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I. SUMMARY

In this report we summarize our accomplishments in the research program

presently supported by Grant AFOSR-88-0032 over the period from October 1,

1987 to September 30, 1988. The basic scope of this program is the analysis,

estimation, and control of complex systems with particular emphasis on (a) the

development of asymptotic methods and theories for nearly singular systems;

(b) the investigation of theoretical questions related to singular systems;

and (c) the analysis of complex systems subject to or characterized by

sequences of discrete events. These three topics are described in the next

three sections of this report. A full list of publications supported by Grant

AFOSR-88-0032 is also included.

The principal investigator for this effort is Professor Alan S. Willsky,

and Professor George C. Verghese is co-principal investigator. Professors

Willsky and Verghese were assisted by several graduate research assistants as

well as additional thesis students not requiring stipend or tuition support

from this grant.
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II. Asymptotic Analysis for Perturbed Systems

Our research in this area has focused on the analysis of perturbation

models of linear systems and of finite-state stochastic processes. The class

of models that has been the focus of much of our work is the perturbed linear

system.

x(t) = A(e)x(t) (2.1)

and its counterpart with inputs

x(t) = A(e)x(t) + B(e)u(t) (2.2)

Our work during the past year has had three parts. The first has been in

continuing to refine and document results on several topics, namely an

efficient approach to hierarchical aggregation of finite state Markov

processes (FSMP's) (corresponding to (2.1) with A(e) an infinitessimally

stochastic matrix) and its extension to semi-Markov processes and positive

systems [1,6-8,11,15], an algebraic, ring-theoretic approach to multiple time

scale decomposition for (2.1) [3,5], and a theory of asymptotic orders of

reachability for (2.2) [10]. The second topic deals with both the application

of the theory in [1,6-8] to the analysis of a flexible manufacturing system

and the development of a new theoretical result on asymptotically accurate

computation of count rates for particular events. These results are

documented in [18,19], and a journal paper on this topic is now being planned.

Let us briefly describe the central idea behind the count rate result.

Specifically, in a perturbed FSMP a particular event --corresponding to one or

any of a set of transitions in the FSMP -- may appear to occur at different
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effective rates depending upon the time scale over which the process is

viewed. For example, the production rate of a machine over a time period that

is short with respect to the machine's mean time between failure will

certainly differ from its effective rate over very long intervals in which

several failures and repairs may occur. To deal with this one must make use

of the multiple time-scale, hierarchically aggregated models of the process as

developed in [1]. The method developed in [1] is, in a sense, optimum, as it

recursively determines and keeps only those e-dependent transistion rates that

affect long term transition behavior. To solve the asymptotic count rate

problem, however, several other issues needed to be considered. First, it

turns out to be necessary to identify and account for additional terms not

needed for the problem considered in [1]. For example, suppose that the

transitions from state i to j and from state k to m both correspond to the

same "event" in the overall system. Suppose further that the ergodic

probability of state i is 0(1), while the i-to-j transition rate is O(e), and

that the ergodic probability of k is 0(e) and the k-to-m rate is 0(1). Then,

the analysis in [1] would in essence neglect residency in state k. However,

thanks to the 0(1) k-to-m rate, state k is just as important for event

counting as state i. Thus, in our analysis we developed an extension of

previous results to identify and retain such terms.

A second issue that needed to be considered is the changing nature of

events as we look at aggregated versions of the FSMP corresponding to long

time-scale behavior. In particular, while an event corresponds to a set of

transitions between states of the original process, these states may be

aggregated together at some time-scale, and at that scale the event becomes a
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random variable taking on a value corresponding to each aggregate state (e.g.

while an initial model of a machine would have transitions corresponding to

completion of a part, an aggregated version capturing only transitions between

"failed" and "operational" states would not; in this case one would associate

a variable representing effective production rate while in each of these

aggregate states). Combining these ideas with the results of [1] and results

from renewal theory leads to an effective procedure for computing asymptotic

event rates.

The final topic that has been considered during the year is the

asymptotic analysis of estimation problems for perturbed FSMP's. We have been

successful in obtaining some significant new theoretical results and some

simulation results that support a number of additional conjectures. This

research is still in progress, and a paper is being planned for the coming

year. We limit ourselves here to a brief illustration of some of the ideas.

