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I1. Introduction The system (1)-(3) is strongly observable on

[k,t] if the map zi(k,L)-* (y(m): me[k,])} is one to
In this paper we present results related to the !

smoothing problem and related generalized Riccati one. System (1)-(3) is called strongly observable if
equations for the tw6-point boundary value descriptor it is observable on some [k,).
system (TPBVDS)

Ex(k+l) = Ax(k) + Bulk) (1) Theorem2
Vx(0k)+ Vfx(N)=v (2) The following statements are equivalent

i Vi f x(O +V )=a) System (1)-(3) is strongly observable.
y(k) = Cx(k) (3) b) The strong observability matrix

Iwhere E, A, Vi and Vf are possibly singular nxn cAn-l

'matrices, and B and C are nxm and pxn matrices
respectively. (8)

III. System'Theory for TPBVDSs has full rank.

In [1-2] we develop a basic theory for (1)-(3). [c) The matrix [ has full rank for all
'Many of the aspects of this theory have a similar C
flavor to that in [4-5], although the possible ;(s,t)X(O,O).
singularity of E and A creates some significant id) For all matrices Vi and Vf in standard form, the
differences. As discussed in [1,2]. when (1)-(2) is state x() where ien.N-n can be uniquely determined
iwell-posed, we can assume that it is in standard form, fromstate x(i) where ie n-n can be uniquely determined
i.e. for some constants a and from the outputs y(J): jei-ni+n-].

aE+Pf A = 'I (4) It is also possible to define notions of weak
and Ireachability and observability which explicitly

involve the boundary matrices Vi and Vf and to develop
i =I a theory of minimal realizations [1-2]. In addition,

As in [4-5], x(k) can be decomposed into an 'in [1] we develop methods for the recursive solution
outuward process z0 and an inward process zi. The of (1) and develop several notions of stability for

outward process z° is defined as

z (k.t) = Et-kxC ) - A kx(k) k<t. (6) III. The Optimal Smoother

By eliminating x's in (6), we find that zo(k.t) is Consider the system (1)-(2) together with the
only a function of the inputs inside the interval !moise-corrupted observations
[k,L]. Also note that zo does not depend in any way on i y(k) = Cx(k) + r(k) k=l...N-1 (9)

the boundary matrices Vi and Vf. The expression for Yb = Wix(O) + Wfx(N) +rb (10)

the inward process zi is in general very complex, Here r(k), rb. u(k), and v are mutually independent,

although in the so-called stationary case there is a ;rb is a zero mean, Gaussian random vector with
simple expression for zi [1]. lcovariance l b . and r(k) is a zero mean white Gaussian

The system (1)-(2) is strongly reachable on [k,t] noise process with covariance R.
if the map from {u(m): me[k,t-l]} to zo(k,£) is onto. It can be shown [3] that the smoothed estimate

System (2.1) is called strongly reachable if it is ix(k) satisfies the following TPBVDS
jreachable on some [kL]. r 0 1

.x(kl = dx(k)] +
iTheorem 1: [X(k+l) LX(k) [C'Rly(k)

The following statements are equivalent (11)
a) System (1)-(2) is strongly reachable. r (1) +x(N)]
b) The strong reachability matrix iX(1) f N b (12)

R = hAs 1 B- [An--lB.- E n (7) where

has full rank. = [o -A' ]' = -[ 1 -E] (13)]
c) The matrix [sE-tAJB] has full rank for all and where i. If and A are complicated matrices.
I(st)(0,0o). f
'd) The state x(i) where ie[n,N-n] can be made To compute the estimate we can use any of the
arbitrary by proper choice of the inputs !recursive algorithms developed in [1-2]. One of these
iu(j): je[i-n,i+n-l] with all other inputs and the is the so-called two-filter solution in which the
'boundary value v set to zero, and for all pair of TPBVDS dynamics are decoupled into forward and
;matrices V and V in standard form. backward recursions, followed by a correction to

._f account for the boundary-conditions. A necessary, but
not sufficient, condition for stability of a TPBVDS is
that it is formard-bacumard stable, i.e. a decoupling

w The research described in this paper was supported transformation can be found so that the forward and
in part by the Air Force Office of Scientific Research backward recursions are both stable.
under Grant AFOSR-82-0258 and in part by the National
Science Foundation under Grant ECS-8700903.



