
Procedural Layout of a High-Speed
Floating-Point Arithmetic Unit

Robert Clyde Armstrong

Technical Report 508

June 1985

Massachusetts Institute of Technology
Research Laboratory of Electronics
Cambridge, Massachusetts 02139

Mit, Bu ldmg N4. La XA 3ia j PY t

_ I�_���_^__CI _

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUN 1985 2. REPORT TYPE

3. DATES COVERED
 00-06-1985 to 00-06-1985

4. TITLE AND SUBTITLE
Procedural Layout of a High-Speed Floating-Point Arithmetic Unit

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Massachusetts Institute of Technology,Research Laboratory of
Electronics,77 Massachusetts Avenue,Cambridge,MA,02139-4307

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

120

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Procedural Layout of a High-Speed
Floating-Point Arithmetic Unit

Robert Clyde Armstrong

Technical Report 508

June 1985

Massachusetts Institute of Technology
Research Laboratory of Electronics
Cambridge, Massachusetts 02139

This work has been supported in
F49620-84-C-0004.

part by the U.S. Air Force Office of Scientific Research Contract

�_�_�� _III�__I�_IUIIIYX__-- -1^ 11 --- · 11 -__�__-X--L I.. X··lil.�l.l- .111�---1·11111____1·I-. 1

Procedural Layout of A High-Speed Floating-
Point Arithmetic Unit

by

Robert Clyde Armstrong

Submitted to the
Department of Electrical Engineering and Computer Science

on May 2, 1985 in partial fulfillment of the requirements
for the Degree of Master of Science.

Abstract

This thesis presents a case study in the procedural design of the layout of a complex digital circuit.
This is the task of writing a program which constructs a VLSI circuit layout given a set of variable
parameters which specify the desired functionality of the circuit. We present a set of techniques for
guaranteeing that the constructed circuit obeys the geometric and electrical design rules imposed by
the underlying circuit technology. These include a set of simple circuit forms and composition rules
for building precharged combinatorial circuits which are free of critical race conditions and charge-
sharing problems. As an example, we carry out the creation of a program for building a floating-point
addition unit which has selectable number of bits of exponent and fraction in the floating-point
representation. The high-level design of a companion floating-point multiplication unit is also
discussed.

Thesis Supervisor: Jonathan Allen

Title: Professor of Electrical Engineering and Computer Science

2

_ ___�_�_I___I�_ ·_I 1-�-·�-------^_·�_--_I�--·-- -�___1�L1I LC·LIP·I�--�-L-�^�_IIIII�I1�_I__IU---l- I- -·II- Ill-P· II--

Acknowledgments

I wish to thank:

Jonathan Allen for providing valuable advice, criticism, and support throughout this project;

Cyrus Bamji for illuminating discussions on the topic of automated design;

Steve Mccormick for keeping his circuit extraction program EXCL working despite my best

efforts to break it;

John Wroclawski for maintaining the computer systems on which this research was done;

And finally, my parents for much love and support over the years.

This research was supported in part by U. S. Air Force Office of Scientific Research Contract

F49620-84-C-0004.

3

Table of Contents

Chapter One: Introduction 9

1.1 Overview 10

Chapter Two: Floating-Point Arithmetic 12

2.1 Adapting the IEEE Standard for Special-Purpose Use 12

2.2 Basic Addition and Multiplication Algorithms 15

Chapter Three: Circuit Structures 18

3.1 Overview 20

3.2 Generalized Self-timed Combinatorial Circuits 21

3.3 Gate Level Implementation of Self-timed Modules 24
3.4 Switch Level Implementation of Self-timed Circuits 29

3.5 Dual-rail Self-timed Circuits in NMOS with Precharging 34

3.6 Some Well-Behaved Self-Timed NMOS Modules 37
3.7 Verification of Proper Circuit Structure 38

3.7.1 A Program for Verifying Well-Behaved Networks 38
3.7.2 Simulation Examples 44

Chapter Four: Implementation of the Adder Module 52

4.1 Functional Specification of Adder Logic 52
4.2 Guidelines for Procedural Design 54

4.3 Specification of Function Block Forms 57
4.4 Global Interconnect Topology in the Adder 60

4.5 Basic Adder Cells 61
4.5.1 Input Buffer Cell 62
4.5.2 Exponent Compare Cell 64
4.5.3 Control Buffer Cell 67
4.5.4 Multiplexer Cell 70
4.5.5 OR cell 70

4.5.6 Full Adder Cell 72

4.5.7 Zero Count Cell 76
4.5.8 Exception Handling 80
4.5.9 Sign Handling 81
4.5.10 Output Buffer Cell 81

4.6 Building Function Blocks From Simple Cells 84
4.6.1 Input Buffer 86
4.6.2 Exponent Comparator 86
4.6.3 Operand Swap 86
4.6.4 Exponent Difference 87

4.6.5 Bf Denormalize 87

4

C II1II~~~~~~~~~~~~--~~~~~1· I------··--- -~~~~~~~~~~~~~~~~~~~ L -nl----I.
^- ----. __��1__1��____1__ IIIII__l�-l-l.·-I.1X-I__ Il__l·_X__1__I_11_II_^�--·� IIIII

4.6.6 Af Negate 88
4.6.7 Adder 89
4.6.8 Exponent Pre-adjust 89
4.6.9 Result Negate 89
4.6.10 Leading Zero Count 89
4.6.11 Result Normalize 90
4.6.12 Exponent Adjust 90
4.6.13 Output Buffer 91

4.7 Assembling the Adder Procedurally 92
4.7.1 Primitive Functions and Objects in the Constructor Program 95
4.7.2 Application Functions for the Adder 102

Chapter Five: Implementation of the Multiplier 105
5.1 Functional Specification of Multiplier Logic 105
5.2 Specification of Function Block Forms 106
5.3 Modified Booth Recoding 108
5.4 Designing the Fraction Multiplier Prototype 109
5.5 Multiplier Function Blocks 112

Chapter Six: Conclusions 114
6.1 Improvements 115

References 116

5

_ __ � _ �I I _� 1_1__ __

Table of Figures

Figure 2-1: General algorithm for floating point addition 15
Figure 2-2: General algorithm for floating point multiplication 16
Figure 3-1: Precharged inverter 19
Figure 3-2: Precharged exclusive-nor gate 19
Figure 3-3: Basic forms of module composition 23
Figu re 3-4: Basic AND gate implementation 25
Figure 3-5: Truth tables for self-timed AND gate 26
Figure 3-6: Basic OR gate implementation 27
Figure 3-7: Basic inverter implementation 27
Figu re 3-8: Basic AND gate with inverting logic 27
Figure 3-9: Basic OR gate using AND gate circuit 28
Figure 3-10: Basic encoding inverter 29
Figu re 3-1 1: Basic switch elements 29
Figu re 3-1 2: Generalized switch gate module "32
Figure 3-13: Well-behaved NMOS gate forms 35
Figu re 3-1 4: NMOS implementation of a dual-rail AND gate 37
Figu re 3-15: NMOS implementation of a dual-rail XOR gate 37
Figu re 3-1 6: Well-behaved NMOS gate forms for simulation 40
Figure 3-17: Simulator test circuit 45
Figure 3-18: Simulation of a well-behaved circuit 46
Figure 3-19: Simulation of a circuit with non-conforming signals 47
Figure 3-20: Simulation of a circuit with missing pullup 48
Figu re 3-21: Simulation of a circuit with loops 49
Figure 3-22: Simulation of a circuit with "backward" signal propagation 50
Figure 3-23: Simulation of a circuit with a functional defect 51
Figu re 4-1: Floating-point addition algorithm 53
Figure 4-2: Initial floor plan of adder layout 56
Figu re 4-3: Input buffer cell circuit 62
Figu re 4-4: Input buffer cell layout 63
Figure 4-5: Comparator cell circuit 65
Figu re 4-6: Exponent comparator cell layout 68
Figure 4-7: Control buffer cell circuit 69
Figu re 4-8: Control buffer cell layout 69
Figure 4-9: Multiplexer cell circuit 70
Figu re 4-10: Multiplexer cell layout 71
Figu re 4-1 1: Denormalizer OR cell circuit 71
Figu re 4-12: Denormalizer OR cell layout 72
Figu re 4- 13: Adder cell input circuit: gate level 73

6

·�1II _I_�C_ ··II�--1I··.I_1I�-- -- I---I-· I· I--I-I· Ir- .- -�11·1·11�-·----�^1-C -·---- -I_ _ I�

Figu re 4-1 4: Adder cell input circuit: transistor level 73
Figure 4-15: Adder cell carry circuit 74
Figu re 4-16: Adder cell sum circuit 75
Figure 4-17: Full adder cell layout 77
Figu re 4-18: Zero count cell circuit 78
Figure 4-19: Zero count cell layout 79
Figure 4-20: Exception handling circuit 80
Figure 4-21: Sign handling cell circuit 82
Figu re 4-22: Output buffer cell circuit 83
Figure 4-23: Output buffer cell layout 84
Figure 4-24: Generalized N-bit function block layout 85
Figure 4-25: Floor plan of denormalizing shifter 87
Figure 4-26: Floor plan of a zero count block 90
Figure 4-27: Floor plan of normalizing shifter 91
Figure 4- 28: Prototype fraction section floor plan 93
Figure 4-29: Prototype exponent section floor plan 94
Figu re 4-30: Cell Library Data Structures 96
Figure 4-31: Example of Routing Primitive 101
Figure 4-32: Layout of 15-bit floating point adder 104
Figure 5-1: Floating-point multiplication algorithm 106
Figure 5-2: Initial floor plan of multiplier layout 107
Figure 5-3: Logical diagram of prototype fraction multiplier 110
Figure 5-4: Floor plan of prototype fraction multiplier 1,11

7

I _ _

Table of Tables

Table 5-1: Modified Booth recoding 109

8

_~~~~~~ ~ ~~~~~~~~~~~~~~~~~~ -__-_

CHAPTER ONE

Introduction

This thesis presents a case study in procedural design of the mask layout of a complex logic

circuit module. By "procedural design", we mean that the layout is described by a computer program

(or procedure) which contains instructions for constructing the final layout. This is in contrast to

"hand design" where the entire layout is manually described and perhaps encoded in machine

readable form.

A major advantage of procedural design is that the design procedure can accept user specified

input parameters which control the process of building the target layout. Rather than hand design a

new layout for each application, we can encode the method for constructing a related set of layouts

into a single design procedure. A classic example of this is PLA generation. A typical PLA generation

procedure accepts as input the number of inputs, outputs, and product terms, and tables specifying

the desired logic function of the PLA. The PLA generator then constructs a PLA f the appropriate

size and functionality. For highly regular structures such as the PLA, the procedurally designed

layout can easily match the performance of a manually designed layout.

We can envision building a set of construction procedures for a wide range of circuit modules.

There are several advantages to having available a library of layout design procedures:

- Design time for building a large project is greatly reduced since the designer does not
have to manually design the component modules.

- Modification of the component modules is simplified since only the input parameters to
the generation procedure need to be changed.

There is also a major disadvantage to procedurally designed layout: Except when the layout is

naturally highly regular (e.g., PLA generation), a procedurally designed layout cannot approach the

performance (speed, power consumption, and area) of a manually designed layout.

9

__I __ ~-^··l_----------C·----- -I·--Y.-_.-l~ll---I

1.1 Overview

This thesis investigates the construction of a design procedure for a kind of module which is not

obviously highly regular. One module which we might consider building procedurally is a floating-

point arithmetic unit. Such a module would be useful in a signal processing application where the

entire signal processor is to be placed on a single chip.

At present, the most efficient method for incorporating floating-point arithmetic into a signal

processing unit is to combine a general-purpose floating-point chip (or chip set) with an application-

specific chip. The available general-purpose arithmetic units each support a particular fixed floating

point representation format and a set of basic operations (either the proprosed IEEE standard P754 or

very similar). These chips fall into two performance categories, high-speed (> 1 Mflop) and medium-

speed (10 to 100 Kflop). The medium-speed chips are implemented using microprogrammed

sequential logic and are suitable for general purpose computing in microprocessor based systems

[1]. The high-speed chips are implemented using parallel combinatorial logic and are suitable for

signal processing and high-performance general-purpose computing [2][3]. The medium-speed

units consist of a single chip while the high-speed units have one chip per major function type

(addition/subtraction, multiplication, division).

This design approach has the following disadvantages:

- At least two or three chips are required to implement a complete system.

Since the arithmetic units are "general-purpose" they include features for use in many

different applications. In a particular application where we would want to build a single

chip processor, it is likely that only one set of features is needed for that application.

Procedural design of the arithmetic unit would allow the designer to select exactly the

features he needs.

- The standard arithmetic units have fixed word size in the floating-point representation

format. This obligates the designer to use the full word size in all of the data paths of his

system. A procedurally designed arithmetic unit could have adjustable word size so that

the designer could select the proper amount of numeric precision for his particular

application. For applications where the standard word sizes are excessive, the designer

could reduce the width of the data paths throughout his system to obtain decreased area,

delay, and power at the expense of numeric precision.

In the following chapters we carry out the design of procedures for constructing floating-point

10

__I CI

adder and multiplier units. We place special emphasis on the use of techniques to guarantee

correctness of the layouts generated by the procedures without having to directly verify the

correctness of every design that each procedure is capable of producing.

Chapter 2 defines the basic format for floating-point representation which is used. This format is

based on the proposed IEEE standard.

Chapter 3 presents the circuit methodology used in the construction of the arithmetic units. This

methodology is based on self-timed circuit principles and results in race-free precharged

combinatorial circuits. A special purpose simulation program for verifying the adherence of a switch-

level circuit to the rules of the design methodology is also presented.

Chapter 4 describes the development of the floating-point adder unit in detail from basic

algorithm description to layout construction. The programming methodology for the procedural

design is described in detail here.

Chapter 5 describes the high-level design of the floating-point multiplier unit based on previous

work on the construction of variable-size fixed-point multiplier units. Conclusions and other

comments are presented in chapter 6.

11

.1 -· -- - _I~ P-- - ·-

CHAPTER TWO

Floating-Point Arithmetic

Having decided to design a floating-point arithmetic unit we need to select a specific format for

representing floating-point numbers. An obvious first choice is the proposed IEEE standard 754 for

binary floating-point arithmetic [4]. This standard has become widely accepted in the integrated

circuit industry.

2.1 Adapting the IEEE Standard for Special-Purpose Use

The standard provides for a wide variety of exceptional events (e.g. underflow, overflow, illegal

operation, etc.) as well as several modes of round-off. General-purpose single-chip floating-point

arithmetic units typically implement most of the functionality called for in the standard. The user then

selects the operational modes and the style of exception handling best suited for the task at hand.

This is most useful for applications where many different kinds of computational tasks are required of

the same hardware.

For our special-purpose hardware we expect that a particular instance of a procedurally

generated design will be used for only one kind of task. To get the fastest and most compact circuit

we want to specify the operational mode at design time. This way we do not add extra hardware to

handle conditions which will never arise.

The features of the IEEE standard which we will use are the actual data format and the criteria

for arithmetic accuracy (methods of round-off.) The standard specifies two basic formats:

- Single precision format divides 32 bits into an 8-bit exponent, a 23-bit fraction, and a sign

bit.

- Double precision format divides 64 bits into an 11-bit exponent, a 52-bit fraction, and a

sign bit.

12

I

The interpretation of a single precision number X is specified as follows: Let e denote the value of the

8-bit exponent considered as an unsigned integer, f denote the value of the 23-bit fraction with radix

point to the left, and s denote the value of the sign bit. Then the value v of X is as follows:

1. If e = 255 and f O, then v = NaN (Not a Number).

2. If e = 255 and f = O, then v = (-1)Soo.

3. If e = 0 and f 0, then v = (-1)s2'126f.

4. If e = 0 and f = 0, then v = (-1)SO (zero).

5. Otherwise, v = (-1)s2e127(1 + f).

For our special purpose application we can simplify the interpretation rules above.

The first two kinds of values are used to represent exceptional results; infinity for overflows and

NaN for meaningless results such as 0/0 or 0ooo. The purpose of these kinds of values is to allow an

erroneous intermediate result to propagate through a series of calculations in a natural fashion so

that the errors can be seen in the final result(s). Since we are interested in signal processing

applications, we want our system to be able to recover from transient overflow conditions. This can

be achieved by replacing an overflow value with a value of the same sign and largest possible

magnitude as in fixed-point saturation arithmetic [5]. Since we are only interested in addition,

subtraction, and multiplication this eliminates the need for the infinity and NaN values.

The third kind of value is called denormalized and is used to represent underflowed numbers

less than the smallest normalized number (in magnitude). This form of number is useful for

minimizing the step between the smallest non-zero number and zero [6]. However, it is expensive to

implement in both delay and area. We will emulate commercial floating-point ALU's and provide for

replacement of underflow results with zero. Denormalized arithmetic support will be left as an option

to the constructor procedure (and will not actually be implemented in this thesis).

The fourth kind of value is a zero. Note that the sign of zero may be negative! This feature is

designed to be of use in interval arithmetic and other special forms [7]. For our special purpose

application we only need one zero value.

The remaining kind of value is the normalized number. Note that the effective value of the

fraction is 1 + f; the most significant bit of the normalized number is always 1 so there is no need to

include it in the actual representation. A bias is applied to the the exponent so that every normalized

number has a normalized reciprocal. Since we have no need for the NaN and infinity values we can

extend the range of normalized numbers by one binary order of magnitude.

13

e --_ _.- I1 I__X ____~----·I_·~-~. - 1_�-·1111 --· 1 1 -^

The final modification to the standard format is to allow arbitrary exponent and fraction sizes: Ne
bits and Nf bits respectively. Using the modified format, the value v of the 1 + Ne + Nf bit string X is as

follows:

1. Ife = Oandf = O, thenv = 0.

2. If e = 0 and f O0, then v = illegal (reserved for denormalized values).

3. Otherwise v = (-1) 2e -bias(1 + f) where bias = 2Ne'1 1.

The illegal values are never produced as results and.should not be given as operands.

The remaining features of the IEEE standard which need to be considered are the round-off

modes. The standard specifies that all arithmetic operations must be performed as if using infinite

precision followed by the selected rounding operation. The types of rounding are:

*Round to "nearest", with round to "even" in case of a tie. The closest representable

number to the infinite precision result is used. If two numbers are equally close then the

one with least significant fraction bits zero is used. This corresponds to the usual

definition of "round-off".

- Round toward zero. The representable number with the largest magnitude less than or

equal to the infinite precision result is used. This is often called "unbiased truncation".

* Round toward positive infinity.

- Round toward negative infinity.

The last two forms of round-off represent "biased truncation" where round-off errors are always of

the same sign. The first two forms are the most useful for signal processing applications since the

average error introduced is zero.

The round-to-nearest mode provides the best signal to noise ratio, the advantage increasing

with more complex algorithms such as the FFT [8]. This mode requires three extra bits of raw result

for correct rounding in all cases [4]. Since the round-to-zero mode requires only two extra bits and

very little additional circuitry it is useful to have both modes available to the designer so that he can

select the best speed/area vs. precision trade-off for his application.

14

I -. - �-

2.2 Basic Addition and Multiplication Algorithms

R8

Figure 2 1: General algorithm for floating point addition

Figures 2-1 and 2-2 show simplified flow graphs of the floating-point addition and multiplication

processes respectively. The dotted lines enclose the additional circuitry needed for round-to-nearest

operation. The details of these processes will be filled in in later chapters since they depend

somewhat on the technology and circuit forms used in the implementation.

15

II 1FI�_ _1_1_� __IIIX___^___III1I_- 11114 ·1 I - I· - - ----

I...

Rf

Figure 2-2: General algorithm for floating point multiplication

The steps of the addition process are:

1. Compare exponents of the operands: swap the operands as necessary to route the

operand with smaller exponent through the denormalizer.

2. Compute the positive difference between the exponents and use this value to

denormalize the smaller operand into alignment with the larger.

3. Add or subtract the adjusted operands. If the result is negative, then negate it to obtain

the magnitude.

4. Normalize the result value by shifting it until the most significant bit is a 1.

5. Adjust the larger exponent by subtracting the value of the normalizer left shift count (this

count may actually be -1 in case of a right shift after adder overflow.)

6. (For round-to-nearest operation only) Examine the three guard bits below the least

16

significant bit of the result and, if necessary, increment the result. A final exponent

adjustment may be necessary if the increment overflows.

7. Examine the results of the exponent adjustment for underflow or overflow. If underflow is

indicated, then output a zero result. If overflow is indicated, then output a value with

largest possible magnitude and same sign as the result.

Note that subtraction can be done by simply inverting the sign of the operand to be subtracted before

performing the addition.

The steps of the multiplication process are:

1. If either operand is zero then immediately output a zero result.

2. Compute the product of the unsigned fraction parts of the operands.

3. Compute the sum of the exponents, compensating for the bias.

4. Normalize the fraction product. Since the operand fractions are in the range 1.0<f<2.0,

the result fraction will be in the range 1.0<f<4.0. This means that at most one right shift

will be needed to normalize the result.

5. If a normalization shift is required, increment the result exponent.

6. (For round-to-nearest operation only) Examine the guard bits of the normalized result and

increment the result if necessary. Adjust exponent if necessary.

