base for the storage and
retrieval of éxpressions, the ability to associate property lists
with arbitrary exrressions, a powerful pattern matcher based on a
unification algoritnm, pattern=-directed function invocation, "teams"
of pattern invoked functions, a sophisticated mechanism for breaking
a data base into contexts, generators for associative data retrieval,
and easv extensibilitvy. '

System features available in QLISP include a very smooth
interaction with the underlying INTERLISP landuage, a facility for
agagreaatinag multirle pattern matches, and features for interactive
control of progrars,

A number of the inplemented applications of QLISP are briefly
discussed, and some directions for‘future development are presented.

g

I INTRODUCTION

En important byproduct of research in artificial intelligence
(AI) has been the development of programming languages that permit
givina inpstructions at a very high level to a computer, A second
important bvproduft has been therdevelopment of highly sophisticated,
supovortjve interactive programming environments, Tools of this kind
3re Very imoortant ‘for devVelobing AI programs, which tend to be
larde, complex, and subject to frequent alteration, We believe that,
as the needs of the computing community grow, and the computation
speed of hardware improves, the programminq tools that have been a

necessity to Al will pecome important tools of dgeperal applicability,

This paper ©presents a functional overview of the.capabilities
vand features of QLISP, one of tne newest of the current qeneratioﬁ of
Very hiah level Al langquages that includes MICROPLANNER (1],
SATL [2), CONNIVER [3), POPLER [4]1, and others, Thus, it will servé
both to jntroduce the lanquage to the computing community and to

briefly review the features avajilable in the new generation of Al

languages. A more extensive treatment of GLISP is available

elsewhere [S].

ALTSP is both a programming languade and an interactive
programming environment, It grew out of the QA4 language [6] that

was developed at Skl from 1969 to 1972. Many of the basic concepts

of the language are derived from the QA4 work, QLISP embeds an

extended version of QA4 in INTERLISP [7], a widely available version

of LISP with a varlety of sophisticated bprogramming atds. In

addition, it bprovides mény new features not present in other

languaaes.

In tne followina section, we will describe the language features
of QLISP, with speclial emphasis on those.not available in other
lanJuaces., [Bobrow and Raphael (8) give a comparative description of
a numper of these landuages.] Then we shall describe the programmin§
'énvirOnment provided by QLISP and the underlying INTERLISP., Finally,
we shall give some examples of the ways in which the 1language has

been used to create complex software systems,

Il LANGUAGE EFATURES

'This section will discuss the more notable features of the QLISP
landuage, Most of these are derived from features present in QA4,
Some are derived from other languages. Most havVe been eXtended for
greater ease of use, compatibility with the underlying‘INTERLISP
lanauage, or increased generality,

A, Data Tyoes

QLISP provides a very rich set of déta types and facilities
for manipulating them, In addition to the range of types provided by
INTERLISP (including numbers, arrays, strings, and list and binary

tree structures), GLISP provides data of type tuple, vector, bag, and

class.

A tuple is similar to a LISP list, but can be accessed via

associative retrieval as described 1ip Section I1-B below, A vector

is like a tuple, rrut is treated somewhat differently when evaluated,

A bag 1is a multiset, an unordered collection of elements
that may be duplicated. For example, (BAG A A B C) iIs eguivalent to
(BAG & C B A) nput is différent from (BAG A B C), Bags are
particularlv useful for describing the argument lists of associative
commutative relations. For example, if we defined the relation PLUS
to take a bag as its araument, then the expressjons (PLUS A A B C)
and (PLUS A C B A) (which would both be stored internally as (PLUS

(BAG A 2 B C))) would be equjvalent by definition,

A class is an gnordered collection of elementsS, without
duplication, For example, (CLASS A A B C) is equivalent to (CLASS C

B A).

