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ABSTRACT

The multidimensional inverse scattering problem for an acoustic medium is con-

sidered within the homogeneous background Born approximation. The medium is

probed by wide-band plane wave sources, and the scattered field is observed along

straight-line receiver arrays. The objective is to reconstruct simultaneously the

velocity and density profiles of the medium. The time traces observed at the re-

ceivers are appropriately filtered to obtain generalized projections of the velocity

and density scattering potentials, which are related to the velocity and density per-

turbations of the medium with respect to their nominal values. The generalized

projections are weighted integrals of the scattering potentials; in two dimensions

the weighting functions are concentrated along parabolas, in three dimensions they

are concentrated over circular paraboloids. The reconstruction problem for the

generalized projections is formulated in a way similar to the problem of x-ray, or

straight-line tomography. The solution is expressed as a backprojection operation

followed by a two or three dimensional space-invariant filtering operation. In the

Fourier domain, the resulting image is a linear combination of the velocity and den-

sity scattering potentials, where the coefficients depend on the angle of incidence of

the probing wave. Therefore, two or more different angles of incidence are necessary

to reconstruct the velocity and density scattering potentials separately.
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INTRODUCTION

In this paper, we consider the multidimensional inverse scattering problem for

an acoustic medium within the homogeneous background Born approximation. An

acoustic medium is probed by wide-band plane wave sources, and the scattered

field is observed along straight-line receiver arrays. The objective is to reconstruct

simultaneously the velocity and density profiles of the medium.

The 1-D velocity/density profile inversion problem has been studied by a number

of researchers, including Raz (1981a), Coen (1981), Hooshyar and Razavy (1983),

Yagle and Levy (1984). This problem can in principle be solved exactly.

The multidimensional problem, where the velocity and density profiles are al-

lowed to vary in two or three dimensions, has also interested several researchers.

For the multidimensional problem, no exact solution exists. Several approximate

inversion techniques have been proposed, which linearize the scattering integral

equations by using the Born or Rytov approximations. In this context, it was

shown that the experimental requirements of single parameter inversion problems,

where the medium density is constant and only the velocity varies, and of mul-

tiparameter inversion problems, where both the density and the velocity need to

be reconstructed, are different. For the single parameter case, a single scattering

experiment is sufficient to - at least partially - reconstruct the object of interest,

whereas several experiments are necessary for multiparameter problems.

Raz (1981b), and Clayton and Stolt (1981) have solved the multidimensional

problem for an experimental setup where sources and receivers are available at all

points on a plane, and scattered waves are measured at all frequencies. Coen,

Cheney and Weglein (1984), and Ramm and Weglein (1984) have solved the same
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problem for a complete set of sources and receivers, but using only two temporal

frequencies. Hooshyar and Weglein (1986) have used two wide-band point sources,

where the distance between the sources is required to be small compared to the

distance from the sources to the scatterers. Beylkin and Burridge (1987) have

presented a solution for a medium with a variable background, with sources and

receivers surrounding the medium.

The class of problems where the medium is probed by plane waves has been

investigated by Norton and Devaney. Norton (1983) has used a flat transducer as a

source of wide-band, plane wave illumination, and as a receiver of the backscattered

waves. A second transducer, oriented at a different angle with respect to the first,

is used as a receiver only. The two transducers are rotated together 180 ° around

the object, and the scattered waves are recorded at all angles during the rotation.

Devaney (1985) has extended the diffraction tomography theory to the variable

density case. In this work the transmitted waves are measured on a plane parallel

to the incident plane wave front, and the experiment is repeated for all view angles.

In this scheme, two temporal frequencies are used in the insonifying wave.

The present paper is a generalization of a previous work of the authors (Ozbek

and Levy, 1987), where the multidimensional inverse scattering problem for a con-

stant density acoustic medium was formulated and solved as a generalized tomo-

graphic problem. In this paper, we similarly filter the time traces observed at the

receivers to obtain generalized projections of the velocity and density scattering po-

tentials, which are related to the velocity and density variations in the medium. The

generalized projections are weighted integrals of the scattering functions; in the two-

dimensional geometry the weighting functions are concentrated along parabolas, in

the three-dimensional geometry they are concentrated over circular paraboloids.

Thus the inverse scattering problem is again posed as a generalized tomographic or
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integral geometric problem.

The reconstruction problem for the generalized projections is formulated in a

way similar to the problem of x-ray, or straight-line tomography. The solution

is expressed as a backprojection operation where we sum the contributions of all

projections passing through a given point in space, followed by a two or three

dimensional space-invariant filtering operation. In the Fourier domain, the resulting

image is a linear combination of the velocity and density scattering potentials, where

the coefficients depend on the angle of incidence of the probing wave. Therefore,

two or more different angles of incidence are necessary to solve for the velocity and

density scattering potentials separately.

The main difference between the approach that we propose here and the diffrac-

tion tomography technique developed by Devaney (1985) is that we use wide-band

plane waves at just a few angles of incidence to reconstruct the medium density

and velocity, whereas the diffraction tomography formulation relies on narrowband

plane wave sources at just two, and in practice several, frequencies, but for all

angles of incidence. These two approaches are in some sense dual of each other,

since they trade wavevector orientation against frequency. This distinction leads to

significantly different processing algorithms, and in fact, as mentioned above, the

inversion-procedure proposed here is significantly closer to x-ray tomography than

to diffraction tomography.