7. Compute the result sign as the exclusive-or of the operand signs.

8. Examine the result exponent for underflow or overflow. Handle these exceptions the

same way as for addition.

Note that the only functional block common to both the addition and multiplication processes is

the result round-to-nearest unit. Since the multiplication and addition processes are so radically

different there is very little advantage in speed or area to be gained by attempting to build a single

piece of high-speed hardware to perform both tasks. For this reason, we will want to design two

independent modules, one for addition and subtraction and the other for multiplication. This gives

the end user the greatest freedom in configuring his system.

17

_ -·--·19�---�.I. � _�_ ---�tW-�I-I(-·IP(I^_-~~· ·-------

CHAPTER THREE

Circuit Structures

In order to build easily verifiable circuits which implement the floating-point arithmetic functions

we first need to specify a circuit design methodology. Since we are building modules which will

become part of larger VLSI systems, we need to make the module interface simple so as to place the

fewest constraints on the rest of the system. The simplest interface is obtained by implementing the

modules as static combinatorial gate networks. In this case, the surrounding network simply applies a

set of stable input values and waits long enough for input changes to propagate to all outputs before

sampling the output values. Unfortunately, there is a trade-off between simplicity and performance.

The static combinatorial modules would not be able to make use of the clock signals which are

usually available in complex MOS systems. In particular, such modules would not be able to make

effective use of a common technique for improving the performance of MOS circuits, namely:

precharging.

Precharging is used to decrease both power dissipation and propagation delay in MOS circuits.

A simple example is to replace the depletion pullup of an NMOS gate with a clocked pullup. Figure

3-1 shows the circuit and timing waveforms for a precharged inverter in a two-phase clocked NMOS

system. During the precharging period the pullup is switched on and the pulldown network is

switched off, charging the output capacitance of the inverter to a high voltage. During the compute

period, the pullup is switched off and the pulldown may switch on or stay off, depending on the final

state of the input. Since the pullup and pulldown networks are never simultaneously on, static power

dissipation is eliminated and ratioing of pullup and pulldown sizes is not required.

Precharging is usually only applied to a small subset of nodes in a network where the relative

timing of switches connected to these nodes can be carefully controlled. In large combinatorial

networks it is almost impossible to make effective use of precharging. The exclusive-nor (or

equivalence) gate provides a simple example of a circuit which cannot be precharged in the manner

18

9 p

Out

In]

c1

9(c

In

Out

Figure 3-1: Precharged inverter

described above. Figure 3-2 shows the schematic and timing diagram of this gate. The pulldown

network is shown as a "black box" since its implementation is irrelevant: it is on when the inputs are

at the same logic level and off otherwise. If both inputs are low during the precharge period the

output will be properly precharged high. But if both inputs make a low to high transition during the

compute phase and the transitions are not simultaneous then the output capacitor will get discharged

and the final value will not be a valid high levell

Ppj
m

A

B

0 (Pc

A

B

o _

Figu re 3-2: Precharged exclusive-nor gate

The rest of this chapter describes a circuit methodology which allows precharging to be used

extensively throughout a large combinatorial network. We will use a form of self-timed logic where

signal transitions are controlled so that the critical race problems described above cannot occur. A

19

I

i
II

I r,~~~~...........

We R~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -

form of this kind of circuitry was first used by Masumoto [9]. This methodology will be carefully

developed to allow the proper behavior of a network to be verified in a modular fashion.

3.1 Overview

In order to develop the self-timed circuit forms we will need to make a clear distinction between

two levels of abstraction used to describe logic networks. The upper level is the logical level in which

nodes have boolean truth values and elements implement boolean functions of arbitrary complexity.

The lower level is the physical level in which nodes have voltage values (e.g. high or low) and basic

elements perform very simple operations as dictated by the available device technology. In

conventional digital circuitry the mapping between the logical and physical domains is

straightforward: Each logical mode maps one-to-one to a physical circuit node and each logical

element maps to a specific set of interconnected physical elements (gates.) Usually the only

important feature of the mapping is whether a node is "active low" or "active high" (i.e. high low}

= > {false true} or {high low} = >) {(true false}.)

In the self-timed circuit discipline described below, the mapping between the logical and

physical domains is more complex. Listed below are brief descriptions of the most important terms

which will be used in the rest of the chapter. The full meaning of each of these terms will be defined in

later sections.

* A module is a combinatorial logic element with a set of input pins and a set of output pins.

Its internal structure is hidden from view. At the logical level of abstraction the module

produces at its outputs a boolean function of its input signals.

A signal is a time-varying logical value which is associated with the input or output pins of

a logic module. A signal corresponds to a node of a logical network and does not

necessarily correspond to any single node in the physical implementation of the logical

network.

A network is a set of interconnected logical modules. Like a module, a network has a set

of input and output pins. We will show that a well-formed network can be considered to

be a module itself; that is, the internal structure can be ignored and the outputs treated as

boolean functions of the inputs. In later sections we will give rules for interconnecting

modules so that the useful properties of the underlying modules are preserved by the

network considered as a module.

- A logical state is the Boolean truth value of a signal at a particular point in time.

- A circuit is a physical implementation of a logical module or network.

20

- A wire is an interconnect node in the physical implementation of a logical network. A

logical signal is implemented as a set of one or more physical wires. The logical state of

the signal is a function of the logic levels of its component wires.

A logic level is a physical wire state at a particular point in time. It is one of the set {low

high) (or {O 1.)

3.2 Generalized Self-timed Combinatorial Circuits

We now need to specify the desired behavior of a self-timed combinatorial module.

Definition 1: A logical module is well-behaved if it obeys all of the following:

a. Each module pin (input or output) has a definite state at a given point in time. This

state is either the null or undefined state (0) or is one of a set of one or more
defined states (usually the set (true, false}.) At any point in time, the pin must be in

one of these valid states or must be making a transition between the null state and

one of the other valid states; there is never a transition between two non-null states.

b. Each module pin is either an input or an output, not both. An input pin must not
have any adverse effect on the state of the signal source which drives it, i.e., the

input must not cause an otherwise well-behaved module output pin to misbehave.

An output pin must be a signal source. A signal source is a logical entity which is

analogous to a low-impedance voltage source at the physical level.

c. If all input pins are set to the null state then all of the output pins must eventually

switch to the null state. The module is then said to be in the null state.

d. If each input pin is set to a non-null state then each output pin must eventually

switch to a non-null state. The module is then said to be in the terminal state.

e. If the network was previously in the null state and each input made a single
transition to a non-null state then each output must make one and only one

transition to a non-null state. In making a transition, it is permissible for the signal

to oscillate between the null state and its terminal state.

f. The terminal state of each output must be dependent only on the terminal state of

the inputs. In particular, the terminal state of the outputs does not depend on

either the ordering of the input transitions or any previous state of the module. In
short, the terminal output state must be a static function of the terminal input state.

This set of constraints is based on a subset of Seitz's "weak conditions" for fully asynchronous

circuit modules [10] (chapter 7).

21

_ I ~ ~ ��---- ·11^l--I _II --

Some discussion of the purpose for each section of this definition is needed. Paragraph a is

axiomatic and defines the characteristics of the logical signals in the circuit. If the state of a signal is

0 then we know its value has not yet been computed.

Paragraph b ensures that information flows from inputs to outputs only.

Paragraph c guarantees that the module outputs can be set to the null state merely by setting all

the inputs to the null state. This property is vital for precharged circuits.

Paragraph d guarantees that when all the inputs to the module are defined the outputs must

eventually become defined. This property is required to prevent deadlock in logical networks.

Paragraph e guarantees that the module is free from static hazards at the logical level, i.e., no

output ever enters a transient non-null state which is different from the terminal state to which it

eventually settles. This is required so that there is no ambiguity about the identity of the terminal state

of an output; the instant that the output enters a valid non-null state we can be sure that the output

will eventually settle to that state hence the computation is effectively completed for that output. This

property will also be required for proper operation of precharged circuits. We permit the oscillation

between null and terminal state in this abstract model because it is impossible to exclude such

behavior from the physical implementation where noise is present.

Paragraph f guarantees that the module is free from critical races. This is an obvious

requirement for well-behaved combinatorial circuits.

Definition 1 sets forth the requirements for a well-behaved module. We now set forth rules for

building well-behaved logical networks from well-behaved modules.

Theorem 1: Connect a set of modules .Ak together to form a network Xsuch that:

a. Each node in the network has at most one output pin connected to it.

b. For each node, every pin connected to that node has the same set of possible

logical states.

c. There are no loops in the network. That is, starting at any node in the network, it is

not possible to return to that node by traveling from a node to an input pin of a

module, then to the output pin of that module, etc.

22

Consider X as a module where the input pins of X are those nodes'which have no A k

output connected to them and the output pins are a subset of the set of output nodes of
the Atk.

If each module A k is well-behaved then Nis a well-behaved module.

In order to prove the theorem in general form we first need to prove it for two specific cases.

Lemma 2: Given two well-behaved modules A 1 and A 2:

a. If Xp is the parallel composition of AE1 and A 2 then 4p is well-behaved. The
parallel composition of two modules is the network whose input pins are the set of

all input pins of the two component networks (with perhaps some of the inputs

connected together) and whose outputs are the set of all output pins of the

component networks.

b. If Ns is the serial composition of Al1 and .A/2 then Ns is well-behaved. Here X is

the network formed by connecting the outputs of A, to some or all of the inputs of

JlA2 (the interconnection rule in theorem lb must be obeyed.) The inputs to s are

the inputs to lt1 and the inputs to A 2 which do not connect to outputs of A 1 '

The outputs of s are the outputs of 2 and perhaps some of the outputs of A1'

Figure 3-3 shows examples of serial and parallel composition.

r-
II
II
II

II
II, _, ,~~~~~~

l~~~~~~~

._

Figure 3-3: Basic forms of module composition

Proof: Lemma 2a is trivially true. By definition lb, the interconnection of inputs of
the sub-modules cannot have adverse effects on the module behavior. Therefore since
each input or output pin of the sub-modules is a pin of p and each sub-module conforms
to the criteria in definition 1, the entire module is well-behaved.

23

II � II____II____^__LIII1-·11^_ .·I^-_-�- -.�_1�-1_11111-� I�li· ---l-C-·���.�l .II- -_1-1^ 1 --11 1 -- 1

r-
II
II
II
L-

Lemma 2b is not so obvious. The pins of Xs obey definition la,b since the pins of s are
pins of modules which obey la,b. If all inputs to SS are set null then eventually all outputs
of A 1 will go null causing the outputs of t2 and X s to go null. Similarly, when all inputs
to I's are set non-null, eventually each output of Xs will go non-null. If each input to XS
makes exactly one transition from null to non-null then each output of AlA, makes exactly
one transition from null to non-null which causes each output of Jb 2 and X s to make
exactly one transition. Similarly, 4s obeys definition f since both sub-modules obey it.
Thus X s is well-behaved.

To prove theorem 1 we first partition the A4 k into two sets 4A1 in and Aout where Ain is the
set of all modules in Xwhose inputs are all inputs of Xitself (i.e. no module in A1in has an
input connected to the output of any other Ak)

We know that Ain is non-empty since there are no loops in X. We partition X into two
networks fin and Xout which consist of the nodes in Ain and A.out and their
interconnections respectively. Then Xn is a parallel composition of well-behaved modules
Ain and is therefore well-behaved. Also Xis a serial composition of Jn and XNout

We can prove that Xout is well-behaved by repeating the proof above recursively until the
output partition is null (since there are only a finite number of Abk and each input partition
is non-null.)

Since X is a serial composition of well-behaved modules it is well behaved.

3.3 Gate Level Implementation of Self-timed Modules

Now that we have general set of rules for building well-behaved networks given well-behaved

modules we need a set of primitive well-behaved modules for building useful networks. The forms

given in this section and later sections do not represent the complete set of all possible forms which

could be used to implement the modules described above. They do constitute a set of forms which is

sufficient to implement any desired logic function and is straightforward to implement and verify as

MOS circuits.

In order to build a physical circuit module we need to find a physical form for the multi-state

logical signals. We will build a multi-state logical signal using a set of physical wires each of which

has two possible states, namely high or low. An encoding is a mapping between the states of a logical

signal and the states of its components wires.

24

ii

In the examples below all signals have three possible valid states {0, true, false}. We will

represent each signal using a pair of wires. Upper case letters are used to denote logical signals

while lower case letters are used to denote physical wires.

The encoding of a signal, A, is shown in figure 3-4a. Both wires are low in the null state. Wire a

is asserted high for the A true state. Wire a 'is asserted high for the A false state. This is called the

active-high dual-rail encoding (or simply the active-high encoding.) Note that there are four possible

states of the physical wire pair. State X where both wires are high is not permissible as a valid state in

our design methodology; to switch from the null state to the X state without passing through the true

or false states would require simultaneous transitions on the two wires. In a practical circuit we

cannot guarantee simultaneous transitions.

The implementation of a logical AND gate module using physical AND and OR gates is shown in

figure 3-4c.

a a' A a
A,,, a

L L 0 a
L H F
H L T B b
H H X b

Figure 3-4: Basic AND gate implementation

To prove that this module is well-behaved we need to provide a definition of well-behavedness

for physical gates. This definition is a modification of definition 1 for logical modules.

Definition 2: A physical gate is well-behaved if it obeys the following constraints:

a. Each physical pin of the gate has two possible states, high or low. One state is the

inactive state, the other is the active state. If the active state is high then the pin is

called active-high otherwise it is called active-low. The initial state of a pin is

always inactive, the terminal state of physical pin can be either active or inactive.

b. The gate must have a set of input pins and a set of output pins which are distinct.

Each input pin must present a capacitative load to its driving wire. Each output pin

must be able to drive the inputs connected to it to valid states.

c. When all inputs are inactive, all outputs must eventually become inactive.

25

_ _ _ _ __~~~~~~~~~~~~~~~~~~~~~~~~~ IUCII___ _II_^I__I·LY - L^-·~ L-__-·~-^-_-~ I --. III�L II �-· -· �� -

d. When all inputs have reached their terminal state the output must eventually

change, if logically necessary, to obey the gate's function.

e. After all inputs have assumed their terminal states, if each input made at most one

transition then the output can only make, at most, one transition. If a wire makes a

transition from inactive to active state then it is permissible for the wire to oscillate

between the two states before stabilizing in the active state. If the terminal state of

a wire is the inactive state the wire must not leave the valid inactive state.

f. The output of a gate must be a fixed boolean function of its inputs.

While each of the constraints above follows directly from the constraints on well-behaved

modules, some additional discussion of paragraph e is necessary. This constraint is present to

exclude gate behavior which would interfere with the proper operation of precharged circuits. If,

during a particular computation, the terminal state of a wire is the same as the initial (inactive) state,

then we guarantee that the wire never leaves this state during the computation. This ensures that a

precharged wire is never discharged by a transient "glitch".

To return to the logical AND gate we observe that the input/output properties of the physical

gates are inherited by the logical gate thus definition la,b is obeyed.

When the states of A and B are both null then eventually C becomes null since all of the physical

gate inputs are low thus definition c is obeyed.

A B a a' b b' c c' C F 0 T
F 0 T

0 0 L L L L L L 0 F
F F L H L H L H F
F T L H HL L H F A 0
T F HL L H L H F
T T HL HL H L T

Figure 3-5: Truth tables for self-timed AND gate

The truth table in figure 3-5a shows that when both A and B are non-null C eventually assumes a

non-null value obeying d. The transition table in 3-5b shows all possible transitions (including

simultaneous) of A and B from the null state to their terminal states. It is easy to see that if A and B

each make one transition then the output makes exactly one transition, regardless of the ordering of

the input transitions, thus definition le,f is obeyed.
26

A c

a
I ca

b
b'

Figure 3-6: Basic OR gate implementation

A A>-
a a

aI WI

Figu re 3-7: Basic inverter implementation

Figure 3-8 shows how a two input AND gate can be built using the inverting gates normally found

in transistorized logic. Note that the encoding of the output signal is different from the encoding of

the two inputs. If both output wires are high then the logical output is null. If the un-primed output is

low then the logical output is true and if the primed output is low then the logical output is false. This

encoding is called the active-low dual-rail encoding (or simply the active-low encoding.)

c c
a
a -

b
b' Sac

C
m

L L X
L H T
H L F
H H 0

Figu re 3-8: Basic AND gate with inverting logic

The underline in the signal names signifies active-low encoding. Note that the negation implied

by the inverting gate elements has no effect on the truth value of the output signal. It only affects the

type of encoding scheme used for the output signal.

27

A -

-s, ~ ~~ -_ _ _1 1_ · -- -I_ . 1X-- - . ~ II- l---_~ I~- _ _ P

a
A a C

B b
b'

Figure 3-9: Basic OR gate using AND gate circuit

Figure 3-9 shows a different way to encode the pins of the circuit used to implement the AND

gate. If the inputs are encoded active-low and the output is encoded active-high then the gate

performs the boolean OR function. This is analogous to the way DeMorgan's theorem is used to

represent a positive logic AND gate as a negative logic OR gate in conventional digital logic.

Since the fundamental logic gates in NMOS are naturally inverting we will need to have both

active-low and active-high encodings present in the network circuits. Since more than one encoding

is in use we need additional module interconnection rules to meet the requirements for well-behaved

networks. In particular, when two signals are connected together, their encodings must conform to

each other.

Definition 3: Two connected logical signals A and 8 conform if:

a. There is a one-to-one correspondence between valid states of A and those of B.

b. The null state of A corresponds to the null state of B.

Definition 3 makes explicit the assumption in theorem lb that connected signals share a

common set of valid states. Applying this definition, we find that the active-high and active-low

encodings are not conformable, i.e. there is no way to connect the wires in, say, A and 8 such that A

and B conform. Thus in any network of the dual-rail elements discussed above, an active-high pin

can connect only to other active-high pins and similarly for active-low pins.

The encoding constraint gives rise to the need for a new type of logical module, the encoding

inverter. Figure 3-10 shows an encoding inverter built from physical inverters. Its only function is to

invert the encoding of the input signal without changing its logical state.

28

a' >- a

Figu re 3-10: Basic encoding inverter

Now that we have a set of basic well-behaved modules "and", "not" and "encoding invert" we

can build a well-behaved logical network implementing any given combinatorial function.

3.4 Switch Level Implementation of Self-timed Circuits

Now that we know how to build self-timed networks using logic gates, we need to know how to

build gates from available integrated circuit technology. Switch-level or "relay" logic is very useful as

a first-order model of both NMOS and CMOS technologies. In this section, we will show how to build

well-behaved gates out of networks of switch elements.

d

r't'
I II

I G I
1

gI II I
L__Sl

S

d

s

active-low

d

…
I I
I I
IG I

I I

I~ I

L___ 1

passives
passive

Figure 3-11: Basic switch elements

Figure 3-11 shows the three kinds of simple switch elements we will use. The active-high

element is only on when pin g is high. The active-low element is only on when pin g is low. The

passive element is always on independent of the state of its g pin. The passive element serves as a

static conductance.

29

d

I
G I

1 1
II

g $

---...

s

d

s

active-high

CII_____ IIPIIII_·_II___ -·-·P·Y --IIIClltWL-__I�I···--·i�i·1)-·*1�^1·l�L _-_.t --- ·IP l-- s-- I I- - - I

A A-

Note that MOSFET symbols are used to represent the various switch elements. These symbols

represent the devices which are used to implement the switch elements in actual MOS circuits. The

active-high symbol is an n-channel enhancement mode MOSFET. The active-low symbol is a p-

channel enhancement mode device. The passive element is represented by an n-channel depletion

mode device. The pin names g, s, and d are derived from the MOSFET pin names gate, source, and

drain respectively.

When discussing logic gates built from MOSFET's there is often ambiguity to the meaning of the

word "gate". To remove this ambiguity in the discussion below, we will take the word "gate" alone to

mean the gate pin of a switch element and add additional words to specify more abstract objects (e.g.,

"gate circuit" for a physical logic gate and "logical gate" for well-behaved logical gate module).

To model an arbitrary physical gate circuit we will use a generalized form of switch element.

Definition 4: A composite switch element is any interconnection of simple switch
elements such that:

a. The composite element has one s pin, one d pin, and N gate pins gk

b. Each gate of each component switch connects to one of the gk pins.

c. Each s and d pin of each component switch connects only to other s/d pins or to

the composite s or d pins.

From now on, we will use the term switch element for both composite and simple switch

elements when there is no need to distinguish between the two types.

The conductance between the s and d pins of switch element E will be referred to as G(E). This

value ranges from 0 (open circuit) up to some finite value. As with the simple elements, if G(E)= 0

then we say that E is off and if G(E)>0 then E is on.

We now define an important property which will be needed later to prove well-behavedness of

generalized switch level gate circuits. We will need to know what constraints to place on the structure

and gate inputs of a switch element so that any sequence of input transitions during computation

results in at most one opening or closing of the switch element.

Definition 5: A switch element E is called monotone if given any initial state of its

gate input(s) with corresponding s/d conductance Go:

30

- If E is on and any open switch in E is closed then E does not switch off.

- If E is off and any closed switch in E is opened then E does not switch on.

The three simple switch elements are obviously monotone. To demonstrate that complex

elements are monotone we need a theorem.

