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Abstract

The original and most widely studied PAC model for learning assumes a passive learner in the
sense that the learner plays no role in obtaining information about the unknown concept. That is,
the samples are simply drawn independently from some probability distribution. Some work has
been done on studying more powerful oracles and how they affect learnability. To find bounds on
the improvement that can be expected from using oracles, we consider active learning in the sense
that the learner has complete choice in the information received. Specifically, we allow the learner
to ask arbitrary yes/no questions. We consider both active learning under a fixed distribution
and distribution-free active learning. In the case of active learning, the underlying probability
distribution is used only to measure distance between concepts. For learnability with respect to
a fixed distribution, active learning does not enlarge the set of learnable concept classes, but can
improve the sample complexity. For distribution-free learning, it is shown that a concept class
is actively learnable iff it is finite, so that active learning is in fact less powerful than the usual
passive learning model. We also consider a form of distribution-free learning in which the learner
knows the distribution being used, so that ‘distribution-free’ refers only to the requirement that a
bound on the number of queries can be obtained uniformly over all distributions. Even with the
side information of the distribution being used, a concept class is actively learnable iff it has finite
VC dimension, so that active learning with the side information still does not enlarge the set of
learnable concept classes. g
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1 Introduction

The PAC learning model introduced by Valiant [20] provides a framework for studying the
problem of learning from examples. In this model, the learner attempts to approximate a concept
unknown to him from a set of positive and negative examples of the concept. The examples are
drawn from some unknown probability distribution, and the same distribution is used to measure
the distance between concepts. After some finite number of examples, the learner is required only
to output with high probability a hypothesis close to the true concept. A collection of concepts,
called a concept class, is said to be learnable if a bound on the number of examples needed to
achieve a certain accuracy and confidence in the hypothesis can be obtained uniformly over all
concepts in the concept class and all underlying probability distributions.

One goal of studying such a formal framework is to be able to characterize in a precise sense the
tractability of learning problems. For the PAC model, Blumer et al. [6] showed that a concept class
is learnable iff it has finite VC dimension, and they provided upper and lower bounds on the number
of examples needed in this case. The requirement that a concept class have finite VC dimension is
quite restrictive. There are many concept classes of practical interest with infinite VC dimension
that one would like to be and/or feel should be learnable. In fact, even some concept classes of
interest in low dimensional Euclidean spaces are not learnable. For applications such as image
analysis, machine vision, and system identification, the concepts might be subsets of some infinite
dimensional function space and the concept classes generally will not have finite VC dimension.
Hence, for many applications the original PAC model is too restrictive in the sense that not enough
problems are learnable in this framework.

A natural direction to pursue is to consider extensions or modifications of the original framework
which enlarge the set of learnable concept classes. Two general approaches are to relax the learning
requirements and to increase the power of the learner-environment or learner-teacher interactions.
A considerable amount of work has been done along these lines. For example, learnability with
respect to a class of distributions (as opposed to the original distribution-free framework) has been
studied [5, 13, 14, 15]. Notably, Benedek and Itai [5] first studied learnability with respect to a
fixed and known probability distribution, and characterized learnability in this case in terms of
the metric entropy of the concept class. Others have considered particular instances of learnability
with respect to a fixed distribution. Regarding the learner-environment interactions, in the original
model the examples provided to the learner are obtained from some probability distribution which
the learner has no control over. In this sense, the model assumes a purely passive learner. There
has been quite a bit of work done on increasing the power of the learner’s information gathering
mechanism. For example, Angluin [3, 4] has studied a variety of oracles and their effect on learning,
Amsterdam [1] considered a model which gives the learner some control over the choice of examples
by allowing the learner to focus attention on some chosen region of the instance space, and Eisenberg
and Rivest [8] studied the effect on sample complexity of allowing membership queries in addition
to random examples.

