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Abstract
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I. INTRODUCTION

1.1 MOTIVATION

In this paper, we develop and apply a theory of asymptotic

orders of reachability in linear time-invariant systems

parametrized by some small variable, e. To provide a motivation

for the key issues in our approach, consider the following

discrete time system as an example:

Example 1.1

x[k+l] ]xr] = [1 ]u[k]

This system is reachable but the reachability matrix

[blAb]= [.01 1.03

is not very far from a singular matrix, in that its condition

number is approximately 104. This leads to numerical difficulties

in determining reachability, as shown in [3]. Also, consider the

minimum energy control problem for this system. The minimum

energy control to reach x[2] = [1 0]' (where ' denotes the

transpose) from x[O] = 0 is u1 [l] = -. 5 and u 1 [2] = 1.5, while the

minimum energy control for x[2] = [1 1]' is u2 [1] = 49.7 and

u2 [2] = -49. This order of magnitude difference between u1 and u 2

is another indication of near unreachability. Still further

indications may be obtained, for example by considering how small

a perturbation of the system matrices suffices to destroy

reachability (in this case, 0.01), or by examining the magnitude

of feedback gain required to shift poles by various amounts (in
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this case, to move the eigenvalues by 2, feedback gains of

magnitude approximately 102 are required, as illustrated in

Example 3.1).

Our treatment of problems of this type is qualitative rather

than numerical in nature: we assume that small values in the

system are modeled by functions of a small parameter 6, which

implicitly indicates the presence of different orders of coupling

among state variables and inputs. Parametrized linear systems are

studied in general by Kamen and Khargonekar [13] and Brewer et al.

[14]. However, we look at how unreachable the system is in terms

of "orders of e". Specifically, we consider continuous time and

discrete time systems of the form

x(t) = A(e)x(t) + B(e)u(t) (1.1)

x[k+l] = A(e)x[k] + B(e)u[k] (1.2)

where A(e) and B(e) have Laurent expansions around e=O:

A(e) : Rn((6)) IRn((6)) (1.3)

B(6) : Rm((6)) ~ Rn((6)) (1.4)

(We write a(e) E IR((e)) if a(e) has a Laurent expansion around

e=O.) Defining these systems over IR((e)) permits us to examine

the effect or necessity of high gain feedback.

This work was particularly motivated by the numerical

problems encountered in various pole placement methods and in

evaluating system reachability. Pole placement and related

numerical issues are addressed using various approaches in the
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current literature [4-7]. In multi-input systems, unlike

single-input systems, the feedback matrix that produces a given

set of poles is not unique, and the additional degrees of freedom

may be used to attain other control objectives (see [7]). One

may, for example, attempt to minimize the maximum feedback gain;

[5] addresses this problem via numerical examples on

redistribution of the feedback task among the inputs and balancing

the A and B matrices. These examples contain some intuitive

ideas, but have not led to systematic procedures that work well

for well-defined and substantial classes of systems. One of our

objectives here is to suggest an analytical approach to

understanding and structuring feedback gains for pole placement.

Another area of numerical work involves criteria to measure

controllability. Boley and Lu [9] use the "distance to the

nearest uncontrollable system" as a criterion. They define this

by the minimum norm perturbation that would make a system

uncontrollable. They also relate this concept to state feedback

by measuring the amount that the eigenvalues move due to state

feedback of bounded magnitude. Connections may also be made to

the literature on balanced realizations, [8], where the singular

values of the controllability Grammian are used to indicate

nearness to uncontrollability.

The issue of controllability in perturbed systems of the form

(1.1) has been examined by Chow [15]. He defines a system to be

strongly controllable if the system is controllable at e = 0.

Otherwise, he calls it weakly controllable and concludes that pole
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placement of such systems will require controls with large gains.

Chow looks at systems with two time scales (slow and fast), and he

proves that a necessary and sufficient condition for such a

'singularly perturbed' system to be strongly controllable is the

controllability of its slow and fast subsystems.

Our analysis goes further than Chow's in that we examine the

relative orders of reachability of different parts of the state

space. The methods we use have some similarity to those used by

Lou et al. [1,2], who relate the multiple time scale structure of

the system (1.1) to the invariant factors of A(e), when this

matrix has entries from the ring of functions analytic at e = 0.

The Smith decomposition of A(e) plays a key role in their

analysis, while the Smith decomposition of the reachability matrix

is central to the development in this paper. While the primary

focus of the work in [1,2] is on time scale structure, some

attention is paid to control. In particular, [1] gives results on

the use of feedback in (1.1) to change the time scale structure of

the system. The work in [22] may be seen as a continuation of the

work in [1,2] in that it analyzes the effect of control and

feedback on the system of (1.1). This paper is based on the work

in [22].

1.2 OUTLINE

In Section II, we develop a theory of orders of reachability.

We start with discrete time systems and illustrate that the orders

of reachability can be recovered from the Smith decomposition of
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the reachability matrix. We define a standard form which displays

these orders explicitly. Also, we show that equivalent results

hold for continuous time systems. In Section III, this theory is

extended to pole placement by full state feedback for systems

whose entries have Taylor expansions around e=O. We also provide

a computationally efficient and numerically well-behaved algorithm

for pole placement. Section IV develops connections with Willems'

work on "almost invariance" [3]. We show that the subspace a

sequence of (A,B)-controllability subspaces converge to is almost

(A,B)-invariant. In Section V, we summarize our results and

suggest problems for further research.

1.3 ASSUMPTIONS

The reachability matrix for the systems in (1.1) and (1.2) is

e(e) = [B(e)lA(e)B(e)j ... An-1()B()] : Rmn(()) n(()).

We assume that the coefficients of the characteristic polynomial

of A(e) are over R[[e]], i.e. they have Taylor expansions around

e=O. We shall show (Proposition 2.6) that this is equivalent to

the system being what we term a proper system. This is not a

restrictive condition for continuous time systems since it can be

achieved by time scaling. However, it is a restrictive assumption

for discrete time systems.