Theorem 3: Any parallel or series connection E of monotone switch elements is
itself monotone.

Proof: For a series E of switch elements we reason as follows: If E is on then all of its
sub-elements must be on; if any switch is closed then none of the sub-elements can switch
off hence E remains on. If E is off then at least one of the sub-elements is off; if any switch
is opened then none of the off sub-elements can switch on hence E remains off.

For a parallel set of switch elements we find: If E is on then at least one of its
sub-elements is on; if any switch is closed then none of the on elements can switch off and
E remains on. If E is off then all of its sub-elements are off and opening any switch cannot
cause any sub-elements to switch on hence E remains off.

In the following discussion we need to use some terms for certain special states of a switch

element E. If all the simple elements in E are on then we say that E is totally on. If all the non-passive

elements in E are off then we say that E is totally off. Note that a single passive element is both totally

off and totally on!

The useful property of monotone switch elements is that if a monotone element E is totally off

(totally on) then G(E) is at a minimum (maximum) and closing (opening) switches one by one in E will

cause at most one transition from off (on) to on (off).

Figure 3-12 shows the generalized form of switch-level gate which we will use. It has a pull-

down element fPD which has a set of inputs Ip. Its pull-up element Xpu has a set of inputs Ipu In

addition there are N pass elements ,JPA each having a single pass input IPA and a set of gate inputs

IpG Finally there is a capacitance C between the output node and ground. We will discuss the

effects of parasitic capacitances later.

To simplify the statement and proof of the theorem below, we define two terms to describe the

switch elements in the basic logic gate: If O is active high then we call PD the inactive source

31

�1 _�III_ �--·LII�-·-·IIL�-- III1-·I1III__--_-.-...-^l·-�-CIII-^L^1-� �^I11·---�-·-·�·�-·_1_--�11._ -�LI__I111_1- I--- --

lPAo

IPAk

0

Figure 3-12: Generalized switch gate module

otherwise if O is active low then we call Npu the inactive source; If an element is not the inactive

source then it is called an active source.

We can now present the theorem for well-behavedness of switch level gates.

Theorem 4: If a switch level gate of the form shown in figure 3-12 meets each of the
following constraints:

a. The gate must have at least one active source in addition to the inactive source.
b. At no time may more than one active source be on. If there is more than one active

source then all active sources must be off when all inputs are inactive.

c. If one of the JPAk is on then the inactive source must be off.

d. If all inputs are inactive then all active sources must be totally off, the inactive
source must be totally on, and the output must be in the inactive state.

e. When all inputs have reached terminal state the output must eventually reach a
valid state.

32

f. The Ik and 0 must be either all active-high or all active-low.

g. All the switch elements must be monotone.

then the gate circuit will be well-behaved according to Definition 2.

Proof: We will follow definition 2 paragraph for paragraph:

a. Constraints d and e imply that the output always settles to valid initial and terminal

states respectively.

b. We know that the loads presented by the gate inputs Ipu IPD' and IPG are always
k

capacitative. We need to show that the load presented by the pass inputs IPA is

also capacitative. Constraint b implies that the pass inputs are never shorted

together nor to any active level. Constraint c implies that pass inputs are never

shorted to the inactive level. Thus, the only load seen at the pass inputs is the

output capacitor when one of the pass elements is switched on.

c. Constraint d implies that when all inputs are inactive, the output is also inactive.

Furthermore, the output will be a low impedance source for the inactive level.

d. Constraint e implies that when all inputs have reached their terminal state, the

output will be either a valid high or low. If the output changed to the active state

then we conclude that one of the active sources switched on. Hence constraints d

and g imply that that source remains on and provides a low impedance path from

the output to the active level.

e. Constraint d states that initially, all active sources are totally off and the inactive

source is totally on. If each input makes at most one transition then we can argue

that: constraint g implies that the inactive source can only switch off and the active

source can only switch on; constraints b and f imply that the only effect of an IPAk

transition is to pull the output from inactive to active state; hence the output can

only move out of the inactive state if it will eventually settle in the active state.

f. From linear network theory, we know that the conductance of each switch element

Xf is a fixed function of the state of its gate inputs. The output voltage is a fixed

function of the pass input voltages and the conductances of the X. Therefore the

output voltage and hence state is a fixed function of the input states.

The constraints given in the theorem above place indirect constraints on the possible initial and

terminal states of the input wires. We will now make these implied constraints explicit.

Corollary 5: If a switch level gate meets the constraints in theorem 4 then its inputs
must also obey the following constraints:

33

���r·_�� ^__I_1_I��··I_�_I XI�I��-_--�LIIIUI---LII �--�I__·�-----�-�I-__I·�l_-LI*_-ll^--
I " 1 1

¸

- -11111111

a.When all inputs are inactive we know that all active sources must be totally off and

all inactive sources must be totally on. This implies that within an active source

element, an input driving a switch's gate is active high if and only if the switch is

active high; within an inactive source, an input driving a switch's gate is active low

if and only if the switch is active high.

b.Since at most one of the active sources can be on at any time, the gate inputs to the
active sources must be constrained to be mutually exclusive. This is done by

driving the gates using the physical wires of a logical signal since at most one of

these wires may be active at a time.

c.The gate input(s) to the inactive source must be such that the source is switched

off before any pass elements are switched on. This is the only relative timing

constraint in the well-behaved gate form and will be discussed fully in the next
section.

We are now ready to apply our general rules to a specific device technology, namely depletion-

load NMOS.

3.5 Dual-rail Self-timed Circuits in NMOS with Precharging

Before we start building well-behaved NMOS gates we need to restrict the generalized switch

level gate to use the devices available in NMOS. Standard NMOS provides only two of the three

simple switch elements, active-high and passive. Also, the active-high switch is ill suited for use as a

high-speed pullup.

We now formally introduce the precharge clock which will be used to reduce power dissipation

and increase speed. The logical precharge clock signal is a single-rail signal with only two states: 0

and false. In NMOS it is physically implemented as a single active-low wire. During the initialization

phase it is inactive and during the compute phase it always becomes false.

Figure 3-13 shows the most useful forms of NMOS gates. On the left is the basic form for a gate

with active-high output. The pass elements are omitted since they are not suitable for coupling low to

high transitions at high speeds. The gate consists of a passive pullup and a pulldown element whose

inputs are all active-low. The ratio of pullup conductance to minimum pulldown "on" conductance

must be such that the output is at a valid logic low level in this state.

34

_ __ �_ �__ 1_ �

I PA

0

IPAk
IPD

0

Figure 3-13: Well-behaved NMOS gate forms

The right side of figure 3-13 shows the basic active-low gate. The pullup is a simple active-high

switch with the precharge clock (or buffered version) as input. The pulldown and pass elements are

composed of active-high switches with active-high inputs. The inputs must be constrained so that

either the pulldown is on or at most one of the pass elements is on at the same time. There are no

restrictions on the relative sizes of the switch "on" conductances.

Since the inactive source is off during the compute phase we have to make sure that the output

inactive level is never degraded by charge sharing between output and parasitic capacitors. Charge

sharing can occur if an active source element has internal nodes. There are two remedies: make the

total parasitic capacitance much smaller than the output capacitance or precharge the internal nodes

in the same way as the output.

Another significant parasitic is the gate to source/drain capacitance in the switches. This kind

of capacitance provides direct coupling between input and output nodes. In the pulldown network of

35

� _ _ __I_·I LI_··_�____l____·_lI__·�·I1I0----LX-·*- ^ ~ -

an NMOS gate form, the inputs always have active-high/low encoding opposite of the output

encoding. This means that if an inactive to active transition on an input is coupled through to an

output which is to remain inactive, the output will only be forced further into the inactive state region.

This same reasoning holds for coupling from output to input nodes. Hence coupling through

pulldown gate capacitance cannot cause a node state to shift out of the inactive region. The only

problem caused by gate parasitic capacitances is in the clocked pullup of the active-low gate. In this

case, the high to low transition of the precharge clock is coupled to the precharged node causing its

voltage level to drop at the end of the precharge period. This effect is controlled by keeping the

gate-source overlap capacitance small compared the output load capacitance. This is not a great

problem since the active-low outputs generally drive large loads.

Since the pullup of an active-low gate must be switched off before any of its pass elements

switch on we must constrain the precharge clock to become active before any other network input

becomes active. This is the only timing constraint in a well-behaved network of precharged NMOS

gates.

These gate forms can be used effectively to take advantage of precharging. If logic modules are

built so that all inputs and outputs are active-low then the output driving transistors can be sized to

handle any load capacitance without affecting static power dissipation. The active-low outputs are

kept internal to the logic modules and thus have lower load capacitances requiring less power

dissipation in the passive pullups.

The particular NMOS process used to implement the circuits dictates the sizing constraints on

the switches in gates with passive pullups. The process used to implement the floating-point adder is

the Bell Laboratories 4 micron NMOS process with modified lambda-based design rules (lambda is 2

microns). This process features two types of enhancement-mode switches, a high-threshold device

and a low-threshold intrinsic device, as well as a depletion-mode device. Intrinsic devices are used as

clocked pullups thus increasing the logic high level voltage of the active-low gate outputs. Since the

inputs to an active-high gate are always active-low, there is always one intrinsic threshold drop in the

high level voltage at these inputs. Simple Mead and Conway electrical design rules use a

conservative 8:1 pullup to pulldown size ratio. SPICE simulations of the well-behaved gate forms

indicate that a pullup to pulldown ratio of 6:1 is satisfactory for the active-high gates.

36

3.6 Some Well-Behaved Self-Timed NMOS Modules

IPP qpPf

A --

a-IH

Figu re 3-14: NMOS implementation of a dual-rail AND gate

Now we are ready to build NMOS circuit implementations of well-behaved dual-rail networks.

Figure 3-14 shows the circuit for the AND gate from figure 3-8. This gate has clocked pullups since it

has active-low outputs. This circuit can also be used as an OR gate provided the encodings of input

and output pins are inverted and the pullups replaced with passive devices. From the previous

section, we know that the gate forms used in the AND gate are well-behaved therefore this

implementation of the well-behaved gate level module is well-behaved.

B
F 0 T

0 F

A 0

T

I
Figure 3-15: NMOS implementation of a dual-rail XOR gate

Figu re 3-15: NMOS implementation of a dual-rail XOR gate

37

c

c

b'

a

a

b

h'

I ·· _·_ _ _1 1111~-- ---_ 1 _ ------~ < - - - ~ ~ ~ ~ - I- I

I

b -- d

Figure 3-15 shows how an exclusive-or (XOR) gate is built using precharged pass elements.

Note that input A is active high while input B and the output are active low. The gate module is built

from two simple well-behaved gate forms. By examining its transition table we can see that it is

well-behaved for any sequence of input transitions in contrast to our failed attempt to precharge a

conventional XOR gate!

3.7 Verification of Proper Circuit Structure

An important part of the process of building a complex system is verification of proper

functionality. When the set of rules that must be followed in the construction process is large it

becomes very difficult for human designers to manually verify that the description of the system is

well-formed. It is extremely useful to be able to use a computer program to verify that a system is

well-formed and well-behaved. This section describes a program used to verify the proper operation

of self-timed combinatorial modules as described above.

3.7.1 A Program for Verifying Well-Behaved Networks

The verifier program is actually a form of switch-level logic simulator. Its overall purpose is to

verify that a user-described switch network is a well-behaved module.

The program consists of four basic modules:

1. The loader module reads a description file of the switch network and builds the internal

data structures which describe the network. The description file can be generated from a

text description of the network (for initial testing) or by a circuit extraction program from

the layout of a circuit (for final testing).

2. The static evaluator examines the internal description of the network to make sure that

the network is composed entirely of well-behaved switch gate modules and that these

modules are interconnected properly (i.e., active-high inputs are always driven by active-

high outputs, etc.) The static evaluator also makes sure that there are no input-output

loops between gate modules. A side effect of this process is that the network nodes are

sorted in order of signal propagation through the network (this is always possible in our

loop-free combinatorial design methodology).

3. The dynamic evaluator performs a simulation step on the network. During a simulation

step, all external inputs to the network are set to valid logic levels, then the input state is

propagated through the network to find the resulting terminal states of all internal and

38

output nodes. Since the static evaluator has ordered the network nodes, this process

only requires one pass through the node list. The dynamic evaluator checks that

information never propagates against the direction of flow determined by.the static

evaluator in the sorting of the nodes.

4. The user interface provides an interactive command interpreter so that the user may

control the action of the other three major modules as well as examine the internal

information about the structure and state of the network.

The loader is responsible for interpreting the contents of a text file containing a description of a

MOS transistor network. The file consists of a set of transistor records. Each record contains the

following information:

-Transistor type (enhancement, depletion, intrinsic, or p-channel enhancement).

-Connecting node names (gate, source, and drain nodes).

-Size information (length, width, and area).

Location (obtained during extraction from layout).

This form of network description file is generated by the NET high-level circuit description language

[11] and the EXCL layout extraction program [12] allowing the simulator to verify both high-level

network descriptions and the final layouts.

The loader stores the information from the transistor records in a linked list of switch objects in

the internal data base. A switch object contains all of the information in its corresponding source file

record plus some data fields for linkage with other types of internal data structures.

As the loader constructs the list of switch objects, it also constructs a list of node objects; one

node object per distinct node mentioned in a transistor record. The explicit node objects are

provided so that the internal algorithms are free to manipulate the network in terms of nodes or

switches. The node objects are interlinked with the switch objects so that the network can be freely

traversed in any direction starting with any node or switch. The actual linkage works as follows:

* Each node object has three pointers to linked lists of switch objects; one for all switches

whose gates connect to this node, one for switch sources, and the last for switch drains.

* Each switch object has pointers to its gate, source, and drain node objects.

Each switch object also contains a pointer to the next switch whose gate connects to

same node as this switch's gate. There are two similar pointers for the source and drain

node switch lists.

39

__I I· __ __-l _I ___ _Il·_P I� __I________IIYI____II--)-

This structure is based on the node and switch structures used in the RNL switch-level simulator

[10NL]. It is useful for many forms of network simulation.

There are two other basic data objects: the group and the class. The group object is used to

group together the set of wire nodes which comprise a logical signal. Each group object points to a

node which is a member of a linked ring of nodes in the signal group. The user must declare each

signal group; one group object is created per declaration. The group objects are kept in a linked list.

The construction of class objects is the end result of the static evaluation process. From an

abstract point of view, a class is a set of nodes and switches which form a well-behaved switch-level

physical gate. Since we have defined the well-behaved gate form so that it has a fixed direction of

information flow from input to output, we know that a loop-free network of such gates can be sorted

so that dynamic evaluation can be performed in a single pass through the list of classes. The task of

the static evaluator is to divide the switch network into gate classes and to sort the classes for

single-pass evaluation. The class objects are kept in a linked list. Each class object contains two

pointers; one to the list of nodes contained in the class, the other to the list of switches in the class.

Each switch or node object belongs to one and only one class and contains a pointer to the

corresponding class object.

0

S

00

IPD

Figure 3-16: Well-behaved NMOS gate forms for simulation

Figure 3-16 shows the basic gate forms recognized by the static evaluator. These follow directly

40

_� �

IPD

from the NMOS gate forms from figure 3-13. Note that the active-low gate form with pass inputs is

restricted so-that each active source has only one simple switch element. The gates of the simple

switch elements are driven by the wires of a signal group. This guarantees that no two active sources

are ever simultaneously on (provided that the gating signal is well-behaved). This simplified form of

active-low gate with pass inputs allows the static evaluator to easily distinguish the pass inputs from

pass outputs leading to other gate circuits.

Before static evaluation is done, the user must declare all of the network input nodes, output

nodes, signal groups, and active-high/low information about the inputs. This information is required

by the static evaluator to properly analyze the network. The node and switch data objects each have

a flag field containing the user provided information as well as classification information developed by

the static evaluator itself.

The static evaluation process is divided into a sequence of steps, the end result of which is a

sorted list of class objects. In general, each step is a traversal of one of the internal object lists (node,

switch, group, or class). Each step either refines the classification of elements in the network or finds

structures which cannot belong to a well-behaved network. When a step finds a questionable

structure, it either prints a warning message or an error message. A "warning" message indicates

that the structure can be tolerated in a well-behaved network but that the user should examine the

network to see why the structure is present. An "error" message indicates that the structure cannot

possibly belong to a well-behaved network. In the step descriptions below, the notations "(error)"

and "(warning)" are used to indicate the kind of message produced.

The steps are (in sequence):

1. Scan the node list to find obviously incorrect structures. These include: nodes with no

connections at all (warning) and nodes which drive gates but have no source, drain, nor

input connections (error). Nodes with no connections at all are simply flagged as floating

nodes and are subsequently ignored.

2. Scan the switch list to find useless switches. These include: switches with source and

drain shorted together (warning) and switches which have source and drain connecting

the supply rails together (warning).

3. Classify all nodes either active-high or active-low. This is done by propagating the active-

high/low information at the inputs throughout the network. This step reveals errors in

signal conformance.

4. Scan node list to find nodes which are not precharged (error).

41

I_ 1_ 11111--
--_- ·-̂·.··- I-/-�Y^-·CI�---·�------L.i-_^I�IIOII- - ~ ~ ~ ~ ~ ~ ~ I --- -- w

5. Scan switch list to find switches which connect nodes which are neither both active-high

nor both active-low (error). This guarantees that all sets of switch connected nodes are

homogeneously active-high or active-low.

6. Scan switch list to classify each switch as either an active source or an inactive source.

7, Verify that all nodes which drive switch gates have both active and inactive sources (error

if not).

8. Identify each switch in a pulldown or pullup network as a primary source. A switch is a

primary source if it is not a pass element.

9. Scan through the switch list to find inactive sources which are not primary sources (i.e.

which are pass elements) (error).

10. Scan through the node list to find nodes which have both a primary active source and a

primary inactive source. Mark these nodes as gate outputs. If such a node is active-low

and has a simple pulldown element, mark all of the node's non-primary sources (i.e. pass

elements) which are gated by nodes in the signal group of the pulldown gate node. This

mark signifies that the switch is a pass input to an active-low gate. This step finds the

outputs of active-high gates and active-low gates with pulldown elements.

11. Rescan the node list finding additional nodes which have no primary active source but

have other active sources which can be identified as pass inputs. This step finds active-

low gates which have only pass inputs (no pulldown element).

12. Construct a class object for each declared network input node. An input class contains

only the input node itself.

13. Scan through the node list: if a node is found which does not belong to any class,

construct a new class containing this node, all nodes connected to it through switches,

and all of the switches through which connection was traced. Do not trace through a

switch which is marked as a pass input. This step and the preceding step yield an

unsorted class list.

14. Verify that each class has at least one connection to each of the power supply rails (error

if not).

15. Assign a depth number to each class. Input classes all have depth 0. The depth number

represents the maximum distance of a class from the inputs in terms of gate levels. (The

class depth number applies to all nodes and switches in the class.) Sort the classes using

the following algorithm (starting with depth 1): scan through the unsorted class list and

collect all classes which have all gate and pass input nodes belonging to sorted classes;

append the collected classes to the sorted class list and assign them the current depth

count; increment the depth count and repeat the process.

16. Verify that all classes are removed from the unsorted class list. If any classes are left,

42

then there is at least one loop in the inter-class connections. In this case, examine the

remaining classes carefully to find each node and switch which is part of a loop.

The dynamic evaluator uses the following algorithm to propagate input wire states through the

sorted list of classes:

* Assign a state to each input wire.

Scan once through class list. For each class we know that all nodes which are inputs to

the current class are now stable since their classes have already been evaluated.

Examine the open and closed switches within the class to determine which nodes are

high and which are low. Assign a node an illegal or "X" state if it attempts to connect a

pass input node to a supply rail. Also assign the illegal state to nodes when there is a
path through active switches between the supply rails and when charge-sharing occurs
between node capacitances with different states. The on resistance of an enhancement

or intrinsic switch is taken to be zero and the on resistance of a depletion pullup is taken

to be one.

The primitive dynamic evaluator described above is not directly invoked by the user. The user

controls dynamic evaluation via three commands, precharge, compute, and scan. The precharge
and compute commands are the most primitive of these commands. Before they are invoked, the

user must specify the terminal state of each of the input signal groups. The precharge command

performs the following:

Set all inputs (including the precharge clock) to the inactive state.

- Invoke the dynamic evaluator to find the initial state of the entire network.

* Set the precharge clock to active (false) state.

- Invoke the dynamic evaluator again to propagate any additional changes in the network.

* Examine all precharged nodes and report any which are not in a valid inactive state.

The compute command is used to find the terminal state of the network after the precharge

command has initialized the network to a valid state. The compute command performs the following:

- Set all inputs to the given terminal states.

Invoke the dynamic evaluator to propagate the input changes.

- Examine all signal groups and report any which are not in a valid terminal state.

The scan command is the most powerful command in the simulator. It is a high-level command

capable of running a complete dynamic evaluation of the given network. When invoked, it finds all

43

-~~~_ _ C �___I1__II_1I··C^I)I·-1�1-1111 .. �.·--·---IIIII-XL-I _IIIYCI ·11-1_1111-·L-1-·111 _11�-·1 1-

input signal which have not already been assigned a terminal state by the user; then it runs one

precharge/compute cycle for each possible valid combination of input signal terminal states, printing

the terminal states of the inputs and outputs after each cycle. If the user leaves all the inputs initially

undefined, then the scan command will verify that the circuit is well-behaved for all possible

combinations of input states.

