
Summary submitted to: LIDS-P-2215
1994 American Control Conference

Analysis of Continuous Switching Systems:
Theory and Examples*

Michael S. Branickyt

Center for Intelligent Control Systems
and

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

Cambridge, MA 02139

November 1993

Abstract

This paper details work on ordinary differential equations that continuously
switch among regimes of operation. In the first part, we develop some tools for
analyzing such systems. We prove an extension of Bendixson's Theorem to the
case of Lipschitz continuous vector fields. We also prove a lemma dealing with the
robustness of differential equations with respect to perturbations that preserve a
linear part, which we call the Linear Robustness Lemma. We then give some
simple propositions that allow us to use this lemma in studying certain singular
perturbation problems.

In the second part, the attention focuses on example systems and their anal-
ysis. We use the tools from the first part and develop some general insights. The
example systems arise from a realistic aircraft control problem.

The extension of Bendixson's Theorem and the Linear Robustness Lemma
have applicability beyond the systems discussed in this paper.

1 Introduction

1.1 Background and Motivation

This paper details work on ordinary differential equations (ODEs) that continuously
switch among regimes of operation. We have in mind the following model as a proto-
typical example of a switching system:

x(t) = Fi(x(t),t), x(0) = 0o (1)
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where x(.) E R n and i = 1..., N. Such systems are of "variable structure" or "multi-
modal"; they are a special case of hybrid systems. 1 For instance, the particular i at any
given time may be chosen by some "higher process," such as a controller, computer,
or human operator. It may also be a function of time or state or both. In the latter
case, we may really just arrive at a single (albeit complicated) nonlinear time-varying
equation. However, one might gain some leverage in the analysis of such systems by
considering them to be amalgams of simpler systems. We add the assumptions that
(1) each Fi is globally Lipschitz continuous and (2) the i's are picked in such a way
that we have finite switches in finite time.

In this paper we study continuous switching systems. A continuous switching sys-
tem is a switching system with the additional constraint that the switched subsystems
agree at the switching time. More specifically, consider Equation (1) and suppose
that at times tj, j = 1, 2, 3,..., there is a switch from Fkj_. to Fkj. Then we require
Fkj_, (x(tj), tj) = Fkj (x(tj), tj). That is, we require that the vector field is continuous
over time.

This constraint leads to a simpler class of systems to consider. At the same time,
it is not overly restrictive since many switching systems naturally satisfy this con-
straint. Indeed they may even arise from the discontinuous logic present in hybrid
systems. For example, we might have an aircraft where some surface, say the elevator,
controls the motion. But this elevator is in turn a controlled surface, whose desired
action is chosen by a digital computer that makes some logical decisions. Based on
these decisions, the computer changes elevator inputs (say current to its motor) in an
effectively discontinuous manner. However, the elevator angle and angular velocity
do not change discontinuously. Thus, from the aircraft's point of view (namely, at
the level of dynamics relevant to it), there are continuous switchings among regimes
of elevator behavior. Therefore, continuous switching systems arise naturally from
abstract hybrid systems acting on real objects. In this paper we develop tools that
are useful in analyzing these situations.

Another problem arises in examples like the one we just introduced: the problem of
unmodeled dynamics. Suppose the pilot, from some quiescent operating point, decides
to invoke hard upward normal acceleration. The elevator starts swinging upward until
it is swinging upward at maximum angular velocity (in an effort track the violent
maneuver requested by the pilot). Then, some higher process makes a calculation
and decides that continuing this command would result in an unsafe configuration
(say attack angle beyond critical). It decides to begin braking the elevator motor
immediately to avoid this situation. In this case, the desired angular velocity profile
of the elevator (over the whole move) is most probably trapezoidal. However, the
elevator is a dynamic element that can't track that desired profile exactly. We may
want to know how taking these unmodeled dynamics into account affects our already
modeled dynamics. We may also want to know how high our control gains should be
to track within a certain error. We develop some tools that allow us to answer both
these questions.

'Hybrid systems are those that inherently combine logical and continuous processes, e.g., coupled
finite automata and ODEs.
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1.2 Overview

In the first part of the paper (Section 2), we develop general tools for analyzing contin-
uous switching systems. For instance, we prove an extension of Bendixson's Theorem
to the case of Lipschitz continuous vector fields. This gives us a tool for analyzing
the existence of limit cycles of continuous switching systems. We also prove a lemma
dealing with the continuity of differential equations with respect to perturbations that
preserve a linear part. Colloquially, this lemma demonstrates the robustness of ODEs
with a linear part. For purpose of discussion, we call it the Linear Robustness Lemma.
This lemma is useful in easily deriving some of the common robustness results of non-
linear ODE theory (as given in, for instance, [2]). This lemma also becomes useful in
studying singular perturbations if the fast dynamics are such that they maintain the
corresponding algebraic equation to within a small deviation. We give some simple
propositions that allow us to do this type of analysis.

The extension of Bendixson's Theorem and the Linear Robustness Lemma have
uses beyond those explicitly espoused here and should be of general interest to systems
theorists.

In the second part (Sections 3 and 4), we use the above tools to analyze some
example continuous switching systems motivated by a realistic aircraft control prob-
lem. In Section 3, we present an example continuous switching control problem. This
system is inspired from one used in the longitudinal control of modern aircraft such as
the F-8 [15]. The control law uses a "logical" function (max) to pick between one of
two stable controllers: the first a servo that tracks pilot inputs, the second a regulator
about a fixed angle of attack. The desired effect of the total controller is to "track
pilot inputs except when those inputs would cause the aircraft to exceed a maximum
angle of attack." We analyze the stability of this hybrid system in the case where the
pilot input is zero and the controllers are linear full-state feedback. We call this the
max system. While the restriction to this case seems strong, one should note that
the stability of such systems is typically verified only by extensive simulation [15]. In
this paper, we use the tools discussed above to prove nontrivial statements about the
controller's behavior. For example, we show that no limit cycles exist by applying our
extension of Bendixson's Theorem. We also show that the family of linear full-state
feedback max systems can be reduced to a simpler family via a change of basis and
analysis of equilibria. Finally, we give a Lyapunov function that proves that all sys-
tems of this canonical form are globally asymptotically stable. The Lyapunov function
itself has a logical component, and the proof that it diminishes along trajectories is
split into logical cases.