In this paper, we study the limits of what can be gained by allowing the most general set of
binary valued learner-environment interactions, which give the learner complete control over the
information gathering. Specifically, we consider completely ‘active’ learning in that the the learner
is allowed to ask arbitrary yes/no (i.e., binary valued) questions, and these questions need not be
decided on beforehand. That is, the questions the learner asks can depend on previous answers and




can also be generated randomly. Many of the oracles previously considered in the literature are
simply particular types of yes/no questions (although those oracles that provide counterexamples
are not). Both active learning with respect to a fixed distribution and distribution-free active
learning are considered. Since we are concerned with active learning, the probability distribution
is not used to generate the examples, but is used only to measure the distance between concepts.

Definitions of passive and active learning are provided in Section 2. In Section 3, active learning
with respect to a fixed distribution is considered. A simple information theoretic argument shows
that active learning does not enlarge the set of learnable concept classes, but as expected can reduce
the sample complexity of learning. In Section 4, distribution-free active learning is considered. In
this case, active learning can take place only in the degenerate situation of a finite concept class.
We also consider a form of distribution-free learning in which we assume that the learner knows
the distribution being used, so that ‘distribution-free’ refers only to the requirement that a bound
can be obtained on the number of yes/no questions required independent of the distribution used
to measure distance between concepts. However, even in this case active learning surprisingly does
not enlarge the set of learnable concept classes, but does reduce the sample complexity as expected.

2 Definitions of Passive and Active Learnability

The definitions below follow closely the notation of [6]. Let X be a set which is assumed to be
fixed and known. X is sometimes called the instance space. Typically, X is taken to be either
R" (especially R?) or the set of binary n-vectors. A concept is a subset of X, and a collection of
concepts C' C 2% will be called a concept class. An element z € X will be called a sample, and a pair
(z,a) with ¢ € X and a € {0,1} will be called a labeled sample. Likewise, T = (z1,...,2,) € X™
is called an m-sample, and a labeled m-sample is an m-tuple ((z1,a1),..., (€m,am)) where a; = a;
ifz; = zj. For T = (21,...,2,) € X™ and ¢ € C, the labeled m-sample of ¢ generated by T is
given by sam (%) = ({21, Ic(21)), -y (€ms Lc(2m))) where I (-) is the indicator function for the set
c. The sample space of C' is denoted by S¢ and consists of all labeled m-samples for all ¢ € C, all
TeX™ and all m > 1.

Let H be a collection of subsets of X. H is called the hypothesis class, and the elements of
H are called hypotheses. Let Fcpy be the set of all functions f : S¢ — H. Given a probability
distribution P on X, the error of f with respect to P for a concept ¢ € C and sample 7 is defined
as errory. p(T) = P(cAh) where h = f(sam.(Z)) and cAh denotes the symmetric difference of the
sets ¢ and h. Finally, in the definition of passive learnability to be given below, the samples used
in forming a hypothesis will be drawn from X independently according to the same probability
measure P. Hence, an m-sample will be drawn from X™ according to the product measure P™.
We can now state the following definition of passive learnability for a class of distributions.

Definition 1 (Passive Learnability for a Class of Distributions) Let P be a fized and known
collection of probability measures. The pair (C,H) is said to be passively learnable with respect
to P if there exists a function f € Fop such that for every €,6 > 0 there is a 0 < m(e,§) < oo
such that for every probability measure P € P and every c € C, if € € X™ is chosen at random
according to P™ then the probability that errors. p(Z) < € is greater than 1 — §.

If P is the set of all probability distributions over some fixed o-algebra of X (which we will denote
by P*), then the above definition reduces to the version from Blumer et al. [6] of Valiant’s [20]




original definition (without restrictions on computability) for learnability for all distributions. If P
consists of a single distribution then the above definition reduces to that used by Benedek and Itai
[6]. As often done in the literature, we will be considering the case H = C throughout, so that we
will simply speak of learnability of C' rather than learnability of (C, H).

