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1 Introduction of finite length with elements in r, including the empty string
c. The quadruple A = (G, f, d, h) represents our system.

The study of the control of Discrete Event Dynamic Systems Throughout this paper we will assume that A is alive, i.e.
(DEDS) has been introduced by Wonham, Ramadge, et al. VA E X, d(r) 5 0. Another notion that we need is the com-
[2,7,8,10]. This work has prompted a considerable response position of two automata, Ai = (Gi, fi, di, hi) which share
by other researchers, exploring a variety of alternate formu- some common events. The dynamics of the composition are
lations and paradigms. In our work, we have had in mind the specified by allowing each automaton to operate as it would
development of a regulator theory for DEDS. In another pa- in isolation except that when a shared event occurs, it must
per, [4], we develop notions of stability and stabilizability for occur in both systems [5]. We also need:
DEDS while in [3], we focus on the questions of observability
and state reconstruction,using what might be thought of as Definition 2.1 Let E be a subset ofX. A state is E-pre-
an intermittent observation model. In this paper, we com- stable if there ezists some integer i such that every trajectory
bine our work on stabilizability and observability to address from z passes through E in at most i transitions. The state
the problem of stabilization by dynamic output feedback un- z is E-stable if every state reachable from a is E-pre-stable.
der partial observations. Our presentation here is necessarily The DEDS is E-stable (respectively, E-pre-stable) if every z
brief, and we refer to [5] for details. is E-stable (E-pre-stable).

Definition 2.2 The radius of A is the length of the longest

2 Background and Preliminaries cycle-free trajectory between any two states of A. The E-
radius of an E-stable system A is the mazimum number of

The class of systems we consider are defined over G = transitions it takes any trajectory to enter E. 

(X, E, 1, U), where X is the finite set of states, with f = Ixi, We refer the reader to [4] for a more complete discussion of
E is the finite set of possible events, r c E is the set of ob- this subject and for an O(n2 ) test for E-stability of a DEDS.
servable events, and U is the set of admissible control inputs In [4] we also study stabilization by state feedback. Here, a
consisting of a specified collection of subsets of E, correspond- state feedback law is a map K X -, U and the resulting
ing to the choices of sets of controllable events that can be closed-loop system is AK = (G,, dK, h) where
enabled. The dynamics defined on G are:

x[k + 1] E f(z[k], o[k + 1]) (2.1) dK(z) = (d(x) n K(x)) U (d(x) n ) (2.4)

a[k + 1] E (d(z[k]) n u[k]) U e(z[k]) (2.2) Definition 2.3 A state x E X is E-pre-stabilizable (respec-
tively, E-stabilizable) if there ezists a state feedback K such

The function d specifies the set of possible events defined that za is E-pre-stable (E-stable) in AK. The DEDS is E-
at each state,e(x) specifies the subset of d(z) events that stabilizable if every a: is E-stabilizable. *
cannot be disabled at each state, and the function f specifies
the nondeterministic state evolution. In Section 4, we use We refer the reader to [4] for a complete discussion of this
this general framework in which there is no loss of generality subject and for an O(n3 ) test for E-stabilizability, which also
in taking U = 2r-. Up to that point we assume the slightly constructs a stabilizing feedback.
more restrictive framework of [8] in which U = 2` and e(x) = In [3], we term a system observable if the current state is
d(x[k]) n T Furthermore, we assume that 4< C r. known perfectly at intermittent points in time. Obviously, a

Our model of the output process is quite simple: whenever necessary condition for observability is that it is not possible
an event in r occurs, we observe it; otherwise, we see nothing. for our DEDS to generate arbitrarily long sequences of un-
Specifically, with h(a) = a if a E r and h(oa) = c otherwise, observable events. This is not difficult to check and will be
where e is the "null transition", our output equation is assumed. We now introduce some notation that we will find

'Y[k + 1] = h(o[k + 1]) (2.3) useful:
. We define the reach of z in A as:

Note that by letting h(sl,s 2) = h(sl)h(s2) we can think of h
as a map from E* to r*, where r* denotes the set of all strings R(A, x) = {y E Xxl -' y} (2.5)
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where x -- * y denotes that z reaches y via some event where s[k] = r[O] ... a[k] with [40] = e.
string in C*. We define the reach of x in A as: One constraint we wish to place on our compensators is

that they preserve liveness. Suppose that we have observed
R(A, z) = (y E Xiz -+* y} (2.6) the output string s. Then, we must make sure that any x

reachable from any element of i(s) by unobservable events* Let Y denote the set of states za such that either there
exists an observable transition defined from some state
y to a, or z has no transitions defined to it. Let q = IYI. Definition 2.4 Given Q c X, F C O, F is Q-compatible