In Section 4, we analyze a "simulation" of the max system. Specifically, we use
a dynamic variable (output of a differential equation) instead of the output given by
the max function directly. This corresponds to a dynamical smoothing or switching
hysteresis, as we motivated above. By using our lemma on the robustness of linear
ODEs, we conclude stability properties of this (singular perturbation) simulation from
those of the original max system.

Finally, Section 5 presents a summary and conclusions. Appendix A collects the
more tedious proofs. Appendix B treats the background, statement, and proof of our
extension of Bendixson's Theorem.
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1.3 Notation

Throughout this paper we use the notation of modern control theory [9, 14, 6, 3],
ODEs [1, 5], and nonlinear systems analysis [17, 13].

2 Theory

In this section we summarize some general tools for the analysis of continuous switching
systems. The first new tool we introduce is an extension of Bendixson's Theorem on
the existence of limit cycles to the case of Lipschitz continuous vector fields. The
second is a lemma we recently proved dealing with the robustness of ODE's with
respect to perturbations that preserve a linear part. Finally, we prove some simple
propositions that allow us to use the robustness lemma to analyze certain singular
perturbation problems. Later, we apply each of these results to analyze our example
problems.

2.1 Limit Cycles

Suppose we are interested in the existence of limit cycles of continuous switching
systems in the plane. The traditional tool for such analysis is Bendixson's Theorem.
But under our model, systems typically admit vector fields that are Lipschitz, with
no other smoothness assumptions. Bendixson's Theorem, as it is traditionally stated
(e.g., [4, 17]), requires continuously differentiable vector fields and is thus not of use in
general. Therefore, we offer an extension of Bendixson's Theorem to the more general
case of Lipschitz continuous vector fields. Its proof is based on results in geometric
measure theory (which are discussed in Appendix B).

Theorem 1 (Extension of Bendixson's Theorem) Suppose D is a simply con-
nected domain in R2 and f(x) is a Lipschitz continuous vector field on D such that
the quantity Vf(x) (the divergence of f, which exists almost everywhere) defined by

afl cf2Vf(x) = fl(xlX2) + x2 (1,,)

is not zero almost everywhere over any subregion of D and is of the same sign almost
everywhere in D. Then D contains no closed trajectories of

x1(t) = f l [x 1 (t),x 2 (t)]

X2(t) = f 2 [xl(t),x 2 (t)]

Proof Similar to that of Bendixson's Theorem [17, pp. 31-32] after using an exten-
sion of the divergence theorem known as the Gauss-Green-Federer Theorem [10, pp.
114-115]. (See Appendix B.) []

2.2 Robustness of ODEs

In this subsection, we summarize some results that show the robustness of solutions of
ordinary differential equations with respect to perturbations of the vector field. First,
we give and prove a basic lemma in ODE theory that demonstrates robustness of
solutions to arbitrary perturbations. Then, we consider perturbations that preserve
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a linear part. This allows us to obtain more useful bounds. We call the result the
Linear Robustness Lemma.

The proofs of both lemmas depend critically on the well-known Bellman-Gronwall
inequality [3, p. 252], which is reprinted in Appendix A for convenience. The first is
a basic lemma in ODE theory that was given without proof in [18]. It is useful as a
comparison with our new result, Lemma 3. For completeness, we furnish a proof in
Appendix A.2

Lemma 2 Given

= F(x,t), x(0) = xo

G= (y, t), y(O) = x0

Suppose that F is globally Lipschitz continuous and "close to G," i.e.,

IF(x, t) - F(y, t)I Lx - yll, for all x, y, t

IlF(x, t) - G(x, t) 11 < e, for all x, t

Then if L : 0
flx(t)-y(t)l _ < L (eLt- 1), for all t > 0

If L = O, then IIx(t) - y(t)II < et.

Proof (See Appendix A.) [
The problem with this result is that (except in the trivial case) L > 0, so the bound

diverges exponentially. Thus it is not useful in deducing stability of a nearby system,
nor in examining robustness of a well-behaved model to perturbations in the vector
field. There are some tools for this in the literature, under the heading "stability under
persistent disturbances." For example, [11, p. 72] gives a local result. We are more
interested in what one can say globally. Along these lines we consider perturbations
that preserve a well-defined portion of the dynamics, a linear part. Here is our main
result:

Lemma 3 (Linear Robustness Lemma) Given

= Ax + F(z, t), x(0) = xo
= Ay + G(y, t), y(O) = xo

Suppose that F is globally Lipschitz continuous and "close to G," i.e.,

IF(x, t) - F(y, t) II < Lllx - Yll, for all x, y, t

IIF(x, t) - G(x, t)1 < e, for all x, t

Then
IIx(t)- y(t)II < cL (e(?+cL)t_ 1) for all t > 0

- r+ cL'

when
IleA tlli < ce7t (2)

where Ii is the induced norm associated with the norm I1 I1 and c > 1, qr + cL $ O,
77 $ 0, and L > 0.