B, Associative Data Base

Expressions composed of any of the data types mentioned
above may be placed in a data base. The data base is desianed for
associarive relrisval, the fetching of data by content rather than by
name or address. A request for-an item of data may specify values
for any of its constituent elements, leaving the rest to be matched
by the values in the retrieved item, The data base is maintained in
the form of a discrimination net, a tree-like structure in Wwhich the
nodes repfesent. tests to applyvy to an expression, and the branches
represent the Vvalues returned by the tests. 1In Jeneral, these tests
are set up to find the first difference, scanning left to right,

between two expressions,

C. Canonical Representation of ExXpressions

By storira all data 1in a common discrimination net, QLISP
can represenpt equivalent expressions unjquelvy, In the QLISP net,
onlv one instance of an expression may occur, Before an expression
is entered into the net, it Is transformed into a canonical form, A
newlderum *ill not ve created if the expression already occurs in the
net. Thus, continuing our example about the PLUS relation, (PLUS A A
B C) and (FLUS A C B A) are not only equivalent: they are exactly the

same pointer into the data base,

i, Propertv Lists

Artitrarv eXxpressions are represented uniquely in QLISP,
Jjust as atoms are represented uniquely in LISP, Therefore it‘is
possible to assignp properties to QLISP expressjons in the séme way as
LISP atoms, For instance, we may execute the command

(OPUT (PLUS A B (MINUS A)) SIMPLIFIESTO B),

which'w111 put tne value B under the indicator SIMPLIFIESTO 1in the
property list of the expression (PLUS A B (MINUS A)). If this
expression, or any eguivalent expressjon (such as (PLUS B (MINUS R)
A)), is‘ever encountered again, we can look on its property 1list and

find @ simplification tor {t,

One perticualar indicator on the property lists of
expressions i1s used to represent truth value, When this indicator,
MODELVALUE, has a value T, the system interprets that expression to

be “"true," Similarly, a value of NIL represents a "false"

expression, Special statements eXist for manipulating this
particular property., For example, the Statement
| (ASSERT (AT SRI MENLO-PARK)}
woulé simply place the attribute-value pair (MODELVALUE T) on the
propertv list of the tuple (AT SRI MENLO=PARK),# The semantics of the
sStatement is that SKEI is in Menlo Park. Simiiarly. the Qtatement.
(IS (AT €THING MENLO-PARK))
would cause a Search of the data hase for something that was known
(i.e. was in the data base with MODELVALUF equal to T) to be in

Menlo vare,

E. The Unitication Pattern Matcher

An. important activity in Al programs is the construction,
modification, and analysis of complex symbholic ex@ressions. The most
powertul tool for this is a pattepn maktcher, an aloorithm that allows
one -expressjon teo ke used as a template to break up another
expressicn into comronents, ALISP extends this facility by providing
a uais;aa:io# pattern mwatcher in which each of two expre551ons‘may.

act as templates for the other,

Some examples at this point are appropriate, The QLISP
statement MATCHQQR invokes the vpattern matcher directly, The
statement

(MATCHGQ («X «Y) (A B))
* This paper will avold almost all need for the reader to cobe with
QLISF~specjfic svntax. It suffices to say that in QLISP statements,
the elements of expressions are presumed to be constants unless
identified as & varlable by tnhe vprefix < or g, The <« prefix
indicates that the varjable {s to be assigned a new value; the §
prefix indicates the previous value of the variable,

5

will matcn X to A and Y to B. The statement
(MATCHQO (X «X) (A B))
will fail, since X cannot ne bound simultaneously to A and B. The
statement
(MATCHQQ (A «X) (€Y B))
will match X to K and ¥ to A, The statement

(MATCHOD (A (B «X) «Y) (X «Z (A (B C))))

will match X to A, Y to (A (B C)), and Z to (B A),

The QLISF pattern matcher s based on an extended
kunifiCAtjon alaorithm that can deal with the variet? of data types
availahle in the lanauage, The matcher is not complete for complex
expressions contaiﬂinc pags and classes. However, it {s adequate for
the kinds of expressions that are almost always used, Pattern
matchinag is used in QLISP for several central purposes, It 1is used
to bind variables and decompose expressions, 3s we have mentioned,
It is used to control associative retrjeval. It s also used to

invoke functions for sbecified purposes, as We will now show,

<!
»