By active learning we will mean that the learner is allowed to ask arbitrary yes/no questions. We
will consider only the case H = C throughout, and so we define active learnability in this case only.
For a fixed distribution, the only object unknown to the learner is the chosen concept. In this case,
an arbitrary binary question provides information of the type ¢ € Cy where Cy is some subset of C.
That is, all binary questions can be reduced to partitioning C' into two pieces and asking to which
of the two pieces does ¢ belong. For distribution-free learning (or more generally, learning for a
class of distributions) the distribution P is also unknown. In this case, every binary question can be
reduced to the form “Is (¢, P) € ¢?” where ¢ is an arbitrary subset of C' x P, so that C and P can be
simultaneously and dependently partitioned. Thus, the information the active learner obtains is of
the form ((q1,a1),- -+, (¢m,@m)) where ¢; C CxP and a; = 1if (¢, P) € ¢; and a; = 0 otherwise. The
¢; correspond to the binary valued (i.e., yes/no) questions and a; denotes the answer to the question
¢; when the true concept and probability measure are ¢ and P respectively. In general, ¢; can be
generated randomly or deterministically and can depend on all previous questions and answers
(q1,@1)y.-.,(gi—1,0;—1). The g; are not allowed to depend explicitly on the true concept ¢ and
probability measure P, but can depend on them implicitly through answers to previous questions.
Let § = (q1,---,¢m) denote a set of m questions generated in such a wnanner, and let sam,, p(g)
denote the set of m question and answer pairs when the true concept and probability measure are
c and P respectively. Let Scp denote all sets of m question and answer pairs generated in such a
manner for all c € C, P € P, and m > 1. By an active learning algorithm we mean an algorithm
A for selecting qy,...,qmn together with a mapping f : S¢p — C for generating a hypothesis from
sam, p(g). In general, A and/or f may be nondeterministic, which results in probabilistic active
learning algorithms. If both A and f are deterministic we have a deterministic active learning
algorithm. Note that if the distribution P is known then with a probabilistic algorithm an active
learner can simulate the information received by a passive learner by simply generating random
examples and asking whether they are elements of the unknown concept.

Definition 2 (Active Learnability for a Class of Distributions) Let P be a fized and known
collection of probability measures. C is said to be actively learnable with respect to P if there exists
a function f : Sop — C such that for every €,6 > 0 there is a 0 < m(e,8) < oo such that for every
probability measure P € P and every c € C, if h = f(sam(c, P)) then the probability (with respect
to any randomness in A and f) that P(hAc) < € is greater than 1 — 4.

3 Active Learning for a Fixed Distribution

In this section, we consider active learning with respect to a fixed and known probability distribu-
tion. That is, P consists of a single distribution P that is known to the learner. Benedek and Itai
(5] obtained conditions for passive learnability in this case in terms of a quantity known as metric
entropy.

Definition 3 (Metric Entropy) Let (Y, p) be a metric space. Define N(e) = N(e,Y, p) to be the
smallest integer n such that there exists yy,...,yn € Y with Y = U™, B(y;) where B.(y;) is the




open ball of radius € centered at y;. If no such n exists, then N(e,Y, p) = co. The metric entropy
of Y (often called the e-entropy) is defined to be log, N(e).

N (¢€) represents the smallest number of balls of radius € which are required to cover Y. For another
interpretation, suppose we wish to approximate Y by a finite set of points so that every element of
Y is within € of at least one member of the finite set. Then N(e) is the smallest number of points
possible in such a finite approximation of Y. The notion of metric entropy for various metric spaces
has been studied and used by a number of authors (e.g. see [7, 12, 19]).

In the present application, the measure of error dp(cq,¢2) = P(¢;Acy) between two concepts
with respect to a distribution P is a pseudo-metric. Note that dp(-,-) is generally only a pseudo-
metric since ¢; and c; may be unequal but may differ on a set of measure zero with respect to P.
For convenience, if P is a distribution we will use the notation N(e, C, P) (instead of N(e,C,dp)),
and we will speak of the metric entropy of C' with respect to P, with the understanding that the
metric being used is dp(-, -).