2 Proofs that interrupt the flow of discussion or do not use novel techniques are relegated to Ap-
pendix A.
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Proof (See Appendix A.) E

Corollary 4 In some special cases not covered above we have:

1. If L = O but ~7 O, then

l]x(t) - y(t)l < (et-1)

2. If rj = O and L = O, then

IIx(t) - y(t)ll < cet

3. If rj = O but L > O, then

Ix(t) - y(t)I < Z L(ecLt - 1)

4. If r77 0 and L > O but 77 + cL = O (this means r7 < O), then

fec[c~t + e - rLT eq t]
lIx(t) - y(t) ( 7 cLt + e-CLT -eIt]

Proof (See Appendix A.) o
The similarity of Lemmas 2 and 3 is easy to see. Their proofs are also similar.

The most important distinction arises when A is stable and r can be chosen negative.
Indeed, if r + cL < 0, then we can guarantee nondivergence of the solutions.

The proof can easily be extended to the case where A is time-varying:

Corollary 5 Lemma 3 and Corollary 4 hold when A is time varying, with Equation
(2) replaced by

ll(t, s) Ii < ce7(t-S)

where 1(t, s) is the transition matrix of the time-varying linear matrix A(t).

Proof Proof is the same as that for Lemma 3, replacing eA(t - S ) by 4(t, s). a

Then, the case L = 0 subsumes some of the global results of stability under per-
sistent disturbances, e.g., [2, p. 167].

2.3 Singular Perturbations

The standard singular perturbation model is [7]

x = f(x,z,E,t), x(to) = x0, x E R n (3)

ez = g(x,z,e,t), z(to) = Zo, z E R m (4)

in which the derivatives of some of the states are multiplied by a small positive scalar
e. When we set e = 0, the state-space dimension reduces from n + m to n and the
second differential equation degenerates into an algebraic equation. Thus, Equation
(3) represents a reduced-order model, with the resulting parameter perturbation being
"singular." The reason for this terminology is seen when we divide both sides of
Equation (4) by e and let it approach zero.
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We make use of the simpler model

x = f(x,z,t), x(to) = xo, x E R n

z = Co2[g(x, t)-Z], Z(to) = zo, Z E Rm

where we have e = 1/ca2, ca a nonzero real number. With this rewriting, one sees why
Equation (4) is said to represent the "fast transients," or fast dynamics. The following
lemma shows explicitly a certain case where the dynamics can be made so fast that
the resulting "tracking error" between u(t) - g(x(t), t) and z(t) is kept small.

Lemma 6 Let
i(t) = o2(u(t)- z(t))

where u is a Lipschitz continuous (with constant L) function of time. Given any e > 0,
if

Iz(O) - U(o)I = Eo < e

we can choose a large enough so that

Iz(t) -u(t)l < e, t > O

Proof (See Appendix A.) ]
The result can be extended to higher dimensions as follows:

Lemma 7 Let
z(t) = a2 A(u(t) - z(t))

where u and z are elements of R n and A E RnXn. Further, assume that A is positive
definite and that each coordinate of u is a Lipschitz continuous (with constant L)
function of time. Given any e > O, if

Iz(O) - (0)11 = Eo < E

we can choose a large enough so that

IIz(t) - u(t)11 < E, t > 0

Proof Similar to the proof of Lemma 6. [Hint: consider the time derivative of eTe,
e = (z - u), and use equivalence of norms on Rn.] O

These lemmas allow us to use the robustness lemmas of the previous section to
analyze certain singular perturbation problems. The idea of the preceding lemmas
is that the fast dynamics are such that they maintain the corresponding algebraic
equation, z(t) = u(t), to within a small deviation (cf. invariant manifolds [7, p. 18]).

3 Example 1: Max System

As an example of a switched system, we consider a problem combining logic in a
continuous control system. Specifically, we start with the system

d· [ q ] = [ -1 -10] [ ][-1 ] 

[nz -300 1[ ]+ [0
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or, symbolically,

ix = Ax + B
a = Clx + D 1 6 = Clx

nZ = C22x +D 2

These equations arise from the longitudinal dynamics of an aircraft (see Figure 1)
with reasonable values chosen for the physical parameters. The variable 0 is the pitch
angle and a is the angle of attack. The input command d is the angle of the elevator.
The normal acceleration, nz, is the output variable which we would like to track,
i.e., we assume that the pilot requests desired values of nz with his control stick.
As a constraint, the output variable a must have a value not much larger than alim
(for the model to be valid and the plane to be controlled adequately). A successful
controller would satisfy both of these objectives simultaneously to the extent that this
is possible: we desire good tracking of the pilot's input without violating the constraint
a < alim + E, for e > 0 some safety margin.

Now, suppose that two controllers, K 1 and K 2 , have been designed to output 61
and 62 such that (1) E is regulated about a = alim when 3 = 61; and (2) E tracks
command r-the pilot's desired nz-when a = 32, respectively. Finally, suppose that
we add the following logical block: 3 = max(l 1 ,62). Control configurations much
like this (see Figure 2) have been used to satisfy the objectives of our aircraft control
problem [15].

To our knowledge, the stability of such systems has only been probed via extensive
simulation [15]. In the remainder of this section, we examine the stability of certain
cases of this control system. First, we limit ourselves to the case where both controllers
are implemented with full-state feedback. We discuss the well-posedness of the system
and show an example output run. Next, we consider the equilibrium points of the
system and their stability in the case where the pilot's reference input (desired normal
acceleration) is clamped to zero. More practically, we answer the question, What is
the behavior of this control system if the pilot lets go of the control stick?