Note that £(e) can be made analytic at e = 0 (i.e. made into

a matrix over R[[e]]) by a simple input scaling, and this will be

done when convenient. In addition, we assume that the

reachability matrix is full row rank for all e e (O,a), aCE+. In
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the cases of most interest to us, the reachability matrix will

lose rank for e = 0, and a will be the smallest positive value of

e for which the reachability matrix loses rank. Under these

conditions, we analyze the asymptotic reachability of the system

as e l0.
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II. ORDERS OF REACHABILITY

II.1 ei-REACHABILITY

We start by developing our theory of asymptotic orders of

reachability in an analogous way to existing linear control

theory. In order to provide a motivation for our approach, let us

start with the following counterpart of Example 1.1:

Example 2.1:

x[k+1] = 1 [ ]x[k] + []uk]

so

This system is reachable for all e e (0,2). The minimum energy

control sequence needed to go from the origin to x 1 [2] = [1 0]'

is uj[1] = -1/(2-e) and u1 [2] = 3/(2-e), which is 0(1).(4) The

minimum energy control sequence for x212] = [1 1]' is u 2[1] =

(-e+1)/6(2-e) and u2 [2] = (2e-1)/e(2-e), which is 0(1/e).

We next generalize this characterization of target states by

the order of control sufficient to reach them.

Definition 2.2: x(6) E In[[E]] is ei-reachable if there exists an

0(1/ei) input sequence T(e) E [u'[n-1] *-- u'[O]]' such that x(e)

4f(e) is 0(e k ) if lim lf(e)ll/e k exists, where k is an integer, f(e) is
e610o

a scalar, vector or matrix, and II*II denotes the appropriate norm.
N t is k tnk-i k-2

Note that if f(e) is O(e ) then it is also Oe ), 0(6 ) etc.
7



is reached from zero in n steps using '1(e) (i.e. x(e) = ~(a)~()).

Let Xj be the set of all eJ-reachable states, then 0 c I1 c2 c

... and Xi is an IR[[e]]-submodule of In[[e]]. We term Xi the

6J-reachable submodule.

Note that if x(e) is ej-reachable, then (1/e)x(e) is not

necessarily eJ-reachable. Thus if we had considered target states

in In((e)) in Definition 2.2, then the set of ei reachable states

would not be R((e))-subspaces.

0 2 1 2
In Example 2.1, 0 = Im[1 0]' + eR 2[[e]] , 1 = 2 = ... 

R [[e]]-

An interesting property of the set of ei-reachable submodules

is that all the structure is embedded in the e -reachable

submodule. First of all, note that 1O is the image of the

reachability matrix under the set of all control sequence vectors

t(e) in mn[[6]]. Also, the eJ-reachable submodule is simply

obtained by scaling the j -l-reachable submodule by 1/e. To state

this formally:

Proposition 2.3: 10 = {(()JRmn[[ 6]]}nRn[[e]] and

j = l{ij-1 n Rn[[]]} _ 1 {oj-i n eiRn[[6 ]]} for nonnegative
6 1

integers i, j and j>i.

Proof: By Definition 2.2, 10 = {(e()Rmn[[,]]}nRn[[e]], or in

general IJ = {m(el)/ejImn[[e]]}nmn[[e]]. Then,

1 {tJ-in in[[]] 1 = 1 i( mn n
616.1(e)R [[i]]}- IR[[]]}n

"i~~~~~~~~~~



= { i,@(.)fRmn[[e]]}flnRn[[e]] = j= :

The structure of the eJ-reachable submodules is not always as

easily obtained by inspection of the pair (A(e),B(e)) as it was in

Example 2. To illustrate this, consider an e perturbation of

Example 2.1:

Example 2.4:

x[k+l] x= [' ]x[k] [e][k]

where

R(6) [1 1+6]

This system is reachable for all e e (O,-). In this case, we find

that x1[2] = [1 0]' is e-reachable, and x 2[2] = [1 1]' is

2
e -reachable. Therefore, even an e perturbation may cause drastic

changes in our submodules.

II.2 SMITH DECOMPOSITION OF T(e)

The key element in our results is the Smith decomposition of

I(e) since we are interested in how T(e) becomes singular as e10.

For simplicity, as noted in the Introduction, let us assume that

T(e) has a Taylor expansion around e=O and that it is full row

rank for all e E (O,a), aR+ , then the nxmn matrix T(e) has a

Smith decomposition [1, 2, 11, 12]

%(6) = P(e)D(e)Q(6) (2.1)

where P(e), nxn, is unimodular (detP(O)}O), Q(e), nxmn, is full

row rank at e=0, and

D(e) = diag{I, I1 ..... kI (2.2)
PO lP 1 P k



is nxn where I denotes a pixpi identity matrix with Pi=O
Pi

corresponding to absence of the i-th block, and with Pk•O. The

indices Pi, and hence D(e), are unique, though P(e) and Q(e) are

not.

Now, 9j = P(e) ji where

+ e~j+l + k-1= Bj+ ~ + .... + k-+k-j l[e]] (2.3)

and . = Im[I 0]', n . In fact J- is the
i n.' 1P 

eJ-reachable submodule of the original system similarity

transformed by P(e) and its structure immediately follows from the

indices. This property is captured in a standard form defined in

the next section.

II.3 STANDARD FORM

Consider a pair (A(e),B(e)) with a Smith decomposition of its

reachability matrix defined as above. We will term such a system

an e -reachable system with indices no , ... .nk. Let

A(e) = P (e)A(e)P(e) and B(e) = P- (e)B(e). The pair (A(e),B(e))

will be called a standard form for (A(e),B(e)).