Benedek and Itai [5] proved that a concept class C is passively learnable for a fixed distribution
P iff C' has finite metric entropy with respect to P, and they provided upper and lower bounds
on the number of samples required. Specifically, they showed that any passive learning algorithm
requires at least log,(1 — §)N(2¢, C, P) samples and that (32/€)In(N(e/2)/§) samples is sufficient.
The following result shows that the same condition of finite metric entropy is required in the case
of active learning. In active learning, the learner wants to encode the concept class to an accuracy ¢
with a binary alphabet, so that the situation is essentially an elementary problem in source coding
from information theory [9]. However, the learner wants to minimize the length of the longest
codeword rather than the mean codeword length.

Theorem 1 A concept class C is actively learnable with respect to a distribution P iff N(e,C, P) <
oo for all € > 0. Furthermore, [logy(1 — §)N(2¢,C,P)| queries are necessary, and [log,(1 —
6)N (e, C, P)] queries are sufficient. For deterministic learning algorithms, [log, N (e, C, P)] queries
are both necessary and sufficient.

Proof: First consider § = 0. [log, N(e, C, P)] questions are sufficient since one can construct an
e-approximation to C' with N (e, C, P) concepts, then ask [log, N(¢, C, P)] questions to identify one
of these N(e, C, P) concepts that is within € of the true concept. [log, N(e,C, P)] questions are
necessary since by definition every e-approximation to C' has at least N (¢, C, P) elements. Hence,
with any fewer questions there is necessarily a concept in C which is not e-close to any concept the
learner might output.

The essential idea of the argument above is that the learner must be able to encode N(¢, C, P)
distinct possibilities and to do so requires [log, N(¢, C, P)| questions. Now, for § > 0, the learner is
allowed to make a mistake with probability §. In this case, it is sufficient that the learner be able to
encode (1 —§)N (e, C, P) possibilities since the learner could first randomly select (1 —§)N (e, C, P)
concepts from an e-approximation of N (e, C, P) concepts (each with equal probability) and then
ask questions to select one of the (1 — §)N (e, C, P) concepts, if there is one, that is e-close to the
true concept. To show the lower bound, first note that we can find N(2¢) = N(2¢, C, P) concepts
€1, -« -+, CN(2¢) Which are pairwise at least 2¢ apart since at least IV(2¢) balls of radius 2¢ are required
to cover C'. Then the balls Bc(c;) of radius € centered at these c; are disjoint. For each 1, if ¢; is




the true concept then the learning algorithm must output a hypothesis & € B.(c;) with probability
greater than 1 — §. Hence, if k queries are asked, then

N(2¢)
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where the integral is with respect to any randomness in the questions, the fourth equality (i.e. where -
conditioning on ¢ = ¢; is dropped) follows the fact that the hypothesis generated by the learner is
independent of the true concept given the queries and answers, and the second inequality follows
from the fact that the B,(c;) are disjoint. Thus, since k is an integer, k > [log,(1 — §)N(2¢, C, P)].

~ Finally, if fewer than N (e, C, P) possibilities are encoded, then some type of probabilistic al-
gorithm must necessarily be used, since otherwise there would be some concept which the learner
would always fail to learn to withine. g

Thus, compared with passive learning for a fixed distribution, active learning does not enlarge
the set of learnable concept classes, but as expected, fewer queries are required in general. However,
only a factor of 1/¢, some constants, and a factor of 1/§ in the logarithm are gained by allowing
active learning, which may or may not be significant depending on the behavior of N(e,C,P) as a
function of e.

Note that in active learning very little is gained by allowing the learner to make mistakes with
probability é, that is, there is a very weak dependence on § in the sample size bounds. In fact for any
§ <1/2, we have log,(1 — §)N(2¢, C, P) = log, N(2¢,C, P) — log, 1/(1 — §) > log, N(2¢,C, P) — 1,
so that even allowing the learner to make mistakes half the time results in the lower bound differing
from the upper bound and the bound for § = 0 essentially by only the term 2¢ versus € in the metric
entropy. Also, note that Theorem 1 is true for learnability with respect to an arbitrary metric and
not just those induced by probability measures.