3.1 Preliminary Analysis of the Example System

First note that in our example system, the pair (A, B) is controllable. To make some
headway, we restrict ourselves to the special case where the controllers K 1 and K 2
take the form of full-state feedback plus an offset term (for nonzero outputs):

61 = -Fx + [C1(-A +BF)-1B]- 1a o im

62 = -Gx + [(C2 - D 2G)(-A + BG)-1B + D2]-lr

For convenience, we let

k1 = [Cl(-A BF)- l B] - 1

k2 = [(C2 -D 2G)(-A + BG)-1 B + D 2]-1

Such constants generally need not exist. However, for our system we are keenly inter-
ested in the existence of k1.3 We have the following

3 We assume k2 exists since it does not affect our later analysis, which is in the case r = 0.
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Fact 8 The constant k1 is guaranteed to exist for our system whenever F is chosen
such that (A - BF) is stable.4

Proof (See Appendix A.) [
Thus, the resulting max control law exists. It is simply

6 = max(-Fx + klaOlim, -Gx + k2 r) (5)

To get a feel for how the example system behaves, we have included some simulations.
Figure 3 shows an example run of the just the tracking portion of the control system
(Oalim = 0.6, F chosen to place the closed-loop poles at -6 and -7). Part (a) shows
normal acceleration tracks the desired trajectory well; (b) shows the atlim constraint
is violated to achieve this tracking.

Figure 4 shows the outputs when the full max control system is activated (with
both F = G chosen as F above). One easily sees that the controller acts as expected: it
tracks the desired command well, except in that portion where tracking the command
requires that the alim constraint be violated. In this portion, co is kept close to its
constraint value (the maximum value of a in this simulation run was 0.6092).

3.2 Analysis for the Case r 0

The first thing we do is examine stability of E using the max control law in the case
where r _ 0. The closed-loop system equations are then

= Ax + B max(-Fx + klalim, -Gx)

= (A- BG)x + B max((G- F) + klCliim, 0)

In our analysis below, we suppose that we have done a reasonable job in designing the
feedback controls F and G. That is, we assume (A - BF) and (A - BG) are stable.
This is possible because (A, B) controllable.

Now, recall that (A, B) controllable implies that (A-BG, B) is controllable. Thus,
it suffices to analyze the following equation, which we call the max system:

Definition 9 (Max System)

Emax: Z = Az + B max(Fz + y, 0)

where A and A + BF are stable and (A, B) is controllable and y = klalim.

To fix ideas, let's look at simulation results. Figure 5 shows a max system trajectory
with

A -1--01 -0.1 = [-9 0-1

Figure 75 shows the trajectory resulting from the same initial condition for the system
: = Ax; Figure 8 for the system i: = (A + BF)x. Both component systems are stable.

4We say a matrix is stable when all its eigenvalues are strictly in the left-half plane.
5We intentionally skipped a figure to allow better figure placement for comparison.
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To simplify analysis of the max system, we can make a change of basis (x = Pz),
yielding

= P

= PAz + PB max(Fz + y, O)

= PAP-ix + PB max(FP-lx + y, O)

where P is any nonsingular matrix. In particular, P can be chosen so that the matrices
PAP-1 and PB are in the so-called controller canonical form:

PAP-' = [o0 ° 1 (6)
L-ao -al

PB = [ (7)

Note that ai > 0 since PAP-1 is a stable matrix. Renaming matrices again, we have

Fact 10 The max system Emax can be reduced to the system:

xc = Ax + B max(Fx + y, O)

where A and A + BF are stable, (A, B) is controllable, and the matrices A and B are
in controller canonical form.

We can do one more thing to simplify the max system just derived: expand the
equations using the fact that A and B have controller canonical form. Doing this-and
some equilibrium point analysis-we obtain

Remark 11 (Canonical Max System) 1. The max system can be reduced to
the following canonical form:

xc = y

y = -ax - by+max(f x + gy +y,O)

where a, b, a - f, and b - g are greater than zero.

2. Further, without loss of generality, we may assume that -y < O, in which case the
only equilibrium point of this system is the origin.

Proof The first part is a straightforward calculation, with the inequalities on the
constants arising from the assumed stability of A and A + BF.

Now, let's analyze the equilibrium points of the canonical max system. The rele-
vant equations are y = 0 and ax = max(fx + ny, 0). This second one must be analyzed
in two cases:

ax = 0, fx+-y < 0

ax = fx+y, fx+-y > 0

Thus, (0, 0) is an equilibrium point if and only if ̀ y < 0; (-y/(a-f), 0) is an equilibrium
point if and only if

f > O
> 0

a

> 0

10



where the last line follows from a and a-f greater than zero. Therefore, the canonical
max system has exactly one equilibrium point.

Finally, if -y > 0, changing coordinates to z = x - y/(a - f) yields i = y and

y = -a (z+ )-by+max (f Z(+ )f + gy + -

-az-by- +max gy+ f 
= -az-maxy (,-fz-Y+-,o)

a-f
= -az-by~fz~gy4-max0,-fz-gy a-f)

= -(a - f)z - (b - g)y + max ((-f)z + (-g)y + (a- f) 0)

Now introducing new variables for the constants in parentheses, we obtain

· = y

y = -az- by+max(fz +y+4-, O)

It is easy to check that the new variables satisfy the inequalities of the canonical form.
Further, we have y < 0, and thus (0, 0) the only equilibrium. O

Next, note that this is equivalent to the second-order system:

= -ax - bd + max(fx + g + -y, 0)

which we use below.
We have the following global results for the max system in the case where the

reference input, r, is zero:

1. Limit cycles don't exist. Our max system consists of a logical (though Lipschitz
continuous) switching between two stable linear systems, both of which admit
negative divergence in their respective regions. Therefore, by Theorem 1, no
limit cycles can exist.

2. The system is globally asymptotically stable. The proof is detailed below.

To prove global asymptotic stability, we first show

Remark 12 The following is a Lyapunov function for the canonical max system:

V = 2x2 + [a0 - max(f + y, O)]dF

--2x + J c(,)<

Proof The proof has two major parts: (i) V is a positive definite (p.d.) function,
and (ii) i < 0.