The system in Example 2.1 is already in standard form. For

the system in Example 2.4, a Smith decomposition of the

reachability matrix is:

) 1 ] [O ;2] [01 ] = P(6)D(6)Q(e)

Transforming the system by P(e) yields

y[k+l] = [2 2 I y[k] + 

which uncovers the previously hidden e2 structure.
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A standard form of a system is termed a proper standard form

if it has the following structure:

AO,0(e) 1/6A0 , 1 (6) . . . 1/ek AOk(6) I P o

Ae)= eA 1 0 (e) A 1 1 (e) . . . 1/6k -lA 1 k(6) }Pl (2.4a)
A(e) (2.4a)

k k-i
Ak 56) 6 Ak ,l() . . . Ak,k(e) )Pk

BO(E) }Po

EB1(e) )P1
B(e) = (2.4b)

k.
6 Bk(e) Pk

i

where Aij(e) are analytic at e=0, and n i = Pj

j=o

Example 2.1 and the transformed version of Example 2.4 are

both in proper standard form. In fact, the next result shows that

finding one proper standard form is enough to conclude that all

standard forms of a pair are proper:

Proposition 2.5: If a pair (A(e),B(e)) has a proper standard form,

then all standard forms of (A(e),B(6)) are proper.

Proof: Let T(e) = P 1(e)D(e)Q 1 (e) = P2 (e)D(e)Q2(e), then

Ai( ) = P()A(e)Pi(e) Bi(e) = P 1 (e)B(e) for i=1,2 are two

standard forms. Suppose that the pair (A 1 (e),B 1 (e)) is a proper

standard form. Let Ai(e) = D 1(e)Ai(e)D(e), Bi(e) = D -(e)Bi(e)

for i=1,2. Note A1 (e) and B1 (e) are both over IR[[e]]. We wish to

show that the same is true for A2 (e) and B 2 (e). Let

R(e) = -1()P 2 (e)P1(e)D(e), then R(e) is invertible, and

Q2(6) = R(e)Q1 (e). But then R(e) = Q 2 (e)Q(6e) and

R 1 ) = Q 1 (e)Q2(e)' where Q +() denotes the right inverse of

R ~~~~~~~~1(6 ieQ(6,wee



Qi(e), which exists over R[[e]]. Thus, R(e) is unimodular. Since

(Ai(&),Bl(e)) is over IR[[]] and A2(e) = R(e)A1(6)R (e),

B2(e) = R(e)B1(e), the pair (A 2 (e),B 2 (e)) is also over IR[[]].

Therefore, (A2 (e),B 2(e)) is a proper standard form.

A pair (A(e),B(e)) is termed proper if it has a proper

standard form. Thus, both of the systems in Examples 2.1 and 2.4

are proper. Our assumption that the coefficients of the

characteristic polynomial of A(e) are over IR[[e]] is necessary and

sufficient for a system to be proper. In general, we have the

following:

Proposition 2.6: The following statements are equivalent for any

pair (A(e),B(e)) such that n(e) is over R[[e]]:

1. (A(e),B(e)) is proper.

2. %(e) is over I[[e]].

3. The coefficients of the characteristic polynomial, a(A(e)), of

A(e) are over R[[e]].

To prove this result, let us first consider the following two

lemmas:

Lemma 2.7: For a pair (A(e),B(e)) with Rn(e) over R[[e]], e6(e) is

over R[[e]] iff the coefficients of {(A(e)) are in R[[e]].

Proof: (-) Follows using the Cayley-Hamilton theorem.

(,-) Suppose not all coefficients of a(A(e)) are in R[[e]], then

some eigenvalue of A(e), say X(e), is not 0(1). Let the Jordan

decomposition of A(e) in some interval ec(O,a) be

A(e)=X-1A(e)X(e), where X(e), A(e) are continuous and X(e) is

12



scaled such that lim X(e) exists. See [23] for the existence of
elo

such a decomposition. Consider:

X(e)AJ(e)T(e) = Ai(e)X(e)T(6 ) (2.5)

thNote that some row of AJ(e), say the ith row, has the form[0O ... 0 Tj(e) 0 ... 0], while the i t h row of X(e){(e) is nonzero

and hence of finite order in e. Thus, by choosing j large enough,

we can obtain a right hand side in (2.5) that is not 0(1). It

follows that AJ(e)}(e) is not 0(1) for large enough j. But eT(6)

contains the entries of A(e 6 )(e 6 ), so %i(e) is not 0(1). -

Lemma 2.8: Let A(e) = D (e)P - (e)A(e)P(e)D(e),

B(6) = D -l(e)P (-le)B(e), then T{(e) is over R[[e]] iff (}e) is

over R[[e]].

Proof: (-) Follows from the transformation.

(v) Clearly In(e)=Q(a) is over IR[[e]], and the rest follows using

Lemma 2.3 and the Cayley-Hamilton theorem.

We can now prove Proposition 2.6:

Proof (of Proposition 2.6): (1-2) Follows from the definition of a

proper form and the structure in (2.4).

(2-1) By Lemma 2.8, {a(e) is over IR[[e]]. Consider

Tn+1(e) = [B(e) I A(e)en(e)], which is also over IR[[e]]. Then,

B(e) is over IR[[e]]. Also, A(e) is over R[[e]] since n(e) is

full row rank at e=O and therefore has a right inverse over

IR[[6]]. Thus, (D(e)A(e)D- (e),D(e)B(e)) is a proper standard

form.

(2*-t3) Lemma 2.7

13



As an immediate consequence of statement 2 of Proposition 2.6

we have the following important property of proper systems:

Corollary 2.9: Given a proper pair (A(e),B(e)), x E Ji iff x is

reachable with O(1/e i) control in p steps, for all p>n.

Let us also supplement Proposition 2.6 with the following:

Corollary 2.10: T(e) is over IR[[]] iff Tn+1(e) is over IR[[e]].

Proof: (-) Since en+1 (e) = [B(e) I A(e)Tn(e)], and Tn(e) is full

row rank at e=O, A(e) are B(e) are over Rn[[e]]. Thus, T(e) is

over R[[e]].

(+) Trivial.