4 Distribution-Free Active Learning

Distribution-free learning (active or passive) corresponds to the case where P is the set of all
probability measures P* over, say, the Borel -algebra. A fundamental result of Blumer et al. [6]
relates passive learnability for all distributions (i.e., distribution-free) to the Vapnik-Chervonenkis
(VC) dimension of the concept class to be learned.

Definition 4 (Vapnik-Chervonenkis Dimension) Let C C 2X. For any finite set S C X, let
Me(S)={SNc:ce C}. § is said to be shattered by C if IIc(S) = 25. The Vapnik-Chervonenkis
dimension of C' is defined to be the largest integer d for which there ezists a set § C X of cardinality
d such that S is shattered by C. If no such largest integer exists then the VC dimension of C is
infinite.

Blumer et al. [6] proved that a concept class C is learnable for all distributions iff C' has finite
VC dimension, and they provided upper and lower bounds on the number of samples required.
Specifically, if C' has VC dimension d < oo (and satisfies certain measurability conditions that
we will not concern ourselves with) they showed that max(3-log },d(1 — 2(e + § — €§))) samples
are necessary and max(%log £, %‘-’l-log S?d) samples are sufficient, although since their work some
refinements have been made in these bounds.

The case of distribution-free active learnability is a little more subtle than active learnability
for a fixed distribution. For both active and passive learning, the requirement that the learning be
distribution-free imposes two difficulties. The first is that there must exist a uniform bound on the
number of examples or queries over all distributions — i.e., a bound independent of the underlying
distribution. The second is that the distribution is unknown to the learner, so that the learner
does not know how to evaluate distances between concepts. Hence, since the metric is unknown,
the learner cannot simply replace the concept class with a finite e-approximation as in the case of
a fixed and known distribution.

For passive learnability, the requirement that the concept class have finite VC dimension is
necessary and sufficient to overcome both of these difficulties. However, for active learning the
second difficulty is severe enough that no learning can take place as long as the concept class is
infinite.

Lemma 1 Let C be an infinite set of concepts. If cy,...,c, € C is any finite set of concepts in C
then there ezists c,41 € C and a distribution P such that dp(cpy1,¢;) > 1/2 fori=1,...,n.

Proof: Consider all sets of the form b; N by N ---Nb,, where b; is either c; or ¢,. There are at most
2" distinct sets By,..., Byn of this form. Note that the B; are disjoint, their union is X, and each
¢; for i = 1,...,n consists of a union of certain B;. Since C is infinite, there is a set c,;; € C such
that for some nonempty Bi, cnt1 N By is nonempty and c,1 N By, # By. Hence, there exist points
Ty, 23 € X with @y € ¢p41N By and @3 € By \ chy1. Let P be the probability measure which assigns
probability 1/2 to #; and 1/2 to z;,. For each ¢ = 1,...,n, either By C c; or By N¢; = §. Thus, in
either case ¢, 41 Ac; contains exactly one of 2; or z, so that dp(cny1,¢;) = 1/2fori=1,...,n. i

Theorem 2 C is actively learnable for all distributions iff C is finite.




Proof: If C is finite it is clearly actively learnable since the learner need only ask [log, |C|]
questions where |C| is the cardinality of C to decide which concept is the correct one.

If C is infinite we will show that C is not actively learnable by showing that after finitely many
questions an adversary could give answers so that there are still infinitely many candidate concepts
which are far apart under infinitely many remaining probability distributions. Since C is infinite,
we can repeatedly apply the lemma above to obtain an infinite sequence of concepts ¢, cs,... and
an associated sequence of probability measures Py, P,,... such that under the distribution P;, the
concept ¢; is a distance 1/2 away from all preceding concepts. Le., for each i dp,(c;,¢;) = 1/2 for
j=1,...,i—1.