Consider the 4-state process depicted in Figure 2.1. Because of the weak

left-right coupling, this process has two time scales: fast transitions

between top and bottom states and much less frequent right-left transitions.

Using the method of [1], the long-term, aggregate behavior of this process can

be described as in Figure 2.2, where L = {1,2}, R = {3,4}, and - 1 , 2 can be

computed from the X's and it's.

Suppose that we are interested in estimating only the slow, long-term L-R

behavior from measurements of the original process:

dy(t) = g(e)h(p(t))dt + dv(t) (2.3)

where p(t) is the 4-state process, v(t) is a standard Wiener process, and g(e)

is a gain, controlling measurement signal-to-noise ratio. There are two
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interesting possibilities for the measurement function h(p):

h(l) = h(2) = a , h(3) = h(4) = P (2.4)

or

h(l) = h(3) = a , h(2) = h(4) = P (2.5)

In the first case, we only receive information on L-R status from the

measurements, and thus one would expect that a suboptimal estimator based on

the aggregate model of Fig. 2.2 would perform well. This is indeed the case,

and the precise result will be reported in the forthcoming paper.

In the case of (2.5) we directly measure only top-bottom behavior.

However, we do obtain indirect information about L-R status thanks to

differences in the X's. We have several results on methods for extracting

this information. For example, if g(e) -- ) 0 as E -) O, i.e. if the

instantaneous SNR is small, then information is accrued only by the integrated

effect of y(t) over a substantial time period. What would seem plausible in

this case is to replace h(p) by its average, depending upon whether p(t) is on

the left or right:

ha(L) = p l a + p2 , ha(R) = p3a + p4P (2.6)

where the pi are the ergodic probabilities (for the corresponding ergodic

classes) original process when e--=O. We have precise theoretical results for

the asymptotic optimality of the estimator based on the aggregate model of

Figure 2.2 and (2.6).

The work described previously has largely been restricted to linear,

time invariant (LTI) systems so far. It is of interest to consider extensions

to the case of perturbed periodically varying linear systems. Opportunities

for studying problems of this sort arise in the context of electrical machines
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and power electronics. Deferring a discussion of modeling and analysis of

switched power electronic circuits to Section IV, we mention here some recent

work of ours in stability studies for electrical machines.

The most commonly considered nominal operating condition for the

nonlinear model of an electrical machine system is constant speed operation.

The linearized model at this operating condition is usually periodically

varying, because of the periodic variation of the machine's inductance matrix

with rotor position. However, for some machines a time invariant nonlinear

transformation of the original nonlinear model leads to a time invariant

linearized model, provided the inputs (voltages and torques) satisfy certain

ideal properties. This "Blondel-Park" transformation radically simplifies the

stability analysis. Most analytical stability studies in the machines

literature therefore make (sometimes drastic!) modeling assumptions that lead

to a transformable model subjected to ideal inputs.

In [25], we have obtained succinct and easily tested necessary and

sufficient conditions for Blondel-Park transformability of a machine with

affine magnetic properties. The conditions are constructive in the sense that

a suitable transformation is yielded if one exists. This then leads to the

possibility, elaborated on in [25] and [26], of studying machines in nearly

ideal operation, i.e. nearly transformable and/or operating with nearly ideal

inputs. For such machines, nominal operation corresponds to periodic, nearly

constant speed.

There are two tasks for a perturbation approach here. The first is to

approximately compute the perturbed periodic steady state. The second is to

approximately assess the stability of this periodic steady state.
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Perturbation methods for both tasks are described in [25], [26], in each case

exploiting the fact that ideal operation involves the analysis of an LTI

model. In particular, the second task involves stability analysis of the

nth-order system

x(t) = (A + eB(t))x(t), B(t) = B(t + T), periodic (2.7)

The Floquet theory shows that asymptotic stability is equivalent to the

eigenvalues of the monodromy matrix (the state transistion matrix over a

period) of the above system all having magnitude less than 1. In the case

where A has distinct eigenvalues, we use eigenvalue sensitivity results to

reduce the computation involved in approximate stability assessment to

evaluation of the n scalar integrals J0 W. B(t)vidt, where w. and v. are the

left and right eigenvectors associated with the ith eigenvalue of A,

i = 1,...,n. Note that the perturbation matrix B(t) enters these integrals

linearly, which can be important for design and physical interpretation of the

results.