Pattern=Directed Function Invocation

Many of the Al languages provide a feature, first proposed
by Hewitt [9], whereby functions can be invoked not only by naming
them, but also by checking to see if they are appropriate for a given
arqument. This check is performed by matching a pattern associated
with each fupction with the given argument, ?or example, we might

write some functions such as the following for an algebraic

Simplifierss

PLUSSINGLF: (GLAMBDA (PLUS €X) $X)
PLUSZERN: (ULAMBDA (PLUS 0 «€X) (’(PLUS $$X)))
PLUSMTNIIS (QALAMBDA (PLUS «X (MINUS «X) «eY) (“(PLUS $sY)))

The FPLUSSINGLE function says: given an argument of the form
PLUS followed bty any sindale element, return that single element.‘ The
PLUSZERN functiorn says: given an argument of the form PLUS followed
by any nuﬁber of elements, one of Which is 0, return the form PLUS

followed by all the other elements of the argument,

At the user’s option, if a function’s Pattern can match an
argument in more than one way, all possible matches may be attembted
in turn. When ore match leads to a failure, an alternative match is
attempted. The function itself will not fajl until all possible
matches have been tried. For example, the following program will
find two friends ot JOE w#who are father and éon:

(QLAMBDA (FRIFNDS JOE (CLASS ¢F S5 ««REST)Y)
(IS (FATHER 88 sF))

BACKTKACK)

The proaram will cycle through all pairs of elements from

the class of JOF‘’s frierds and see if one is the father of the other,

B s e g

*# The doubled pretixes (e.g. $$) indicate that the variable refers
to a traoment of trhe expressjon containing it ratper thap a single
element, The aquote mark (’) indicates that the following expression
is to re instantiated (following the semantics of QLISP) rather than
evaluated (followina the semantics of LISP),

7

G, Teams of Functions

Functiens to be .invoked by pattern are typically intended
for application toward a specified purpose. Some functions are to be
used for consequent reasoning: when a particular consequence or goal
Echaracterized by the function’s pattern) 1is desired, 1invoke this
function to achieve it., Some functions are to be used for antecedent
reasonina: when a particular antecedent condition (e.g, an assertion
ih the data base) characterized by the function’s pattern occurs,

invoke this functieon to cause further effects on the data baSe.

Typically in lanaavoes that use pattern-directed function
invocation, many of the consequent.fUnctions are trjed when a goal'is
to be achieved, and all the antecedent functions are tried when the
data base is updated. Only the ones that have a pattern that matches
the goal or assertion will actually be invoked, but a great deal of
overhead must be expended to attemntvto match the patterns of all

functions.

‘This practice 1{is 1{inefficient }since many fﬁnctions may
alresady be kpown to ke inappropriate, and yet their patterns Qill all
be <checked., QLISP provides a feature whereby, with each of man?
kinds of statements that can invoke functions by pattern, a Sowcalled
'Laam of functions can be specified from which acplicable ones may be
drawn, So; in our simplification example, we could cause one
simplification to occur with a statement that calls for consequebtk
reasoning:

(CASES (PLUS A 4 (MINUS A)))
APPLY (PLUSSINGLE PLUSZERO PLUSMINUS ...)) .