Now, any question that the active learner can ask is of the form “Is (c,P) € ¢?” where ¢
is a subset of C x P. Consider the pairs (ci, P1),(c2, P;),.... Either ¢ or § (or both) contain
an infinite number of the pairs (c¢;, P;). Thus, an adversary could always give an answer such
that an infinite number of pairs (c;, P;) remain as candidates for the true concept and probability
measure. Similarly, after any finite number of questions an infinite number of (¢;, P;) pairs remain
as candidates. Thus, by the property that dp,(c;,c;) = 1/2 for j = 1,...,i — 1, it follows that for
any € < 1/2 the active learner cannot learn the target concept. g

Essentially, if the distribution is unknown, then the active learner has no idea about ‘where’
to seek information about the concept. On the other hand, in passive learnability the examples
are provided according to the underlying distribution, so that information is obtained in regions of
importance. Hence, in the distribution-free case, random samples (from the distribution used to
evaluate performance) are indispensible.

Suppose that we remove the second difficulty by assuming that the learner has knowledge of
the underlying distribution. Then the learner knows the metric being used and so can form a finite
approximation to the concept class. In this case, the distribution-free requirement plays a part
only in forcing a uniform bound on the number of queries needed. Certainly, the active learner can
learn any concept class that is learnable by a passive learner since the active learner could simply
ask queries according the known distribution to simulate a passive learner. However, the following
theorem shows that active learning, even with the side information as to the distribution being
used, does not enlarge the set of learnable concept classes.

Theorem 3 If the learner knows the underlying probability distribution then C is actively learnable
for all distributions iff C' has finite VC dimension. Furthermore, [supp log,(1 — §)N(2¢,C, P)]
questions are necessary and [supp logy(1—8)N (e, C, P)] questions are sufficient. For deterministic
algorithms [supp log N(e, C, P)] questions are both necessary and sufficient.

Proof: If the distribution is known to the learner, then the result of Theorem 1 applies for each
distribution. Learnability for all distributions then simply imposes the uniform (upper and lower)
bounds requiring the supremum over all distributions for both general (i.e., probabilistic) active
learning algorithms and for deterministic algorithms. For the first part of the theorem, we need
the following result relating the VC dimension of a concept class to its metric entropy: the VC
dimension of C' is finite iff supp N(¢,C,P) < oo for all € > 0 (e.g., see [5] or [13] and references
therein). The first part of the theorem follows immediately from this result.




Thus, even with this extra ‘side’ information, the set of learnable concept classes is not enlarged
by allowing an active learner. However, as before one would expect an improvement in the number
of samples required. A direct comparison is not immediate since the bounds for passive learnability
involve the VC dimension, while the results above are in terms of the metric entropy. A comparison
can be made using bounds relating the VC dimension of a concept class to its metric entropy with
respect to various distributions, which provide upper and lower bounds to supp N(e, C, P). Upper
bounds are more difficult to obtain since these require a uniform bound on the metric entropy
over all distributions. The lower bounds result from statements of the form that there exists a
distribution P (typically a uniform distribution over some finite set of points) for which NV (e, C, P)
is greater than some function of the VC dimension. However, most previous lower bounds are not
particularly useful for small € — i.e., the bounds remain finite as € — 0. This is the best that can
be obtained assuming only that C' has VC dimension d < oo, since C itself could be finite. The
following result assumes that C is infinite but makes no assumption about the VC dimension of C.

Lemma 2 Let C' be a concept class with an infinite number of distinct concepts. Then for each
€ > 0 there is a probability distribution P such that N(e,C,P) > 1/2e.

Proof: First, we show by induction that given n distinct concepts, n — 1 points z1,...,2,_1 can
be found such that the n concepts give rise to distinct subsets of z1,...,z,. This is clearly true for
n = 2. Suppose it is true for n = k. Then for n = k£ + 1 concepts ci,...,cky1 apply the induction
hypothesis to cq,...,ck to get @1,..., 25y which distinguish ¢;,...,¢k. cky1 can agree with at
most one of ¢y, ...,cr. Then another point «j, can be chosen to distinguish these two.