* Let L(A, a) denote the set of all possible event trajecto- if for all - E R(AIr, Q), (d(z) n F) U (d(x) n T) 0 0. A
ries of finite length that can be generated if the system compensator C is A-compatible if for all s E h(T(A)), C(s)
is started from the state a. Also, let LI(A, z) be the set is i(s)-compatible.
of strings in L(A, xLthat have an observable event as the
last event, and let L(A) = U ~x L(A, 2). Definition 2.5 A compensator C is O-compatible if for alls,t E h(T(A)), such that i(s) = i(t), C(s) = C(t). In

* Given s E L(A, x) such that s = pr, p is termed a prefix this case there exists a map K : Z --+ U such that C(s) =
of s and we use s/p to denote the corresponding suffix r. K(v({Y},s)) for s E h(T(A)). K is termed the observer

In [3], we describe an observer that computes the subset feedback for C.
of Y corresponding to the set of possible states into whichof Y corresponding to the set of possible states into which We will see in Section 3 that we can restrict attention to O-A transitioned when the last observable event occurred. Let
Z C 2t denote the observer state space Then if the observer compatible compensators in order to address the stabilization
estimate is i[k] E Z and the next observed event is 7[k + 1],
we have:

[k + 1] = w(i[k], [k + 1]) (2.7) 3 Output Stabilizability
where

The obvious notion of output E-stabilizability is the exis-
w(i[k], 7[k + 1]) = U[ER(Alr,i[k]) f(x, 7[k + 1]) (2.8) tence of a compensator C so that Ac is E-stable. Because of

and the nature of our observations, it is possible that such a sta-
7Y[k + 1] E v(i[k]) (2.9) bilizing compensator may exist, so that we are sure that the

v (2.9) state goes through E infinitely often, but so that we never
where know when the state is in E. For this reason, we also define

a<v(i& fl[k]) U (d(A),,~[)](2.10) f a stronger notion of output stabilizability that requires that
v(a[k]) =h(UXER(Alr,i[k])(d(x) n [k) U (d() n r)) (2.10) we regularly have this information as well. For simplicity, we

assume observability throughout.The set Z is then the reach of {Y} using these dynamics,
i.e., we start the observer in the state corresponding to a Definition 3.1 A is strongly output stabilizable if there ex-
complete lack of state knowledge and let it evolve. We let k(t) ists a compensator C and an integer i such that Ac is alive
for t E r* denote the observer state if the string t has been and for all p E L(Ac) such that IpJ > i, there exists a prefix
observed. Our observer then is the DEDS O = (F, w, v, i), t of p such that Ip/tJl i and i(h(t)) C E. We term such a
where F = (Z, r, r, U) and i is the identity output function. compensator a strongly output stabilizing compensator. a
In [3], we show that A is observable iff O is stable with respect
to its singleton states. We also show that if A is observable Proposition 3.2 A is strongly output stabilizable iff there
then all observer trajectories pass through a singleton state exists a state feedback K :Z -* U for the observer such that
in at most q2 transitions so that the radius of the observer is

Xi in A [[ OK is Eoc-stable, where Xi ((x, (Y))[z Eat most q3 . X} is the set of possible initial states in A [[ OK and where
Suppose that the observed sequence of transitions includes Eoc = {(x, I) E Y x Zli C E} is the set of composite states

errors corresponding to inserted, missed, or mistaken events- for which the system is in E and we know it.
We term an observer resilient if after a finite burst of such
measurement errors, the observer resumes correct behavior in Since 0 describes all the behavior that can be generated by
a finite number of transitions. The observer O as specified in A, we have the following:
2.7,2.9 is defined only for event sequences that can actually
occur in the system. When an error occurs, the observer Proposition 3.3 A is strongly output stabilizable iff there
may at some point be in a state such that the next observed exists a state feedback K: Z -+ U for the observer such that
event is not defined. In this case, we extend w and v to reset OK is stable with respect to Eo = { E = ZI C E} and for all
the observer state to {Y}. This yields an observer OR = E Z, K(X) is z-compatible. Furthermore, if A is strongly
(F, wR, vR, i), which is resilient if A is observable. output stabilizable then the trajectories in the reach of Xi in