8

The 1ist after the keyword APPLY is the team of functions
associated with the particular CASES sfatement. The system will

attempt to match the patterns of only these functions with the

particular PLUS exoression,

Similarlv, & team of functions may be specified with any
ASSERT; DENY, DELETE, or QPUT statement to perform antecedent=type
activities, For example, {in a cComputer system modelling the
operatior of 3 licraryv. a team of functions might be associated with
assertions that mndelled a book being checked out, These functions
miqht assert that the book was due three weeks from the current déte,
update a count of books in circulation, or even cause the original
~assertion to fall and appropriate other action to be modelled if the
person creckina out the book had overdué books outstanding, This
activitv could bte initiated by a OLTISP statement of the form:

(ASSERT (CHECKEDOUT (The Odyssev) James.Joyce (4 JAN 1918))
APPLY SLIBRARYFNS)

wheré‘ s IBRARYFNS was bound to the 1ist of Trelevant antecedent

functions.

. Contexts

The vrevious ciscussion has presumed that all expressions
were stored in a sinale, monolithic data base. 1In fact, the data
base is factored into dlfferent segments, called cantexts. Contexts
may be fhoucht of és corresponding to the block structure of ALGOLe~

like lanquages. whenever a QLAMBDA function or a user=defined block

isb entered, the current context is set to be descendent of the
previous context, Variable bindinas and assignment of properties
(including, fn vartjcular, trutn values) to expressions that are
local to a context are perceivable only from that context or some
descendent, Thus, contexts may be regarded as particular viewpoint;

of the data base,

In addition to a default structuring of contexts based on
the structure of the flow of program control, OLISP provides
facilities for manipulating contexts explicitly, For example, to
ProvVe a rrovosition of the form: |

| (P or @) implies R,
one could set up twoe parallel contexts with P true in one and @ true
in the other, and try to prove R in poth contexts, as suggested in

Figqure 1, , o B

CURRENT
CONTEXT

DESCENDENT DESCENDENT
CONTEXT CONTEXT

(ASSERT P) (ASSERT Q)
(GOAL R) (GOAL R)

TA-740522-108

FIGURE 1 USING CONTEXTS TO PROVE A DISJUNCTION

Contexts are actually constructed from more elementary

entities, which we sghall call c¢ontags, for want of a better term,

10

Contags, which are similar to the "situation tags" of PLASMA [161,
corréSpond to perticular points in time in the evaluation of a
pProaram (typically «~nen GLAMBPDAS or blocks are entered), A context
is an ordered list of contags, typically correspondina to the stack
of active function and block invocations. For users with
sophisticated needs for data base manlipulation, we have provided a
set onof QLISP statements that permit them to construct their own
conterts, or viewpoints of the data base, from the underlying
contaas. These statements allow the creation of a context that s a
descendent of a number of independent contexts, a context'that is the
'sdbset ot a gliven context not retrievable from a second conteXxt, and
a c0nfext that revises a given conteXt to appPear as 1f it were a

descencant of another arnltrarv context,

I, Generators

.The data retrieval statements of QLISP are designed to find
a single instance ¢of a given pattern, To cause the pattern matcher
to continue its search and obtain other such instances, a user’s
Program must returr tc the query statement Via the backtracking

mechanisr (i,e. by failing),

~To allow a more natural and inexpensive method of
retrievira multiple instances of a pattern, we have extended the
CONNIVFR (3] approach of Using gensalators. For example, the Is
statement that was introduced in Section II-C specifies the retrieval

of one instance of a gliven psattern. There 15 a denerator version of

\

11

the IS statement called GEN:IS that finds multiple true instances of
a agiven pattern, Fach time a statement such as GEN:IS is called, it
produces a number of instances matching the pattern, Theée
_epressions are put on a "possibilities]ist" along with a "tag" that
indicates how the generator can be restarted when more instances are
requested, and this possibilities 1list is returned by the generator

as its value,

1f the function TRY:NEXT is called with a possibilities
1ist as an argqument, it will remove the first instance from the list
and return it as its value., If the 1ist contains no more instances,
the tac is wused to restart the generator, Since calls to TRY:NEXT
can be rade from anywnere in a program, this form of generator
separates the retrieval of data eleqents from the processing thatyls
done on tnem in a wav that iIs not possible In a strict backtracking

regiren.