In the case of the optimal smoother, it is shown References
in [3] that if the following generalized Riccati
equations (1) Nikoukhah, R. System Theory for Two-Point Boundary

,B-1 * + 8-1 A + CR 1 C ('14) , Value Descriptor Systems, S.M. Thesis, Dept. ofe = A BQB - C i Elec. Eng. and Comp. Sci., MIT, Lab. for Info. and

I -= A(E'k 1E + C'R'C) 1A' + BQB' (15) i-- Dec. Sys.. Rept. LIDS-TH-1559. June 1986.
have positive definite solutions * and 8 then there
exist invertible matrices M and N such that (2) Nikoukhah, R., Willsky, A.S., Levy, B.C., Boundary

0 I Value Descriptor Systems: Well-Posedness,
MN1 = S-1-l (16) Reachability, and Observability, to appear in the

A'S-1 E A-1m OInt. J. Contr.; also MIT, Lab. for Info. and Dec.
MAN -1 = [ IJ] (17) Sys., Rept. LIDS-TH-1626. Nov. 1986.

Moreover, the eigenvalues of AT-1 E'l 1 and A'S-1 E0- 1 (3) Nikoukhah, R., Willsky, A.S., Levy, B.C.,
fare inside or on the unit circle. Equation (3.5) is Estimation for Boundary Value Descriptor Systems,
!called the descriptor Hamiltonian equation and the submitted for publication; also MIT, Lab. for Info.
·above decomposition is the descriptor Hamiltonian and Dec. Sys., Rept. LIDS-TH-1600. Aug. 1986.

idiagonalization. Of course, we would like AT-1E'* - 1

i di-gonalizt1 i-n1 Of couse, wewould ike ATE"J'1 (4) Krener, A.J.. Boundary Value Descriptor Systems,
!and A'S 1E- 1 to be strictly stable. This occurs only Asterisque, 1980.
Iwhen the descriptor Hamiltonian has no eigenmodes on
:the unit circle i.e. it is forward-backward stable. (5) Krener, A.J., Acausal Realization Theory, Part I:

.. · --.---.......-...--...-. ! Linear Deterministic Systems, to be published.

Theorem 3: 
If the system is forward-backward detectable and (6) Kucera, V., The Discrete Riccati Equation-of

stabilizable (i.e. the modes on the unit circle are I Optimal Control. Kybernetika. Vol. 8 (1972), No. 2.
strongly reachable and strongly observable) then the
corresponding smoother is forward-backward stable.

IV. Generalized Riccati Equations

In this section we study the generalized
algebraic Riccati.equation.

| = A(E'w-1E + C'R 1C)- A' + BQB'. (18)

'Theorem 4:
If (E,A,B) and (C,E,A) are strongly reachable and

observable respectively then (18) has a unique
positive definte solution.

The approach used to prove this theorem is
similar to that in [6] for the standard Riccati
equation. Details will be presented in a future
paper. Existence proceeds as follows. From Theorem 3
and the fact that eigenmodes of the smoother occur in
reciprocal pairs, we know that we can write

E -BQB' A 01 

1 0 | . I [ IJ= [$ -1 1l [ E J (19)
0 -A' 'R C -E'

jThe proof then proceeds by first showing that F is

invertible, then that E'GF + C'R C > 0 and finally
that

= (A(E'GF- 1 + C'R- 1 C)- 1A' + BQB'); (20)
satisfies (18).

To prove uniqueness, let pi and P2 be two
positive definite solutions of (18), let Ap = -PIP2.
and

Ti =E',plE + C'R 1C for i=1.2. (21)ii1.*
Some algebra then yields

ap = AT 1 E" 1 -1 2-l
A AT1 E' 1 ApW 2 ET A'. (22)

But AT 1E'p 1 -1 r 1

But AT1 E'V1 and P2 ET2 A' are strictly stable (see

I[3]); thus Asp = 0'.