The standard form will prove to be very useful to us,

especially for finding feedback to place eigenvalues (Section

III). In the Appendix we develop an algorithm to get to a

standard form without first constructing the reachability matrix

and then explicitly determining its Smith decomposition in order

to obtain the transformation matrix P(e). The algorithm works

directly on the pair (A(e),B(e)), and is a natural extension of

the recommended procedure [3] for testing reachability of a

constant pair (A,B).

II.4 CONTINUOUS TIME

The natural counterpart to Definition 2.2 for continuous time

is as follows:

14



Definition 2.11: x E Rn[[e]] is e -reachable if 3 TER+ and

u(t) e 1/JIRm[[e]] V tC[O,T] such that x(T) = x, with x(O) = O.

Let 9J be the set of all eJ-reachable states, then

tO C 1 C 2 C ... and OJ is an R[[e]]-submodule of Rn[[e]]. We

term IJ the eJ-reachable submodule. -

These submodules have properties analogous to those of

discrete time for proper systems, as the following proposition and

corollary show (the proofs are given in detail in [22]):

Proposition 2.12: Given a continuous time proper system descibed

by the pair (A(e),B(e)), then IO=<A(e)j e>nRn[[e]] where

n

<A(e)j >t-Ai-1(e)6 and Ad is the image of B(e) over R[[e]].

1

Corollary 2.13: 0 = P(e)D(e )Rn[[e]] where C(e) = P(&)D(e)Q(6) is

a Smith decomposition for the reachability matrix.

Using the iterative relation tj+l ,J 1 jneRn[[6]]},

(Proposition 2.2), we can recover all the other reachability

submodules from the Smith decomposition of the reachability matrix

and Corollary 2.13. Therefore, all our results for discrete time

also hold for continuous time.
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III. SHIFTING EIGENVALUES BY 0(1) USING FULL STATE FEEDBACK

In this section, we restrict our attention to systems over

R[[e]]. These systems are proper and all eigenvalues of A(e) are

0(1). We address the problem of arbitrarily shifting these

eigenvalues by 0(1), using full state feedback. In other words,

we wish to find F(e) over R((e)) such that AF(e) = A(e)+B(e)F(e)

has the desired eigenvalues at e=0.

Example 3.1: The eigenvalues of A(e) in Example 2.1 are at 1+0(e)

and 2+0(e). A state feedback of [2 4] shifts these eigenvalues to

3+0(e) and 2+0(e). It is not hard to see that there is no 0(1)

state feedback that can move the eigenvalue at 2+0(e) by 0(1).

However, a state feedback gain of [5 -1/e] shifts the eigenvalues

to 3+0(e) and 4+0(e). Here both eigenvalues are moved by 0(1),

but an 0(1/e) feedback gain has to be used. Note that the closed

loop system

AF(e) 66 11/e] B() 

is not over IR[[]] but it is e-reachable with the same indices,

n0=1 and n1=1, as the original system, and is in proper standard

form.

We shall now show that, for systems over IR[[]], the order of

feedback gain necessary and sufficient to move all eigenvalues by

0(1) is directly given by the order of reachability of the system.

Let us start by looking at e -reachable systems. In all that

follows, A denotes a self-conjugate set of n eigenvalues, a(A)

16



denotes the spectrum of A, and Z denotes the set of all integers.

Define

a = min {rj VA, 3F(e), O( 1 /er), s.t. a(A(e)+B(e)F(e))j 0=A} (3.1)
rEZ

Hence a is the smallest order of feedback gain that will produce

arbitrary 0(1) eigenvalue placement.

Proposition 3.2: The pair (A(e),B(e)), over R[[e]], is

6 -reachable iff a=O.

Proof: (-) If the pair (A(e),B(e)) is e -reachable, then, 6(e)1 E

has full row rank. Thus, the pair (A(O),B(O)) is reachable, and

VA, 3F:IRn * En s.t. U(A(e)+B(e)F) e=0 = (A(O)+B(O)F) = A. Hence

a<O. Now assume a<O. Then, lim F(e) = 0 for those F(e) of
eo10

0 (1/ea) that produce arbitrary 0(1) eigenvalue placement according

to (3.1). But then lim (A(e)+B(e)F(e)) = A(O), so no 0(1)
elo

eigenvalues are moved, which is a contradiction. We conclude that

a=O.

(+) Conversely, assume that a=O, then VA, 3F=F(e) =0 O s.t.

a(A(O)+B(O)F)=A. Thus, the pair (A(O),B(O)) is reachable, and

T(e)IO=0 has full row rank, so the pair (A(e),B(e)) is

0e -reachable.

Proposition 3.3: The pair (A(e),B(e)), over IR[[e]], is

e -reachable iff a = k.

Proof: (}) If the pair (A(e),B(e)) is e k-reachable, then the pair

A(6) = D -l(e)P (e)A(e)P(e)D(e), B() = D(e)P (6) is

e -reachable and, by Lemma 2.8, is over R[[6]]. Thus, by

Proposition 3.2, VA, 3 an 0(1) F(e) s.t. X(A(e)+B(e)F(e)) =O = A.
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Let F(e) = F(e)D- (e)P- (e), then F(e) is O(1/ek). By Lemma 2.4,

the closed loop pair (A{(e),B(e)) is proper and so the

coefficients of its characteristic equation are over IR[[e]].

Thus,

lim a(A(e)+B(e)F(e)) = lim u(A(e)+B(e)F(e)) (3.2)
eo e6lo

and a<k. To see that the equality must hold, note first that

Ao,0 (e) eA0o,1 (e) . . . 6 Ak()

Aie) A 1 ,,() . . . e Alk(e)
A(e) = 1,0( Al()*** Ak( (3.3)

Ako(e) Ak,1 ( 6) . . . Ak,k(6)

n-nkl1 columns

Now, if a<k, then the last n-nki columns of F(O) =

limF(e)P(e)D(e) = 0 for those F(e) of O( 1/ea) that produce
E10

arbitrary eigenvalue placement according to (3.1). But then

lim(A(6)+B(6)F(6)) =[ A (O (34)
610 * A ](3Ak,k(0)

where * denotes some constant entries, and the eigenvalues

corresponding to A kke) are not moved by 0(1), which is a

contradiction. We conclude that a=k.