(i) To show that V is a p.d. function, it is enough to show that xc(x) > 0 when
x 0 0 and c(0) = 0. The second fact follows from -y < 0. Computing

xc(x) = ax2 - xmax(f x + y, 0)

ax2, fx + < 0
ax - f x2 - yx , fx+y>O

That the desired condition holds in the first case follows immediately from a > 0.
For the second case, we consider



1. x > 0:
ax 2 - f 2 - x = (a - f) 2 + (-)x > 0 + 0 = 0

2. x < 0:
ax 2 - fx 2 -_ x = ax2 + (-x)(fx + ±) > 0 + 0 = 0

Thus V is a p.d. function.

(ii) Next, we wish to show that V < 0. To that end, we compute

V = xi + c(x)±

= i[-ax-bx + max(fx + gx + -y, 0)] + ax -max(fx + y, O)±

- -b±2 + i max(fx + g5: + -y, O) - i max(fx + ', O)

Now, there are four cases to be dealt with:

1. Iffx+g + y < O andfx+y O, then =-b±2 <0.

2. Iffx+g+-y > O and fx+-y >, then V =-(b-g)±2 < 0.

3. If fx + gx +- y < O and fx +- y > 0, then

1V = -b52 -5(fx + y)

If > O, then 1V < O. If x < 0, then, using (b- g) > O, we obtain

b > g

bx < gx
f x + -y + b± < fx + -+ gx

fx + y + b] < 0

-rix[fx++b±] < O

V7<o

4. If f x + g: + -y > O0 and fx + y < O, then

1V = -bi 2 + +(fx + xg + 3)

If : < 0, then 1V < O. If x > 0,

1V = -(b - g) 2 + ±(fx + y) < 0

Global asymptotic stability results from the facts that (1) the origin is the only
invariant set for which V = 0 and (2) V(x) -4 oo as lix I -4 oo [13].

4 Example 2: The Simulated Max System

In this section we analyze a variant of the max system introduced in Section 3. Specif-
ically, recall that the max system can be reduced to the canonical form of Remark
11:

: = y

= -ax - by+max(fx + gy+-y,0)

12



where a, b, a - f, and b - g are greater than zero and -y < 0. It was shown in
Section 3 that the only equilibrium point of this system is the origin, which is globally
asymptotically stable.

In the simulated max system (i.e., using a differential equation for the max func-
tion) we have the following system of equations (cf. Definition 9):

Definition 13 (Simulated Max System)

x = Ax+BJ

a = ac2[max(Fx + y, 0)- ]

where A and A + BF are stable and (A, B) is controllable. Also, -y = kica;im and
a 0O.

This equation represents a smoothing of the max function's output; it provides a type
of hysteresis that smooths transitions. Note that this equation represents a singular
perturbation of the original max system. It can be used to model the fact that the
elevator angle does not exactly track the desired control trajectory specified by the
max function. To compare the max and simulated systems, consider Figure 6. This
figure shows the simulation of the max system trajectory of Figure 5 with c 2 = 16
and 6(0) = max(Fx(O) + y, 0). Note that, compared with the original max system,
the switching is "delayed" and the trajectories are smoother, as expected.

By changing basis with the matrix T = blockdiag{P, 1}, where P is chosen so
that the matrices PAP- 1 and PB are in the so-called controller canonical form (see
Equations (6) and (7)), we obtain

Definition 14 (Canonical Simulated Max System)

x = y

= -ax-by + 

a = oa2 [max(fx + gy + y, O) - ]

subject to initial conditions

x(O) = xo, y(O) = yo, a(0) = max(fxo + gyo + y, O)

where a, b, a - f, and b - g, are greater than zero; y < 0; and a = 0.

This is the system we will study in the remainder of this section. Note the added
constraint on the initial condition of 5.6

Remark 15 The only equilibrium point of this system is the origin, which is locally
asymptotically stable (when -y < 0).

Proof From the first two equations, we have the constraints y = 0 and S = ax. From
the last one we obtain the following two cases:

1. f x + y < 0: -ax = 0, which implies x = 5 = 0.

6 The constraint on 6(0) is for convenience. It can be relaxed to be within e of this value (where
e arises in our proofs below), with the same analytical results holding true. Specifically, Fact 16 still
holds when Equation (8) is replaced by 156() - max(fx(O) + gy(O) + A, 0)I < e.
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2. fx + y > 0: (-a + f)x + y = O, which implies x = y/(a - f). However, this
can't occur since

fx - a -f)+ (a- <

The origin is locally asymptotically stable because it is a linear system in some neigh-
borhood of the origin (since y < 0). n

This system is globally asymptotically stable when f = g = 0, because it reduces to
a stable linear system in this case. For the special case where y = 0, both component
linear systems can be made stable by choosing ac large enough. However, this in itself
does not imply that the whole system is stable. We say more about this case at the
end of the section.

The rest of this section explores the stability of the simulated max system by using
Lemma 3.

4.1 Asymptotic Stability within Arbitrary Compact Sets

In this subsection we show that the simulated max system can be made asymptotically
stable to the origin-within an arbitrary compact set containing the origin-by choos-
ing the parameter ac large enough. Important note: Since a is subject to initial
conditions depending on x and y (see Definition 13), this stability is with respect to
arbitrary sets of initial conditions for x and y only. This subsection only considers
the case -y < 0. In this case, the plane fx + gy + -y = 0 is a positive distance, call it
d, away from the origin. Further, the three-dimensional linear system associated with
the simulated max system about the origin with matrix:

0 1 0
-a -b 1
0 0 -a2

is asymptotically stable, so there is some (open) ball around the origin (in R3 ) of radius
AS < d such that once a trajectory of the simulated max system enters the ball of
radius A,, it tends toward the origin. Similarly, the max system is an asymptotically
stable linear system near the origin, so there is some ball around the origin (in R2) of
radius Am < d such that once a solution to the max system enters the ball of radius
Am, it tends towards the origin. For convenience, define A = min(Am, As).