Also, the different choice of experimental conditions appearing here is a reflection

of the difference existing between medical imaging applications, which motivated

the diffraction tomography approach, and geophysical tomography problems, which

are at the origin of the present work. In medical imaging it is possible to rotate the

object to be imaged, i.e. the patient, over a 360 ° range, but in exploration geophysics

only a very limited range of angles of incidence can be achieved for surface, or even
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vertical seismic profiling recordings.

The paper is organized as follows: we treat the 2-D case in detail in Sections

I-III, and just summarize the results for the 3-D case in Section IV. In Section I,

the inverse scattering problem is formulated within the Born approximation and

redefined as a generalized tomographic problem. The backprojection operation is

defined and related to the generalized projections in Section II. In Section III, the

separate reconstruction of the velocity and density scattering potentials is discussed.

In this context, it is shown that substantially more than two plane-wave experiments

are required in order to be able to recover the velocity and density perturbations

in a numerically reliable way. We summarize the results for the 3-D geometry in

Section IV. A 2-D numerical example is presented in Section V, and Section VI

contains some conclusions.

I. PROBLEM DESCRIPTION

In this paper we will treat the two-dimensional case in detail, and summarize the

results for the three-dimensional case. Consider the scattering experiment described

in Fig. 1. A 2-D acoustic medium is probed by a wide-band plane wave and the

scattered field is observed along a straight-line receiver array. The Fourier transform

P(x, w) of the pressure field at point x = (x,y) satisfies (Chernov, 1960)

p(h)Vr _VP(x, W) + P(,Wt) = 0, (1)

where c(x) is the propagation velocity, and p(x) is the density of the medium at

point x. The acoustic equation (1) can be rewritten as

(V 2 + k 2 )P(X, w) = -k2 U ()P(x,w) + VU (X) * VP(X, w), (2)
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where

( _ C2- 1(3)

Up() In (), (4)
Po

and k = w/co is the wavenumber. Here, U(x_) and Up(x) are respectively called

the velocity and the density scattering potentials. co and Po are respectively the

velocity and the density of the background medium. We assume that c(_) and p(x_)

do not deviate significantly from their nominal values co and po; consequently U,(_)

and Up(x) are small with respect to 1. We also assume that U,(j) and Up(x) have a

bounded support V, which is located completely on one side of the receiver array.

The probing wave Po(x, w) satisfies

(V 2 + k2 )Po(,~ w) = 0, (5)

so that the scattered field P,(x, w) = P(, w) - Po(_, w) obeys

(V 2 + k 2 )P.(_,w) = -k 2 U((_)P(x,w) + VU2(_) V P(_, w). (6)

The solution of (6) is given by the Lippmann-Schwinger equation (Taylor, 1972)

P,(X, W) = f dx' [k2U(X')P(' , w) - VUp(X') VP(X', w)] Go( X', W), (7)

where Go(x, x', w) is the Green's function associated with a point source in a homo-

geneous medium:

(V 2 + k 2)Go(,_.', w) = -6(x_- '). (8)

Equation (7) demonstrates the nonlinear relation that exists between the po-

tentials U(x_), Up(_) and the pressure field P(x, w). To linearize this equation we

adopt the Born approximation, whereby we assume P (x_,w) <P Po(, w). Then the

Lippmann-Schwinger equation becomes

P (, w) f dx' [k2Uc(-)Pa(I, ) - VU(') . VPo(Z, w)] Go(,x', ). (9)
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The Born approximation assumes that the scattered field P, (L, w) is small through-

out the volume of the object, which requires that both the magnitude of the scat-

tering potentials U, and Up be small and that the volume of the region V be small

with respect to the dominant wavelength of the probing wave.

If, instead of the Born approximation one uses the Rytov approximation, the

requirement that the size of the scattering region be small can be relaxed (Chernov,

1960; Tatarski, 1961; Devaney, 1981). The Rytov approximation is obtained by

representing the total pressure field P(., w) in terms of its complex phase and lin-

earizing the resulting Riccati equation satisfied by the phase fluctuation (Devaney,

1985).

On the other hand the Born approximation is more accurate than the Rytov

approximation for reflected waves (Beydoun and Tarantola, 1986). For the setup

considered in this paper, where the wideband property of the probing wave replaces

the large number of view angles available in diffraction tomography, it was shown

in Ozbek and Levy (1987) that the reflected wave configuration provides the most

coverage in the Fourier domain for a bandlimited source. Therefore, we adopt the

Born approximation in this paper, although similar results can also be derived for

the Rytov approximation.