Future work in this direction will examine the potential and limitation

of such first-order sensitivity methods. For example, if the average value of

B(t) is the zero matrix, then the first order results above are not helpful,

and one has to look further. Another interesting problem that we intend to

study in more detail is that of periodic singular perturbations, corresponding

to A in (2.7) being singular. Finally, the above problems and methods may be

extended to more general systems. In particular, the idea of using a time

invariant nonlinear transformation of a nonlinear model to obtain a time

invariant linearization instead of a periodically varying one does not seem to

have been discussed outside the machines literature, though related ideas such

as feedback linearization and pseudo-linearization have been discussed.
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III. Singular Systems

During the past year we have made substantial progress on the analysis of

two-point boundary-value descriptor systems (TPBVDS's):

Ex(k+l) = Ax(k) + Bi(k) (3.1)

with boundary conditions

v = Vix(O) + Vfx(N) (3.2)

and output

y(k) = Cx(k) (3.3)

Such models are a natural choice for the description of non-causal (e.g.

spatial) phenomena and signal processing tasks.

Our earlier work dealt with some of the basic system-theoretic properties

of these systems. Specifically, we investigated well-posedness for TPBVDS's

and in the process discovered a very useful normalized form. We also

investigated the two natural "state" processes for these systems, namely the

inward process, corresponding to propagating the boundary condition inward,

and the outward process, which involves propagating the effect of the input

outward toward the boundary. With these notions in hand we investigated

corresponding pairs of notions of reachability and observability.

Our work this year has built on these earlier results, yielding several

papers [2,14,20,21,24] and a recently completed Ph.D. thesis [13], with

several additional papers planned for the coming year. One part of our work

focused on the class of stationary TPBVDS's -- i.e. systems for which the

weighting pattern from u(k) to y(k) is shift-invariant (this is not always

true for (3.1)-(3.3), even if E,A,B, and C are constant matrices). For such

9



processes, explicit and comparatively simple expressions can be obtained for

reachability and observability conditions, and we have also developed an

associated theory characterizing minimal TPBVDS's [20]. When u(k) is a white

noise process, one can also analyze the statistics of x(k) and in particular

can develop the concept of stochastic stationarity -- i.e. when the

correlation of x(k) and x(m) depends only on k-m. This has led us to discover

a new class of generalized Lyapunov equations which are also related to a

novel notion of stability for TPBVDS's related to asymptotic behavior as the

size of the interval of definition grows without bound [21].

We have also investigated estimation problems for TPBVDS's [2,14] and a

class of 2-D (i.e. spatial) TPBVDS's [24]. In particular, in [2,14] we

introduce a new class of generalized Riccati equations, the solutions to which

provide the basis for a generalization of the Mayne-Fraser two-filter

algorithm for optimal smoothing.

Our most recent and just completed work [13] contains significant

extensions to all of these results. In particular

* We now have an explicit representation of reachability,
observability, and minimality for TPBVDS's that need not
be stationary.

* We have now solved the deterministic realization problem
by introducing a new type of transform generalizing the
z-transform in a way that treats zero and infinite
eigenmodes in a similar way. This work has led to a new
factorization problem, a generalized notion of McMillan
degree for stationary TPBVDS's, an algorithm for
constructing minimal realizations, and a clearer picture
of the more complex nature of minimality conditions for
TPBVDS's.
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* We have made some progress on the stochastic realization
problem. Specifically we have a theory for TPBVDS
realizations of processes with rational spectra.

* We have completed a thorough study of the smoothing
problem for TPBVDS's. This includes a complete theory
for our generalized Riccati equations, including
existence and uniqueness conditions and their relation to
reachability and observability. In addition, we have
been able to provide a precise probabilistic
interpretation for the solutions to these equations
(which is not obvious in this case), and this in turn has
led to a generalization of the Rauch-Tung-Striebel
smoothing algorithm.