(-) Clearly, the pair (A(e),B(e)) is eJ-reachable for some j. By

the first part of this proof, a=j. Hence j=k and the pair is

e -reachable.

Note that if some pair (A(e),B(e)) over IR[[e]] is

0e -reachable then the closed loop pair (AF(e),B(e)), where

AF(e) = A(e)+B(e)F(e), is e -reachable for all F(e) of 0(1). Thus

we have the following result:
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Corollary 3.4: Given a pair (A(e),B(e)) over R[[e]], the

eJ-reachability indices n., as defined in Section II.3, are

invariant under any feedback of the form F(e) = F(e)D- 1 ()P -e)

where F(e) is 0(1). Also, the closed loop pair is proper.

The ej-reachable submodules of the standard form are uniquely

determined by the indices, and the eJ-reachable submodules of the

original system are uniquely determined by the eJ-reachable

submodules of the standard form, via P(e). Thus:

Corollary 3.5: Given a pair (A({),B(e)) over IR[[e]], the

EJ-reachability submodules are invariant under any feedback of the

form F(e) = F(e)D-l (e)P (e), where F(e) is 0(1).

For the more general class of proper systems over R((e)), the

orders of feedback gains do not necessarily match the orders of

reachability. Let us consider the following example:

Example 3.6: The pair

r0 0 0 [1 0
A(e) = 0 1/e , B(6) = 1

0 2e 0 .0 0

corresponds to an e-reachable system in proper standard form. Let

F(6) =1 f 22

3 f4 0

where the f. are all scalar constants, then

det(XI-AF(6)) = A3-(f1+f 4 )X2+(flf4-f 2 f3-2)X+2fl
. Clearly, f.IR

can be chosen appropriately to match any third degree polynomial

with real coefficients. Therefore all eigenvalues of A(e) can be

arbitrarily moved by 0(1) using only 0(1) feedback gains. What
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happens in this example is that an 0(1) gain for the third state

component produces an 0(1/e) input for the second component.

Therefore, even with 0(1) gains, the input values themselves will

be 0(1/e), as would be expected when producing 0(1) shifts in

eigenvalues for this e-reachable system.

The overall effect of 0(1) feedback on the eigenvalues, even

for systems over IR[[e]], is a more subtle issue than the order of

feedback necessary to shift the eigenvalues by 0(1). Consider the

following example:

Example 3.7: Let

A(6) = ] B(e) []

The reachability indices are no=1 and n1=2. The eigenvalues of

A(e) are at v/-. Feedback of [-1 -1] moves the eigenvalues to -1

and -e. Thus, the effect of feedback is larger than 0(e), namely

0(v'e). (It is worth noting that the original system did not have

well-behaved time scale structure in the sense of [1,2], and that

the feedback produces well-behaved time scale structure.) -

We leave these problems for further research. Chapter V

suggests some potential extensions.

An extension of Algorithm A.3 can be used to compute the

feedback matrix necessary to shift eigenvalues by some desired

amount. Application of Algorithm A.3 produces a pair

(Ak(e),Bk(e)), where Ak(e) = S 1(e)A(e)R(e), Bk(e) = S 1(e)B(e),

where (Ak(O).Bk(O)) is reachable and S(e) is the product of all
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the similarity transformations used to achieve the final pair.

From the pair (Ak(O),Bk(O)), we can compute a feedback matrix F

such that the eigenvalues of AkF(O) = Ak(O) + Bk(O)F are as

desired. We have that O(AkF(e)) l=o=a(AkF(O)) and that

-1
(AkF(e),B(e)) is proper. Let F(e) = FS (e) and AF(e) = A(e) +

B(e)F(e). Since S(e) is invertible for eE(O,a) for some aER,

(AF(e),B(e)) is also proper. Therefore, as in the proof of

Proposition 3.3, the eigenvalues of AF(e) are as desired.

This algorithm was applied in [22] to a fifth order, weakly

reachable system over IR with one input. The system was first

parametrized by replacing certain small entries by (0(1) multiples

of) powers of e. The feedback gain to place 0(1) eigenvalues

calculated for the parametrized system by the above approach was

evaluated at the specific value of e corresponding to the original

system. This approach produced far better numerical results than

calculating the feedback directly for the given system. Similar

concerns have been expressed by authors interested in numerical

issues of multivariable pole placement for linear time invariant

systems (as explained in I.1). Our approach would attempt to

address those issues by scaling the pair (A,B) appropriately.

Unfortunately, (A,B) has to be parametrized by e first. Further

study of this problem has been left for future research, though

some heuristic suggestions for parametrizations are made in

Section V.
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IV. ALMOST INVARIANT SUBSPACES

IV.1 (A(e),B(e))-INVARIANCE AND ALMOST (A,B)-INVARIANCE

In this section, we use our framework to provide some new

insights on the notions of almost (A,B)-invariance and almost

(A,B)-controllability, introduced by J. C. Willems [-17] into the

geometric approach to linear systems, [10].

To give a flavor for our approach, let us consider the

following example:

Example 4.1: Let

A = [ i B '

It is easy to see from the results in [17] that Ia=Im[1 0]' is an

almost (A,B)-invariant subspace. Consider the family of

subspaces, {i(}, generated by [1 e]' for each fixed e E (O,).

Since

[1 0][:] []= [-]( 1/) + 0o]

these subspaces are (A,B)-invariant, [10]. As we let e - 0,

{6} a f a=Im[1 0]', which is an almost (A,B)-invariant subspace.

So we have found a sequence of (A,B)-invariant subspaces ({e

evaluated at different values of e) that converge to an almost

(A,B)-invariant subspace. Using the relation (-1/e) = F(e)[1 e]'

with F(e) = [-1/e 0], these subspaces are AF(e) invariant where

AF() = A - BF(e)= [1/6 O]

Furthermore, the {( } are coasting subspaces, [17], i.e. they are

(A,B)-invariant but they have no (A,B)-controllable part, whereas
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a is a sliding subspace, [17], i.e. it is almost (A,B)-invariant

but it has no (A,B)-invariant part.