Next, we simplify the second term in the integrand in equation (9) by using the

identity (Norton, 1987)

(VUp . VPo)Go = V . (UpGoVPo) - UV . (G 0VP0), (10)

and applying the divergence theorem. Over a surface S located outside the domain

V where the density inhomogeneities are located, we have Up(x) = ln(p(x)/po) = 0,

so that

| dx'V . [Up(x)Go(Z'W)VPo('W)]
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= IA _dsUP(!)Go(. ,', ,w) (. VPo(e, w)

=0. (11)

For the second term in equation (10), we have

V . (GVPo) = VGo VPo + GV 2 Po = VGo . VPo - kc2 GoP. (12)

The incident wave is given as

Po (Z, w) = eik -'z, (13)

where 9 = (cos0, sin0) is the unit vector which indicates the angle of incidence

of the plane-wave source. Therefore, within the Born approximation, the scattered

field at a receiver point e is given by

P.( ,w) = J dx' {k2[U(i)- U-(')lPo(z',W)Go(, x' w )

+ UPsl)VzP.(e, w) - V, G.(, o , w)}

- d' {k2[U(x' ) - (UlGo(,',w)

+ikUp()[. * Vz.Go(.x , w)]} Po(_ X,w). (14)

To compare the far-field scattering patterns that are due to velocity and density

perturbations, let us use the far field approximation klx - ij >» 1. We find

VZ_,Go(e, ', w) ik (!- -) Go(s, x', ), ) (15)

which is valid for both the 2-D and 3-D Green's functions. Then (14) becomes

P.(!, w) z k/ .dx' {U,(!) -[1 + cos c(e, X, j)]U,,(x-)} Go(,:,,,w)Po(z_,w), (16)

where a(_, x', ) is the angle between the vectors -0 and - x'. From a physical

point of view, a(_, x', .) is the angle at point x' between the ray linking x' to the
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source, which is specified by vector -8 since the incident wave is a plane wave,

and the ray linking g' to receiver E. Since the background medium is assumed to

be constant, these rays are straight lines. The different weights in front of U ,(E)

and Up(x) in (16) correspond to different scattering patterns which are plotted in

Figs. 2a and 2b. As indicated by Fig. 2a, the scattering pattern due to U,(xz) is

that of a monopole, whereas Fig. 2b shows that the scattering pattern due to Up()

is that of the sum of a monopole and a dipole. Therefore, the scattering due to

density perturbations is most prominent for reflected waves, and least prominent

for transmitted ones.

Equation (14) can be written in a slightly different form if we introduce the

scattering potential

U "U () In (17)
'Co

associated to the compressibility C() = ll/c2 (x)p(x). We find

U,( =In (18)(_In ) 2 U(X) 2 UU(x) - U (X) (18)

for c(x) near c ,, as assumed above. Therefore (14) can be written as

P.(_, W) = J d U_, {k2U (Z_)Go(, 'I, w) + ikU,(X_,)[n . VIGo(_, iT, W)]} Po(_', w),

(19)

and the objective of this paper will be to solve this integral equation for the com-

pressibility and the density scattering potentials U,,() and Up(n), or equivalently

for Up(x) and the velocity scattering potential U,(a).

For the 2-D geometry under consideration, the Green's function is given by

Go(x, x', w) = 4 H(1)(klx - 'l), (20)
4

where H()(.) indicates the Hankel function of order zero and type one. In the

following, it will be assumed that the receivers are located along a straight line



Ozbek and Levy Velocity and Density Inversion 11

perpendicular to the unit vector X = (coso, sin+) and whose distance from the

origin in the direction $ is p, as shown in Fig. 1. The position of an arbitrary receiver

along this line is therefore given by _ = pb + (_, where _ = (sin , -cos 0) is a

unit vector perpendicular to $, and e is an arbitrary coordinate. Then (19) can be

expressed as

k2P P( _ l(e, k)-l (e, k)-_p(e, k), (21)

where

,(k) dx= (kl 'U eiki.z'H(1)(k _ (22)

Pp(2,k) = f dUp(')ek {. VH)(klx_'- el)},

_-2f d,'Up(f')etk2 [. e H(')(kl - el) (23)
2 1-~ - el -

and where H() (v) = -dH(1)(v)/dv is the Hankel function of order 1 and type 1.

We define the inverse Fourier transform of FP(, k) with respect to k as g(e, r):

g( , r) - dkF (e, k) e-ik; (24)

g,(e, r) and gp(e, r) are similarly defined as the inverse Fourier transforms of FP(e, k)

and Fp(E, k), respectively. Taking into account the fact that (see Morse and Fesh-

bach, 1953, pp. 1362-1363)

fz { i~r ~) } l(r - u)
{H( (ku)} = (25)

where 1(.) is the unit step function, and the relationship

UTTA(26)f1 {_~rH(?)(ku)} = r u (26)2 2U N/r·2 - u2

that follows from (25), we find that

g(e, r) = g.(e, r) - gp(, r), (27)
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where

dzl~n~llZ) (28)gr(~, r) = dzxU,(xe) 2/(r _ * 2-' 2__' (28)

and

gP(, r) = f d'U(' ) U ,2 1 r-['-X I-·-I2 -'-el (29)

Equation (28) expresses g,,(,r) as a weighted integral of the compressibility

scattering potential U,,(_) where the weighting function is nonzero in a region with

parabolic support. The parabola satisfies the equation r = 8 x- Ix- 1 where r,

8 and e are given and x varies. The directrix of this parabola is the line 0 * x = r

which is perpendicular to the direction 8 of incidence of the probing wave, and

whose focus is the receiver point ~. The weighting function becomes infinite for

values of x along this parabola, so that the largest contribution to the integral is

made by the values of U,(x) which lie along the parabola. In some sense, g,(, r)

is a projection of U,((x) with respect to a function whose singularities are algebraic

and located along a parabola.