Now, let € > 0 and set n = l3-]. Let ¢1,...,c, be n distinct concepts in C, and let 24,..., 2,1
be n—1 points that distinguish ¢4,...,c,. Let P be the uniform distribution on z1,...,2,_;. Since
the ¢; are distinguished by the @;, dp(c;,c;) > 1/(n—1) = 1/(|&] — 1) > 2¢. Hence, every concept
is within € to at most one of ¢y,...,c, so that N(¢,C,P) > n = [;—ej ]

The following theorem summarizes the result of the lemma and previous upper and lower bounds
obtained by others.

Theorem 4 Let C' be a concept class with infinitely many concepts and let 1 < d < 0o be the VC
dimension of C. Fore < 1/4,

sup log, N(e, C, P) > max(2d(1/2 — 2¢)®log, e, log, %)
P

and for e < 1/2d,
sup log, N(¢,C, P) < dlogz(%ln 26—6) +1
P

Proof: The first term of the lower bound is from [13] and the second term of the lower bound
follows from Lemma 2. The upper bound is from [10] which is a refinement of a result from [16]
using techniques originally from [7]. A weaker upper bound was also given in [5]. g

This theorem gives bounds on the number of questions needed in distribution-free active learning
(with the side information) directly in terms of ¢, § and the VC dimension of C'. As stated, the




bounds are directly applicable to deterministic active learning algorithms or for active learning with
§ = 0. For probabilistic algorithms with § > 0 the quantity log, 1/(1 — §) needs to be subtracted
from both the lower and upper bounds.

5 Discussion

In this paper we considered the effect on PAC learnability of allowing a rich set of learner-
environment interactions. Previous work along these lines has provided the learner with access
to various types of oracles. Many of the oracles considered in the literature answer queries which
are special cases of yes/no questions (although those oracles that provide counterexamples are not
of this type). As expected, the use of oracles can often aid in the learning process. To understand
the limits of how much could be gained through oracles, we have considered an active learning
model in which the learner chooses the information received by asking arbitrary yes/no questions
about the unknown concept and/or probability distribution.

For a fixed distribution, active learning does not enlarge the set of learnable concept classes, but
it does have lower sample complexity than passive learning. For distribution-free active learning,
the set of learnable concept classes is drastically reduced to the degenerate case of finite concept
classes. Furthermore, even if the learner is told the distribution but is still required to learn
uniformly over all distributions, a concept class is actively learnable iff it has finite VC dimension.

For completeness, we mention that results can also be obtained if the learner is provided with
‘noisy’ answers to the queries. The effects of various types of noise in passive learning have heen
studied [2, 11, 18]. For active learning, two natural noise models are random noise in which
the answer to a query is incorrect with some probability n < 1/2 independent of other queries,
and malicious noise in which an adversary gets to choose a certain number of queries to receive
incorrect answers. For random noise, the problem is equivalent to communication through a binary
symmetric channel, so that standard results from information theory on the capacity and coding for
such channels [9] can be applied. For malicious noise, some results on binary searching with these
types of errors [17] can be applied. For both noise models, the conditions for fixed distribution and
distribution-free learnability are the same as the noise-free case, but with a larger sample complexity.
However, the more interesting aspects of our results are the indications of the limitations of active
learning, and the noise-free case makes stronger negative statements.

Finally, an open problem that may be interesting to pursue is to study the reduction in sample
complexity of distribution-free learning if the learner has access to both random examples and
arbitrary yes/no questions. This is similar to the problem considered in [8], but there the learner
could choose only examples to be labeled rather than ask arbitrary questions. Our result for the case
where the learner knows the distribution being used provides a lower bound, but if the distribution
is not known then we expect that for certain concept classes much stronger lower bounds would
hold. In particular, we conjecture that results analogous to those in [8] hold in the case of arbitrary
binary valued questions, so that, for example, asking yes/no questions could reduce the sample
complexity to learn a dense-in-itself concept class by only a constant factor.
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