The generator retrieval statements are implemented using
INTERL ISP FUMNARGS, A FUNARG 1is a data object that conceptually
represents a cop? of a function together Wwith that copY’s private

data environment,

J. Extensibility

QLISP statements that are not vpvart of the underlving
INTERLISP languaae are processed by the INTERLISP error handling
mechanism, as will be explained below, User-oriented tools for

accessing the LISP translation mechanism are provided so that new

12

QLISP=1ike statements can be defined easily, Once the statements
have. beer defined, they Aare treated by the interpreter and compiler
exactly like other QLISP statements., Typically, the extension
facllity has been used to provide alternative céntrol structures for
invoking the standard ULISP statements, or to provide special syntax

for user-defined QLAMBDA functions.

III SYSTEM FEATURES

QLISP 4§s more than Just a programming language: it is an
interactjve ©vproaramming envVironment for the develoPment of Verly
complex collections of software. In this section we shall discuss

L
the mgior features of this environment that are unjque to QLISP,

A, Intearation with INTERLISP

The major advantace of QLISP as a prodramming environment, .
as compared with other new Al lanquages, is 1ts edse of ﬁse. It 1is
eaéier to edit functions, create symbolic files, trace execution
paths, break intec computation paths, and debug proarams in QLISP,

This is primarily due to the choice of INTERLISP as the host language

for QLISP, and the care that has been taken in the implementation of

QLISP to preserve the many supportive features of INTEPLISP.

OLISP is implemented through the error handling mechanism
of INTERLISP, A valid LISP expression will never ke seen by the
QLISP processor, Thus,; programs or portions of programs that use

only LISP constructs will run as fast in QLISP as in INTERLISP,

13

When the INTERLISP interpreter encounters an ill=formed
LISP expression, it calls an error routine that in turn invokes aﬁ
errof analyzer. If the expression 1s recognizeg as a valid QLISP
férm. it is translated to ah equivalent LISP form that is returned to
the interpreter for evaluation, The translation is stored with the

oriainasl expressjion so that the translation need pe done only once.

R similar mechanism causes QLISP code to be translated into
equivalent LISP code when it occurs within a function being compiled,
Since tne translation occurs at compilation time, the GLISP
interpreter need never be invoked at all when running compiled QLISP

code,

B, Acareocation of Pattern Matches

The "apply team" mechanism provides a good means of
reducira the nuhber of unneeded pattern tmatches» during pattern=
directed function invocation., However, there may still be a 1lot of
wasted effoft as the function invocation mechanism attempts to’ﬁatch
each pattern in turn to the argument, For example, the
simblification tunctions described in Section TII-F all begin with
PLUS. They miaht evVen be sealecated into a specific team of
~functions to simplity excressions begining with PLUS, And Vet every
pattern will be matched aqéinst the argument, and the matcher will

succeed as least as far as matching up the PLUS’S.

An ortion is avajlable to allow the patterns of QLAMBDAs to

be aggreaated together in a tree structure, For example, the tree

14

for the simplificetion functions listed in Sectjon II=-F appears in
Figure 2, A sinale operation against the tree can deﬁermine the set
of all the QLAMBDA functions that are good candidates to successfully
match a given araument, (The tests that are appljied are cruder than
those applied by the pattern matcher itself, so that the set of
functioné may contain some whose patterns will not actually match
when the matcher is invoked.) This set can then bhe intersected with

the partjchlar "arply team" to determine whic¢n functions to invoke.

1st ELEMENT

PLUSZERO
2nd ELEMENT OF BAG

(MINUS<X)

PLUSMINUS PLUSSINGLE

TA-740522-109

FIGURE 2 PATTERN SELECTION TREE FOR
SIMPLIFICATION FUNCTIONS

The tree structure used for this agoregatfon 1Is actually

the discriminatjon net of the associative data base, For "apply

15

teams" of more tnhan about fifreen functjons, this feature provides

siqgnificant efficiercies.