In (29), gp(e, r) is similarly expressed as a weighted integral of the density scat-

tering potential Up(). The weighting function again has a parabolic support, but

it contains two additional factors. The first factor, .* (a' -_ )/I' -41, is again

identified as cos a(e, _', ), where a(e, x', j) is the angle between the vectors -0 and

_- x'. The second factor in (29), (r - *. x')/Ix' - e, is a term which equals unity

on the parabolic wavefront of the weighting function, and grows as the focus of the

parabola (the receiver point) is approached.

In the following, it will be assumed that the projections g(e, r) constitute the

data obtained from a single plane-wave scattering experiment. To see why this is
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the case, observe from (21) and (24) that

-g(-,r) ( w) e (30)g(~, = -o (iwr ()P,() -

Then since
1

1{1(t)} -- + 7r6(w), (31)

and observing from (21) that P,(!,w = 0) = 0, we find that

r/CO 1 C0 f

(,r) = -2rc dr (s) - dr dsP(,. s) -s) (32)
-oo -00 -0 -0

The projections g(e, r) are therefore obtained by integrating twice the time domain

scattered field P, (1, t) observed at e, and then subtracting a constant equal to half

the value of the double integral at t = +oo. This shows that the knowledge of the

observed scattered field P,(e, t) for all e, t is equivalent to that of projections g(e, r)

for all e, r.

On the basis of the above observations, the inverse scattering problem can be

formulated as follows: given the generalized projections

{g(,r) : -oo < e < oo, -oo < r < oo},

we want to reconstruct the scattering potentials U, (x) and Up(x).

II. BACKPROJECTION OPERATION

Proceeding as in the constant density inversion problem treated in Ozbek and

Levy (1987), the first step of our inversion procedure is to perform a backprojection

operation on the projections g(e, r). We define it as

r fO de ° d,_g{, r l(r
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At a given point x, this operation sums the contributions of x to the projections

g(, r), as appearing in equations (27)-(29). By performing this backprojection

operation for every point in the plane, this gives an image, UB(X). UB(_) is the

analog of the backprojected image obtained in x-ray tomography (Deans, 1983) by

summing the line projections passing through a given point.

Our first objective is to relate UB(X_) to the projections g(e,r) in the frequency

domain. It can be shown that the 2-D Fourier transform of UB(X) is given by (see

Ozbek and Levy, 1987, Section 3 and Appendix A)

(UJB daUB ( - ik_ ./2. z 

e-ip- /2 kr (34)
k.9 '=k - 2ka r 2k a ) ' (34)

where

(kc, kr) = J de- J drg(C , r)ei(keE+kLr) (35)

is the 2-D Fourier transform of g( ,r), k = (k.,ky,), k = Ikl, A = (k2 _ k2, 2k. ky),

¢ = (cos(O + $), sin(O + k)), and _ = (sin(O + O), - cos(O + 0)).

III. SEPARATE RECONSTRUCTION OF Uc(k) AND Up(k)

In this section, we first derive a frequency domain relationship between the pro-

jections g(e, r) and scattering potentials U,(x_) and Up(x), thus obtaining a "Pro-

jection Slice Theorem" (Deans, 1983) associated with the problem. Inverting this

relationship provides both a frequency domain relationship between U,.(k_), Up(k),

and UB(k), and a method for the separate reconstruction of U,,(x) and Up(x), or

equivalently, of Uc (x) and Up (x_).

From (27), we have

(kc, k,) = 9,(ke, k,) -gp(k, k,), (36)
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where ,(ke, k,) and gp(ke, kr) are the 2-D Fourier transforms of g, (, r) and gp(f, r),

respectively. Since g,,(, r) = g(f, r) for the constant density case, it was shown in

(Ozbek and Levy, 1987, Section 4 and Appendix B) that g(ke, kr) can be expressed

as

i~rsgn(k,) eiypsgn(k,)VFk kk CT"/2 
97(ke, kr) = -irsgn(k )/ U (k = k,= + ke + 'ysgn(k,)/k -k )

r

(37)

for Ikel < k,rl, where

Cr.(k) = f dx'U.(,')e-,i-z' (38)

is the 2-D Fourier transform of U,,(, and

A { +1 if .x--p>OforallxEV,

-1 if x *- p < 0 for all x E V.

qy describes which side of the receiver array the support V of the inhomogeneities is

situated.

We now express }p(ke, k,) as a function of the 2-D Fourier transform Up(k) of

U,(). We first take the Fourier transform of gp(, r) with respect to r:

jp(', kr) = drgp(~, r)e-ik ,r

= FP*(, k,)

r J, dxtU (xt)e-'@^~ Z' * ViH()(k,l2) - 1)} (39)

where Fp denotes the complex conjugate of Fp and H(2)) is the Hankel function

of order 0 and type 2. Now, taking the Fourier transform with respect to ~ gives

,(kf, k,) = 2k f dx!U,()eik {O* VzN(x', k, k,) (40)
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where (Ozbek and Levy, 1987, Appendix B)