Since the static evaluator cannot find all features of the circuit which would cause it not to be

well-behaved, the circuit is known to be well-behaved only after a full scan of all input combinations

has been made (and no errors found). Although the dynamic evaluator is much faster (being single-

pass) than a general-purpose switch-level simulator, the number of input combinations which must be

checked increases exponentially in the number of inputs making it impractical to do a full scan of a

very large network. We can greatly reduce the amount of time needed to verify a large network by

using a modular approach to assembly and testing. If we design the network so that it is composed of

a small set of (allegedly) well-behaved modules, then we can verify that the network is well-behaved

by first checking that each module is completely well-behaved by itself then checking that all of the

module interconnection rules have been obeyed. Together, the static and dynamic evaluators can

check the modules for well-behavedness. If the network is composed entirely of verified modules,

then only static evaluation is needed to verify that the network is well-behaved since the static

evaluator can find all violations of the interconnection rules. Using this technique, the dynamic

evaluator only needs to be applied to the entire network to verify that the logical function of the

network is correct. This can usually be done using a small set of test cases for input values.

3.7.2 Simulation Examples

Several sample simulation sessions are presented below. They are all based on the well-

behaved circuit shown in figure 3-17. The logical gate level representation of the circuit is shown in

the lower right corner of the figure. The circuits inside dashed lines are not part of the well-behaved

circuit but are used in later examples. Dotted lines are used to outline the switch gate classes.

Figure 3-17 shows the print-out of the first session which is a test of the well-behaved circuit.

User typed letters are in bold face, computer typed letters in light face, and comments in italics. In

this example, no errors are found and the truth table generated by the scan command shows that the

logical function D = CEAB is obeyed. The set of declaration command lines were contained in a file

called "test.csim". This file was automatically taken as command input after the network file

"test.sim" was loaded.

44

ii �

a

t

A X

B C

LIII _ _ --- ------------

Figu re 3-1 7: Simulator test circuit

Figure 318 shows how the simulator reports signal interconnect non-conformance. In this

example, the logical input signals to the XOR gate have been reversed so that X connects to the

active-high input and C connects to the active- low input. The static evaluator found a conflict at each

of the four pass elements in the XOR gate where the user attempted to join the active-low D signal to

the active-high C signal illegally. Note that two errors were reported for each switch. The first group

of errors was detected during the propagation of the input active-high/low information through the

circuit. The second group of errors was detected during examination of all switches after

propagation was complete. Both kinds of error are reported since they may occur independently.

45

I· lI__ ___I _� �I__ I_��� _I�-�L-L---IIII^I XII--YXIIIIII·I�----_-�-�--� _I--IIIIIIC---·LIIII .----- ^- - I�--

.. :

P .
�� 2 ::

...I...............

I-

I

�
-1

csim test
Loading "test.sim"...
Network contains: 14 nodes,

4 intrinsic switches,
8 enhancement switches,
0 depletion switches,
0 p-channel switches,
0 pullup switches.

(13 lines read)
CSIM>dec PRE VP
CSIM>dec IN A A'
CSIM>dec HI A A'
CSIM>dec GROUP A A'
CSIM>dec IN B B'
CSIM>dec HI B B'
CSIM>dec GROUP B B'
CSIM>dec IN C C'
CSIM>dec HI C C'
CSIM>dec GROUP C C'
CSIM>dec OUT D D'
CSIM>dec GROUP D'
CSIM>dec GROUP X X'
CSIM>[EOF]
CSIM>verify
Verify succeeded - 11 classes - maximum depth 2.
CSIM>scan
ABC ID
1 1 0
0 11 1
101 1

10 1
O 1 O l O
100 10
00010
CSIM>exit

Figure3-18: Simulation of a well-behaved circuit

Figure 3-19 illustrates the detection of a missing pullup switch. The only change made to the

test circuit is to remove M9.

Figure 3-20 illustrates the loop finding capability of the static evaluator. Transistors M13 15 were

added to the basic circuit in figure 3-17 to form a feedback loop from output Q to input A. On

completion of the class sorting algorithm, the static verifier found that there were still classes

unsorted. It then examined the unsorted classes carefully to find every node or switch which was a

member of an inter-class loop.

The final examples illustrate departure from well-behavedness which the static evaluator fails to

46

csim testi
Loading "testl.sim"...
Network contains: 14 nodes,

4 intrinsic switches,
8 enhancement switches,
0 depletion switches,
0 p-channel switches,
0 pullup switches.

(13 lines read)
Declaration print-out omitted for brevity

CSIM>[EOF]
CSIM>verify

The node information is: name<flags>state
flags are: In, input; Out, output; Hi, active-high; Lo, active-low

Error: Active-high/low conflict at node D'<OutLo>=U via switch
enhancement g:[X<Lo>=U] s:[C<InHi>=U] d:[D'<OutLo>=U]!

Error: Active-high/low conflict at node D<OutLo>=U via switch
enhancement g:[X<Lo>=U] s:[C'<InHi>=U] d:[D<OutLo>=U]!

Error: Active-high/low conflict at node D'<OutLo>=U via switch
enhancement g:[X'<Lo>=U] s:[C'<InHi>=U] d:[D'<OutLo>=U]l

Error: Active-high/low conflict at node D<OutLo>=U via switch
enhancement g:[X'<Lo>=U] s:[C<InHi>=U] d:[D<OutLo>=U]!

Error: Switch
enhancement g:[X<Lo>=U] s:[C<InHi>=U] d:[D'<OutLo>=U]

connects non-conformable nodesl
Error: Switch
enhancement g:[X<Lo>=U] s:[C'<InHi>=U] d:[D<OutLo>=U]

connects non-conformable nodesl
Error: Switch

enhancement g:[X'<Lo>=U] s:[C'<InHi>=U] d:[D'<OutLo>=U]
connects non-conformable nodesl

Error: Switch
enhancement g:[X'<Lo>=U] s:[C<InHi>=U] d:[D<OutLo>=U]

connects non-conformable nodesl
Error: Verify failedl
CSIM>exlt

Figure3-19: Simulation of a circuit with non-conforming signals

detect. Figure 3-21 demonstrates the detection of "backward" information flow in the circuit during

dynamic evaluation. Transistors M1720 in figure 3-17 were added to provide a non-well-behaved

signal input to C. Since the static evaluator assumed that the C signal group would be well-behaved, it

could not detect that information could flow in both directions through the C gated switches. The

dynamic evaluator found that when the c input switched to terminal state, the D classes placed a

static load on the X outputs (by shorting them togetherl)

Figure 3-22 illustrates the detection of a simple functional defect in the test circuit. In this circuit,

M4 and M5 were placed in series instead of parallel. All of the physical gates are well-behaved but one

of the logical gates is not. The dynamic evaluator found that the two gate output signals fail to reach

terminal state for some combinations of input terminal states.

47

L _ I____ ~~~~~~~~ __I -_~ __ LX LI __III_ -- CI I _ I

csim test2
Loading "test2.sim"...
Network contains: 14 nodes,

3 intrinsic switches,
8 enhancement switches,
O depletion switches,
O p-channel switches,
O pullup switches.

(13 lines read)
declaration print-out omitted for brevity

CSIM>[EOF]
CSIM>verify
Error: Class 11 has no inactive source!
Class 11 (depth 2):

Nodes:
D<OutLo>=U

Switches:
enhancement g:[C'<InHi>=U] s:[X<Lo>=U] d:[D<OutLo>=U]
enhancement g:[C<InHi>=U] s:[X'<Lo>=U] d:[D<OutLo>=U]

Error: Verify failed!
CSIM>exlt

Figure3-20: Simulation of a circuit with missing pullup

48

cslm test3
Loading "test3.sim"...
Network contains: 14 nodes,

4 intrinsic switches,
10 enhancement switches,
0 depletion switches,
0 p-channel switches,
2 pullup switches.

(17 lines read)
declaration print-out omitted for brevity

CSIM>[EOF]
CSIM>verify
Error: Loop(s) detected between classesl
Loop members:
Class 11 node D'<OutLo>=U.
Class 10 node D<OutLo>=U.
Class 9 node X'<Lo>=U.
Class 8 node A'<Hi>=U.
Class 7 node X<Lo>=U.
Class 7 node $1<Lo>=U.
Class 6 node A<Hi>=U.
Class 8 switch

enhancement g:[D'<OutLo>=U] s:[A'<Hi>=U] d:[Gnd<InNor>=L(L)].
Class 6 switch

enhancement g:[D<OutLo>=U] s:[A<Hi>=U] d:[Gnd<InNor>=L(L)].
Class 11 switch

enhancement g:[C<InHi>=U] s:[X<Lo>=U] d:[D'<OutLo>=U].
Class 10 switch

enhancement g:[C<InHi>=U] s:[X'<Lo>=U] d:[D<OutLo>=U].
Class 11 switch

enhancement g:[C'<InHi>=U] s:[X'<Lo>=U] d:[D'<OutLo>=U].
Class 10 switch

enhancement g:[C'<InHi>=U] s:[X<Lo>=U] d:[D<OutLo>=U].
Class 9 switch

enhancement g:[A'<Hi>=U] s:[X'<Lo>=U] d:[Gnd<InNor>=L(L)].
Class 7 switch

enhancement g:[B<InHi>=U] s:[$1<Lo>=U] d:[X<Lo>=U].
Class 7 switch

enhancement g:[A<Hi>=U] s:[$1<Lo>=U] d:[Gnd<InNor>=L(L)].
Error: Verify failed!
CSIM>exit

Figure3-21: Simulation of a circuit with loops

49

�_ I I__ __ L-qlCIIIII^II�·I-�-I�Ces�-l· -I_-� .-·- ^. I--PI- - - I· -- _

csim test4
Loading "test4.sim"...
Network contains: 15 nodes,

4 intrinsic switches,
10 enhancement switches,
0 depletion switches,
0 p-channel switches,
2 pullup switches.

(17 lines read)
CSIM>dec PRE VP
CSIM>dec IN A A'
CSIM>dec HI A A'
CSIM>dec GROUP A A'
CSIM>dec IN B B'
CSIM>dec HI B B'
CSIM>dec GROUP B B'
CSIM>dec IN C
CSIM>dec LO C
CSIM>dec GROUP C
CSIM>dec GROUP C C'
CSIM>dec OUT D D'
CSIM>dec GROUP D D'
CSIM>dec GROUP X X'
CSIM>[EOF]
CSIM>verify
Verify succeeded - 12 classes - maximum depth 2.
CSIM>set hi a b
CSIM>scan
C D
Error: Transition propagates backward to node X<Lo>=L(U) via switch

enhancement g:[C'<Hi>=H(U)] s:[X<Lo>=L(U)] d:[D<OutLo>=H(U)]l
Error: Transition propagates backward to node X'<Lo>)H(U) via switch

enhancement g:[C'<Hi>=H(U)] s:[X'<Lo>=H(U)] d:[D'<OutLo>=H(U)]I
Error: Group {X<Lo>=x(U) X'<Lo>=x(U)}

has illegal signal values (2/2)1
Error: Group {D<OutLo>=x(U) D'<OutLo>=x(U)}

has illegal signal values (2/2)1
Error: Group {C<Hi>=H(U) C'<Hi>=H(U))

has too many active signals (2/2)1
x

CSIM>exit
Figure 3-22: Simulation of a circuit with "backward" signal propagation

50

_ _

csim test6
Loading "test5.sim"...
Network contains: 15 nodes,

4 intrinsic switches,
8 enhancement switches,
0 depletion switches,
0 p-channel switches,
0 pullup switches.

(13 lines read)
declaration print-out omitted for brevity

CSIM>[EOF]
CSIM>verify
Verify succeeded - 11 classes - maximum depth 2.
CSIM>scan
ABC |D
11 0
Error: Group
Error: Group
011 U
Error: Group
Error: Group
1011 U
001 1
110 1
Error: Group
Error: Group
0101 U
Error: Group
Error: Group
1 00 U
000 0
CSIM>exit

{X<Lo>=H X'<Lo>=H} is undefined!
{D<OutLo>=H D'<OutLo>=H} is undefined!

{X<Lo>=H X'<Lo>=H} is undefinedl
(D<OutLo>=H D'<OutLo>=H) is undefined!

(X<Lo>=H X'<Lo>=H} is undefinedl
{D<OutLo>=H D'<OutLo>=H} is undefinedl

{X<Lo>=H X'<Lo>=H) is undefinedl
{D<OutLo>=H D'<OutLo>=H) is undefinedl

Figure3-23: Simulation of a circuit with a functional defect

51

I�__ I_ _·_ 1_·11·_ __ I___ I1L�I__� ____I_��_� __ --

CHAPTER FOUR

Implementation of the Adder Module

In this chapter we unite the topics discussed so far in the design of a procedure for building a

floating-point adder with arbitrary exponent and fraction size.

The first step in this process is to determine the exact requirements for the function blocks from

which the adder is to be built. We start from the approximate algorithm in figure 2.1 and derive the

exact functional specification for each major block following the data flow through the unit.

4.1 Functional Specification of Adder Logic

Figure 4-1 shows the detailed structure of the floating-point addition algorithm. The inputs are

the operands A and B each of which consists of an Nebit exponent, Ae, Be; a sign bit, As, Bs; and an

Nt-bit fraction, Af, Bf.

The detailed sequence of operations is as follows:

1. If Ae is non-zero then append a 1 above the MSB of Af otherwise append a 0. Do the

same for Be and Bf. This operation recovers the "hidden" bit in the normalized numbers.

The fractions now have Nf + 1 bits each.

2. If Be is larger than Ae then swap corresponding bits of each operand otherwise pass the

operands through unchanged. This yields a new pair of operands A' and B' where A'e is

never less than B'e.

3. Subtract B'e from A'e to get a positive offset De .

4. Shift B'f right by De bits to get B"f. Note that B"f has Nf + 3 bits (two more than B'f). The

extra bits are the two least significant bits of B"f. The most significant'of these two bits is

called the guard bit, The LSB of B"f is called the "sticky" bit and is the logical inclusive-or

of all bits of B'f which get shifted to the right of the guard bit. The "sticky" bit is required

to allow the arithmetic to behave as if carried out to infinite precision before rounding or

truncation.

52

Re

Figure 4-1: Floating-point addition algorithm

53

_1··11_1__1_11_�1_11____l__r1------_11_1 _.1__·_�1-.._·all-_�.II_---II�-�LI�UII� _ 1-�__·_1111�·�·_-L�l1�-- 1^��- �-i1_·1�--·11111 -�--·I�--LIII� LI 111 1_ --

Rf

5. Append two 0 bits to A'f, then add or subtract A'f and B"f. The raw result has Nf + 4 bits to

allow for overflow from the MSB.

6. If the raw result is negative then take its absolute value to obtain the result magnitude R"f.

For unbiased truncation, the "sticky" bit need only participate in the addition/subtraction

itself. Thus R"f has N + 3 bits, including the overflow bit in the most significant position.

7. The value of R"f is in the range O<R"f <4. Shift R"f (left or right) so that the value of R'f is

in the range 1 <R'f<2. Add the number of positions shifted right (which may be negative)

to A'e to obtain the result exponent R'e. The actual number of bits required to encode the

shift count is not necessarily equal to Ne. The total number of bits required is the smallest

integer Nz such that 2Nz> Nf + 3.

8. If R"f is zero, R'e is zero, or the exponent adjustment underflowed then produce a zero
result. If the exponent adjustment overflowed, then produce a result which has exponent

and fraction set to all ones (maximum magnitude) but retains the sign of the actual result.

If there are no exceptional conditions then pass the values R'e, R's, and R'f through as the

final result Re Rs, Rf.

4.2 Guidelines for Procedural Design

Now that we have a precisely specified algorithm for doing floating-point addition, we need to

map this algorithm into a VLSI layout. This mapping process is complicated by the need for

selectable data bus widths for both the fraction and exponent computations. To make the task

manageable, we need some general guidelines for doing this kind of mapping.

First we need to establish some general goals for this task. The task itself is to write a program

for building an arithmetic unit given such parameters as exponent width, fraction width, and round-off

mode. Since the program will be able to generate a large number of different layouts, we need to

design the program so that we can verify that it works correctly in all cases without actually having to

build each possible layout.

A set of general guidelines for achieving the goals above is:

1. Minimize the number of kinds of basic cell needed.

2. Minimize the dependence of cell size on the design parameters. Ideally, only a cell which

drives a set of data bus cells in parallel needs to have adjustable size. This minimizes the

need to recheck the correctness of the cell as the parameters change.

3. Minimize the dependence of function block size and topology on the design parameters.

54

The general goal is for the function block to be composed of a set of N identical cells (for

a bus of width N) where the size of the cell is independent of the parameter, N. In this

case we can prove correctness for any value of N using induction on two or three test

cases.

4. Minimize the complexity of interconnect between function blocks.

5. Design function blocks which have common data busses so that they can be directly

abutted, i.e., equalize cell pitch. This allows a correctness check by abutting a small

subset of cells from the parent function blocks.

6. Most function blocks require control signals which are fed in common to each data cell in

the block. A cell used for driving the control inputs to a function block which needs to

have adjustable driver size should have variable width and fixed height (assuming that the

block is oriented with bits along a horizontal line.) This makes the correctness of the

connection between the block and the driver independent of the block's width.

7. Data bit cells for function blocks should be organized so that data input/output pins are

along the top and bottom edges and control pins are along the side edge (the orientation

can be rotated 90 degrees if appropriate.) Power and ground pins can be oriented with

either the control or data signals. This cell organization must be consistent among all
cells in an abutted set of function blocks.

We start decomposing the adder flow graph in figure 4-1 into layout by observing that the graph

naturally falls into two major sections: elements which have Nf-bit data paths (fraction section) and

elements which have only Ne-bit data paths (exponent section.) The function blocks which connect

to both sections (e.g. denormalizer, normalizer) naturally belong to the fraction section with their

exponent busses considered as control signals.

Figure 4-2 shows a rough floor plan of the layout. The layout is now divided into the exponent

section whose size depends only on Ne and the fraction section whose size depends primarily on Nf.

This topology will allow most of the interconnections between function blocks to be made by directly

abutting the blocks.

The next step is to decompose the function blocks into a small number of basic cells.

55

III�-YIIIIXII L- -�l-III�L�·_····�·P^II�· -- �----�-i I C�-_ ~ ~ ~ ~~~~ ~ ~ ~~ ~~~~~~~~~~~~~~~~~~~~ -__-_ _

A,

Rf

Figure 4-2: Initial floor plan of adder layout

56

Re

A,

4.3 Specification of Function Block Forms

Now we must specify the basic topology for each of the different kinds of function blocks. Figure

4-2 shows the adder floor plan described below. As we work out the overall structure of each block

we need to keep in mind that the relative ordering of the bits (i.e. MSB -> LSB or LSB -> MSB) of the

exponent and fraction paths is yet to be determined.

The input buffer is straightforward to implement. If we pair together like signal lines of the two

input operands then we find that the input buffer should be built using a basic cell which converts two

conventional logic signals into two dual-rail logic signals (two pairs of wires). An N bit input buffer is

constructed by simply abutting N input cells.

The exponent comparator is more difficult to build using a single replicated cell type. It is a

basic example of a function block which requires communication between bit positions and is

sensitive to the ordering (significance) of the input bit vector. For this kind of function block we would

like to use a basic cell which only needs to communicate with its nearest neighbors and is usable in

any bit position. We can specify the function of this cell by using a form of induction: Assume that we

can build a module that compares two N-bit words A and B and produces a result signal with states

{A<B, A)B, A = B}. To build an N + 1-bit comparator, we need a cell which performs the following

function in the most significant position of the enlarged comparator: Examine the MSB input data; if

bit B is greater than bit A then signal A<B otherwise if A is greater then signal A>B otherwise duplicate

the output of the original N-bit comparator to get the comparison result.

For an N-bit comparator we use N of the cells above where the output of one cell is connected to

the cascade input of the next more significant bit. If the cascade input of the least significant bit cell

is connected to indicate equality then the LSB cell constitutes a 1-bit comparator. By induction on the

definition of the cell behavior, we can see that the output from the MSB cell is the comparison result

for the entire word.

The exponent zero detect function can be performed by a NOR gate. We will incorporate two of

these gates into the exponent comparator as will be seen when the actual circuitry is shown in a later

section.

The operand swap is similar in form to the input buffer. An N-bit swap unit can be built using N

identical cells each of which swaps corresponding bits in the two operands (four wires). The swap

block also requires a driver cell which drives the select inputs of each of the swap cells in parallel.

57

_ I_ __·__�·__ll___·_LI____P____�I_�_______ ___ _^_IWI�I ··__1_111� _1__1__^1_ ___·^1__1111_111 -- II I_�- ---- -- ����--1��_1� I

The exponent difference block is the first kind of adder unit encountered. There are many

different common forms for adder circuits. For this design we prefer regular linear structures rather

than tree-like structures. Since the exponent path has only a few bits we can justify using a simple full

adder cell in each bit position without the topological complications of a carry lookahead circuit. We

can build an N-bit adder using N full adder cells connecting the carry output of one cell to the carry

input of the next more significant cell. To subtract the two exponents, we complement the smaller

operand (by swapping its dual-rail wire pair) and set the carry input of the least significant bit to 1 thus

performing a 2's complement subtraction (with guaranteed positive result).