One major reason for studying singular systems is that descriptions of

interconnected systems typically combine dynamic and algebraic (or static)

constraints, and therefore appear naturally in singular form. Reduction to

regular state-space form is often the simplest way to proceed in the case of

small or moderate size singular descriptions. Singular descriptions of large

interconnected systems, on the other hand, will typically have sparse

structure that needs to be respected and exploited; reduction to regular

state-space form destroys sparsity. We have developed some new results in

this direction, as outlined next.

The specific task that we address is the computation of selected modes of

a continuous time singular system of the form

Ex(t) = Ax(t) (3.4)

where E and A are square N x N matrices. An important application occurs in

the context of small-signal stability analysis for power systems. If there

are g generators and b buses in the network, then N may be on the order of

b + 12g if the generators are represented by 12th-order dynamic models and the

loads are taken to be static, yielding an N that could be a few thousands!
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The corresponding model (3.4) is very sparse (and in fact was a major stimulus

for the original development of sparse matrix methods). The system (3.4) in

this case will have 12g, or several hundred, finite eigenvalues. Typically

only g oscillatory modes need to be accurately computed, however. These modes

are the least damped ones, rather than the slowest or the fastest ones

considered in singular perturbations. Application of a full generalized

eigenanalysis algorithm such as the standard QZ algorithm (even preceded by

Van Dooren's preparatory "pencil deflation") would be prohibitively expensive.

An approach to this problem, termed Selective Modal Analysis (SMA), has

been developed for regular state-space descriptions in work of Perez-Arriaga,

Verghese and co-workers , and applied with considerable success to power

systems and other settings. One application that is currently being

considered is that of large Markov models, where the dominant and subdominant

modes are of interest. We have made significant progress on extending SMA to

singular systems in the past few months,[27].

A key quantity in SMA for regular state-space descriptions is what we

have termed the participation factor of the kth state variable in a given

mode. To see the form of the extension to singular systems, let X denote the

frequency of a mode of (3.4), and let v A 0 and w A 0 denote the associated

right and left (generalized) eigenvectors, so

(WE - A)v = O, w((XE - A) = O (3.5)

1I.J. Perez-Arriaga, G.C. Verghese, F.L. Pagola, J.L. Sancha and F.C.

Schweppe, "Developments in Selective Modal Analysis of small-signal stability

in electric power systems," to appear in Automatica.
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We shall assume that the eigenvectors are normalized so that wTEv = 1. Now

the participation factor Pk of the kth component of x in the given mode is

defined to be k = wTEkvk. where Ek is the kth column of E and vk is the kth

component of v.

Participation factors are independent of the units chosen for the

components of x, and sum to 1 for a given mode. There are several reasons for

considering the kth participation factor to be a measure of how important it

is to retain xk in any reduced order model for computing the selected mode.

The definition above specializes to the one used in the regular case, where

E = I.

A generalization of the prototype SMA algorithm is then as follows.

First re-order the components of x into two vectors, an n-vector r containing

those components of x that are deemed "significant" for computing the mode X,

and an (N - n)-vector z containing the remaining, less significant components.

(For the power system models that we have experience with, n is only of the

order of 2g to 3g, where g is as defined earlier.) The participation factors

defined above turn out to be exactly the measures of significance needed for

the algorithm below, as will be noted, so approximate knowledge of

participation factors provides a good guide for any required re-ordering. Now

re-order and partition the description (3.4) to conform with the partitioning

of x:

r r
(Er E) Z =(A AZ) r (3.6)z r z z

To avoid excessive notation, we shall assume that no ordering was actually

needed, so that r comprises the first n components of x.
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The basic philosophy of SMA is to make approximations in the less

significant part of the model in order to reduce the computational burden.