A compensator is a map C : r* -+ U, yielding a closed A II OK go through Eoc in at most nq3 transitions.
loop system Ac with:

Thus we can test strong output stabilizability by testing the
o[k + 1] E dc(x[k], s[k]) = (d(x[k]) n C(h(s[k]))) U (d(x) nf) observer for stabilizability. The following algorithm adapts

(2.11) one from [3]:



Proposition 3.4 The following algorithm tests for strong In order to construct a compensator as proposed by the above
output stabilizability and constructs the corresponding feed- lemma, let us first characterize the states in Q that we can
back. It has complexity O(q3 JZJ): "kill" while preserving liveness in A:
Algorithm Let Zo = Eo and iterate:

-,EQ= _ Y = (yi, Y2) E WI3F C 4' such that
P,+ = - { E Zl{? E v(i)lw(i, Y) E Pk} is i-compatible} Q vqF(y) = Oand F is y2-compatible}

K(£) = ITvfr E v()Pr) E P, for Ee P+l . -(3.12)K() = E E P for E where vQF(y) = (vQ () n F) U (vQ() n )
Zk+l = Zk U Pk+1

Proposition 3.8 A is output pre-stabilizable while preserv-
Terminate when Zk+l = Zk = Z*. A is strongly output ing liveness iff there exists a state feedback Ko such that
stabilizable iff Z = Z*. * QKo is Eq-pre-stable and for all (yl,Y2) E W, K((yl, y2))

is y2-compatible in A. Furthermore, the compensator defined
Consider next the following somewhat weaker notion: by C(s) = K(WQKo((YY), )) for 8 E L(Q Y( Y)) and

C(s) = · for all other s, pre-stabilizes A, where
Definition 3.5 A is output stabilizable (respectively, out-
put pre-stabilizable) with respect to E if there exists a com- f Frc IVQF(y) = 0 and
pensator C such that Ac is E-stable (E-pre-stable). We term K(y = (Y1, Y2)) = F is y2 -compatible if y E EQ
such a compensator an output stabilizing (respectively, out- Ko(y) otherwise
put pre-stabilizing) compensator. ·

Finally, the trajectories in Ac go through E in at most nq 3

Proposition 3.6 A is output stabilizable iff A is output pre- transitions. a

stabilizable while preserving liveness (i.e., the closed loop sys-
tem is pre-stable and alive). a Proposition 3.9 The following algorithm tests for output

pre-stabilizability while preserving liveness and constructs the

Our construction of a pre-stabilizing compensator involves corresponding feedback. It has complexity O(q3 IWI):
(a) constructing a modified observer which keeps track of the Algorithm Let Zo = EQ and for y = (Y1, Y2) E Eq, let
states the system can be in if the trajectory has not yet passed K(y) = F C ·4 where F is such that vQF(y) = 0 and F is
through E, and (b) formulating the problem of pre-stabilizing y 2 -compatible. Iterate:
A by output feedback as a problem of stabilizing this observer
by state feedback. P+1 = {y E W{ E v(y)lwQ(y,y) E P}

Consider the following construction: Delete all events in A is y2 -compatible in A}
that originate from the states in E and construct the cor- K(y) = {y E vQ(y)wQ(y, 7) E Pk} for y E Pk+
responding observer. Let AE denote this system and let Zk+1 = Zk U Pk+1
OE = (FE,WE, rE) denote its observer. Note that OE has
some "trapping" states, each of which is a subset of E. If Terminate when Zk+1 = Zk = Z*. A is output pre-
the trajectory ever evolves to one of those states, then we stabilizable iff (Y, Y) E Z*. 
know that it has passed through E in A. More generally,
for any state i of OE, then for a trajectory that evolves to Note that if, at some point, we are certain that the tra-
i, the system can be in one of the states in £ n E only if jectory has passed through E, we can force the trajectory to
that trajectory has not passed through E yet. By itself OE go through E again by starting the compensator over, i.e.,
does not keep track of enough information to design a pre- by ignoring all the observations to date and using the pre-
stabilizing compensator, since, in order to preserve liveness, stabilizing compensator on the new observations. We now
we also need to know all the states in which the system can present an approach which allows us to detect, as soon as
be. For this reason we construct Q = (FQ, WQ, vQ) = OE 11 0 possible, that the trajectory has passed though E. Given an
together with the initial state (Y, Y). The state space of Q, output pre-stabilizable A, suppose that C is the correspond-
is W = R(Q, (Y, Y)) which has the same size as that of OE. ing compensator and K is the corresponding Q-feedback