Note that an eigenvalue of AF(e) - +" as e-*O. On the other

hand, consider the family of (A,B)-invariant subspaces, {(1},

generated by [1 -e]'. As e-*O, (1)-"a also. By going through the

above procedure, we get F'(e) = [1/e 0] and

AF(6) = [1/e 0]

Now the eigenvalue of AF'(e) that blows up approaches -0 as e-*O.

We proceed with proving some results related to the above

observations, but we first state some algebraic properties that we

use extensively.

In((e)) is a vector space over the field IR((e)). Let I be a

subspace of Rn((e)) and let the columns of V(e) = [v1 (e)I ...

Iv (e)] be a linearly independent set that spans Ie. Since Ie is

closed under multiplication by elements in IR((e)), it is possible

to pick vi(e) such that vi(e) E IR[[e]] and V(O) has full column

rank. Hence V(e) has full column rank for small enough e. Note

that the span of the columns of V(e), for any fixed e, is a

subspace of IRb. Thus it is also possible to think of f e as a

sequence of subspaces of En defined by V(e) for different values

of e. We use this to connect our results to their counterparts in

[17] and [10].

Definition 4.2: If C Rn((e)) is (A(e),B(e))-invariant if 3 F(e):

IRn((e)) -, m((e)) s.t. AF(e)I e C 'e, where

AF(e) = A(e) + B(e)F(e).
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We denote the family of (A(e),B(e))-invariant IR((e))-subspaces by

V . In some cases, we shall consider (A(e),B(e))-invariant

R((e))-subspaces for A(e)=A and B(e)=B. We use the same notation,

and assume that the reader will infer the relevant underlying

system from the context. Following Willems [17], we denote the

family of (A,B)-invariant subspaces by V.and the family of almost

(A,B)-invariant subspaces by V

A straightforward extension of this definition is the

following well known result [10]:

Proposition 4.3: 1 e V iff A(e)1 C ~ + J, where

= B(e)IRm((e)).

Definition 4.4: Given I C Rn and Y C Rn((e)), 1 - f if
a 6 6 a

whenever {v1 (e), ... v.(.)), vi(e) e Rn[[e]], is a basis for .e,

the set of vectors {v1 (O), ... , v (0) forms a basis for 'a (this

is convergence in the Grassmanian sense).

One can always construct a matrix W(6) over IR[[e]] such that

W(O) = I and vi(e) = W()vi{(O). Thus an alternate representation

of 1e would be W(e) a.

The following result enables us to establish a connection

between our framework and the notion of almost (A,B)-invariance.

It provides a method to compute approximations for the

distributional inputs required to steer the trajectories of an

almost (A,B)-invariant subspace exactly through that subspace.

Using these high gain feedback approximations one can steer
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trajectories arbitrarily close to an almost (A,B)-invariant

subspace.

Proposition 4.5: For a given pair (A,B), if Ia E V then 3 I Ce V

such that I -I .*
6 a

The proof is very similar in principle to that of Willems

[17] and it is given in detail in [22]. However, note that the

converse of the above proposition does not hold, though [17]

claims that it does. To illustrate this, consider the following

example:

Example 4.6: Let

A [3 03 and B 03]

Consider I = {Vl(e),v 2 (e),v 3 (e)} where vl(e) = [1 0 0 0 e 0]',

v 2 (e) = [0 0 0 1 0 0]', V3 (e) = [0 1 0 0 0 1]' and {-) denotes

span over R((e)). I E V and I -: where
6-0

W = {v 1 (O),v2 (0),v3 (O)) and {-) denotes span over R. But 2 is not

an almost (A,B)-invariant subspace.

Willems [17] poses the problem of finding an input that

steers the trajectories of a system arbitrarily close to an almost

(A,B)-invariant subspace. Our approach shows how this can be

done. We show below how to construct an (A,B)-invariant

R((e))-subspace that approaches the almost (A,B)-invariant

subspace in the Grassmanian sense. The desired input then follows

on calculating the feedback that makes the (A,B)-invariant

R((e))-subspace AF(e)-invariant.
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Recall from [17] that any almost (A,B)-invariant subspace Ia
a

can be represented as a=I+9 where I is (A,B)-invariant and a is
a a

almost (A,B)-controllable and any almost (A,B)-controllability

subspace Ia can be represented as ! = eSV where SI is the

supremal (A,B)-controllability subspace in a and s is a sliding
a s

subspace. By a construction in the proof of Proposition 4.5 in

[22], we can find ^Ic E Ve where 1c=Q(e6)s Q(e) over IR[[6]] and

Q(O)=I, where If is a coasting R((e))-subspace whose associated

eigenvalues approach -c as e-O. The feedback F(e) that makes c

an AF(e)-invariant R((e))-subspace can be calculated and provides

the desired input. Those eigenvalues of AF(e), for fixed e, that

correspond to sS approach -a as e-KO. This increases the magnitude

of the feedback gains, and the generated inputs and their

derivatives approach impulses in the limit. The eigenvalues

corresponding to No can be assigned by the usual pole placement

methods.

As an illustration of the procedure, consider the following

example, which contains the essential features of the general

case:

Example 4.7: Let

A = 0 0], B = 0, = {(v v2)} where v 1 and 2 =[

Ia is an almost (A,B)-invariant subspace, and in fact it is a

sliding subspace. Consider 1e = {v 1(e),v 2(e)}, where

Vl(e ) = [1 - e 2]' and v2 (e) = [0 1 -2e]'. Note that fI is a

coasting R((e))-subspace, i.e. it is (A,B)-invariant but not

(A,B)-controllable. Furthermore, v1 (O) = v1, v 2 (0) = v2 and

Ie0 a Also, vi(e)=P(e)vi, for i=1,2, where

e _~O26 a
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1 0 0
P(e) = -e 1 0

2e -e62 1

gets its lower triangular entries from a Pascal triangle

construction with alternating signs (see [22]). Solving the

equations A()[v1(6)1v2(6)]=[vl(e) 1v2 (6)]gv(e)+Bgu(6) and

gu(6)=F(e)[v1 (e)Iv 2 (E)] yields F(e)=[2/e 1/e2 0]' and

.-2/e -1/e 2 O0

AF(e) = A - BF(e) = 1 0 0
0 1 0

with Ie being AF(e)-invariant. Note that the desired input

u(t) = -F(e)x(t). On the other hand, the eigenvalues of AF(e)

that correspond to ,a' for fixed e, are both at -1/e. They are

stable and approach -0 as e6-O.