Designing the denormalization block poses a new kind of problem: A combinatorial

implementation of this block is bound to vary in both dimensions; width depending on fraction size

and height depending on exponent size. The best topological form we could hope for is to build the

denormalizer using a Ne by Nf array of identical cells. The so called barrel shifter is an example of a

shifting block which can be built from an array of identical cells. Unfortunately, it would require 2Ne

rows of cells since each row only shifts by one bit position; it would also require a decoder to convert

from the Ne-bit shift count to the 2Ne row control lines. By sacrificing some regularity we can build a

modified form of barrel shifter where each row shifts by a number of bits which is a power of two. If

we provide one row per bit of the exponent difference and match that row's shift amount to the binary

significance of its controlling bit then we eliminate the need for a decoder and reduce the height to

linear dependence on Ne . We can build this kind of shifter from an array of identical switch cells each

of which selects either an unshifted or shifted bit from the previous row. Nf of these cells can be

abutted horizontally to form a single row but the vertical connection will vary with row significance

and fraction width. This is the first block where we will need the services of a routing procedure to

interconnect elements.

We now arrive at a key element of the adder unit: the fraction adder/subtractor. In order to

simplify the construction of the result negation block which follows this block we will use 1's

complement arithmetic. This allows negation to be done by bitwise complementing (wire-swapping)

of the operand or result. To build the adder/subtractor with result negation we take the basic full

adder cell and add two negation cells; one for negating one of the operands, the other for negating

the result. Since the B operand to the adder has been delayed by passing through the denormalizer,

we will want to perform the input negation on the A operand to avoid causing further delays.

To get proper 1's complement arithmetic we must connect the carry output from the MSB of the

58

adder to the carry input of the LSB. This is in violation of the interconnect rules we derived in the

previous chapter! However, as we will show later, it is still possible to design the 's complement

adder so that the system as a whole is well-behaved.

Using 1's complement arithmetic, the result negation block is simple. The negation cell is a

multiplexer which selects whether or not to swap the wires of its input bit.

The normalization block can be divided into two self-contained sections: leading zero count and

normalize shift. The leading zero count section produces a binary coded count of the number of

leading zeros in the result. This result is fed to the exponent adjust block and to the normalize shift

block. The shift block shifts the result left by the specified amount causing the most significant 1 in

the result to appear in the MSB position.

Following our tendency toward using linear structures we can build the zero count unit using a

row of cells each of which performs the following function: if all of the more significant bits are 0 then

either a) if the current bit is a 1 then output the position of this bit (the MSB has position zero) or b) if

the current bit is 0 then signal the next less significant bit cell that only leading zeros have been seen

so far. Each of these cells is identical except for the encoding used to indicate the significance

position of the cell. The cascade output from the LSB serves as a zero result detect signal for

exception handling. The complete form of these cells is discussed in a later section.

The normalization shifter can be built using the same form as the denormalization shifter. The

only major difference is in the direction of shift.

The exponent adjust block is basically a subtractor. It can be implemented using the same form

as the exponent difference block above. Note that since the normalizer must be able to

accommodate an overflow of one bit in the adder, a leading zero (and left shift) count of zero

corresponds to an exponent adjustment of + 1. To compensate for this offset we will need an

exponent pre-adjust block to add 1 to the exponent. For the pre-adjust block, we need an adder

block with one operand constant. There is no speed penalty for the pre-adjustment since this is done

in parallel with several lengthy fraction operations.

The output/literal block is another simple block where there is no communication between

adjacent cells. The basic cell converts a dual-rail result bit to a single conventional logic wire. On

overflow or underflow the cell outputs a constant 1 or 0 respectively.

59

_ I � ___�� ��_1_1 __^___PI____YII·P·II__1_1_1_�� -r-�·---CIIIIII�·CL·I-·I �- II

The only remaining function units are two simple random-logic blocks: the sign handling block

which directs the fraction negation blocks and computes the true sign of the result and the exception

handling block which detects overflow, underflow, and zero result and controls the output block.

4.4 Global Interconnect Topology in the Adder

Note that the interconnections between two major sections in figure 4-2 are only shown roughly.

The next step of the design process is to decide how to order bit significance in the various blocks to

make interconnection as easy as possible.

Obviously, the horizontal ordering of bits in the fraction section must be the same for all blocks

so that they may be abutted vertically. Similarly, all the exponent blocks must share the same

horizontal ordering. In all, there are five orderings to be chosen: exponent section, fraction section,

denormalizer count input, zero count output, and normalizer count input. Note that the sign bit

circuitry naturally falls next to the MSB of the fraction section since it is only at the MSB of the fraction

adder that the sign bit interacts closely with other circuitry.

The orderings can be resolved as follows:

- The major constraint on the ordering of the fraction section is that the zero operand

detect signals from the exponent section must provide the hidden MSB bit. Thus the

fraction MSB should face the exponent section.

* Since the exponent difference block will produce the LSB result first, the rows of the

denormalizer should be oriented so that the LSB row is uppermost so that fraction data

can start to propagate through it as soon as possible.

* Since the exponent difference should be wired to the denormalizer as simply as possible,

the exponent section should be oriented with LSB inward.

-Since the wiring between the exponent section and the normalizer sections cannot be

done on a single layer there is no clear choice of orientation. The only obvious choice is

to make the orientation of the normalizer opposite to the orientation of the zero count

output. We choose to make the LSB row of the normalizing shifter uppermost making it

similar to the denormalizing shifter. This means that the zero count LSB is lower most.

60

_ __

4.5 Basic Adder Cells

Now that we have specified the form of the function blocks down to the cell level, we need to

devise a minimal set of basic cells from which these functions can be easily assembled.

As we design these basic cells we must keep in mind that data bit cells must have the same pitch

so that function blocks can be directly abutted. To begin designing the individual cells, we need to

make a good guess at the optimal standard pitch. A good way to start the process is to do trial layouts

of the most complex cell. This cell usually sets the minimum possible pitch. The rest of the cells

should be designed to match the pitch of this guide cell. The full adder cell is the most complex of the

basic cells and was used as the guide cell in the original design process. The initial guide pitch was

50 lambda units (100 microns). It turned out that all the other cells could be built to fit in this width

thus it was the correct choice.

Since most of the data bit cells interact closely with each other we need to set a standard for the

orientation of power supply, control, and data wiring. Since our NMOS technology has only two

global wiring layers, metal and polysilicon, we need to select the routing style carefully. We note that

generally the vertical wiring runs in the data path are much shorter than the horizontal wiring runs

distributing parallel control signals to the data bit cells. This difference gets more pronounced as the

data path widths are increased. Since poly has a much higher resistivity than metal we want to make

the longer runs in metal. Because metal is the only low resistivity conductor available, we must run all

power supply lines in metal. Hence each data cell will be designed with power and control lines

running horizontally in continuous strips of metal and data lines running vertically between cells in

polysilicon.

It is interesting to consider what effects the availability of two metal layers would have on the

choice of wiring configuration. In a two layer metal process, the first layer of metal has the same

characteristics as the metal layer in a single-level process. The second layer of metal generally has a

larger minimum pitch than the first, hence lower wiring density. One way to take advantage of the

second layer would be to use it for the low-density vertical bus wiring instead of the poly layer. This

would eliminate space consuming poly wiring from many of the basic cells to achieve a smaller

horizontal cell pitch. Cell height could be reduced by running the power connections in second metal

along with the vertical bus wires.

61

^- ·1-----·--·11� slll1l^1----·1·�-�-*-Y·l�_·l�.-.� ._ _-I�IP-^�II�-·I^··WIYI--- .__ d-- - L C. I- - I-

4.5.1 Input Buffer Cell

The input buffer cell is composed of two identical sections, one for each input bit. Each section

converts the high-true conventional logic input into a pair of active-low dual-rail wires. Figure

4-3 shows the gate and transistor level circuits for the A operand section of the input buffer. The B

operand circuits are identical.

(Pp
Ai

a

4
a

a

a'

Figu re 4-3: Input buffer cell circuit

Operation of the cell is simple:

During initialization, the precharge and inverse compute clocks are both high. This

forces a, a 'high and a, a 'low. The input Ai is passed through M1.

- When the precharge clock goes low, Ai is isolated from the input section. The outputs

remain high.

- When the inverse compute clock goes low, either a or a 'goes high depending on the

value of Al stored on the gates of M2 and M7. The selected output then goes low.

Obviously this circuit is well-behaved with respect to the clock inputs.

Figure 4-4 shows the layout of the input buffer cell. The data inputs are on the top edge, outputs

62

Ai

A B

aa' b b'
dep. enh.

diff poly metal buried implant implant
cut r .

C--Z, -

Figure 4-4: Input buffer cell layout

63

ind

'dd

'p

- -- · C- --
__ -- - n d (I_ ·^-----^·�-··1�.�111I/slllll_---yl__

d,

J

I

...... . . .
M I

on the bottom edge, and control signals along the sides. Each cell is functionally complete and obeys

the geometric design rules. A block of cells is built by replicating the basic cell with a 50X pitch.

Since the actual cell width is 54A, the cells must overlap by 4A. The other data bit cells follow this

form closely.

The names and symbols for the available layers in the Bell NMOS process are shown at the

bottom of figure 4-4. The value of X is 2 microns in this process. The layers and geometric design

rules for this process follow Mead and Conway style with the addition of buried contacts and an

enhancement ion implant to distinguish high-threshold enhancement devices from intrinsic ones.

The only notable variation from Mead and Conway rules is that metal width and spacing are both 2A

minimum rather than 3A.

A special feature of this buffer cell layout is that the critical drive transistors have been oriented

so that their sizes may be adjusted by stretching (or shrinking) the entire cell vertically while

maintaining design rule correctness. Thus the drive capability can be varied without affecting the

horizontal pitch or the form of the interface with the next block in the data path.

4.5.2 Exponent Compare Cell

Figure 4-5 shows the exponent comparator cell circuit. This cell has three sections: the

comparator proper and two zero-detect NOR gate segments.

The comparator operates roughly like the comparator cell described in a previous section but its

topology has been simplified as much as possible. In particular, this comparator only needs to decide

whether or not to swap the input operands hence its result signal needs only two terminal states. We

treat the case of Ae = Be the same as Ae>Be. The result wire so becomes active if Ae<Be; its

complement, s 'becomes active if A eBe. The initial condition of s. inactive and i 'active is applied

to the input of the LSB cell in a comparator block. This optimization eliminates the need for a

separate wire for detecting Ae = Be .

An isolated cell of this type is not obviously well-behaved. If fact, an individual cell of an N-bit

comparator block is not perfectly well-behaved when considered as a module. However, we can

show that the N-bit block is a well-behaved module. This is shown using induction: first we show that

a 1-bit block is well-behaved, then we show that if an N-bit block is well-behaved, we can always add

one more cell to get a N + 1-bit well-behaved block.

64

__.

End cell
..................... ...

Pp

w .

.·· .···~···~······ ······

rr. rrr.

L I
.___________.

Figure 4-5: Comparator cell circuit

65

S--o

Zao

-. ao

Ibo

-bo

1�-_I�_-··----··I1-··I(LII �(P--I-C�--�II�-I�·---*Y)II�-�·II�CIIII� -. YPII�I -I - LIItl- I -·11-1 s-

III
: 4PP

II
II

II
II
Iq)
I
II
II

II

z

z

z

z

We first consider the 1 -bit case. The S. input signal is driven by the initial condition network

shown inside dotted lines. For the purposes of proving well-behavedness we will consider the S o

signal from the MSB of the comparator block as the only output of the module; the other S signals are

simply internal module signals. During precharging, the A, B, and So signals are set inactive (all wires

high). After all the inputs have reached terminal state there are three possible conditions:

1. If A = 0 (a 'low) and B = 1 / low) then M through M12 will be on and so will be pulled low.

M14 through M17 will remain off and so 'will stay high. The state of So will be 1 indicating

A<B.

2. If A = 1 low) and B = 0 ('low) then M14 through M17 will be on and s 'will be pulled

low. Mg through M12 will remain off and so will stay high. The state of S o will be 0

indicating AB.

3. If A and B are equal then one switch in each pulldown network will be off and one switch

in each pass network will be on thus the pulldowns will be off and . will get passed

through to SO. The state of SO will be 0 as for the previous case.

To build an N + 1-bit comparator, we connect the S output from a well-behaved N-bit comparator

to the Si input of a comparator cell. This cell becomes the new MSB cell whose output S is the

N+ 1-bit comparison output. To see that the N+ 1-bit block is well-behaved, we consider the

operation of the new MSB cell. During precharging, all inputs and outputs of the cell are set inactive

(all wires low). After all of the A and B inputs to the entire block have reached terminal state we have

three cases to consider in the MSB cell:

1. If the inputs A and B to the MSB cell are equal then, by the same reasoning as for the 1-bit

case, the state of So will be the same as the state of l.

2. If A = 0 and B = 1 then M912 will all be on and M14 17 will be off. This means that so 'will

remain high and so will be pulled low. Since Ml and M12 are on, a. will get pulled low

regardless of the terminal state of S.. This can cause the signal S. to switch to an invalid

state! Since there is no resistive path to the positive source inside the N-bit comparator

driving S. we know that so cannot fail to be pulled low regardless of the terminal state of

S.. Hence the output SO is well-behaved for this case even though S may not be.

3. Similarly, if A = 1 and B = 0 then M1417 are on, M912 are off, s. stays high, and 'goes

low regardless of the terminal state of A.

The well-behavedness of the NOR gate sections of the comparator is simple to verify. For an

N-bit comparator block, the circuit inside the dashed box is connected to the LSB of the block.

During precharging, all of the Zo wires are precharged high. After all the A inputs to the block have

66

reached terminal state, either all the inputs are 0 or at least one input is 1. In the former case, the low

level at the LSB Zai propagates through each M19 and reaches the MSB Zao; zaO'remaining high. In

the latter case, at least one M21 switches on and pulls Zao 'low. The corresponding M19 stays off and

prevents Zao from going low. The B section is identical to the A section.

Figure 4-6 shows the layout of the exponent compare cell. The input operands are carried

completely through the cell to connect to the input of the swap block. The comparison result flows

from right to left following the orientation of the exponent data path from LSB to MSB. The zero

detect result flows from left to right to make that result available to the fraction section. Unlike the

input buffer cell, this cell does not require adjustable transistor sizing hence there are no constraints

on transistor orientation.

4.5.3 Control Buffer Cell

The control buffer cell is used to drive dual-rail control lines which must drive a set of data bit

cells in parallel. It consists of two identical sections which together convert a pair of active-low wires

to a pair of active-high wires with much greater drive capability. Figure 4-7 shows the transistor level

circuit for the c,c control buffer section. The c ,c 'section is identical.

This buffer circuit uses a new form of well-behaved switch-level gate. The output section M4,5 is

a well-behaved source follower buffer which is used to greatly reduce the load capacitance seen by

the inverter stage, M13; the worst-case effective load capacitance being the gate capacitance of M s

rather than the full output load at c. Since M4 and M5 are both high-conductance devices, M2 is

added to the input stage to make sure that M5 is off when M4 on. This eliminates static power

dissipation in the output stage and offers increased speed-power performance over, say, a super-

buffer stage.

There is a performance trade-off involved in the selection of this particular buffer structure.

Since M is an enhancement device, it introduces a gate threshold drop into the output high level.

This reduces the effective on conductance of switches driven by the output signal, thus increasing

the total delay time of the circuit (as a function of the output high voltage level). We could use a

bootstrapping buffer circuit to supply the gate of M5 with enough voltage to eliminate the output

threshold drop, but such a circuit would be very sensitive to variations in process parameters and

would have a lower yield than the simpler circuit. In the NMOS process we are using, we can use an

intrinsic device for M5. SPICE simulations of the buffer and driven circuits indicate that the threshold

drop of the intrinsic device does not introduce significant delay.
67

C I_ _I~~~~_ _ _III__I ICIIILI1_I_~ ~ ~~~ - ·�- -·IL·lllil II^�------� �Y�LY---·--�·�-YI--·-·LULI))--. ���--_LII�·l�-ll _ ..-- __ -��-���-I-

L.

Figure 4-6: Exponent comparator cell layout

68

Za

Zb

-c

S-o

Zai

Zbi

Gnd

Vdd

fao

bo

I
Lao

-bo

/dd

and

a 1.I~~~

Figure 4-8 shows the layout of the control buffer. Like the input buffer, the critical drive

transistors are oriented so that only one dimension of the buffer need change as the drive capability is

changed.

Figure 4-7: Control buffer cc

Figu re 4-7: Control buffer cell circuit

c

Vdd

c

(P

Figure 4-8: Control buffer cell layout

69

c

C

~1 I_·__I1I_~ ___I_ _ I__--C-·l-· CII·--l_- ~el - -~~~-~~- -tC~~~~~· ll-ll l Y^C ~~~~~~~~~~-·LI1~~~~~I~~IIII·_ ~~.~ 1-1- ~ -·- ~ -1 1· _

4.5.4 Multiplexer Cell

The multiplexer cell will be used as the basis for several of the function block cells. It selects one

of two logical signals to pass through to the output. Figure 4-9 shows the transistor level circuit and

logical truth table for this cell. The select control signal is dual-rail active high and is supplied by a

control buffer cell. The data inputs and output are all dual-rail active-low signals. Note that if b and b '

are connected to a 'and a respectively then this block performs the logical XOR function, 0 = A(S.

S A B 0

0 0 0 0

0 0 01 0
0 1 0 1

0 0 1 1 1
1 0 0
1 0 1 1

1 0 0
111 1

Figu re 4-9: Multiplexer cell circuit

Figure 4-10 shows the layout of the basic multiplexer cell. Since this cell is always part of a data

path with two operand busses, the extra vertical poly wires are present to carry the unaffected bus

through the cell.

4.5.5 OR cell

The OR cell is used in the denormalizer section to generate the "sticky" bit. Figure 4-11 shows

the OR cell circuit. The circuit within the dotted outline is used to set the initial condition at the input

of the first cell of an OR block. The operation of the circuit is similar to that of the zero-detect circuit

in the exponent comparator cell.

Figure 4-12 shows the layout of the OR cell. This cell is designed to abut directly to the bottom

edge of the multiplexer cell used in the denormalizer section.

70

b

Figure 4-10: Multiplexer cell layout

......................

. b

: :P

: _,
p .
. .~~S

I K

Figu re 4-1 1: Denormalizer OR cell circuit

71

s

Vdd

Qp

so-o

__·_ __ 111�1 --·- 11 I I -----_~_I^I~L-· --- l~-·-- -- I~· ~··· C- ~IIII ~ ---- - - .

t t

b b'

S.

si

Vdd

So

SO

Gnd

Figu re 4-12: Denormalizer OR cell layout

4.5.6 Full Adder Cell

The basic full adder cell design will be used in all of the adder-type function blocks. It consists
of three distinct modules: input decoder, carry chain, and sum generator. Since this is an element of
a carry propagate adder, the carry chain module has been optimized for minimum delay at the
expense of delay in the other sections.

Figure 413 shows the gate level circuit and logical truth table for the input section. The
transistor level circuit is shown in figure 4-14. This section converts the two active-low dual-rail
operand signals Aand B into a single active-high triple-rail signal, X. The wires of this triple-rail signal
are the familiar generate, propagate, and kill (g, p, and k respectively) used in several adder forms.
The g wire is active only if a carry should be generated by this cell. The k wire is active only if a carry
should not be generated. The p wire is active only if the carry input should be passed to the carry

72

__

g9 A B X

0 0 0
IpD 00 k

0 1 p
1 0 p

k 1 1 9

Figure 4-13: Adder cell input circuit: gate level

a

b b_ t

p k

to0I- Hk

Figu re 4-14: Adder cell input circuit: transistor level

output. Note the source-follower buffer M12,13 used in the propagate wire. This buffer is a form of

well-behaved gate with clocked pulldown. The buffer greatly reduces the load capacitance seen by

the XOR gate used to drive the propagate wire.

Figure 4-15 shows the carry circuit and logical truth table. The carry chain section provides a

high-speed path from the carry input to the carry output. The carry signals are both dual-rail active

low. If p is active then the carry input is connected directly to the carry output. If g is active then the

carry 1 output is set active. If k is active then the carry 0 output is set active. This section also

includes an encoding inverter, M 14, used to convert the active-low carry input to an active-high signal

for use in the sum section.

As the leading edge of a waveform travels through a series of pass transistors such as the

Manchester carry chain, the transition time becomes slower and slower. This causes the propagation

73

a-

^^ -_---·ll�_ll-·lll�p·IIPI^L ·I.^l··_LII·l--W·IIP·LI·l . -- LI-·---- ~ - - .--- of-

x C. C

Co 0 0 0

k 0 0
k 1 0
p 0 0
p 1 1
g 0 1
g 1 1

R 0

Figure 4-15: Adder cell carry circuit

delay through the entire chain to increase worse than O(N), the actual performance being roughly

O(N2). To counteract this effect we use the carry inverter to provide for periodic buffering of the pass

transistor chain. This is done by replacing the wiring inside the dotted box with transistors MSA and

M6A shown in the inset. The resulting double inversion sharpens the waveform edge and permits

expansion of the adder with O(N) delay performance. This form of carry speed-up circuit fits our

procedural design criteria well. Since there is very little difference between the topology of the

buffered and unbuffered carry sections, we can lay out both versions within the same area. In fact,

the actual layout was done so that all circuitry except the outlined region is identical.