The following lemma shows that the problem of output for C. Recall that in general, given some y = (Y1, Y2) E
pre-stabilization can be formulated as a problem of pre- R(QK, (Y,Y)), not all events defined at Y2 are defined at
stabilization of Q. The key is to find a state feedback K y. Suppose that we start QK in (Y, Y) and then observe
for Q, which we can then adapt to a corresponding compen- s E h(L(Ac) l L(QK, (Y, Y)), so that y = wQK((Y, Y), s) is
sator for A, and which forces all trajectories in QK to have the present state of QK, and suppose that the next obser-
finite length. In doing this, however, we need to make sure vation is a transition a V vQx (y). We then know that the
that the compensator for A keeps A alive: trajectory has passed through E. At this point, we wish to

force the trajectory to pass through E again, but in doing so,
Lemma 3.7 A is output pre-stabilizable with respect to we can use our knowledge of the set of states that the system
E while preserving liveness iff there exists a feedback can be in, i.e., w(y 2, a). What we would then like to do is to
K: W -- U such that for all (yl, Y2) E R(QK, (Y, Y)) have Q transition to the state z = (w(y 2 , o), w(y 2, a)). How-
K((y1 , Y2)) is y2-compatible, and QK is pre-stable with re- ever, as we have defined it so far, z may not be in W. What
spect to its dead states, i.e., with respect to the states y such we must do in this case is to augment W with all such z's and
that VQK (y) = 0. * any new subsequent states that might be visited starting from

3



such a z and using the dynamics of Q (or its restriction un- [3]). In this section, we present sufficient conditions that can
der feedback) extended to arbitrary subsets yl, Y2 C Y. We always be tested in polynomial time in q.
modify this definition as follows: if wEK(Yl, or) = 0, then we It is well known in linear system theory that controllability
set wQ K((Y1, Y2), a) to (w(y2, r), w(y2, o)). Let WI be the and observability imply stabilizability using dynamic output
union of the reaches of all states of the form (Y', Y') with feedback. Unfortunately, this is not true in our framework,
Y' C Y and define Q" = (F a , w, v) where F a = (Wa, r, r). since we only require that the state is known intermittently.
Note that EQ C W" and R(QK, (Y, Y)) C W". If in fact any We start this section by showing that we obtain a result sim-
z = (Y', Y') is pre-stabilizable with respect to R(QK, (Y, Y)) ilar to that for linear systems if we assume as in [5] that after
in Qa, then we can force the trajectory to pass through E. a finite number of transitions, and for each transition after
The next result states that pre-stabilizability of Q is sufficient that, we have perfect knowledge of the current state.
for being able to do this: A set Q c X, Q is f-invariant in A if all state trajecto-

ries from Q stay in Q. In [4], we present an algorithm that
Proposition 3.10 If there exists a feedback K for Q such computes the maximal f-invariant subset of a given set. Let
that QK is EQ-pre-stable and K(y) is y2 -compatible, then Es be the maximal w-invariant subset of the set of singleton
there exists a feedback K' such that for any Y' C Y, Z = states of O. If E, $ 0 and if O is E-stable, then at some
(Y', Y') is pre-stable with respect to R(QK, (Y,QY)) in Q%' finite point the observer state enters Ew and never leave, so
and K'(y) is y2-compatible for each y = (yl, Y2) E R( QK, z). that the state will be known perfectly from that point on:

Proposition 4.1 Suppose that (i) E n Ew = 0; (ii) A is
Note that K' can be chosen so that K'(y) = K(y) for all En Ew-stabilizable; (iii) 0 is Ew-stable, then A is output-
y E R(QK, (Y, Y)) and the algorithm in Proposition 3.9 can stabilizable. ·
be used for constructing such a K'.

be used for constructing such a To show that the computational complexity of testing Propo-
In order to construct an output stabilizing compensator,In order to construct an output stabilizing compensator, sition 4.1 is polynomial in q, we proceed as we did in [3]. First,

we use the above proposition recursively as follows: Let K 0o we construct an automaton A' = (G', , d', i), over Y that
be a feedback that pre-stabilizes Q and preserves liveness, models the state transition behavior sampled at the times at
as can be constructed using the algorithm in Proposition which observable events occur so that f' and d' can be con-
3.9. Let Z0 = {y, y} be the initial state of QK0 and let structed from A and i is the identity function). Note that the
Wo = R(QK., Zo), i.e., the states we may be in when we observers for A and A' are identical. Next, let P = Y x Y
know that the trajectory has already passed through E. We and construct the pair automaton Op with state space P and
then augment Zo to include the states to which we may "re- he dynamics of Op have the following interpre-event set r. The dynamics of Op have the followig interpre-
set" our compensator: tation. Suppose that the system might be in either state x or