N(x', k,) - | dEH( 2 ) (kx'-l)e-

2sgn(k,) e-i(kz- l+sn(k,)V /| z l1-SH) (41)

for Ikel < Ikl. Consequently, we get

gp( k,)- = - k ei7- iYpsgn(kr) ,)/W {&* [k + -ysgn(k) }

*Up (k = k7r + -k_ + ysgn(kr)k- k~ s), (42)

for Ikel < Ik,j. Combining (36), (37) and (42), we obtain

,(k, k,) =

- rsgn(k) ipsgn(k.) (k= k k + sgn(k/,) =)

^-' [( k,-O + k,'+ -ysgn(k-) ^ - k ) .
+---F k p (k = k I+skg + ysgn(k7 ) )+

(43)

for Ikel < Ikl. For Ikel > Ikl, g(ke,k,) is related to the part of the observed
scattered field that corresponds to evanescent waves (Ozbek and Levy, 1987), and
we do not make use of this portion of g(ke, k,) in our inversion scheme . The inverse
formula of (43) is

UR( - k2] (k)

=2k 8 e ipa /2k k= _j k,.= 2k- ) ' EC, (44)
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where the cone C is defined below, and where UC(k) = U,(k) + Up(k) is the 2-D

Fourier transform of the velocity scattering potential U"(x). Here, UR(k) denotes the

2-D Fourier transform of the reconstructed potential UR(j) obtained by applying

the constant density reconstruction procedure to the projections g(e, r) obtained

from a variable density and velocity medium.

Equation (43) represents the "Projection Slice Theorem" associated with the

variable density inverse acoustic problem relating the 1-D Fourier transform of

g( ,k,) with respect to e to a semicircular slice of the 2-D Fourier transform of

UR(x_). For a fixed kr, g(ke, k,) gives UR(_) along a semicircle of radius Ikc,l centered

at k,o as shown in Fig. 3. By letting kr vary, these semicircles span a cone C, which

is defined as

C = {k: Ik- 'V1 > V/2} (45)

for -y = +1, where k= (k,k) and is = (cos((O + 0)/2), sin((O + q)/2)). The angular

range of this cone is 90 °, as indicated in Fig. 3. For y = -1, C is the complement

C of the above cone.

Combining (34) and (44) gives

UR( ) ' r (k) = 2r(k -2cos2 Up (k), k E C. (46)

where S is the angle between the vectors k and O', with k = (K k). This relation is

the key result of our paper. It shows that the reconstructed image UR(k) can be

obtained by applying the 2-D filter qyX* k/27r2 to the backprojected image UB(k).

This relation is similar to the identity which is used for 2-D backprojection and

filtering x-ray reconstruction methods (Deans, 1983). Since the filter A * diverges

for high frequencies k, it needs to be "clipped" as k becomes large. Furthermore,

identity (46) shows that 0rR(k) is a linear combination of C,(k) and Up(k). This

implies that it is not possible to reconstruct these two potentials from a single
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experiment. To reconstruct Ur(k) and Up(k) separately, we need in principle two

experiments with plane waves incident at angles 0 and 2; then we can solve the

system

1 1 -2(k. A)2 l - Uc() _ t0 R1(S 1 (47)

I -2(k-'i)2 L Up(k) i L UR2(k) ]
M(k; 6, 2)

which requires inverting the matrix M(k; A, ).

For the numerical stability and robustness of the matrix inversion procedure,

the matrix M(K ), -2) must be as nonsingular as possible. The most appropriate

measure of the singularity of a matrix is the smallest singular value of the matrix.

The smallest singular value of the matrix M is

,min(M) = min a such that det(a:I - M'M) = 0
i=1,2

71 + 22+ 1- [(2 + 2 + 1)2 4 (,2 )2]1/2 } (48)

where n717 k * & and =2- _'2

Inversion of M would be most robust when Omin(M) is maximized. This takes

place for values of k, O, and O8 such that 81 -2 = 0 and k = -1 or k- = 2.

Therefore the two probing waves must be incident at angles perpendicular to each

other. Under this condition, let us consider the frequency domain coverage we

would have for finite bandwidth data, assuming that we have receiver coverage

surrounding the medium. Neglecting the low frequency cutoff band, the frequency

domain coverage due to a single probing wave has a "figure-of-eight" shape aligned

with the direction of the probing wave (Ozbek and Levy, 1987). When two probing

waves are used, UC(k) and Up(k) can be solved only in regions where where there is

double coverage, as indicated by the shaded areas in Fig. 4. However, if we consider
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the superimposed "radiation pattern" of amin(M) drawn in Fig. 4 also, we see that

M is most singular for those values of k where we have double coverage.

For general values of O1 and 2 the situation is similar. In general, M is singular

for values of k which satisfy IL .j x[ = _k - '1. Therefore, for 0 = i±, M is singular

for all k; otherwise, it is singular for k = +(k +2)/1+821 or K = +( -0)/= - 1.

These are the directions which in fact bisect the regions where there is double

coverage. The coverage and radiation pattern for the case when the angle between

01 and L is 450 is shown in Fig. 5.