The carry section also includes transistors Ml and M12 which are used to generate a global

propagate signal over all the bits in an adder block. This is done by grounding the Q. input of the LSB

bit cell. Only if all of the bit cells propagate will the go wire of the MSB bit cell become active. The

purpose of this signal will be discussed later.

Figure 4-16 shows the transistor level circuit and truth table for the sum section. The sum

section computes the sum bit using the active-high carry input signal Ci and the triple-rail signal X

74

__

x P C S

0 0 0 0

s k 00 0
k 01 1
p 0 1

S p 1 0

g 0 0
g 0 1

Figure 4-16: Adder cell sum circuit

from the input section. The p wire is inverted and the g and k wires are NORed together to obtain a

dual-rail active-low P signal where P = AEB. The P signal is then XORed with Ci signal to obtain the

active-low dual-rail sum bit S.

The full adder cell is a well-behaved module by itself and can be cascaded to form well-behaved

N-bit adder blocks. In the fraction adder section we need to use feedback from the MSB carry output

to the LSB carry input for 1's complement arithmetic. This feedback is forbidden by the

interconnection rules given for well-behaved modules. However, we can get well-behaved operation

from the adder block by using the global propagate output wire from the most significant adder bit.

We can show how this works by considering the possible behavior of the looping carry chain under all

possible conditions after the operand inputs have reached terminal state. If there is at least one cell

which does a carry generate or kill then a valid carry signal will eventually reach the MSB carry output

since the cells to the left of that cell constitute a well-behaved logic network. Similarly, the cells to the

right of the original cell constitute a well-behaved network hence the LSB carry input will eventually

propagate to the carry input of the original cell. Since the original cell was not doing a propagate

operation, its carry output is not a function of its carry input thus the carry signal never propagates

through more than N-1 cells and the single-transition rule is obeyed. The only remaining condition is

when all N cells do a carry propagate. In this case none of the carry or sum outputs become defined.

75

p

_~~_I_ I ^· LY_ L_____·YCIII ~ -- -^-L1-·l(lll�llll�-*-- ------ ������ -�--

This condition is detected by the global propagate output from the MSB cell. In 's complement

arithmetic, this corresponds to a zero result so we can feed the global propagate output to the

exception handling unit as an additional zero result detection input.

Figure 4-17 shows the layout of the complete full adder cell. Note the that the carry feedback

wiring is provided for within the cell itself. This is much more efficient than routing the wires around

the entire adder block. Carry chain buffering is selected by replacing the two metal straps in the carry

input section with the section of layout within the dotted outline.

There are two major variant forms of the basic adder cell. These are both half-adder cell forms.

These cells are used where the B operand bit is a constant (either 1 or 0). These cells are derived

directly from the full adder cell by applying the constant B input and removing as many transistors as

possible while retaining the proper logical function and well-behavedness. A total of nine transistors

(seven in the input section) are removed in each case. The B = 0 half adder is used in the fraction

adder MSB position. The B = 1 cell is used in the exponent adjust blocks.

4.5.7 Zero Count Cell

The basic zero count cell is divided into two sections: a header section which is identical for

each cell in a block and the count output section which contains the position count for the cell.

Figure 4-18 shows the circuit for zero count cell. This circuit is not a complete well-behaved

module by itself; the zero count block is well-behaved only when considered as a complete unit. The

z. wire is an active-low input from the next more significant cell which is active when all of the more

significant result bits are 0. The R input (r, r is the active-low dual-rail result bit. The zo wire

connects to the z, input of the next less significant bit in the block. The active-high o wire connects to

the enable input of the count output section. The output section consists of a set of pulldowns, one

for each dual-rail active-low count output signal, A. Each pulldown selects whether its count output

signal will be set to 0 or 1 when the output section is enabled, the pulldown pattern being fixed for

each cell. The active-low count output signal wires are bussed through all the zero count cells in

parallel with one clocked pullup for each wire for precharging.

The operation during the compute period is as follows: if R is O ('low) then pass z, through M1

to the zo output otherwise if is 1 (r low) then send ., inverted to the output enable wire o. As with the

carry chain in the adder cell, we provide for periodic buffering of the z chain by replacing the dotted

outlined wiring with the M1A circuit.
76

_ I _ _ �

a

s s

Figu re 4-17: Full adder cell layout

77

nd

_.__ _ _L�I_ �_ ____�_�·__11_11__·_ �_ 1_11 _ �1�11� � 111�____·

Buffer
.............. ...

' .. "

A_

Z.

........ ._ _
:m

ak l

Figu re 4-18: Zero count cell circuit

The operation of a cascaded set of N zero count cells is as follows:

During precharging, all of the zo wires are set high and all of the output enable wires ok

are set low. The . wire of the MSB cell is tied low.

- During the compute period, the low level on z is propagated rightward through all cells
Z1k

with leading zeros. The most significant cell with a 1 halts the propagation of the z signal

and asserts its output enable wire. The output section of that cell then asserts its location

on the set of Nz count output lines.

* If there is no 1 in the result then the zI output of the LSB cell will become active.

The entire zero count block can be considered to be well-behaved since, in the terminal state,

either the count output signals are defined or the result zero output is asserted. The result zero

output feeds into the exception handling circuit which will direct the output buffer to produce a zero

output should the zero count block signal a zero result.

Figure 4-19 shows the layout of a zero count cell with three count output signals. It is composed

of three kinds of basic cell: an input header, three output wiring cells, and three output pulldown

cells. As with the full adder, zero detect chain buffering is selected by replacing a wiring cell with a

cell containing an extra pulldown.

78

k

___ _ _ __ _ �_I __ I I

. . .

. . . I

r

..-..
I / / / / /

//I
7-. . . .

L, -

i'~~ r4 , i
·I' · A _L. US1

7
I I '

/

/1I I1/1 I I 1 rV1.

, 'V =

I f i I _ _I!/I td -. /
.

..
.Ih

. I

:-D
L -.I_ . -/

.I I

I/ ': . /. I m
12 I' -, -LL/

I

. .
.I

I. .

. II

Figu re 4 19: Zero count cell layout

79

'//7
/

r

V///L/

F 'T- ---

I /
I 1' I Y -

/
/

7

.I.M//.,: . I r/

Z I

,

7

/
A

I/

/
/
/

/

/
·/] 11. /:I'1/' i .

I

/

7
7

-7 . .1

7
/

YFi�

L C:D:
. .7

.::

j Gnd

Zr

1 4p

] Vdd

I Gnd

I ao

-/

/A I
J/zx!z

/

7

/
/

/
/
/
7
/
'/

/
//

/

7
-9

/

/
f

/
A'
-7'

7
///L

7
./
/
/

//

-I

i/I

/

A
-

7
/
/

/

/

/
/
/

/
/

7/

/

/
/

/

7

/

1 al

J a 2

1 2

/

/

-
-

·. I~ ~ ._ I 1 _ , 1 -- 1'

I · - i , - Z _
I i_ - - _ I /

V I I ' V I

... -. - _ 7 /
---- --- --- - ---- - -- _ _l

.
, .

/ I , 1 : __ ___ _ 7 /,

1A I
L2

. l, I - _ # _"

i . . _ i, X

i.i _ l i,

_ _

ii -· I _ 7 l
i- -· · · - T R _ 7 ., i

. .·

. LI IL/4L,,41-// _

_ /

· ,· -

I

I

/ .f / .- J_

_ _ __ _ _� _ __ _ /_ /
_ _

__ � _�_I _ _ ·III�LS�IIII·C· -·-�---- I�II�----l-LI-IU -------

"0

..I

7E�-/

y-

I : /

I

/

/

I I' -L I I i

1 4: �- �, . -�7- - -

/

I /
--

I

I

f

.Q.I
; z

J/'

F!

/.

I J.
I'

I,.Z/

I4i

4.5.8 Exception Handling

The exception handling block contains the logic which detects "error" conditions and other

states of the adder unit which require special consideration. The three basic conditions sensed by

this block are overflow, underflow/zero result, and normal result. Figure 4-20 shows the transistor

level circuit and truth table for the exception handling block. The inputs to the block are the zero

result wires from the fraction adder and zero count block L(f and zz respectively), the exponent

pre-adjust carry signal (p), the exponent adjust carry signal (a), and the exponent zero signal Le).

All of the inputs are active low. The block produces a triple-rail active-high status signal ST which is

composed of the three wires ok, zero, and oflo.

zero

Z %Z $ Ca Zc ST
-c

P 0 0 0 0 0 0
T 0 -0 0 zero
0 T - 0 0 zero

Zf

1o so u u u zero
0 0 0 0 1 zero

{3 n 1 0 nk

Ca

0 0 0 1 1 zero
0 0 10 0 ok

Cp 0 0 1 0 1
0 0 1 1 0

- - 0 0 1 1 1 oflo

ZeCa-I

Figure 4-20: Exception handling circuit

As in the previous truth tables for well-behaved modules, the first line of the truth table lists the

output state with inputs in the initial state and the remaining lines list the output terminal state for all

possible input terminal states. Note that the some of the input terminal states are null. This is a result

of the behavior of the fraction adder and zero count blocks when they have detected a zero result

80

I

i
il
I

cp -

condition (i.e. they fail to produce non-null terminal states on their "normal" output signals). Since

the exception handler produces a valid non-null state on its output for all possible input terminal

states, we can say that it is well-behaved with respect to the input signals to the adder unit.

The ST output is connected to the control input of the output buffer block. The output block

guarantees that the output signals of the adder unit are well behaved with respect to the adder unit

inputs.

4.5.9 Sign Handling

The sign handling cell contains all of the logic for controlling the two fraction negation blocks

and computing the result sign. As such there is only one of these cells in the entire adder unit. It is

designed to be placed to the left of the MSB cell of the fraction adder. Figure 4-21 shows the

transistor level circuit for the sign cell.

The input and output signals are all dual-rail active low. All of the sign bit signals are encoded so

that a 1 state represents a negative value. Inputs A. and B are the sign bits of the input operands from

the output of the swap block. Input C is the carry output from the fraction adder. Output Bo is a

buffered version of B.. Output Ao is the sign bit of the A operand to the fraction adder block. It is

connected to the control input of the Af negate block and to the A input of the fraction adder MSB cell

(the B input to the adder MSB is always 0.) Output R is the sign of the raw result-from the fraction

adder. It is connected to the control input of the R negate block.

The logic equations for the output signals are Bo = B. A = A.B., and R = A .C. The true sign of

the result is computed by passing the buffered Bo signal through one bit cell in the result negate

block, thus performing an exclusive-or operation on the raw sign and the original B operand sign.

4.5.10 Output Buffer Cell

The output buffer cell circuit is shown in figure 4-22 along with its truth table. It converts the raw

active-low dual-rail result R into an active-high dual-rail signal R. The three control inputs ok, oflo,

and zero are driven by the ST signal from the exception handling block. As in the exception handling

block, the truth table for the output buffer contains null input terminal states. Since the exception

handler forces the output buffer to produce a zero result whenever it is possible for the R input to fail

to reach a non-null terminal state, the output buffer and the adder unit itself are always well behaved

with respect to the adder unit inputs.

81

.___- - �-� --̂ - -·II�--· I·Y·-------_�

a i

ai

r

r

Figure 4-21: Sign handling cell circuit

To permit the raw result sign to be passed to the output on overflow, the output buffer cell for the

sign bit has M2 connected in parallel with M1.

The wires and o are used to generate a completion signal, C, for the adder unit. This is a

single-rail active-low signal which has the single terminal state, true. It only reaches terminal state

after all of the other adder outputs have reached terminal state, indicating that the addition is

complete. The c wires of all the output cells are connected in series with the first i wire grounded.

During precharging, all of the c o wires are precharged high. When all of the result output bits have

become defined, the initial ground level will be passed through to the g. wire of the last stage.

82

ok
Qp

r

CO-o

r r

Figu re 4-22: Output buffer cell circuit

Figure 4-23 shows the layout of the output buffer cell.

The completion detect stage is only needed for a system using asynchronouts clocking. The

completion signal would be used to restart the precharge/compute cycle to obtain minimum average

cycle time. When the adder unit is used as a module in a synchronous system, the completion detect

signal would only serve as a diagnostic feature to indicate whether or not the adder was able to

complete its computation within the allotted cycle time.

In a synchronous system, the output stages can simplified to reduce the total area of the adder

unit. Since we will have set the clock period to allow for the worst case delay through the adder, we

have no need to be able to tell when the computation has ended; we assume that the adder will

always reach terminal state before the end of the compute period. In this case we only need one

output wire for each output signal since the other wire only supplies redundant information about the

terminal state. We can derive a "stripped down" version of the adder circuit by removing all circuitry

used only to compute the redundant information. If we eliminate the r 'wire from each output bit cell,

then we can delete M610 in each output cell as well as the circuits which generate the zero wire in the

83

PLI· I~I_ ^ _ Y_~·___I _�I__I�1^I� ·I___·_IIYI__I1___1I_ -�1I^I_ _I XL-···-·- bl~ -

r

C.

ok

oflo

Vdd

uflo

Gnd

co

Vdd

r r

Figure 4-23: Output buffer cell layout

exception handling block. This process can be carried further to eliminate the 'paths from the

normalizing shifter and the zero-detect circuitry from the adder and zero-count blocks.

4.6 Building Function Blocks From Simple Cells

Now that we have a set of basic cells, we need to specify an algorithm for constructing a

complete floating-point adder using these basic cells. The decomposition of the original algorithm

proceeded in a top-down sequence from algorithm to block diagram to cell specification. The

construction process will proceed in the inverse order from basic cells to function blocks to complete

layout.

84

Tn r

Figure 4-24: Generalized N-bit function block layout

The first step in the construction process is to specify procedures for building each of the

different function blocks. Figure 4-24 shows the general form of a variable width function block. This

form applies, with minor variations, to all the data path blocks in the adder unit. The generalized

layout of an N-bit function block consists of a set of N identical bit cells, two end cells, and a set of N

identical interconnect cells. The bit cell is one of the basic cells described in the previous section.

The end cells provide power and ground connections to the bit cell vector as well as buffering for

horizontal control inputs, if needed. Often the end cells provide constant initial conditions for

cascade inputs to the bit cell vector (e.g., a constant input to the LSB carry input of an adder block.)

The interconnect cells are optional and are used to align the input wiring of the bit cells with the

output wiring of the bit cells of the function block above.

One of the advantages of using this kind of general form is that it makes verification of

adherence to geometric design rules (design rule checking) very easy. Since a 2-bit block contains

each possible kind of cell interface we only need to design rule check this one version of the block.

The only additional check needed for an N-bit block is to make sure that the bit cell pitch is correct so

that the cell to cell interface remains the same as the block width varies. The cells are permitted to

overlap at their boundaries. This causes no problems in applying the verification rules provided that

the overlap is confined to the boundary regions (i.e. one kind of cell cannot completely overlap its

neighbor). What is important is that there must be a fixed number of kinds of cell overlap independent

of the size of the block.

The interface between two function blocks can also be verified by abutting a 2-bit example of

each block vertically and checking the resulting layout. If the 2-bit interface is correct, each block is

correct for any N by itself, and the bit cell pitch is the same for both blocks, then the interface will be

correct for any N.
85

_IYI__IIIIII__IY__I_�- .�--·l�s I --r�rrrrr�---- ·�-·�·---C-·l-·r�--�-�---^l^�------·rrrr ·- ---1---�.--""�L-�311�-- �Lll---11 -CIIIIII)----

In the discussion of the function blocks below, we make the following assumptions about the

function block form:

-All of the function blocks have left and right end cells.

- Ground wiring is supplied by the left end cells in the fraction section and by the right end

cells in the exponent section (the inside ends). The positive supply wiring is supplied by

the outside end cells in each section.

Only deviations from these assumptions will be mentioned.

4.6.1 Input Buffer

The input buffer is divided into two parts: an Nf-bit block for the fraction section and an

N + 1-bit block for the exponent section. There are two procedures, one for each block. Both

procedures use the basic input buffer as the bit cell but differ in the form of the end cells used. The

end cell of the fraction block includes a version of the input buffer cell with the normal-to-dual-rail

conversion section removed to receive the "hidden bit" data from the exponent section. Thus the

fraction block has an output bus width of Nf + 1 bits. The exponent block includes the sign bit next to

the LSB of the exponent proper. This makes room for the "hidden bit" wiring from the exponent

comparator to the fraction MSB input.

4.6.2 Exponent Comparator

The exponent comparator is built from Ne comparator cells and two end cells. The left end cell

feeds the comparison output to the swap block below. The right end cell provides precharging for the

zero detect gates, the initial condition for the comparison input, and wiring for the sign bit and zero

detect output.

4.6.3 Operand Swap

Like the input latch, the operand swap unit is divided into two parts: an Ne + 1-bit block for the

exponent section which includes the sign bit and an Nf + 1-bit block for the fraction section. The

swap cell is built from two multiplexer cells. One multiplexer swaps the a and b wires while the other

swaps the 'and b 'wires. The left end cell of the exponent swap block contains a control buffer

which amplifies the comparison output from the comparator section above. The right exponent end

cell connects together the control lines of the two multiplexer sections in the exponent block cells.

The left end cell of the fraction block contains two control buffers driven in parallel by the control

wires from the exponent block.
86

4.6.4 Exponent Difference

The exponent difference block is built from Ne modified full adder cells and two end cells. The

modified cell is functionally the same as the basic full adder but contains two extra vertical wires to

carry the A operand through the cell for later use in the exponent section. The right end cell applies

the constant carry input of 1. Since the bit cell could not be made to fit the 50 lambda pitch

constraint, this block cannot be directly abutted to its neighboring blocks. A simple river routing

procedure is used to generate the interconnect. This problem is discussed more fully in the section

on fraction and exponent placement and interconnection.

4.6.5 Bf Denormalize

I

I

BUFFER
I

I I

I I
I I

I II II I
I II LEFT ENDII I
I II~~~~~~~~3

E BUFFER

I. …II

I I~~~~~~~~~~~~~~~~~~~~~~~~~~~I
I~~~~~~~~~~~~~I I

I II f~~~~~~~~~~~~
I
III

III
L -- -- -- -

IN

ZMUX

IN

MUX

IN

MUX

ZMUX ZMUX MUX

ZMUX ZMUX ZMUX

IN

MUX

IN

MUX

IN

MUX

OR

0

I
MUX

OR

1r

I I

I I~~~~~~~~~~~~~~~~~~~~~~~~~~~~I
RIGHT 'I
END I

II
II
II
II

_ I_I _ l1 ll1
11 _

MUX MUX

OROR O

ZMUX

OR

MUX MUX MUX

OR I
I

I I

__ IIr ~~~~~~~~~~~~~~~~~~~~II

MU I
II

L …_______~~I_
L ---------- II

Figure 4-25: Floor plan of denormalizing shifter

The denormalizing shifter block is one of the most complex to construct. This is a result of the

dependence of its topology on both Ne and N. Figure 4-25 shows the cell organization in a

87

. I

l _ l _

. _ _ 1.. ,i I I

II II · I

MUX MUX MUX

. . . .

III

. ~1 I111
.

w '"r .

, .~~~~~~~~~~~~~~~~~~- .-

I-' - - - - - - ^ - --~11- ·--·--·11··1_11 -·�11�-�L-·1 1 1_1

I
I
I
I
I
I
I

OR OR OR

-
.I

II

1_- �II Il'

denormalizer block for Ne = 3 and Nf = 5 (cell overlaps are not shown). To simplify testing as much as

possible, the interface with the function blocks above and below follows the simple function block

model; the varying topology is hidden inside the block away from the external interfaces.

The block always has Ne rows of multiplexer cells. A fixed rule is used to generate each row of

cells (the special case on the first row is discussed later). If nr is the row number where the first row is

numbered 0, then the following rule holds: from left to right, each row is composed of one control

driver for the select signal, 2nr ZMUX cells which output the constant 0 when directed to shift, and

Nf + 3-2nr basic multiplexer (MUX) cells.

The interconnect between rows nr,1 and nr is built using the following rules: the unshifted

operand is carried between rows on vertical poly wire; the high-order Nf + 2-2nr operand bits are

carried through diagonal metal wiring to obtain a shift offset of 2nr; a set of 2nr + 1 OR cells is attached

to the output of the upper row to compute the "sticky" bit. The output of the OR chain is connected

to the shifted input of the LSB MUX cell so that the "sticky" bit position receives the inclusive-or of all

of the bits which get shifted to the right of the guard bit position.

The first row only has Nf + 2 multiplexer cells. The Nf + 1 IN cells connect the block to the

Nf + 1-bit swap block above. The IN cells actually overlap to provide the 1-bit shift wiring for the first

row of MUX cells. The LSB MUX cell in the first row receives a constant 0 to serve as the guard bit.