_ {(iX, i)I = W(Y2 , a) state y, and suppose that the event 7 occurs. Then, the next
for some y = (yl,y2) E W0 and a E (y2, Ko(y))} state of A' could be any element of S = f'(x, 7)Uf'(y, 7) The

(3.13) dynamics of Op capture this possible ambiguity by moving
where O(y2, Ko(y)) = (v(y2) n Ko(y)) U (v(y2) n T). Next, from (z, y) to any (z', y') with x', y' E S. Also, there are some
we find a feedback K1 that satisfies Proposition 3.10 for special states in Op, namely those in Ep = {(x )lx E Y}
each (Y',Y') E Z1 , and we let W1 = R(QKo,p Z 1). Pror corresponding to no ambiguity. Indeed the following provides
ceeding in this fashion, we construct W2, W3, etc., until an efficient way in which to compute E.:
Wk+l = Wk = W' for some k. Let K' be the correspond- Proposition 4.2 E, is the maximal w-invariant subset of
ing feedback. Then (1) QK' is EQ-pre-stable; (2) K'(y) is the singleton states of O iff {(, x){zx} E E,} is the maximal
y2-compatible for all y E W'; and (3) for all y E EQ n W' wp-invariant subset of Ep in Op. *

and ao E (Y22, K'(y)), (W(y 2, o), w(y 2, o)) E W' Finally, we Furthermore, it follows from [3] that O is Eu-stable iff Op
construct Q' = (F', w', v') where F' = (W', r, r): is {(x, z){z} E Ew}-stable, and from [4] we can show that

Qr w / or(Y, io) f Proposition 4.1 can be tested in O(q4 ) time.
',Y (w(y2, ),w(y2,a)) otherwiser (K3,14) We can also test a weaker sufficient condition. A set Q is(w(y2, or), w(y 2, a)) otherwise 4

sustainably (f, u)-invariant in A if there exists a state feed-
v'(y) = 0(y2, K(y)) (3.15) back such that Q is alive and f-invariant in the closed loop

system. Let Eu be the maximal sustainably (w, u)-invariant
Then, the compensator C(s) = K'(u'((Y, Y), s)) for all s E subset of the singleton states and let Ku be the associated
L(Q', (Y, Y)) stabilizes A. state feedback (see [4] for construction). Note that Ku only

needs to act on the singleton states, and thus it can also be

4 Sufficient Conditions Testable in thought of as a feedback for A. Note also that Ku needs to
disable those events that take states in Eu outside of Eu, and

Polynomial Time it is unique provided that it only disables such events.

We have presented necessary and sufficient conditions for out- Proposition 4.3 Suppose that (i) E n Eu = 0; (ii) A is
put stabilizability that can be tested in polynomial time in E n Eu-stabilizable; and (iii) 0 is Eu-stable. Then if Ks(z)
the cardinality of the observer state space. However, while in is a stabilizing feedback the feedback
many cases the observer state space may be small, there are KU () n I. (x) if = {z} E Eu
worst cases in which its cardinality is exponential in q (see ) = otherwise

K4.



is an output stabilizing feedback for A. * the reach of the initial states XI defined in Proposition 3.3.
Since A jj OKR = A I! OK, we have:It can be shown that this sufficient condition for output sta-

bilizability can also be tested in O(q4 ) time.biizability can also be tested in O(qp4) time. Proposition 5.2 A is resiliently, strongly output stabilizable
We conclude this section by presenting an even weaker suf- if there exists a state feedback K: Z U for the observer

ficient condition. We term a state z always observable if such that A 11 OK is Eoc-stable. a
whenever the system is in z, the observer estimate is {z)}.
We term a system a-observable if it is stable with respect to Finally, we have the following companion of Proposition
its always observable states. Suppose that A is a-observable 3.2 which states that it is necessary and sufficient to test 0
and let us construct the automaton Aa which is the same as for Eo-stability, but since the burst may put the system and
A except that only events in always observable states can be the observer in arbitrary states, we need an X-compatible
controllable, i.e., ea(z) = d(x) for all states z that are not feedback:
always observable. If A, is stabilizable then A is also output
stabilizable since whenever we need to exercise control, we Proposition 5.3 A is resiliently, strongly output stabilizable
have perfect knowledge of the state: with respect to E iff there exists a state feedback K for the

observer such that OK is Eo-stable and for all x E Z, K(i)Proposition 4.4 Given an a-observable system A, if A, is
E-stabilizable then A is output stabilizable. · s X-compatible.