IV.2 (A(e),B(e))-CONTROLLABILITY AND ALMOST (A,B)-INVARIANCE

We now proceed with the notion of (A(e),B(e))-controllability

R((e))-subspaces, adopting Wonham's definition [10] of

(A,B)-controllability subspaces:

Definition 4.8: e EC In((e)) is an (A(e),B(e))-controllability

subspace if there exist maps F(e):IRn((e)) -, m((e)) and

G(e):Rm((6 )) l Rm((e)) such that ~ = <A(e)+B(e)F(e)IIm(B(e)G(e)>.

We denote the family of (A(e),B(e))-controllability

R((e))-subspaces by R. For some cases, we consider

(A(e),B(e))-controllability R((e))-subspaces for A(e)=A and

B(e)=B. The same notation is also used for these cases.

Following [17] we denote the family of (A,B)-controllability

subspaces by R and the family of almost (A,B)-controllability
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subspaces by R .-a

To put the above definition into a more usable form, consider

the following proposition, which simply restates results of Wonham

[10] in the present framework:

Proposition 4.9: (a). ~ E R iff there exists a map

F(e):n((e)){-Rm ((e)) such that O = <A(e)+B(e)F(e6)Inf> where d

represents the range of B(e) over R((e)).

(b). O = <AF(e){}nl> for every map F(e) E F({). where F({)

represents the family of feedback matrices F(e) such that O is

AF(e)-invariant.

Proof: The proofs are very similar to that of Wonham [10] and they

are given in [22].

Let 9i e R and E n Then, it turns out that n is
6 -e 6 n n

almost (A,B)-invariant. Finding inputs for steering trajectories

arbitrarily close to !n is done by calculating an F(e) such that

NE is AF(e)-invariant and the eigenvalues corresponding to AF are

0(1) and asymptotically stable. The following lemma and

proposition show this:

Lemma 4.10: Given a pair (A,B), let A eC R and 9A ----A then V
e·' -e 66_~0 n'

0(1) xO s.t. d(xo,0 n) is 0(e) and VT>O, 3 an input function u(t)

s.t. d(xo(t,}),~n) is 0(e) for O<t<T, where-xo(t,e) is the

trajectory defined by u(t) and the initial condition xO.

Proof: Here we first need to find a trajectory in N which is 0(1)
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for O<t<T. Find F(e) s.t. I is AF(e)-invariant and the

eigenvalues of AF(e) corresponding to A are all 0(1) and

asymptotically stable. Then V 0(1) x1 E C , Xl(te) eC Vt>O

where Xl(t,e) is the trajectory defined by the initial condition

x 1 and the input specified by F(e)x(t). Since the eigenvalues of

AF(e) corresponding to Ae are all 0(1) and stable, xl(te) is also

0(1). Therefore, d(x 1 (t,e),"n) is O(e), since the 'angle' between

6E and 9n is O(e). Consider x 2 (te), the trajectory defined by

the initial condition x2 =xO-X1, with x 1 E 9e chosen such that x 2

is O(e). Since the eigenvalues of AF(e) are 0(1), VT>O x 2 (t,e) is

0(e) for O<t<T. Thus, d(xO(te),n) is 0(e) for O<t<T.

Proposition 4.11: Given a pair (A,B), let % E R and a--- n6AB, -6t 6 6--)0

then I E V
n -a

Proof: Pick some T>O and apply Lemma 4.10. Thus, 3u(t) s.t.

d(x(t,e), n) is 0(e) for O<t<T. Then 3 e > 0 s.t.

d(x(t,e),5n) < 6 for O<t<T and Ve<e . Use X(T,e) as the initial

condition to reapply Lemma 4.10 for the interval T < t < 2T. Find

61>0 s.t. e61 0and d(x(t ,e1 ) n) < 6 for T < t < 2T. Repeated

use of Lemma 4.10 achieves the desired result.

To illustrate these, consider the following example:

Example 4.12: Let

A = 0 0 0, B 1 and = Ime + Im
010J tool 

Note that 5n = Im[1 0 0]'+Im[O 0 1]' and it is an almost

(A,B)-invariant subspace. Let F(e) = [-3 0 -2/e], then ?1 is

AF(e)-invariant and the eigenvalues corresponding to Se are at -2,
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-4, asymptotically stable and 0(1). Pick the initial state x0 of

Lemma 4.10 as xO = [1 0 0]'. Let x1 = [1 e 0]' E ? . Then,

Xl(t a) = [-e-t -2t -t -2t -t -2tx1 (tCe) = [-e +2e -ee +26e - ee - ]e ]' E ~ , and

d(x1(t,e),9n) is clearly O(e) for any finite T. On the other

hand, x2 = [0 -e 0]' and x2 (te) = [2 6e - 2 t 2 2 e -2t 2 -2t

Thus, d(x 0o(t),n) is O(e). So, in the spirit of Proposition 4.11,

this may be bounded by any 6 for any given T by picking an

appropriate e=e . Then, using X(T,e) as the new initial state and

repeated use of this procedure achieves the desired result.