C. Interactive Program Control

Since the QL1SP packtracking mechanism is implemented using
INTERLTSF’s error facility, there are a number of ways in which the
sténda;d IHTERLISE jnteractjve facilities will not Work Properly,
For exawnle, the I0TEELISP function tracing facility is implemented
as "bresk the Cprutafion. then Print, then Continue."” But INTERLISP
errors, which are generated nhy QLISP to cause backtrackina, are
trapped at & hreék. fhe Sojution “e adobPted to this particular
quandary «as to jmplement a QTRACE facility that did not daenerate a
break when it bvprinted information about a fupction invocation.
Similar care was taken #with breaks in computation, the packaae for
manipﬁlatinc symboljc files, Aand many other system components to
alldw 3 OLISP‘usef to pelieve that the total system was benaving

eXactlv as the underiving IMNTERLISP would,

Iv APPLICATIQNS

To provide some perspective on tne utility of QLISP, we will
brieflvvdescribe some ot the avplications implemented with it, The
common characteristics of tnese applications are that the programs
and the kconcepts underiving them could not he Specified witnrout a
sustainéﬁ évcle of:

1) prrogramming the btest current ideas about what the program

snold we doira,

16

'2) observinag trne program’s behavior, and then

3) modifyinq or extending the ideas.

A, Program Veritication

The first major QLISP prodram was the prodram verifier of
Waldinger and Levitt [11], The verifier was originally written in
‘QA4; The ©progran includes over 100 functions each encapsulating a
'specialized piece of knowledge about the semantics of the language of
the pronrams beina verified. The QLISP version ran about 30 times

faster than the oriainal QA4 program,

K, Rutomatic Programmina

Supsequent Wwork by Waldinger ”has Uused QLISP for the
generation of simple programs from output specifications, This work
makes.sfronu use of the unification feature of the pattern matcher to
combine the knowledge that 1is distributed in various QLAMBDA
funétions. For example, one function may sav, in effect, to produce
a list ﬁith some X as its CAR, perform (CONS X something), where thé
somethninag is vunsnecified. Similarly, another function may say, to
produce a list with some X as 1its CDR, perform (CONS something X),
where the somethinu is éqain unspecified, Therefore. if the system
wére aiven the acal ot producing a list with A as its CARP and B as
its CDR, the first function would return (CONS A something), the
second would Treturn (CON3S something B), and by unifving these

results, the system could produce the correct code (CONS A B),.

17

C. Geperal Froblem Solvina

k sysfe% developed by Sacerdoti [12] generates conmplex
plahs, mdnitors their execution, and recovers from uneXpected events
‘that cause the execution to deviate f€from the expected course of
action, This is a Jarae system (about 60 pages of code) and almost
all of it is in the underlying [INTERLISP language. However, the
pattern matchina and context mechanisms of QLISP are central to its
operatjon, and tre eaSe with which the repnresentation of knowledge

could re chanded was important in the systemfs development.

The semantics ot the actions that the system plans for are
written in a languaue extension ot QLISP that has QLISP’s semantics
but is evaluated very differently, Strong use of the pattern matcher
ahd of the extension feature allowed the actibn lanquage to be

readily changed as the scope of the prodram increased,

N Deductive Retrieval

A deductive retrieval package was written by Fikes (13] to
allow arpitrary deductions to be fired off by 3 QLISP~-1ike querv, In
addition.to sinplv causing assocjiative retrieval from the data base,
Fikes’ queries c¢an cause the invocation of arpitrary ﬁroqrams to
deduce fhe anéwer to the query from other available information.,
These auery statements, implemented as a landuage extension of QLISP,
make strong use of the agenerator facility. Capabilities for
modellihc state chanaes, a3also vpart of this Dackaqe, make strong use
of the ability to associate an arbitrary property 1ist with an
expression.