The preceding analysis confirms what researchers in diffraction tomography and

exploration geophysics have suspected for some time: namely, that it is exceedingly

difficult to reconstruct simultaneously the velocity and density perturbations of

an acoustic medium in a numerically stable way. A purely theoretical analysis

neglecting the bandlimitation of the probing wave would lead to the conclusion that

only two experiments at different angles of incidence are necessary. Yet, as shown

above, the numerical results obtained by such an approach would be worthless. In

practice, one must use substantially more than two angles of incidence, say angles

1, 82,..., ,ON, and for each k, solve the resulting system

1 -2(k.*Q) 2 URikl(K)

=2(49)1 | 2(kI4k) [ 2 Up(k) ] R (k)

^p W1 -2(K.-kp)2 URikp(k)

M(k) 4R(2

by the least squares method, where {ikl, ik2,...ik} C {1,2,...,N} is the set of

indices corresponding to the angles of incidence for which the probing wave provides
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coverage at k. This gives the solution

[ c(k = (M'M) -M'd( (50)

IV. THREE-DIMENSIONAL GEOMETRY

After discussing the 2-D experimental geometry, we summarize the correspond-

ing results for the 3-D case. For the 3-D geometry, we assume that the receivers are

on a plane; for convenience we choose this to be the x-y plane. The position of an

arbitrary receiver located in this plane is therefore given by e = (eT', 0), where eT

represents the x-y coordinates of the receiver. The Green's function due to a point

source is
eiklz - z'j

Go(x, X', w) = 4rlx__ (51)

Under the Born approximation, the Lippmann-Schwinger equation takes the form

(19), and the projections in this case become

(TX,- r) = dk {k P. (f, cok) eikr
"-, 2 r co k2 s

= ~(CT, r) - gP(T', r), (52)

where

g,(iT, r) = f dx'U,(-') (r(53)

and

It' - =~ I _' -!l- +- 21x' - !'2
(54)
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where 9 is the unit vector in the direction of propagation of the incident wave. The

projection g, (_T, r) is again a surface integral of the scattering potential over a circu-

lar paraboloid, like in the constant density case. The weighting function appearing

in the representation (53) of g (_T, r) is an impulse, and in this sense the 3-D case

is quite different from the 2-D case. Projection gP( T'r) shows further deviations.

Like in the 2-D case, it has a cosine dependence on the angle between the direction

of the incident wave and the direction of scattering. The weighting function, in

addition to an impulse, contains a smoother term which in fact makes 9p(IT, r) a

noncausal function of r. This is due to the 1/k 2 filter that is applied to the scat-

tered field P,(_, w) to obtain the projection g,(_T, r). If the far-field/high-frequency

approximation kl' - (l > 1 is made, the impulsive term clearly dominates.

We introduce the backprojection operation as in the constant density case:

UB() /' dT drg(_ T,' r) (55)

In the frequency domain, the backprojected image can be related to the parabolical

projections as (see Ozbek and Levy, 1987, Section 8 and Appendix C)

k * a 2k 2k ' 2k ) (56)

where

UB((k) - | dXUB(-,e_. (57)

(kT, k,) A f d(T/ drg(_e, r)e- (k'•-+krr) (58)

are the 3-D Fourier transforms of UB(Z) and g(IT, r), and

A (kz-ky - k2, 2k,ky,, 2kzkz),

Ay A (2kk,, k2 - k - k2, 2kyk:).-yb Z Xv Z Z 
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From (52), we again have

(kT7 k,) = 9 O(~kT, k,) - 9P(kT kr), (59)

where 9c(_T, kr) and p (kT,k, ) are the 3-D Fourier transforms of g9(T_ r) and

gp(_T,r), respectively. Again, since gn,(_,r) = g(_T,r) for the constant density
case, it was shown in (Ozbek and Levy, 1987, Section 8 and Appendix D) that

(ick(T, k,) takes the form

4.(k4T, k,) = -_ isgn(kr, (k = k,+ (k_ ysgn(kr)vk - IkTI2)), (60)

for IkTI < Ikrl, where Ur(k) is the 3-D Fourier transform of U,(X-), and

A +1 ifz> OforallxE V,
-1 if z < O forall x E V.

Using the intermediate results derived in (Ozbek and Levy, 1987, Appendix D),

we also have

p(Mk-T, k,) /kri_ T 2 [2 (kT, ysgn(kr) /kr- _kTI2)]

Up (k = kr, + (kT4, ysgn(k,) /kr2 - IkTI2)), (61)

for IkTI < lkrl, where Up(k) is the 3-D Fourier transform of Up(x).

Combining (52), (59) and (60) yields

(&T, k,) =

=i2gn( k -t {U (k = krO + (kIT, -sgn(kr) k2 -Ik4TI22))

* (ATE vysgn(kr)Vkr2_ ITI 2)k
- p (k = kr, + (kT, sgn(kr)V/kTr2I-k 12)) },

(62)
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for IlTI k Ik.
The inverse formula of (61) is

UR(i) - C(&)2[ k·"I2 ]& Uk

it A ( I)

4"_rk k 2k -. , 2k__j' ,= 2k.] ' _EC,

(63)

where

L-(2k~kzg 2k k.,, k2 _ k2 - k2),

and where T(k_) = CT,(k) + Tp(k) is the 3-D Fourier transform of the velocity

scattering potential U(x_). Here, TR(k) denotes the 3-D Fourier transform of the

reconstructed potential UR(x) which is obtained by applying the constant density

reconstruction procedure to the projections g(_, r) obtained from a variable density

and velocity medium.