Now, note that the max system and simulated max system can be written in the
form required by Lemma 3 by choosing

A = -a -b

i.e.,

F(x, y, t) = max(fx + gy + y, 0)

G(x,y,t) = 6

where a = co2[max(fx + gy + y, 0) - d]. An important fact is the following:

14



Fact 16 Given
6(0) = max(fx(0) + gy(O) + y, 0) (8)

and e > O, we can choose ac large enough so that

16(t) - max(fx(t) + gy(t) + -y, )I < , t > 0

Proof Since max(fx + gy + -y, 0) is Lipschitz continuous, we can apply Lemma 6
with u(.) _ max(fx(.) + gy(.) + y, 0), x(.) _ 6(.), and co = 0. [

Below, let p(t) and a(t) represent solutions to the max and simulated max systems,
respectively. Next, consider the projection operator

7r : R3 -+ R 2

([X, , 6 ]T) = [X, y]T

Remark 17 If y < 0, the simulated max system can be made asymptotically stable to
the origin within an arbitrary compact set containing it by choosing the parameter a
large enough.

Proof First, pick any compact set, •Q, containing the origin (of the max system).
Next, we examine the trajectories of the max and simulated max systems from an arbi-
trary initial condition, po E Q. Recall that 0o, and hence co, is completely determined
by io. In particular, 6o = max(fxo + gYo + y, 0) and 7r(co) = Mo0.

Since the max system is globally asymptotically stable, there is a time, T(Ito, A),
such that for t > T, we have Ilpi(t) 1I < A/3. Thus, we have max(fx(t)+gy(t)+y, 0) = 0
for all t > T. Now, according to Fact 16 we can pick a large enough so that

C <mm (i La(iA+AcL) (9)
3 < min 33c (e(7+cL)T - 1))

At this point, we have, from Lemma 3,

I11(T) - (a(T))|| < - (e(,+cL/ _) < A
- v cL - - 3

Now, by construction we have 56[ < A/3. Thus, we have ]Ia(T) II < A. From this point
on, c(t) tends asymptotically toward the origin.

Finally, since Q is compact, there is a finite time r > T(1i 0, a) for all Mpo E Q. Thus,
we can pick e (and then a) to achieve the desired inequality for all initial conditions.

El
Note that if q + cL < 0, then e--and hence a--can be chosen constant for all

T. On the other hand, if 7 + cL > 0, restrictions on the magnitude of a may only
guarantee asymptotic stability within some finite distance from the origin.

It is also important to realize that the same analysis holds for any other dynamic
or nondynamic continuous variable used to approximate the max function, if it is such
that it can be kept within e of the max function for arbitrary e. (Also recall Footnote
6.)
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4.2 The Case y = 0

For the special case y = 0, the simulated max system represents a switching between
the following component linear systems:

0 1 0
Al= -a -b 1

0 0 -ca2

0 1 0
A 2 = -a -b 1

fa 2 ga 2 _-a2

Remark 18 Both component linear systems can be made stable by choosing a large
enough.

Proof (See Appendix A.) E

Thus the component linear systems of the simulated max system with y = 0 can
be chosen so both are stable. However, this in itself does not imply that the whole
system is stable.7

The comparison arguments of the previous subsection do not apply now since we
cannot find a A like we did there. Thus, we can only use Lemma 3 to get bounds
on the trajectories of the simulated max system. Note, however, that if rl + cL < 0
then global asymptotic stability of the max system implies ultimate boundedness of
the simulated max system.

One may be able to say more about specific instances of the simulated max system
(i.e., knowledge of the constants). For example, some cases may yield to our robustness
of linear ODEs lemma by comparing the case -y = 0 with 7 = -e. Alternatively, one
could invoke robustness results in the literature, e.g., [2, Theorem 6.1]. These tools
can't be invoked in the general case because, roughly, the parameter a affects both r7
and L in conflicting fashion.

5 Summary and Conclusions

This paper detailed work on continuous switching systems. Although one might not
guess from the presentation above, the theory in Section 2 was developed to analyze
the example systems of Sections 3 and 4. Here, we set the record straight.

In Section 3, we presented an example hybrid control problem: the max system.
This system was inspired from one used in the control of modern aircraft. The control
law uses a logical function (max) to pick between one of two stable controllers: one
a servo that tracks pilot inputs, the second a regulator about a fixed angle of attack.
Typically, engineers resort to extensive simulation of even such simple systems because
the analysis is too hard with their present toolbox. However, we analyzed the stability
of this hybrid system in the case where the pilot input is zero and the controllers are
linear full-state feedback. We showed that no limit cycles exist by proving and applying
an extension of Bendixson's Theorem to the case of Lipschitz continuous vector fields;

7A counterexample can be constructed after one that appears in [16]: Use the asymptotically stable
systems of Figures 7 (System I) and 8 (System II), activating System I in quadrants 4 and 2, System
II in quadrants 3 and 1.
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we also gave a Lyapunov function that proved all systems of this form are globally
asymptotically stable. Interestingly, the Lyapunov equation used a logical switching.

In Section 4, we presented an analysis of a simulation of the max system. That
is, we used a differential equation to obtain a "smooth" function instead of using
the output given by the max function directly. By extending a result in the theory of
continuity of solutions of ordinary differential equations, we proved stability properties
of the simulation from those of the original max system.

Although the attention was focused by our examples and their analysis, we de-
veloped tools and insights along the way that should prove useful in tackling general
hybrid systems problems.