18

. Corputer Ajided Desian

The first general purovose program for computer aided design
that wuses Al technigues in a substantial way has recently been
completed, It works by generating a model of the object to be
desidned in stages of increasing detalil. As each stage is generated,
approbriate user-supplied design constfaints are applied, The system
employs sophisticated backtrackina techniques to minimize ‘the search
for.avobject that satisfies éll the constraints. The program 1in its
cufrent form (14] is written completely in INTERLISP, The
development of the prodram was carried out in QLISP, and the code wés
gradually cut over to pure INTERLISP as design 1ideas Jjelled and
executjon speed became important., The pure INIERLISP version runs
about ten times ftaster than the original QLISP version. The
development of the system was areatlyv facilitated by the early use of
QLISP and the resulting ability to easlily change internél

representations and control strategies.

R Econometric Modellina

P svstem nhas been developed that integrates a quantitative
computer model with an overlay of heuristic Jjudgemental rules [15],
The heuristic overlay is intended to facilitate interactive use of
the econometric model by making it easy to alter baraméters and
adjust boundary corditions. The underlying guantitative model was
{mplemented in a mixtare of INTERLISP and FORTRAN, The heuristic

model was implemented in QLISP as an ASSERT téam. a set of functions

19

applied after an assertion has been made in the model. The user
interface was implemented in OLISP because of the ease of interaction

it provides.

v CUPRENT STATOEL

QLISP has peen In active wuse at SRI for nearly two vyears, The
versjon at SRI1 is implemented in INTERLISP on a PDP=10 computer using
the TEwEX operating system, It is avallable for use over the ARPAnet

by otrer users on the network,

A version af OLISP jg also available for INTERLISP=370, a

version of INTERLISP that runs on I8 360 and 370 series computers,

WLTSP is not intended to be & Ppelformance language. The
prodram=ing tools that it provides are of genéral purpose, Thus a
proarar written in QLISPE Will rur. .slowly compared to a versjion of the
prodram written in & lanauage tnat provides a more restricted set of
data tyres or less flexible control structures, But {t has been our
experience that, »hep the proarams to be written are large, compleXx,
and subiect to freguent a3lteration as development proceeds, then the
lnefiicjencv in the proaram®s execution time is more than compensated

for by efficiencies the Drogrammer’s development time.

VI FURTHER WORH

#nile WI.ISP is a useful tool for manv purposes, further work

Will he requjired to augment the power of the language to reflect the

20

growina needs of Al programming, The current version provides an
associarive data base that must be entirely contained within the
program’s core image, Systems that Opefate on substantial knowledge
bases are a focus of current research interest in AI, and the amount
of data that these systems will use will require that at least part
of the associative data base be resident on secondary storage. This
Will Trequire a new data storage and retrjiaval mechanism, sincé those
of existing AI languadges, including QLISP, tend to distribute data
randomly throuéhout the store. The distribution of data needs to be
at least partially based on semantic criteria, instead of totally on

a sYynltactic basis as is done now,

'Another inadequacy of QLISP and other Al languages is that the
pattern matcher returns too little information. Given two patterns
to match, it replies either with an exact matching between the
patterns or with a reoort of fajlure, It would often be extremely
useful to have a measure of how "close" the match was to succeedlinag,
Obviously, this would be an expensive feature, but this Kkind of
"fuzzvﬁvmatchinq woﬁld provide a user with the powerful ability to

begin to deal with expressions on a semantic basis,

A third area for further development is in the aeneral category
of multirrocessing. W“hile many lénguaqes support the use of multiple
1nterdeﬁendent.nrocesses, the level of command that they providelis
tyoically auite 1low, Typically they are on the 1level of "start
ProcCess," "susrend process," and "wait on Semabnhore." It would be

very useful to have hidjher level commands available that would allow

N
-

tné lannuage systen itself to keep track of many procesSeS at many
levels of function calls. Such 3 rechanism could be eésily tied to

the existina "2PPLY team”" facility of QLISP,.