The "sticky" bit MUX is omitted here since both of its inputs are always zero.

The end cells are designed to be usable with any size of shift block. The left end cell only

contains power wiring and is stretched to fit the vertical height of the finished unit. The right end cell

contains wiring to provide the constant inputs to the guard MUX cells as well as power wiring. The

right end is stretched to fit in two steps, first to align it to the first and second rows, next to align its

lower edge to the lower edge of the complete block.

4.6.6 Af Negate

The A operand negate block is built from N +3 multiplexer cells connected as exclusive-or

gates. The left end cell contains a control buffer which amplifies the A negate control signal from the

sign handling block.

88

I I

4.6.7 Adder

The adder block is built from Nf + 3 full adder cells with a half adder cell as MSB to hold the A

sign bit and result overflow bit. The left end cell contains the sign handling block which also connects

the feedback wiring for the carry chain. The right end cell contains the other end of the feedback

connection and the initial condition for the global propagate wire.

4.6.8 Exponent Pre-adjust

The exponent pre-adjust block is built from Ne half adder cells. The left end cell contains wiring

to connect the carry output to the exception handling block.

4.6.9 Result Negate

The result negate block is built from Nf + 4 multiplexer cells in exclusive-or connection. The left

end cell contains a buffer which amplifies the control signal from the sign handling block. The

leftmost bit cell of the block is used by the sign logic to compute the true sign of the result. The other

Nf + 3 bits are connected to the Nf + 3 high order bits of the adder output (the "sticky" bit does not

participate in the negation.)

4.6.10 Leading Zero Count

The leading zero count block is built from Nf + 3 zero count cells with appropriate count output

encoding in each cell. If Nz<Ne then the encoding for a cell is simply the bit position of the cell

(MSB = 0).

If Nz>Ne then it is possible for the number of leading zeros to be greater than the largest

possible exponent value (which would cause underflow regardless of the actual exponent value). In

this case we only need to build a 2Ne-bit zero count block connected to the high order bits of the

result. If the most significant 1 in the result is below the LSB of the truncated count block, then the

block signals a zero result which is the appropriate action for underflow. The uncounted lower order

bit positions receive "dummy" zero count cells.

Figure 4-26 shows the cell organization in a zero count block for Nf = 5 and Ne = 3. Each bit cell

is composed of a set of a header cell (HEADER), Nz output wiring cells (OUT), and Nz output pulldown

cells (0 and 1). As in the denormalizer block, the end cells are stretched to fit the height of the

complete count cell.
89

C I_ 1� 1^-----1�1�-· 111 111 --- A. --- ---

Figure 4-26: Floor plan of a zero count block

The left end cell provides some of the interconnect wiring for the count output. The right end

cell only provides the connection to feed back the zero detect output to the left end cell. The set of

clocked pullups for the count output wires is located in the output section of the LSB count cell in

order to make use of what would otherwise be wasted space.

4.6.1 1 Result Normalize

The result normalize shift block is similar to the Bf denormalize block. It is built using Nz rows of

Nf + 2 multiplexer cells. Note that there is no need to provide a column of shifters for the MSB of the

raw result since we know that the final shifter output for that column is always a 1. In short, we omit

the circuitry for the "hidden" bit.

Figure 4-27 shows the cell organization in a shift block for Nz = 3 and Nf = 5. The algorithm used

to construct this block is the same as the denormalize shift block constructor except that the shift

direction is reflected and the "sticky" bit circuits are omitted.

4.6.12 Exponent Adjust

The exponent adjust section is built from Ne adder cells. If Ne>N z then only the least significant

Nz of the bit cells are full adders. The other Ne-N z bit cells are half adder cells. The left end cell

contains the exception handling block.

90

HEADER HEADER HEADER HEADER HEADER HEADER HEADER

LEFT , , RIGHT

END i OUTWgOUTW OUTWOUT Q OUT OUTD OUT END

OUT i OUT E OUT OUT OUT OUT EOUT

___ WOUT OUT OUT TOUT OUT OUT OUT _

IN

BUFFER MUX

IN

MUX

IN

MUX

IN

MUX

IN

MUX

IN

MUX

IN

ZMUX

......

LEFT END

BUFFER MUX MUX MUX MUX MUX ZMUX ZMUX

BUFFER MUX MUX MUX ZMUX ZMUX ZMUX ZMUX

_ _ _ _ _ _ _ _ _
......... I I

I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~I

r,

II
II
II
II
II
II

II
II
II
II
II
II
L-

IIIIIIIIIIIIIII
RIGHT

END

II

III
II

. _ _ __ _ _ _

Figure 4-27: Floor plan of normalizing shifter

4.6.13 Output Buffer

The output buffer is built in two parts: an Ne-bit section for the result exponent and sign and an

Nf-bit section for the result fraction. The left end cell of the exponent block contains a buffer for the

control signal from the exponent handling block in the adjust block above. The right end cell of the

exponent block contains wiring to connect the control inputs across to the left end cell of the fraction

block. The left end cell of the fraction section contains the modified output buffer for the sign bit.

91

-

. l z - - I

_ ... · �-I-LILI·XI--*I---L11_11�·-�1·�--1411_· --__-- .__ II__ -L_� -·--- _

----------I

I----------

1

w

4.7 Assembling the Adder Procedurally

So far, our design methodology has produced a set of fixed-size cells (with a few "stretchable"

cells) which must be assembled in orderly configurations according to the design parameters. This

suggests the following approach to the design of the constructor program: build a library of building-

block cells using an interactive graphic layout editor; then write a program to assemble the library

cells into the complete adder unit, given the design parameters as input. This technique allows the

designer to enter the basic cell definitions easily (encoding a detailed cell layout directly into a

procedural layout description language is a time-consuming and error-prone process.) The

constructor program itself only needs to manipulate the layout in an abstract fashion making it easier

to write and debug.

The cell library includes all of the end cells, interconnect cells, bit cells, and special-purpose

cells needed to build an adder of any size. The design of these cells was carried out by building a

prototype layout of a 5-bit adder unit (2-bit exponent, 2-bit fraction, and sign bit). Figures 4-28 and

4-29 show simplified block diagrams of the prototype fraction and exponent sections of the adder,

respectively (cell overlaps have been removed for clarity).

The prototype layout was created using an interactive graphic layout editor. Since almost all of

the possible kinds of cell interaction are present in the prototype, design rule checking of the

prototype during construction uncovered most design rule errors.

To enable the constructor program to assemble the library cells using the same amount of

overlap used in the prototype, a set of alignment points was placed in each cell. For example, each

data bit cell contains at least four alignment points; left, right, input, and output. The left and right

points are used to align bit cells to each other as well as to the end cells. The input and output points

are used to align the interconnect cells above and below. The alignment point technique makes it

easy to visually verify that the connection between cells has been properly specified both in the

prototype and in the constructed layout.

92

HIDDEN
BITS

SWAP r-
CONTROL .

E
DIFF

SIGN

LEFT
(SIGN)

F
INPUT
LEFT

F
SWAP
LEFT

CONTROL
BUFFER

DENORM
LEFT

CONTROL
BUFFER

A NEGATE
LEFT

F
HALF ADD

BIT

F
HIDDEN

BIT

F
SWAP

BIT

F
INPUT

BIT

F
SWAP

BIT

F
INPUT

BIT

F
SWAP

BIT

F
INPUT
RIGHT

F
SWAP
RIGHT

DENORM INI DENORM INI DENORM INf
DENORM

BIT

DENORM
CONN

DENORM
BIT

A NEGATE
BIT

F ADD IN

F
ADD
BIT

DENORM
BIT

DENORM
CONN

DENORM
BIT

A NEGATE
BIT

F ADD IN

F
ADD
BIT

DENORM
BIT

OR
BIT

DENORM
BIT

A NEGATE
BIT

F ADD IN

F
ADD
BIT

DENORM
BIT

OR
BIT

DENORM
BIT

A

F ADD IN

F
ADD
BIT

R
NEGATE

LEFT

~I

ZERO
RESULT -

ZERO
COUNT

L

R NEG N R NEG N R NEG IN R NEG N R NEG N

R NEGATE
BIT

ZERO
COUNT
LEFT

LITERAL H
CONTROL

R NEGATE
BIT

ZERO
COUNT

HEADER

r- z OUT

Z OUT

CONTROL
BUFFER

NORM
LEFT

CONTROL
BUFFER

F OUTPUT
LEFT (SIGN)

R NEGATE
BIT

ZERO
COUNT

HEADER

I Z OUT

W. Z OUT

R NEGATE
BIT

ZERO
COUNT

HEADER

r- z OUT

i Z OUT

R NEGATE
BIT

ZERO
COUNT

HEADER

' Z END

END

I NORM IN I NORM IN I NORM IN
NORM

BIT

NORM
CONN

NORM
BIT

FOUTPUT
BIT

NORM
BIT

NORM
CONN

NORM
BIT

F OUTPUT
BIT

NORM
BIT

NORM
CONN

NORM
BIT

Figure 4-28: Prototype fraction section floor plan

93

DENORM
RIGHT

DENORM
BIT

NEGATE
BIT

A NEGATE
BIT

A NEGATE
RIGHT

F
ADD

RIGHT

F ADD IN

F
ADD
BIT

R NEGATE
BIT

ZERO
COUNT
BLANK

R
NEGATE
RIGHT

ZERO
COUNT
RIGHT

NORM

RIGHT

NORM
BIT

NORM'
CONN

NORM
BIT

F OUTPUT
RIGHT

l

I
, .II

F n

.

,

.

1
II

III I

- II l

! - - l -

.1. - .�-�11-�1-. s.--�x-.. -- --1�-··-·111�--�11�--P·I --· �-·1111111�._ - I- I I _ -

_
-

T
II

E E E E
INPUT INPUT INPUT INPUT

BIT BIT BIT RIGHT

E E E
COMPARE COMPARE COMPARE

BIT BIT RIGHT

E E E E
SWAP SWAP SWAP SWAP

BIT BIT BIT RIGHT

(ROUTING)

E
DIFF
BIT

E
DIFF
BIT

E
DIFF

RIGHT

I E DIFF OUT 0
E DIFF OUT

SIGN
SIGN

HIDDEN
BITS

Z) SWAP
) CONTROL

E
DIFF

(ROUTING)

E PRE- E PRE-
ADJUST ADJUST ADJUST

BIT BIT RIGHT

(ROUTING)

ZERO RESULT CONN
E ADJUST IN

E ADJUST IN 0

E E E
ADJUST ADJUST ADJUST

BIT BIT RIGHT

E OUTPUT E OUTPUT E OUTPUT
BIT BIT RIGHT

- ZERO RESULT

ZERO
COUNT

LITERAL
CONTROL

Figu re 4-29: Prototype exponent section floor plan

94

E
INPUT
LEFT

E
COMPARE

LEFT

E
SWAP
LEFT

E
DIFF
LEFT

E PRE-
ADJUST
LEFT

E
ADJUST
LEFT

(EXCEPT.)

E OUTPUT
LEFT

I ----

,_ _ _ i

:·

,1

4.7.1 Primitive Functions and Objects in the Constructor Program

The constructor program consists of a set of primitive functions for creating and manipulating

layout objects along with specific code for constructing the desired functional unit (in this case, a

floating-point adder). The primitive functions fall into several categories:

* Functions for converting between the internal data-base format and the standard external

layout description file format used by the interactive editor and other programs.

Functions for creating and positioning primitive objects.

- Functions for modifying existing objects.

The standard layout description file format is the one supported by the layout editor HPEDIT.

This format supports a subset of the CIF standard format [10]. A description file consists of a set of

cell definitions (CIF symbols). Each cell definition (or cell, for short) contains a set of records

describing the objects contained in the cell. The following objects are supported:

The mask box is the basic unit of fabrication mask material. The box is a rectangle with

horizontal and vertical edges (only Manhattan geometry is supported). It is described by

the location of two diagonally opposite corners (lower left and upper right) along with a

mask layer name.

- The label point is used for alignment of cells and labelling of circuit nodes. It is described

by a location, a name, and a mask layer.

- The cell instance (or simply instance) is a reference to a cell definition, similar to the CIF

symbol call. It is described by the name of the cell it references, a transformation, and a

name. The transformation consists of a rotation/reflection followed by a displacement

vector. The rotation/reflection is one of the eight possible using Manhattan geometry

(e.g., rotate 0, 90, 180, or 270 degrees, with or without reflection.) The instance

represents a copy of the contents of the referenced cell, with the transformation applied

to each object in the referenced cell. As in CIF, recursive instance references are

disallowed.

This format can be used to hierarchically describe any Manhattan geometry layout.

All of the primitive objects in the layout file are supported directly by the constructor program. In

addition, the program provides a cell vector (or simply vector) object for describing a one-dimensional

array of cell instances in a compact form. A vector is described by a cell reference, a transformation

to be applied to the cell before replication, a name, a replication displacement, a number of

replications, and a starting index. The first three parameters are the same as for a simple instance.

95

1^ UI__ I__I_I I_ _ _s_�_llP�� �I II__ _I . --1 ------ - _-- II*- -L~-- - .

The displacement is the offset between neighboring instances in the vector. This offset is arbitrary

allowing any amount of overlap (or separation) between cells. Individual instances in the vector are

referred to by index number. The starting index is the index of the first instance; the index number of

the last instance is given by (start+ length-1). This object useful for representing rows of data bit

cells.

The primitive library reading function converts a layout file directly into a set of internal data

structures. The list of cell definitions in the file becomes a linked list of cell objects in the internal

structure. Each cell object has a set of pointers to linked lists of objects contained in the cell; one list

for each kind of object. Each instance or vector object contains a pointer to the cell definition which

it references. Figure 4-30 illustrates the basic data structures. The cell list is kept ordered so that

vector and instance references always point to a cell further towards the root of the list. This

simplifies recursion detection and allows easy conversion between internal and external formats

since cell "forward references" are illegal in the external format.

LIBRARY

0
0

0

Figu re 4-30: Cell Library Data Structures

The actual data objects which represent the primitive layout objects contain the same

96

information given in the layout file with the addition of linkage pointers (described above) and an

object type field. The type field is not required to determine the object type in the data structures

described above (though it is used for verifying the integrity of these structures). The primary

purpose of the type field is to support data abstraction in the application dependent code. The

primitive functions and the application dependent functions are contained in separate code modules

with different environments. Code in the primitive environment is strongly typed (as in the data

structure) while code in the application environment is relatively weakly typed. Primitive functions

manipulate the various data objects directly. Application functions are only permitted to manipulate

one abstract object type which is a union of the primitive object types. A primitive function called by

the application code checks the type field of each object passed to it to dispatch to the proper section

of code for that type of object (or to produce an error message if the function is undefined or illegal

for that object type). This abstraction forces the application code to use only the primitive functions

to manipulate the data structures thus insuring (insofar as the primitive code is error-free) that data

structure integrity is maintained. The strong type checking in the primitive code module decreases

the chance of errors while the application programmer is spared the nuisance of keeping track of all

the data types.

The data abstraction at the application level also provides an opportunity to use of special

abstract data objects which are never explicitly "seen" by the application code. Two such special

objects are used within the primitive environment. These are described below along with the primitive

functions which use them.

Several terms which are used throughout the discussion below need to be defined:

A point or location is a simple coordinate pair object. A label point layout object is always

referred to as a label point.

- The bounding box of an object is the (imaginary) box just large enough to enclose the

object.

· A feature of an object is a descriptor of a location on the object. A feature descriptor can

specify one of several points on the bounding box of an object (i.e., corners, center, or

midpoints on the edges) or (if the object is an instance, cell, or vector) it can be the path

name of a label point in the object.

- A hierarchical object is an object which can contain other objects, i.e., a cell, instance, or

vector.

A path name is name which uniquely identifies an object within the structure of a given

97

I _�_�_ ---- ··-- ^I -I ----- ---- I

hierarchical object. A simple path name is the name of an instance, vector, or label point

contained within the given object. Path names can be concatenated together to trace

down through the hierarchical structure. For example, to identify a point named "foo"

within an instance "bar" inside the given object, the path name "bar.foo" is used. To

identify a point named "foo" inside the fourth instance in vector "bar", the path name

"bar.4.foo" is used. For a path name to be valid, there must be exactly one object which

can be identified by that name inside the given hierarchical object.

The following primitive functions are provided for use in the application environment:

-Create a new cell definition given a name. A cell of the same name must not already exist
in the library. This new cell becomes the current cell; objects created by primitive

functions are always added to the contents of the current cell.

* End the definition of the current cell. This function is always paired with the cell creator

function. Cell creation can be nested.

· Find a cell definition given its name. This is used in creating an instance or vector of a

library cell.

Create a box given two diagonally opposite corner points and a mask layer. The new box

is added to the current cell.

- Create a label point given a location, a mask layer, and a name.
* Create an instance of a cell given the cell, a reflection/rotation, a name (for the instance),

an alignment feature inside the instance, and a location to which the given feature is to

be aligned. The alignment feature describes a point within the cell definition to which the
instance refers. It can be one of the corners of the bounding box of the cell or it can be

the name of an label point inside the cell. The label point alignment is the most commonly

used form.

-Create a vector of cell instances given the cell, a reflection/rotation, a name for the
vector, an alignment feature inside the cell, a location at which the alignment point of the

first instance in the vector is to be positioned, a length, a starting index, and a pair of
replication features in the cell. The two replication features are used to align an instance

in the vector to its neighbors.

- Return the location of a feature in a given object. The feature can be either a bounding
box feature or the path name of a point in which case the location of the point is returned.

This is used to find alignment locations.

- Move an object given a start point and an end point.

Find an object inside a given hierarchical object given a path name for the target object.

This is used to get a handle on an object for later (perhaps repetitive) reference. If the

98

path name refers to an object which appears at the top level of the hierarchical object

then the function just returns a pointer to that object. If the target object is deeper in the

hierarchical structure, then the function cannot simply return a pointer to it. For example,

if the function finds an alignment label point within an instance and returns a pointer to

the label point object in the cell definition for that instance, then the instance

transformation information will be lost and the location of the returned object will not, in

general, be the same as the location of the path named label point! In such cases, the

function actually returns a special type of object called a closure. A closure object is

nearly identical to an instance object. The closure contains a pointer to the found object
(which need not be a cell definition) along with the transformation required to keep the

object in the proper position and orientation. This transformation is the composition of

the transformations encountered while tracing down through the hierarchical structure to

find the target object.

In addition to the simple functions above, there are two powerful functions which require more

elaborate description. These are the stretch function and the router function. The stretch function is

used to adjust the size of stretchable cells such as bus buffers and end cells of variable height blocks.

It is a powerful, general-purpose function. Its parameters are: a handle on the object-to be stretched,

a pair of points on a fracture line which divides the target object into two sections, and a pair of points

describing the stretch displacement. The only restrictions on the parameters are that the stretch

displacement must be either horizontal or vertical and must not be parallel to the fracture line. The

fracture line can have any orientation, though it is usually perpendicular to the displacement.

The operation of the stretch function is simple: the function determines on which side of the

fracture line the displacement points lie, then moves all objects on that side of the fracture line by the

displacement amount; boxes with two corners on each side get stretched. The powerful-feature of

this function is that it operates properly in the presence of hierarchical structure in the stretched

object; if the fracture line divides an instance within the target object, then the following steps are

taken:

- A duplicate is made of the contents of that instance's cell definition.

* The stretch parameters are mapped into the duplicate cell's coordinate system using the

inverse of the instance's transformation.

*The stretch function is recursively applied to the duplicate cell.

- Finally, the instance is modified to reference the duplicate cell.

This allows the stretch function to stretch all boxes in the target object as if there were no hierarchical

structure without affecting unrelated instances of the cells appearing the structure of the target cell!
99

__ L_~~~~~~~~ _ _~~~~~~ __~- _·_�I_ _1�1�� �II _I__ --

The obvious disadvantage of this method is that can result in the generation of large number of

duplicate cells. To ameliorate this problem, the stretch function makes use of a special data

structure, the stretch object. When a duplicate cell is created and stretched, the function appends a

new stretch object to a linked list of these objects attached to the parent cell. This object contains a

pointer to the stretched duplicate and a canonic representation of the stretch parameters used.

When the function is called upon to stretch a cell, it first checks that cell's stretch object list to see if

the required stretch has already been done and, if so, immediately returns a pointer to the existing

stretched duplicate. This minimizes the number of duplicate cells required.

The last primitive function is actually an application level function in that it only uses the abstract

primitive functions. This is the simple router function. It was originally implemented as an application

function to do the routing inside the shift block but it turned out to be useful for all of the routing tasks

which could not done with library cells. The function of the router is straightforward; it does a

minimum-height single-layer routing between contact regions on two parallel edges of a rectangular

channel. It is given two lists of contact points (one for each channel edge), a mask layer, the

minimum mask width, the minimum mask spacing, a source object, a destination object, and a pair of

points on a fracture line between the source and destination. The contact points are expected to lie

along edges in the source and destination objects. The source and destination object should be

initially positioned at the closest permissible separation. The router then constructs a cell containing

the wiring to connect the two edges in the minimum possible distance. If the channel is too large for

the wiring, then the router extends the wiring to fit. If the channel is too small, then the router uses

the stretch primitive with the given fracture line to stretch the destination object to allow the wiring

cell to fit. The stretch feature is provided so that existing connections between the source and

destination objects are preserved.