Suppose at the jth iteration of our algorithm we have an estimate XJ of X, and

an estimate

v j v
r to r (3.7)

j vz z

We then find our next (and presumably improved) estimates Xj+ 1 and v + l1 byr

solving the following reduced-order N x (n + 1) generalized eigenvlaue problem

from (3.6):

v j+l

((X 1Er - Ar) (XjEZ - A)v = (3.8)

It is expected that sparse matrix methods can be used to advantage here, but

this remains to be studied. To complete the iteration cycle, we find vj+l byz

solving the following simple N x (N - n) linear system of equations derived

again from (3.6):

(hJ+iE - Az )v+ 1
- -(hJ 1Er - Ar)vr+ 1 (3.9)

We expect once more that sparse matrix methods can be used here.

Our preliminary analysis shows that the above iteration converges locally

to X with a linear convergence rate of -(wTErvr)/(wTEzvz). This is just the

(negative of the) ratio of the sum of participation factors of the r variables

to the sum of participation factors of the z variables. In other words, for

the above reduced-order iteration to converge locally, the variables with

large participation in the selected mode must be retained in the r variables.

Once again, all these results specialize as expected in the regular case.

The existing SMA algorithms for the regular state-space case can iterate

14



on several selected modes simultaneously. The corresponding extension to the

singlular system case remains to be worked out. We also expect to pursue the

application to singular perturbations for singular systems. If XJ in (3.8) is

set to 0 at each iteration, we obtain an iteration in the spirit of singular

perturbations to compute the slow modes of the system. Further study of this,

and comparison with SMA, is needed.
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IV. Systems Subject to Discrete Events

Our work in this area has had two parts. The first part was concerned

with the completion of our study of stochastic Petri net models for cardiac

arrhythmias [12]. The second part, on which we focus here, consisted of the

initiation of an investigation of a class of discrete-event dynamic systems.

The thesis proposal [17] outlines a number of research problems on which we

are working and on which we now have some results.

The specific class of models we are considereing is essentially the same

as that introduced and investigated by Wonham, Ramadge, Varaiya, and others.

Specifically our model is a finite-state automaton

A = (X,Z,U,Y,f,g)

Here X is the state-set, 2 is the input alphabet, and the state transition

function f maps a subset of X x 2 into X -- the fact that it is a subset of

X x I corresponds to the fact that we allow the possibility that not all input

values can be applied at every state x e X. The set U C 2 corresponds to the

set of controllable events. In the original theory and in most of our work

control corresponds to disabling certain of the controllable events -- i.e.

preventing them from occurring. One can also imagine control in which an

event in U is forced to occur. We have also considered two types of outputs.

One is state output, i.e. g: X --- Y, while the other is partial event

observations, i.e. g: 2 ) Y*, where S denotes the set of strings of

elements of S. We assume in our work that g is defined in a memoryless

fashion -- i.e. g maps individual symbols to individual symbols -- but that

some events in I may be unobserved, i.e. for some a e 2, g(a) may be the empty

string.
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Our work has had as its central motivation the development of a regulator

theory for discrete - event systems. This ultimate goal has led us to

consider a number of more basic problems:

* Stability and Stabilization. The notion of a system
recovering from an error is essential in defining any
meaningful concept of regulation. We have developed such a
notion and have also developed a procedure for designing
stabilizing controllers using state feedback.

* Observability and Observers. In this case we have focused
on the partial event sequence observational model. This leads
to a weaker notion of observability. Since some events are
not observed, it is only possible to determine the state every
once in a while.

* Tracking. Here we consider the problem of tracking a
specified event sequence or reconstructing an event sequence
based on the output sequence. We have focused our attention
so far on the latter problem. This has led us to a theory of
invertible languages and a concept of error recovery that we
refer to as resiliency.

* Computational Complexity and Composite Systems. Most
discrete-event systems are made up of interconnections of
several or many component systems. Thus it is of interest to
develop both a theory of composition of such systems and the
specialization of our other results and concepts (such as the
test for stability) to such composites. In particular, it is
important to determine algorithms that take advantage of this
structure in minimizing the required computations.

* Higher-Level Aggregation. We have begun to develop a
theory of "task-level descriptions" for discrete event
systems. Here a task consists of a sequence of events. A
problem we have considered is the problem of designing a
controller so that ony tasks -- i.e. only certain sets of
event sequences -- are executed. Once such a controller is
implemented, one can consider defining a higher-level
description in which an entire sequence (corresponding to a
task) is mapped into a single event in the aggregate model.