VII COHCLUSIONS

#e pave agiven a hrief overview of the capabilities and features
of QLISP, While {t is noﬁ practicall for use as a production
languaae, it is a time=-saving tool for use in constructing complex
systems that are suUriject to sianificant change during tﬁe course of

their development,

VIIT ACKNIOWLEDGEMEMNTS

The basic features of QLISP aie derjved from the QA4 lanauage,
develcped at SR by Jeff Rulifson, Richard Waldinger, and Jan
Derksen, 1The initial implementation of QLISP was done by Rene Reboh
and kArl Sacerdoti. Subsequent development was carrjed on by Daniel
Saqélo§icz and Mike wilber, Rich Fikes developred the generator
packéné; and wWas jnstrumentél in straightening out the context
mechanism, ‘Mal Mewey wrote the pattern matcher, based Jn a problem
requctior alaorithm of Kichald Waldinger, Kichard Waldinger has been
a maijoer force in setting the aqoals of the lanaguage development,
Warren Téitelman has nrovided much help in generalizing the features

of INTERLISP that permjit the clean interface to OLISP,

22

4,

5.

10,

11,
12,

13,

14,

REFERENCES

Sussmpan, G. J., and Winoarad, T., "MICROPLANNER Reference
Manpual," “IT Artjficial Intelligence Lahoratory, Memo No,., 203,
July 1970.

Vanlehn, K., A,, ed,, "SAILL User Manual," Stanford Artificial
Intelligence Laboratory, Memo, AIM=204, Julv 1973,

Mchermott, L, V,, and Sussman, G, J., "The CONNIVER Reference
Manuagl,"” MIT Artificial Intelligence Laboratory Memo No. 259, May
1972,

Davies, P, J. M., "PUPLER 1,5 Reference Manual," University of
Edinburanh, TPU Revort No. 1, May 1973, ‘

Wilkter, R. Mo, "B QLISP Reference Manual," SRI Al Center
Technical Note 118, Mareh 1976,

Rulifson, J. ., Waldinqer. R, J., and Derksen, J, A., "OA4: A
Procedural Calculus for Intuitive Reasoning," SRI Al Center
Technical Note 73, nNovember 1973,

Teitelman, w., ILMIERLISE Refersnce Manual, Xerox Palo Alto
Research Center, tUtctober 1974,

- Robrow, 0D, G,, and Raphael, B,, "New Programming Languages for

Artificial 1Intellidence,” Computing Suruveys:, vol. 6, No, 3,
September 1974,

‘bewitt, C., "Description and Theoretical Analysis (Using

Scrhemata) of PLANNER: A Language for Proving Theorems and

" Manipulating *odels in a Robot," MIT Al Memo no. 251, April 1972,

Hewitt, C,, "iHow to Use what You Know," RBraceedings of Eourth

lnrernational Conference aon Artificial Ingelligencer PP. 189=-198,
September 1975.

Waldinger, R, J., and Levitt, K, N,, "Reasoning About Programs,"
Adrtificial Iptelligence, vol., 5, No. 4, pPp 235=-316, 1974,
Sacerdoti, £, D,, "A Structure for Plans and Behavior," SRI AI
Center Technical hote 109, August 1975,

Fikes, R, K,, "Deductive Retrieval Mechanisms for State
Description Models," Rrocesdings of Eourih lnternaticnal
Conterence oo Artificial lInlelligence, Pp, 99-106, September
1975,

Latomhe, Je=C., "Artificial Intelligence in Computer—Aided
Pesian: The TRUOPIC System," Rreprints of IELR UWerkimng Conferepnce

23

en CAD Sysiewms, Austin, Texas, Feb. 1976 (proceedings to be
published by dNorth=Holland under the title CAD Systems).

15. Conles, L, S., "The Application of Artificial Intelligence to

Heuristic Modelling," Broceedings of Second Usdadapan Computer
Centerence, pr,., 200-207, Aug, 1975,

24