It can be shown that this sufficient condition can be tested An algorithm for testing resilient, strong output stabilizabil-
in O(q4 ) time. ity and constructing a feedback is identical to Algorithm 3.4

except that when we search for a feedback, we search for one
that is X-compatible, and the computational complexity is

5 Resiliency again O(q 31ZI).

In this section we study the property of resilient output sta- Definition 5.4 A is resiliently output stabilizable if there
bilizability in the sense that in spite of a burst of observation exists an output stabilizing compensator C such that for all
errors, the system stays alive and goes through E infinitely strings s that can be generated by Ac, i.e., Vx E X, and
often. To begin we say that the discrepancy between two Vs E Lf(Ac, x); and for all possible ouput strings t which
strings s and t is of length at most i, denoted by l(s, t) < i, can be generated by corrupting h(s) with a finite length burst,
if there exists a prefix, p, of s and t such that Is/pi < i and i.e., V positive integers i, and Vt E r* such that ~(t, h(s)) < i,
It/pl < i. the trajectories starting from f(x, s) visit E infinitely often,

Definition 5.1 A is resiliently, strongly output stabilizable i.e., f(, s) is E-stable in AC,, where C'(h(s')) = C(th(s'))
if there exists a strongly output stabilizing compensator C : for all s' E h(L(A, f (, s))). We say that C is a resiliently
rF -- U and an integer i such that for all strings s that can be stabilizing compensator for A.
generated by Ac, i.e., Vx E X, and Vs E L (Ac, x); and for
all possible ouput strings t which can be generated by corrupt- Lemma 5.5 If C is a resilient outpu salizing ompen-
ing h(s) with a finite length burst, i.e., V positive integers j,C(s) is X-compatible for all s E h(L(A)).
and Vt E r* such that ~(t, h(s)) < j, the compensator acting
on such corrupted strings still strongly stabilizes the system Necessary and sufficient conditions for resilient output stabi-
after the error burst has ended. That is, for each such x, lizability parallel those of output stabilizability except that
, and t the compensator C'(h(s')) C(th(s)), defined for we need to use X-compatible feedback. Since, a resilient

s' E h(L(A, f(x, s))) is such that output stabilizing compensator needs to be defined for all
strings in r*, given a feedback K for the automaton Q de-

* the range of f(x,s) is alive in AC,, i.e., for all x E fined in Section 3.2, we define QKR = (GKR, WKR, VKR)
R(Ac, f(x, s)), dc,(z) $ 0 so that vKR(r) = (r) and WK,R(Y, 7) resets QK to (Y,Y)

· for all p E L(Ac, f(x,s)) such that IPJ > i, there ez- if 7 ¢ vg (y) We can then define a compensator C(s) 
ists al prefix p of p such that IP/p'I <i and f(z,sp) t K(WKR((Y,Y), s)) for all s E r*. We state the followingisis a prefiz p' of p such that Ip/p'l < i and f(z, sp) C
wcR((Y}, th(p')) C E, where wcR is the transition companion of Proposition 3.8 where
function of the resilient observer OCR for AC. E {Y = (Ym, Y2) E W|3F C · such that

We say that C is a resiliently, strongly stabilizing compen- vQF(y) = 0 and F is X-compatible}
sator for A. ·

Proposition 5.6 A is resiliently ouput stabilizable iff there
The requirements on C' ensure that the compensator C act- exists a state feedback K such that QK is EQR-pre-stable and
ing on the corrupted output string (a) preserves liveness, and for all y E W, K(y) is X-compatible in A. Furthermore,
(b) stabilizes A following the burst. the compensator defined by C(s) = K(WKR((Y, Y), s)) for all

Let us return to the characterization of strong output sta- s E re resiliently stabilizes A. a
bilizability in Proposition 3.3, but note that we must now
use the resilient observer OR in place of O in the actual im- We can test for resilient output stabilizability and can con-
plementation. If an error burst now occurs, it may put the struct a feedback by modifying Algorithm 3.4, using EQR in
system and observer in arbitrary states not necessarily within place of EQ and checking X-compatibility.
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