For I[kTI > Ikrl, as in the 2-D case, (kT, k,) is related to the part of the

observed scattered field that corresponds to evanescent waves, and we do not make

use of this portion of (kCT, k,) in our inversion scheme.

Equation (61) represents the "Projection Slice Theorem" for the 3-D case as-

sociated with the variable density inverse acoustic problem. For a fixed kr, the

2-D Fourier transform of g(_T' k,) gives the 3-D Fourier transform of UR(x) over a

hemisphere of radius Ik,r centered at k,r. By letting k, vary, U(k) is determined in

a cone C, which again covers half of the 3-D frequency space.

Combining (56) and (62) gives

UR() = Z- 2 UB(k) = c(k) - 2 cos2T Up(k), _ E C. (64)0~(~- ~ - _ = (64
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Therefore, UR(k) for k_ E C can be obtained from UB (k) by a 3-D space invariant

filtering operation.

UR(k) is related to T,(k_) and Tp(,() with the same relationship ((46) and (64))

in two and three dimensions. Therefore, the procedure for individual reconstruction

of Uc(x) and Up(x) is the same in these two cases.

V. NUMERICAL EXAMPLE

The theory presented in this paper was tested for the two-dimensional case, using

computer-generated synthetic data. Figs. 6 and 7 show the velocity and density

scattering potential models, U ¢(x) and Up(x), respectively. The scattering potentials

correspond to velocity and density anomalies which are constant in square-shaped

areas of dimensions 35 m x 35 m. The background medium was homogeneous

with a velocity of 5000 m/s and a density of 2000 kg/m s . The magnitude of the

velocity and density perturbations were 10% of the nominal values. A lowpass

source wavelet with a cutoff frequency of 425 Hz was used, so that the object sizes

are three times the shortest wavelength in the source signal. The regions of anomaly

are separated by a distance equal to six times the shortest wavelength. The synthetic

scattered waves were obtained by using the forward scattering equation under the

Born approximation; however, since the velocity and density perturbations are of

limited size with respect to the shortest wavelength, and the magnitudes of these

perturbations are relatively small, we do not feel that the approximation is critical

for this particular example. The entire image area was 500 m x 500 m, the grid

size was 5 m x 5 m, and receivers were located on all sides around the medium,

100 on each side.

As indicated in Section III of this paper, in order to guarantee the numerical

stability of the procedure for reconstructing separately the velocity and density'
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inhomogeneities, more than two sources are needed. In this experiment, we have

used eight angles of incidence, at 22.5 ° intervals. The inversion was performed over

the regions in the k domain where coverage was provided by at least five probing

waves; i.e., using the notation of eq. (49), N = 8, P > 5, and rank(M) > 4 for all

inversion points k. This corresponds to carrying out the inversion over a circular

lowpass region with a radius of about 55% of the maximum frequency coverage

provided by a single source.

For comparison, we first examine images UBV(_) and URU(4. To obtain these

images, in the frequency domain, values obtained due to different sources providing

multiple coverage were simply averaged point by point. Fig. 8 shows the back-

projected image UrV(X). UBU(_) can be interpreted as a "migrated" image of the

velocity field for a constant density medium (for migration, see, for example, Claer-

bout, 1985). Fig. 9 depicts U.U(Z), which is the image obtained by applying the

constant density reconstruction procedure to the data obtained from a variable

density and velocity medium.

Some observations can be made regarding these images. Both images display the

locations of the scatterers; however the "inversion" image is much better focused

than the "migration" image. This effect has also been noted by other researchers

(Esmersoy and Miller, 1987). In addition, the values of UBV(X) differ by orders of

magnitude from the numerical values of the true scattering potentials. On the other

hand, Uu(;_) looks like U,(z_)-Up(Uz), and actual constructed values confirm this. To

interpret this result, observe from (46) that, for the "ideal case" where plane wave

experiments are performed for all angles 0 of incidence, the averaging scheme de-

scribed above for combining the reconstructed images obtained for different probing
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angles can be written as

Ua (k) = If, dOUR(k) = -c(J -p(k = st(k), (65)

where UR corresponds to the inversion result for one source, and Uir corresponds

to the result after angular averaging. Therefore, averaging the reconstructed poten-

tial UR() over different angles is equivalent to reconstructing the compressibility

potential of the medium.

Figs. 10 and 11 show the separate reconstructions of U,(x_ and Up(x_), respec-

tively. The numerical values obtained are within 20% of the model values. There

exist several sources of error. The first of these is the bilinear interpolation proce-

dure which is used to convert the discretized 2-D Fourier transform g(ke, kr,) of the

projections into the discretized Fourier transform UR(k) of the reconstructed image.

A second source of error is the fact that all the inversion results developed in this

paper assume that receiver arrays are infinite, whereas the arrays which are used

for the present example have a finite length. Other errors are due to the fact that

the source wavelet is bandlimited, and needs to be deconvolved.