At this point we have some results in each of these areas and expect

considerable progress during the coming year.
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A rather different context for studying systems subject to discrete

events is provided by switched power electronic circuits. These sytems

involve both discrete events (switch transitions) and continuously evolving

quantities (voltages and currents in the circuit). There is considerable

interest in obtaining approximate continuous-time models that average out the

effects of the discrete events. Such averaged models yield far more insight

than the detailed switched models can, and also provide a more fruitful

starting point for control design. One of the obstacles to obtaining such

averaged models, however, is the fact that the switching is often state

dependent.

Circuits in the most popular class for which an averaging procedure

exists, so-called switched converters, switch between linear networks at

frequencies much higher than the natural frequencies of any of the individual

networks. In the limit of infinite switching frequency, it is well known in

control theory that the average behavior is obtained by directly averaging the

dynamics in the individual switch configurations. A particularly interesting

case is when the behavior of the converter corresponds to a sliding mode.

A more challenging modeling problem is posed by what are termed resonant

converters. These comprise resonant circuits that are periodically driven by

a switched waveform at an off-resonance frequency. The response is controlled

by adjusting the switching frequency, which determines how close to resonance

the system operates. In many practically important circuits, the resonant

circuit is actually nonlinear, because of the presence of a diode bridge: The

bridge reverses the polarity of the load seen by the circuit as a function of



the polarity of the current through the circuit. A typical model is the

following (where x may be thought of as the voltage across the capacitor of a

tuned series LC pair, and x as the current through the series inductor):

x(t) + wox(t) = wO[V1.sign(sin ot) - V2.sign(x(t))] (4.1)

The control input here is the switching frequency w, and we are interested in

such quantitiies as the amplititude of x(t) and the average value of Ix(t)I.

One obstacle to averaging (4.1) using established results2 is the

sign(x(t)) term, which does not satisfy a Lipschitz condition, so a routine

application of existing results is ruled out. However, this particular

discontinuity is actually not troublesome because the system trajectories pass

through the line x(t) = 0 in the phase plane. We are presently examining

methods for distinguishing between "troublesome" discontinuities (which may

nevertheless have well defined sliding solutions, in the Fillipov sense) and

harmless discontinuities.

The standard approach to studying (4.1) involves transforming variables

to r(t) and +(t), defined by x(t) = r cos(wot + *) and

x(t) = -rwosin(wOt + P), and then averaging the resulting system under the

assumption that V1 and V2 are small. We are studying an alternate and related

route, [28], but one that seems more direct. For this, we define the running

average

t

x(t) T = (1/T) x(a)e27r/Td (4.2)

t-T

2J.A. Sanders and F. Verhulst, Averaging Methods in Nonlinear Dynamical

Systems, Springer-Verlag, New York 1985.
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where T = 27r/o. It is now easy to see that if w is constant then

dx(t)/dt T = d x(t) T/dt - jw x(t) T (4.3)

Averaging (4.1) and using (4.3) under the assumption of constant w then yields

[P 2 2 2
[p2 _ 2jp + (-2)] x(t) T = c (4.4)

where p = d/dt, and c is constant if V2 = 0. Furthermore, c is nearly

constant if x does not differ significantly from its steady-state waveform

and/or if V2 is small.

It follows that the dynamics of the resonant converter described by

(4.1), after a small step change in w, can be deduced from the characteristic

polynomial associated with the left hand side of (4.4). The roots of this

polynomial are at j(w i WG), which correlates well with the observed ringing

of the envelope of x at the difference frequency w - w 0 in the resonant

converter. Prior to this analysis, only a more complicated and unilluminating

sampled-data analysis had been presented in the literature.

There are several questions that remain about the analysis of even this

simple example. We intend to further compare the approach via x T to the

more traditional approach, and to extend our results all the way to the

small-signal transfer functions that are needed for analytical design of a

feedback controller for such resonant converters. It is expected that this

will yield valuable insight for more general averaging problems involving

switched systems.
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