A Assorted Proofs

A.1 Continuity Lemmas

The proofs of our continuity lemmas depend critically on the well-known Bellman-
Gronwall inequality [3, p. 252]:

Lemma 19 (Bellman-Gronwall) Let

1. f, g, k; R+ -+ R and locally integrable;

2. g > O, k > 0;

3. gE Le;

4. gk is locally integrable on R+.

Under these conditions, if u: R+ -e R satisfies

u(t) _ f(t) + g(t) j k(-r)u(T)d-r, for all t E R+

then

u(t) < f(t) + g(t) j k(-r)f () [exp j k(c)g(or )d(a dr, for all t E R+

Proof [of Lemma 2] For any t > 0,

x(t) -= o+ F(x,r)dr

y(t) = xo + G(y, r)dT

Subtracting yields

x(t) - y(t) = F(x, T)dr - G(y, r)dT

= j[F(x, T)- F(y, ) + F(y, ) - G(y, )]dT

ltx(t) - y(t)11 = [F(x, T) - F(y, r) + F(y, T) - G(y, r)]dr

t rtj< J IF(x, T) -F(y, rT) dT + IF(y,)) -G(y,T )lldr

< L IIx() - y(r)lidr + at
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Using the Bellman-Gronwall Lemma, we obtain

Ilx(t)-y(t)ll1 < et+ Le [exp j Ldu] dT

= E{t+Lj TeL(tr-)dT}

= e{t+ ± LeLt T e-L d}

If L = 0

lIx(t) - y(t)ll = Et

and if L > 0, we compute

Te-LTdT = [ (-L - 1)]

e- Lt 1
= - -L2 (Lt + 1) + 

Therefore,

IIx(t)-y(t) l < e t-t- Z + LeLt}

- (eLt-1)L

Proof [of Lemma 3] For any t > 0,

x(t) = eAtxo + eA(t )F(x, T)dT

y(t) = eAtXo + eA(t-r)G(y, T)dT

Subtracting yields

x(t) - y(t) = eA(t-) [F(x, T) - F(y, T) + F(y, T) - G(y, T)l]d

Ix(t) - y(t)ll < Jo eA(t)llillIF(x, T) - F(y, T)lIldr + 1 IIeA(t-T) ilIF(y, T) - G(y, r)IdT

< L I/ eA(t-T) IliIx() - y(T)lIdr + e I eA(t-T) idT

Now we are given that leAStli < ce7'l so that

f leAt- ) lidT < ce77t f- e-7dT-o0o
< e1t e-77t )

< C (erlt -1) (10)
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Therefore,

1lx(t) - y(t)l II cLe7t j e-TIIx(T) - y(T) ldr + -( 1) )

Using the Bellman-Gronwall Lemma, we obtain

x(t)-y(t) -1 + cLe1tj e- -E (e7- 1) [exp e- '7acLe 7'doj dT

= - [e t-l1 + cLeCn t j (1 e- 7T) ecL(t-)dr]

c [e - + cLet -(e L _ e(77+CL)) dT (12)

EC [et- cLe(7+CL)t ( 1 1 -+ 1 1 ]
EC (77+cL~t -cLt + ce cL)t
7 KcL cL L + cL + cL

EC e 7 t e(q+cL)t _ 77t cL c e(,+cL)t
T1 r + c+CL 7 + cL

EC - r + [1- e(27+cL)t]

-n L7 +cL
= +ci [e(+cL)t _ 1]

q + cL

Proof [of Corollary 4] Now we deal some special cases not covered above:

1. If L = 0 but 7r7 4 0, then Equation (11) gives

llx(t) - y(t)ll11 (e 'Tt - 1)

If qr = 0 then Equation (10) is replaced by

o IleA(t-'r)idd < ct (13)

2. So, if 7 =0 and L =O

IIx(t) - y(t)|I < cEt

3. If r = 0 and L > 0 then Equation (11) is replaced by

Ilx(t) - y(t)II < cL j Ilx(T) - y(T)lldT + ect

in which case the Bellman-Gronwall Lemma gives

IIx(t) - y(t)ll < ect + cL j eCT [exp j cL d] dr

< ect + ec2 L TecL(t-r)dT

rt
< ect + eC2 LeCLt TecL-dT
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Now repeating the calculation of Equation (10) with cL identified with L:

[ -ecLt I1
IIx(t) - y(t) < ct + Ec2 Lec (L + 1) + () 2(cL)2 (cL++

C _ cLt< Ect-ect- - + 6e

< Le (ecLt--1)L L

4. If r $ 0 and L > 0 but 77 + cL = 0 (this means r < 0), then Equation (12) and
the further computations simplify to

IIx(t) - y(t)ll = -'eit -- 1 + cL (eL 1) dr]

EC [ t ± ( + cLt
= - t + c -l L cL -t)

= [e7t - 1 + 1-eL CDLt]

= C [e?1t"-± e -cLet]77

A.2 Singular Perturbation Lemmas

Proof [of Lemma 6] Let e = z - u. Then

d+e d+z d+u

dt dt dt
d+u

- c 2 (U- d)--

2 d+u
=-a e- dt

dt

where
d+z zlim (t + h) - z(t)lim
dt h-+O+ h

Now, since u is Lipschitz, we have

d+u
dt -

Thus, if we choose ao such that ac2 > L/e, then when e >_ , we have

d+e < - 2e + L < 0
dt -

Similarly, when e < -e, we have

d+e
-- > 2e - L > 0
dt -

Thus, the set lel < e is an invariant set. O
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A.3 Max System

Proof [of Fact 8] We first need the following theorem [8, Theorem 3.10]:

Theorem 20 (Kwakernaak and Sivan) Consider the time-invariant system

x(t) = Ax(t) + Bu(t),
z(t) = Dx(t),

where z and u have the same dimensions. Consider any asymptotically stable time-
invariant control law

u(t) = -Fx(t) + u'(t).