Finally, the DC levels of the velocity and density scattering potentials cannot be

reconstructed separately with the derived inversion formulas, since the coefficient

of Up(k) in equation (44) is not analytic around k = O. The DC level of U,(x_) can

be recovered from equation (22), so that if the DC level of either the density or the

velocity is known, the other one can be computed. In our implementation, we have

estimated U,(k = 0) and Up,(k = 0) as a weighted average of the closest eight values

in the discrete wavenumber domain. Adopting the reciprocal of the square of the

distance as the measure of weight, we assigned a weight of 1/6 to the closest four

samples, and 1/12 to the next closest samples which are diagonally located.
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VI. CONCLUSIONS

In this paper we have considered the problem of the reconstructing separately

of the velocity and density inhomogeneities of a multidimensional acoustic medium

probed by wide-band plane waves. The problem was posed as a generalized tomo-

graphic problem, where weighted integrals of the velocity and density scattering

potentials U(x_) and Up(g) are used as data. A backprojection operator UB(x) was

defined, which was related to the generalized projections in the Fourier transform

domain. It was shown that, by applying a time-invariant filter to UB(x), we can

obtain an image, UR(x), which in the Fourier domain is a linear combination of

the velocity and density scattering potentials, and where the coefficients depend

on the angle of incidence of the probing wave. Therefore, for numerical stability,

several angles of incidence were used to solve for the velocity and density scattering

potentials separately.
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Figure Captions

Fig. 1 2-D experimental geometry.

Fig. 2a Scattering pattern due to velocity inhomogeneities.

Fig. 2b Scattering pattern due to density inhomogeneities.

Fig. 3 Coverage of UR(k) for a single array.

Fig. 4 Frequency coverage of UR (k) and the "radiation pattern" of amin(M; k; $1, 2)

for the case when two probing waves are used, incident at right angles to each

other.

Fig. 5 Yrequency coverage when of UR(k) and the "radiation pattern" of umin(M; k; C, 2)

for the case when two probing waves are used, incident at a 45 ° angle with

respect to each other.

Fig. 6 Velocity scattering potential model for the synthetic experiment.

Fig. 7 Density scattering potential model for the synthetic experiment.

Fig. 8 The backprojected image UBU(j), obtained assuming a constant density

medium.

Fig. 9 The inverted image U (zI), obtained assuming a constant density medium.

Fig. 10 The separate reconstruction of the velocity scattering potential.

Fig. 11 The separate reconstruction of the density scattering potential.



Incident plane wave

Background medium of

constant velocity and density

Support V of the scattering

potentials Uc(_) and Up(x)

Fig. 1-- --------~~~~~~~~~w~iiiii::·.. ::~··.;~~i;:~iIi~~iii:::i.;;.



- t J (a)

Fig. (b)

Fig. 2



'Lk 

r: ^;: : :::: ::: :::::: :... . ..

.: ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ .. . .....:: , : :: ::::: : .

::.:..:.:..::x:::.::.:.::.:..:.:.:::. .........:..... :: ...

:. ::.:. : .. ....... ::.. ..:.. .... : : :::,.. ...::,::.::::...:::::::::: ...:::.:::::::::....
,: ... , .: . ... : .. , . : ':.. ~ ~ ~ ~ ~ :: ::::::-:. .... ::::-...:.....::...:::.

................ '':.'''.0:..:: .::...... ~ ~ ~ ~ .:::::::::.^:..:... ... :....::: ......
....~ ~ ~ ~ ~~ ~~~~: ..:: ....... :::: :...:.5: ::.. :.. ::::..: :::... : ::.. : ........ ::. x .... ::.::...:.:::1

.:::::.::.:.::......::.:.:. ::.:. ....... :.:.... .....::::::::.::: :~~~. : : : ............ ... :: ::: ......... :::.::::
.. :::::::::::::........... ........... s. :::: ......... : :::.

~~~~:: ::::::::. . . . . . ... .. .... .......:: :::::::::_~~~~~~~~~.... : : :..:.: ::::.....:.::... 5::.:.... .::::

.z.. ... .... . .5j . .....:::..:::::.:::::.::::::..:::::::::::... ............

.... .... ::::. ::::.:::l.::::::::.: . i:::~~~~~~~~~~~~..... ' ., ''.',':. .- .,:..........""'" "" "" ........... .
......... ::::::::::: ...... ::::..::.::::.::...:: ::

...... ~~ ~~~ . :...::-: .. .::v-.- :::::::.:: :: :w:

.............. ..... ..... ..... ,,-,,,,,....,.,... : '
................. . :.... :.:::: .:::. _.... ::::::::.................. . :: :w : : :.::: :: : ::: . ........ ...~~~~~~~... ,. .. ... ., ..,--... -. .. . . .. . . .. ... . . ....

............... :::: : .s: :: :::::... .: :...::.. .. ..::::::::. ~ ~~~~~~::::::-::,:: ..................... : .::::....:: :

Fig. 3



ky
Coverage due to Coverage due to
plane wave # 1 plane wave # 2

B: '

.-. A.~~~~~~~~~~~~~~~~.

\ . . ... . . ... ... .... --- ' " - " : :: -" -'-' -1 .- -I

Regions of \ 
double coverage

minFig. 4k; 01, )

Fig. 4



Coverage due to ky Coverage due to

plane wave # 1 plane wave # 2

Regions of romin(M; k; a, -2)

double coverage

Fig. 5



c:
d.o
bb

;zq



b--



bb
I:Qq

I~~E



C�3



'I

bb

u~~ ~ ~~ ~ ~~ ~ ~~ ~ ~ ~~~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.F-



'I