The functions described above constitute the core of the primitive functions. A typical usage of

these functions is to write an application function for constructing a new cell built out of library cells.

The canonical form of such a function is as follows:

- The application function receives a set of parameters controlling the construction of the

desired cell, say, the number of bits in a data bus.

- By convention, the name of the new function should be constructed from a base name,

which is unique for each constructor function, plus a copy of each of the control

parameters. For example, a cell of type "foo" with data path width of 6 could be named

"foo-6". The function first builds the name of the desired cell, then checks to see if a cell

100

I I

D

D-
Figu re 4-31: Example of Routing Primitive

with that name already exists before it attempts to construct a new one. This keeps the

function from building a duplicate of an existing cell. Of course, the the constructor

function must be a function in the formal sense; any given set of parameters in the range

of the function must map to exactly one cell layout in the domain of the function.

- If the cell needs to be built, then the cell creator primitive is called with the new name.

This suspends the creation of the current cell and makes the new cell the new current

cell.

* The constructor then uses the primitive functions to find and assemble library cell in the

proper configuration. The function can also call other constructor functions since the

cell creation process is recursive.

- The end cell definition primitive is called after all objects have been added to the new cell.

This restores the previous current cell (if any) to active status.

- Finally, the constructor returns a pointer to the new cell to its caller.

All of the algorithms described in the previous section are implemented using the form described

above. The overall form of the adder constructor is described below.

101

_I _Is _I C~~~~~~~~~~~~~~~~~~~~~~~~~s_ _II__~~~~~~~~~~~~~~ ���1__4___111_··__C11_--^-�·-.1�·11�-·11 �L-^-- I- _ 11-1 -- -I II I �--_I

4.7.2 Application Functions for the Adder

The application code in the adder constructor program consists of: a top-level function which

receives the user specified parameters; a cell constructor for the complete adder cell; a cell

constructor for the fraction section; a cell constructor for the exponent section; and a set of cell

constructors which implement the individual function block construction algorithms described in

earlier sections.

The top-level function builds an adder layout using the following process:

* Obtain the design parameters from the user (exponent width, fraction width).

Load the library of basic cells into the internal database.

- Call the adder constructor function with the user given parameters.

* Write out the completed layout to permanent storage.

The functions for building and assembling the function blocks follow closely the algorithms

described in previous sections. The only functions left to specify are the three top-level constructors.

The fraction constructor is straightforward and assembles the fraction section from top to bottom,

calling each block constructor in turn to assemble the next lower function block. The adder

constructor simply calls the fraction constructor and exponent constructor, then abuts instances of

the resulting cells using alignment points in the cells to build the complete adder unit. The exponent

constructor is similar in form to the fraction constructor except that it also contains the code for

generating the interconnect between the sections.

Since the exponent constructor needs to find alignment points in the fraction section, it obtains

a handle on the fraction cell (it assumes that the fraction cell has already been built). It then orients

its function blocks and wiring relative to the alignment information obtained via the handle. The

fraction cell itself does not actually appear in the exponent section. It is only used as a reference for

constructing the exponent section.

Since the input blocks (input buffer, exponent comparator, swap blocks) do not vary in height,

the hidden bit wiring and swap control connections are contained in the appropriate function block

end cells. The two sections are initially positioned by abutting the input blocks. The routing function

is then used to perform the exponent difference to denormalize and zero-count to exponent adjust

wiring. If there is not enough room for the router to operate, then the two sections are moved apart

and the existing wiring stretched. The wiring between the two sections of the output buffer is done by

102

_U

stretching wiring in the right end cell of the exponent output section to connect to the left end cell in

the fraction output section.

The verification of the proper operation of the constructor program was carried out by

examining four key adder configurations during the design process ([Ne, Nf] pairs): [3,4], [3,10], [4,4],

and [4,10]. Together, these four examples exercised all of the special case handling code in the

constructor program. Figure 4-32 shows the layout of an adder with 4bit exponent and 10-bit

fraction.

103

-_I�·II�LIII__·�-IC-- ^·---�-- �-�-L--�-·-�--�- .
II 1111111 1111 111 11111 --- ---- · ^-l-·~~~~LIIIII_--

Figure 4-32: Layout of 15-bit floating point adder

104

CHAPTER FIVE

Implementation of the Multiplier

In this chapter we carry out the high-level design of a floating-point multiplier unit using the

same methodologies applied to the adder in the previous chapter. As before, the first step in this

process is to determine the exact requirements for the multiplier function blocks.

5.1 Functional Specification of Multiplier Logic

Figure 5-1 shows the detailed structure of the floating-point multiplication algorithm. The inputs

are the operands A and B each of which consists of an Ne-bit exponent, Ae , Be; a sign bit, As, Bs; and

an Nf-bit fraction, Af, Bf.

The detailed sequence of operations is as follows:

1. If either operand is zero then immediately output a zero result.

2. Append a 1 above the MSB's of Af and Bf. This operation recovers the "hidden" bit in the

normalized numbers. The fractions now have Nf + 1 bits each.

3. Multiply the two Nf + 1 bit fractions together to get the 2Nf + 2 bit unsigned product R"f

(only the most significant Nf + 2 bits of R"f are actually used).

4. Add Ae to Be to obtain the raw result exponent R"e
5. Examine the MSB of R"f. If this bit is a 1 then select the Nf next most significant bits of

R"f as the normalized result R'. If this bit is a 0 then the next most significant bit of R"f

must be a 1 (since the raw result is in the range 1.0 to 4.0). In this case, drop the two

most significant bits of R"f and select the Nf most significant bits remaining as R'f.

6. If the MSB of R"f is 1 then increment R"e to obtain the result exponent R'e.
7. Compute the result sign as R's = A(B S.

8. If the result exponent is zero or the exponent addition underflowed, then output a zero

result. If the exponent addition or the normalization adjustment overflowed, then output

the overflow constant retaining the sign of the result. If there are no exceptional

conditions then pass the values R'e R's and R'f through as the final result Re' Rs, Rf.

105

~~~~_ I_~~~~~~ ~ - 91Pll C -·CI·*IP I I- �-�II�1^- -·LIIIII�·L·-·IIIII-1��1·-1·-11-__- I ��-----l·II�C-- __ 1111 1



Re

Figure 5-1: Floating-point multiplication algorithm

5.2 Specification of Function Block Forms

Figure 5-2 shows the multiplier floor plan described below. All but one of the function blocks in

the multiplier are similar to blocks we have already seen in the adder. The unfamiliar kind of block is

the fraction multiplier which dominates the floor plan of the multiplier unit. We will consider this block

first.

The fraction multiplier is fundamentally an integer multiplier. Considerable study has been made

of the problem of constructing high.speed integer multipliers. For the purposes of this discussion we

assume that a multiplier generation procedure is available. Particularly well-suited for this purpose is

the Baltus multiplier generator [13] which constructs a variable-size fraction multiplier based on a

fixed-size prototype designed by Evans [14].

106

Rf



Bf
A.,

Bs

I I I
INPUT

R'' MSBf

.I
1 NORMALIZE
L

]J,Rj

OUTPUT

I I ... Ik1, ,,

Rf

Figure 5-2: Initial floor plan of multiplier layout

107

IN FRACTION
MULTIPLY

Ae
e~ I 71

Zero

Ofto/
Uflo

ZeroF~
EXC.

INPUT

ZERO

ADD

ADJUST

ZERO

OUTPUT

XOR

OUT

IF
.1

Re

m . l _
l _ l _

-

_ |

_,=aa ~ !

,-.- [--

. .

_

" �� �1 ^II� �-·----~~~~FI-S~~~---I- ·------ ·--l-CI ··s~~~~~~~--- --̂ ------rCI·l-llll�L�C�CII--X-----·IP- --

Be

I ... I

I

...

I : I.-



This generator constructs a multiplier array using modified Booth recoding to minimize the size

of the internal adder cell array and obtain 2's complement operation. Since our floating-point

multiplier uses sign-magnitude representation, the boundary conditions on the multiplier array in the

Baltus generator must be modified to accomodate unsigned operands. In order to discuss the

modifications, we need to review the recoding technique used in this multiplier.

5.3 Modified Booth Recoding

In order to compute the product of two N-bit integers, we could use a set of N rows of N-bit

adders where each row computes the partial product of one of the A operand bits with the B operand

and adds this to the total product. Thus each row performs the operation Pi+ 1 = Pi + BAi 2i'. If we

consider the rows i and i + 1 together, they perform the operation of adding 0, 1, 2, or 3 times the B

operand to the total product depending on the states of Ai and Ai+ 1 (multiplying the partial product by

the binary significance of row i). We can reduce the complexity of the array by observing that the

operations required of a row pair can be modifed to eliminate the need for adding 3 times the B

operand. The modified Booth recoding technique changes the required set of operations for a row

pair from { + OX, + 1X, + 2X, + 3X} to {-2X, -X, + OX, + 1 X, + 2X}. Multiplication by 2 can be done by

shifting and subtraction can be done by complementing the B operand and setting the carry input of

the current row to 1 (using 2's complement arithmetic). Thus the row pair can be replaced by a single

N + 1-bit adder row with a multiplexer on its B input to select the proper value for each operation. The

overall size of the array is then reduced to N/2 rows of N + 1-bit adders with input multiplexers.

Two logical signals are used to control the operation of a row. These are S, the operation sign,

and F, the operation factor which have possible terminal states of {ADD, SUB} and {OX, 1X, 2X}

respectively. Table 5-1 shows how the row control signals are derived from the states of bits Ai-1, Ail

and Ai+ 1 (for row pair [i,i + 1]). This particular recoding of the A operand bits is known as the

modified Booth recoding. In addition to reducing the size of the array, this recoding results in both

operands and product being correct when interpreted as signed 2's complement values. Rubenfield

has presented a formal proof of this technique [15].

108

I



A + 1 Ai A 1 S F

0 0 0 ADD OX

0 0 1 ADD 1X

0 1 0 ADD 1X

0 1 1 ADD 2X

1 0 0 SUB 2X

1 0 1 SUB 1X

1 1 0 SUB 1X

1 1 1 SUB OX

Table 5-1: Modified Booth recoding

5.4 Designing the Fraction Multiplier Prototype

The 2's complement operation of Booth recoded multipliers is normally a benefit; in our case,

however, we want unsigned arithmetic for the fraction multiplier. This is obtained by adding an

explicit zero (positive) sign bit to each operand. In addition, the "hidden" fraction MSB bit must be

included in each operand. Given Nf-bit fraction operands, the raw size of the multiplier array is then

(Nf + 2)/2 rows of N + 2 bit cells. Figure 5-3 shows the complete logical structure of a protoype 6 by 2

bit multiplier. This size was selected to show all types of cell interaction; normally, the number of bits

in the A and B operands would be equal.

Figure 5-4 shows the floor plan of the layout cells corresponding to the logical diagram in figure

5-3. The logical function of each cell is described below.

The fundamental cell in the array is the adder/multiplexer cell (ARRAY BIT). This is composed

of three modules: The 0/1/2X module is a multiplexer controlled by the Fi signal which selects either

the constant zero, the left input (B operand), or the right input (2.B operand). The 0/1 /2X module's

output is conected to the data input of the + /- module which selects whether or not to complement

the data under control of the Si signal. The CSA (carry-save adder) module is a full adder.

Surrounding the core of array bit cells is a set of boundary cells. There are five categories of

boundary cell:

109

- �---�sle �- I--I I·--Y----IIIIIIlll-�--- .II~-- I C- - ._ _ A.. .. l --· 1~~1 _.1~-1_-~· s - ~ --



Ro

Figu re 5-3: Logical diagram of prototype fraction multiplier

110

I



1

ARRAY
LEFT
TOP

ARRAY

LEFT

I

ARRAY

LEFT

ARRAY
LEFT

BOTTOM

ARRAY
SIGN
TOP

ARRAY

SIGN

ARRAY
SIGN CONN

ARRAY

SIGN

ARRAY
SIGN

BOTTOM

ARRAY
BIT
TOP

ARRAY

BIT

ARRAY
BIT CONN

ARRAY
RIGHT

! TOP

ARRAY

RIGHT

[

ARRAY
BIT
TOP

ARRAY

BIT

ARRAY
BIT CONN

ARRAY

BIT

ARRAY
BIT CONN

ARRAY

RIGHT

BOTTOM

ARRAY

BIT

ARRAY

BIT

BOTTOM

R3

R3

ARRAY
BIT CONN

ARRAY

BIT

BOTTOM

ARRAY

BIT

ARRAY
BIT CONN

ARRAY

BIT

BOTTOM

ARRAY

BIT

ARRAY
BIT CONN

ARRAY

BIT

BOTTOM

II

Ro

Figure 5-4: Floor plan of prototype fraction multiplier

- The top row of the array requires no CSA modules since there is not yet any accumulated

product hence the top row cells contain only the multiplexer modules.

-The leftmost column of bit cells (the sign bit column) has a constant zero B input (since

the sign of B is always positive) hence the 0/1/2X module is omitted from these cells.

The lowermost cell is omitted since its output is always zero.

-The leftmost column of cells generates the set of S and F recoded signals from the A

input operand. The two most significant bits of the A operand are always 01 as in the B

operand. The lowermost RECODE module (ARRAY LEFT BOTTOM) is simplified to take

this into account. Since this module only implements the second and fourth rows of table

5.1, the multiplexers in the bottom row of the array can be simplified to provide only for

1X and 2X values of B. In the case of N odd (e.g. Nf = 5), the lowermost recode module

111

ARRAY

RIGHT

A0 (-

A (-

A2 (-

A3 (

A4 (

A5 

ARRAY
BIT
TOP

ARRAY

B BI

ARRAY
BIT CONN

ARRAY
BIT
TOP

ARRAY

BIT

ARRAY
BIT CONN

iii iii ii ii ii i -

i i ii I i

i1! ii i i

i i iii i . . i i ii" ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

. .,.__.
.~~~ ~ ....- -- -· ^

0

17"
B1

.I

Bo

'i-i

R2

R2 R1



and multiplexers are omitted entirely since the lowest row will always add B to the result

product.

The bottom row of adder/mux modules includes a set of carry-propagate modules (CPA)

to compute the final result. The CPA modules are full adders like the CSA modules

except that they are optimized for maximum carry propagation speed.

The rightmost column of modules computes the carry from the least significant result bits.

This is required for effective infinite precision arithmetic before result truncation. The CP

module is a carry-propagate adder module which has had its sum bit cicuitry removed

and hence only computes the carry. The CP' module is a half adder of the same form as

the CP module.

5.5 Multiplier Function Blocks

Like many array multiplier forms, the Baltus-Evans multiplier accepts the input operands along

two adjacent edges and produces the double length result along the remaining two edges. The B

operand on the top edge has its MSB at the left. The A operand on the left edge has its MSB at the

bottom. The result MSB is at the bottom left corner. This orientation matches well with the adder bus

orientations. The option of routing the A input wiring to the top edge to match the adder topology is

left to the end user of the multiplier layout. The exponent and sign wiring is arranged to match the

adder topology as well as possible.

The input driver blocks are similar to those in the adder unit. The exponent section input cells

are identical to the adder unit input cells. The fraction section input cells are sized to fit the pitch of

the cells internal to the multiplier block.

The zero detect blocks in the exponent section can be built using the "sticky" bit OR cell from

the adder denormalizer block.

The exponent add and adjust blocks can use the full adder and half adder cells used in the

adder unit. Care must be taken to make sure that the exponent bias of 2Ne - 1 is taken into account

in the exponent arithmetic. For example, if Ne = 4, then the exponent addition must be offset to obey

01112 + 01112 = 01112 (2020 = 20). This can be done by complementing the MSB's of each exponent

before addition and setting the carry input of the exponent adder to 1. The MSB of the output of the

exponent adjust block must then be complemented before the test for zero result exponent. This

encoding allows the carry outputs of the exponent arthmetic blocks to be used directly for overflow

and underflow detection as in the adder unit.

112

I



The normalize block can be built using the multiplexer cell from the adder unit, sized to fit the

cell pitch in the output section of the multiplier block. The two output blocks can be constructed

using the same set of cells as in the adder unit.

The sign and exception handling blocks must, of course, be specially designed for the multiplier

unit since their logical structure is much different from the structure of the corresponding blocks in

the adder unit.

113

_I� _ �11-···__1111_1_1_.� ~~~~~··II. - 1·1·----_1. .- Ii ---^I --



CHAPTER SI X

Conclusions

This research revealed that an important part of the creation of a procedure for building VLSI

layout is providing for the verification of the correctness of all layouts that the procedure is capable of

generating without actually having to construct and test each one. This verifiability was obtained by

adherence to design methodologies at all levels of abstraction, nameley: the functional level, the

logical network level, the physical circuit level, and the layout level. At each level a set' of rules for

constructing well-formed and/or well-behaved structures was given; each set of rules being divided

into two classes: rules for guaranteeing correctness of individual modules and rules for combining

correct modules into larger modules which are also correct. The particular set of rules used in this

thesis are largely technology independent and cari be adapted for use in a variety of design

environments.

At the functional level, the primary rule was to use linear structures to impleinent the function

blocks in the top-level descriptions of the arithmetic algortihms. These structures mapped into the

lower levels of abstraction so as to reduce the verification of structures with variable bus widths to

simple induction on a small set of test cases. The price of placing this kind of restriction on design is

the exclusion of tree-structured circuit forms which can achieve O(log N) performance in certain

cases where the performance of the linear structure is O(N) or worse.

At the network and circuit level, a set of rules was provided which guarantee that a precharged

combinatorial network is free of critical races. A simulation program was developed to check

adherence to the rules. This methodology was presented at several levels of generality so that it can

be adapted to technologies other than the NMOS technology used in this thesis. The cost of using

this particular methodology is the area overhead required to implement logical signals as multi-wire

physical signals which seems to run between 50 and 75 percent increase over a conventional circuit.

114



At the layout level, conventional geometric design rules were combined with the linear structure

rules from the functional level to obtain a set of rules for guaranteeing the geometric correctness of

variable bus width structures. Circuit rules were checked at this level by extracting the circuit

description of a layout and applying the circuit level verification program.

6.1 Improvements

There are a few areas which this research did not explore which would be of interest:

-The combinatorial arithmetic units described above could be split into sequential

sections (i.e. pipelined) to achieve greater throughput at the expense of total time to

compute a single result. The combination of pipelining with the self-timed combinatorial

methodology could be investigated.

- There probably exists a set of rules for constructing variable-size tree-structured layout

forms. This topic could be investigated more vigorously.

- It was fortunate that the simple routing procedure was able to do all of the routing tasks in

the adder unit. A more robust system for doing procedural design would need to have

available a powerful routing mechanism for handling wiring which cannot be efficiently

done by abutting fixed cells.

115

_____·_ _II___I______ ·�--L-U-l·IYI-_----�- -I 1_1^-- 1 1 - ~I I _



References

[1] Intel Corp., Intel Component Data Catalog, 1981.

[2] Weitek Corporation, WTL 1032/33 Preliminary Data Sheet, 1983.

[3] F. Ware and W. McAllister, "CMOS Chip Set Streamlines Floating-point Processing,"
Electronics, Vol. Volume 55-3, Feb. 10 1982, pp. 149-152.

[4] "A Proposed Standard for Binary Floating-Point Arithmetic," Computer, Vol. 14, March 1981,
pp. 51-62.

[5] P. M. Ebert, J. E. Mazo, and M. C. Taylor, "Overflow Oscillations in Digital Filters," Bell System
Technical Journal, Vol. 48, 1969, pp. 2999-3020.

[6] J. T. Coonen, "Underflow and the Denormalized Numbers," Computer, Vol. 14, March 1981,
pp. 75-87.

[7] D. Hough, "Applications of the Proposed IEEE 754 Standard for Floating-Point Arithmetic,"
Computer, Vol. 14, March 1981, pp. 70-74.

[8] A. V. Oppenheim and C. J. Weinstein, "Effects of Finite Register Length in Digital Filtering and
the Fast Fourier Transform," Proceedings of the IEEE, August 1972, pp. 335-354.

[9] R. T. Masumoto, "A 16 Bit LSI Digital Multiplier," Master's thesis, California Institute of
Technology, 1978.

[10] C. Mead and L. Conway, Introduction to VLSI systems, Addison-Wesley, 1980.

[11] C. J. Terman, User's Guide to NET, PRESIM, and RNL, Massachusetts Institute of Technology,
1982.

[12] S. P. Mccormick, "Automated Circuit Extraction from Mask Descriptions of MOS Networks,"
Master's thesis, Massachusetts Institute of Technology, 1984.

[13] D. G. Baltus, "Design of an Assembler of NMOS Fast Parallel Fractional Multipliers,"
Bachelor's thesis, Massachusetts Institute of Technology, 1983.

[14] W. H. Evans, "An MOS LSI Digital Signal Processor for Speech Synthesis Applications,"
Master's thesis, Massachusetts Institute of Technology, 1982.

[15] L. P. Rubenfield, "A Proof of the Modified Booth's Algorithm for Multiplication," IEEE
Transaction on Computers, Vol. C-24, October 1975, pp. 1014-5.

116