In this section, we examined the notions of almost

(A,B)-invariant and almost (A,B)-controllability subspaces in the

framework that we have developed in this paper and [22]. We

outlined a method for calculating inputs that steer trajectories

arbitrarily close to almost (A,B)-invariant subspaces or

equivalently force the eigenvalues corresponding to sliding parts

of almost (A,B)-controllability subspaces to approach -w. We also

analyzed the properties of limits of elements in V and R as e10
from a trajectory point of view.
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V. CONCLUSIONS

In this paper, we have developed an algebraic approach to

high gain controls for linear dynamic systems with varying orders

of reachability. Based on this approach, we addressed the issues

of high gain inputs for reaching target states, high gain feedback

for pole placement and high gain inputs for steering trajectories

arbitrarily close to almost (A,B)-invariant subspaces and almost

(A,B)-controllability subspaces.

The results presented here suggest several direction for

further research. It is of interest to analyze the orders of

feedback gains for shifting eigenvalues by 0(1) in the more

general case of proper systems, rather than just systems over

IR[[e]]. Intuitively, if a mode is e-reachable but

"l/e-observable", in that it has a 1/e coupling to other states,

then it should be possible to shift its eigenvalue by 0(1) using

O(1) feedback gain. A related problem is that of changing the

dynamics of a given continuous time system that has multiple time

scales [1],[2] without changing its time scale structure. This

would involve shifting O(e j) eigenvalues only by O(ej) rather than

0(1).

A key problem that bears attention is that of parametrizing

systems over IR. Two heuristic methods could be suggested for

this. One is to recognize small entries in the matrix, either

isolated or added to another entry, and replace these with powers

of e. Another method for parametrization could come from
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numerical reachability tests [3], where for example small singular

values at different stages of a test may be replaced by

(appropriate powers of) e.

It will be important to develop dual results for systems with

observations y[k] = C(e)x[k] or y(t) = C(e)x(t). This could then

lead to research on connections to optimal control, realization

theory and especially to the work on balanced realizations, [8].
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APPENDIX

Here we develop an algorithm to recover a standard form

without forming the reachability matrix and computing its Smith

decomposition. The proofs and details on the algorithm are

presented in [22]. Our algorithm can only deal with a pair

(A(e),B(e)) over IR[[e]], so this restriction is assumed here.

Then, the structure of a pair (A(e),B(e)) in standard form is as

follows:

A 0 0(e) A 0 A1 ( k() . . . A

A(e) = 1,0(e) Alk 1 (A.la)

k k-1
6 AkO(6) 6 Ak, 1(e) . . Akk(e) }pk

Bo(e) }Po

eB1(E) )Pl
B(e) = (A.lb)

BkB() }k

Proposition A.1 : An e k-reachable pair (A(e),B(e)) over R[[e]] is

in proper standard form with indices pO * ... pk iff A(6) and

B(e) satisfy the following condition: Let Fi(e) = D_1(e)A(e)Di(e),
Di '

Gi(6) = Di1(e)B(e) where Di(e) = diag{I ... iI+ P }i i Po Pi+ + Pk

then the reachable subspace of (Fi(O),Gi(O)) is .i = Im"[ni, for

Vi e [O...k].
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Definition A.2: Let

AO,O() Ao,1 (e) . . . Ao,i (6) P po

Ai(6 = . A1 1(e) . *. . Alit -) P1p (A.2a)

6 Ai (e) 6 A (e) . . A 

BO(e) }po

eB1 (e) }P
Bi(e) = (A.2b)

i B
6 Bi(e) } P i

then (Ai(e),Bi(e)) is the e -reachable subsystem of (A(e),B(e))

with indices no, ... n, n

Similar to the submodule structure, the 6 -reachable

subsystem contains all eJ-reachable subsystems for j = 0.

i-1. The subsystems are layered with weak couplings of different

orders of E between each component, as shown in Figure A. Also,

~mn i+i n-n 0(
T (e) e 6 i+l i[[] 3D (A.3)

mn. i+1 n-n 0
and the sequence {%i(e)IR [[e]]] converges to · °

in k steps. In other words, e -reachable submodules of the

i O
6 -reachable subsystems approximate the e6 -reachable submodule of

i+l
the system in standard form upto e accuracy. We use this in

Algorithm A.3 below.

Computation of the reachability matrix is very expensive.

One has to calculate Ai(e)B(e) for all the terms in the expansions

of A(e) and B(e). Thus, it is desirable to work directly with the

pair (A(e),B(e)). The following algorithm takes advantage of
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Proposition A.1 to recover the ej-reachability indices. At every

step, the reachable subspace of a pair, evaluated at e=O, is

computed. Then the pair is updated by an appropriate scaling of

the unreachable part by 1/e. The algorithm uses the coefficients

of the Taylor expansions of the higher order terms only when

necessary. Also, it is possible to recover the actual Smith

decomposition of the reachability matrix from the algorithm, if

the transformations used in the algorithm are restricted to be

permutation matrices and lower triangular matrices, though this

restriction compromises numerical stability (see [22]).

Algorithm A.3:

Initialize: Ao(e) = A(e), Bo(e) = B(e), i = 0

Step i:

1. Find Ti such that

Ti Ai(O)T [' j iTBi() = []i

with (A 1,B 1) reachable. This determines n i.

2. If ni = n then go to End, else continue.

3. Let Ai+1 (e) = D.I(e)T ilA(e)TiDi(e), Bi+1 = D (e)T Bi(e)i1i i i

where Di(e) = diag{I n eI n-n.i
I 1

(It is not necessary to carry out the computation for all the

coefficients of A.(e) and Bi(e); see Note-1 in [22].)

4. Increment i, go to Step i.

End: k = i, the system is ek-reachable with indices no, ... , nk.
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6k-reachable system

e1-reachable subsystem

I […1 -
6 -reachable

subsystem

k BO(6) 6 kAk,o( 6) 

eA 0 (e)I I Io|o( e) I

I IeB() Akk 1 () 
A1 1( e)

.... ,1
I. . . - ----- - -- --

i Ak k - l( 6 )

A k,k ( )

FIGURE A.1 Block diagram showing the structure of an e -reachable

system in standard form (upper off-diagonal blocks of As(e) have

been omitted for clarity).
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