Let H(s) be the open-loop transfer matrix

H(s) = D(sI- A)-1B,

and He(s) the closed-loop transfer matrix

He(s) = D(sI - A + BF)-1B.

Then Hc(O) is nonsingular and the controlled variable z(t) can under steady-state
conditions be maintained at any constant value zo by choosing

u'(t) = H,'l()zo

if and only if H(s) has a nonzero numerator polynomial that has no zeroes at the
origin.

For our system, we have

Cl(sI - A)- 1 B = O.1(s - 9)
s2 + 2s + 11

which has a nonzero numerator with no zeroes at the origin.

A.4 Simulated Max System

Proof [of Remark 18] A 1 is stable because it is upper block triangular with stable
blocks. One can check that the characteristic polynomial of A 2 is

A3 + (b + a 2)A 2 + [a + ca2(b - g)]A + [C2(a - f)] A3 + a'A2 + /3X + y"

The Routh test (to verify stable roots) reduces here to [12, p. 175]:

1. a', 3', 7-' > 0

2. /' > y'//c'

The first of these is verified by our conditions on a, b, f, g, and a. The second says
we need

a + a2(b -g g) > (af)

21



which reduces to

4(b-g) +a 2[b(b-g) +f] +ab > 0

(4 + o~2 [b +(b - g) (b-g) >

Since the last term on the left-hand is positive by our previous conditions (a, b, and
b - g greater than zero) it is sufficient for

c 4 + Ca2b (b - g) > 0

(b - g)

Again, since b > 0, it is sufficient for

2 +_ > 0
(b - g)

2 -fa 2 >
(b-g)

B Bendixson Extension

This appendix treats the background, statement, and proof of our extension of Bendix-
son's Theorem.

Bendixson's theorem gives conditions under which a region cannot contain a peri-
odic solution (or limit cycle). It is usually stated as follows (statement and footnote
adapted from [17, pp. 31-32]):

Theorem 21 (Bendixson's Theorem) Suppose D is a simply connected8 domain
in R 2 such that the quantity Vf(x) (the divergence of f) defined by

Vf(x) = (X1, 2) + af2 (X, 2)

is not identically zero over any subregion of D and does not change sign in D. Then
D contains no closed trajectories of

xl (t) = f1[xl(t),x 2 (t)1
x2(t) = f 2 [xl(t),x 2(t)1

The proof of Bendixson's Theorem depends, in a critical way, on Green's Theorem.
The usual statement of Green's Theorem says [10] that a C1 vector field f(x) on a
compact region A in R n with C 1 boundary B satisfies

fB f(x) n(A, x)da = f Vf(x)d£Cnx
8A connected region can be thought of as a set that is in one piece, i.e., one in which every two

points in the set can be connected by a curve lying entirely within the set. A set is simply connected
if (1) it is connected and (2) its boundary is connected.
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where n(A, x) is the exterior unit normal to A at x, do is the element of area on B,
and £n is the Lebesgue measure on R'. It is possible, however, to treat more general
regions and vector fields that are merely Lipschitz continuous. A general extension is
the so-called Gauss-Green-Federer Theorem given in [10]. Even the statement of this
theorem requires the development of a bit of the language of geometric measure theory.
We state a relaxed version of this theorem that is still suitable for our purposes. In the
final formula, Vf exists almost everywhere because a Lipschitz continuous function is
differentiable almost everywhere.

Theorem 22 (Relaxation of Gauss-Green-Federer) Let A be a compact region
of R n with C1 boundary B. Then for any Lipschitz vector field f (x),

JB f (x) - n(A, x)do = jA Vf (x)d£'x

Now we can prove our version of Bendixson's Theorem, which we repeat for con-
venience:

Theorem 1 (Extension of Bendixson's Theorem) Suppose D is a simply con-
nected domain in R 2 and f(x) is a Lipschitz continuous vector field on D such that
the quantity Vf(x) (the divergence of f, which exists almost everywhere) defined by

Vf(x) = afl(x, X2) + f2( X2)

is not zero almost everywhere over any subregion of D and is of the same sign almost
everywhere in D. Then D contains no closed trajectories of

l(t) = f1 [x1 (t), x 2(t)] (14)

:2(t) = f 2[X1(t),x 2 (t)] (15)

Proof The proof is similar to that of Bendixson's Theorem in [17, pp. 31-32].
Suppose, for contradiction, that J is a closed trajectory of Equations (14)-(15).

Then at each point x E J, the vector field f(x) is tangent to J. Then f(x) .n(S, x) = 0
for all x E J, where S is the area enclosed by J. But by Theorem 22

0 =/ f(x) n(A,x)dl = j Vf(x)dL2x

Therefore, we must have either (i) Vf(x) is zero almost everywhere, or (ii) the sets
{x E SIVf(x) < O} and {x E SIVf(x) > O} both have positive measure. But if S
is a subset of D, neither can happen. Hence, D contains no closed trajectories of
Equations (14)-(15). 0
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Figure 2: The Max Control System
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Figure 3: Outputs of the tracking controller: (a) normal acceleration, nz (solid), and
desired normal acceleration, r (dashed); (b) angle of attack, ca (solid), and a's limit
(dashed).
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Figure 4: Outputs of the max controller: (a) normal acceleration, n, (solid), and
desired normal acceleration, r (dashed); (b) angle of attack, a (solid), and a's limit
(dashed).
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Figure 5: Max System Trajectory.
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Figure 6: Simulated Max System Trajectory.
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Figure 7: A System Trajectory.
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Figure 8: A + BF System Trajectory.
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