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Abstract

In this paper, we investigate the problem of designing stabilizing feedback com-

pensators for Discrete Event Dynamic Systems (DEDS). The DEDS model used is

a finite-state automaton in which some transition events are controllable and some

events are observed. The problem of output stabilization is defined as the construc-

tion of a compensator such that the closed loop system is stable, in the sense that

all state trajectories go through a given set E infinitely often. We define a stronger

notion of output stabilizability which requires that we also have perfect knowledge

of the state in E through which the trajectory passes on each of its visits to E. Ne4-

essary and sufficient conditions are presented for both notions. The complexity of

these tests is polynomial in the cardinality of the state space of the observer. A num-

ber of sufficient conditions for the weaker notion are also presented. Corresponding

tests for these sufficient conditions are shown to be polynomial in the cardinality of

the state space of the system. Finally, a problem of resilient output stabilizability is

addressed.
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1 INTRODUCTION 1

1 Introduction

Discrete Event Dynamic Systems (DEDS) are dynamic systems, for which the evolu-

tion of the state is triggered by the instantaneous occurence of discrete events. Such

behavior can be found in many complex, man-made systems at some level of abstrac-

tion, such as flexible manufacturing systems and communication systems. Although

DEDS have been studied extensively by computer scientists, the notion of control of

a DEDS has been introduced only recently, by Wonham, Ramadge, et al. [3,7,8,10].

This work assumes a finite state model and that certain events in the system can be

enabled or disabled. The control of the system is achieved by choice of control inputs

that enable or disable these events. The objective is to control the system, so that the

event trajectory in this system is always in a given set of desired strings of events.

This approach is generally classified as a linguistic approach, since the objective is

defined in terms of the language generated by the closed-loop system, i.e., the set

of possible strings of events. This work was extended by Cieslak et al. [1] and Lin

and Wonham [2] for the case of partial event observations. However, as shown by

Tsitsiklis in [9], most partial observation problems of interest are NP-hard, in the

cardinality of the state space of the system.

The work of Wonham et al. has prompted a considerable response by other re-

searchers in the field, and one of the principal characteristics of this research has

been the exploration of alternate formulations and paradigms that provide the op-

portunity for new and important developments building on the foundations of both

computer science and control. The work presented here is very much in that spirit

with, perhaps, closer ties to more standard control concepts. In particular, in our

work, we have had in mind the development of the elements needed for a regulator
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theory for DEDS. In another paper, [5], we develop notions of stability and stabiliz-

ability for DEDS which might, more correctly, be thought of as properties of resiliency

or error-recovery. In [4], we focus on the questions of observability and state recon-: .

struction. We assume what might be thought of as an intermittent observation model:,

no direct measurements of the state are made, and we only observe a specified subset

of possible events, i.e., if an event outside this subset occurs, we will not observe it

and indeed will not even know that an event has occurred. We also define a notion of

resilency which allows us to characterize resilient observers which generate correct

estimates in a finite number of transitions following a burst of measurement errors.

In this paper, we combine our work on stabilizability and observability to address

a problem of stabilization by dynamic output feedback under partial observations.

Specifically, we construct stabilizing compensators by cascading an observer and a

stabilizing full-state feedback defined on the state space of the observer. While this

is a well-established control-theoretic approach, there are several important distin-

guishing features of the DEDS compensation problem. First of all, in the context

of linear systems, we know that observability together with stabilization by state

feedback imply the existence of and provide the basis for designing stabilizing output

compensators. Thanks to the intermittent nature of observations, the same is not

true for the class of DEDS considered in this paper. Secondly, since the observers

we construct for DEDS keep track of all possible states in which the DEDS can be,

it is possible to re-cast the output stabilization problem as the stabilization of the

observer by state· feedback. Finally, a critical issue of particular importance in the

DEDS context is computational, and thus it is essential that one characterizes the

complexity in designing and implementing a stabilizing compensator.



1 INTRODUCTION 3

In the next section, we introduce the mathematical framework considered in this

paper and summarize our previous work. In Section 3, we formulate two notions of

output stabilization and present algorithms for constructing compensators for both-

problems of output stabilization in polynomial time in the cardinality of the state,

space of the observer. In Section 4, we present sufficient conditions for output stabi-

lizability that can be tested in polynomial time in the cardinality of the state space of

the sytem. In Section 5, we present our treatment of the problem of resilient output

stabilization. Finally, in Section 6, we summarize our results and discuss several

directions for further work.
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2 Background and Preliminaries

2.1 System Model

The class of systems-we consider are nondeterministic finite-state automata with

intermittent event observations. The basic object of interest is the quadruple:

G = (X, A, r, u) (2.1)

where X is the finite set of states, with n = IX [, E is the finite set of possible events,

r C E is the set of observable events, and U is the set of admissible control inputs

consisting of a specified collection of subsets of A, corresponding to the choices of

sets of controllable events that can be enabled. The dynamics defined on G that we

consider in [5] are of the form:

x[k + 1] E f(x[k], a[k + 1]) (2.2)

a[k + 1] E (d(x[k]) n u[k]) U e(x[k]) (2.3)

Here, x[k] E X is the state after the kth event, a[k] E E is the (k + 1)st event, and

u[k] E U is the control input after the kth event. The function d: X -, 2r is a set-

valued function that specifies the set of possible events defined at each state (so that,

in general, not all events are possible from each state), e: X --+ 2 is a set valued

function that specifies the set of events that cannot be disabled at each state, and the

function f : X x --+ X is also set-valued, so that the state following a particular

event is not necessarily known with certainty. Without loss of generality, we assume

that e(x) C d(x) for all x. The set d(x) represents an "upper bound" on the set of

events that can occur at state x, whereas the set e(x), is a lower bound. The effect

of our control action is adjusting the set of possible events between these bounds,
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by disabling some of the controllable events, i.e., elements of the set d(x) n e(x).

Note that in this general framework, there is no loss of generality in taking U =

2E. Also, by appropriate choice of e(x), we can model situations in which -we have

enabling/disabling control over some events only at certain states. In Section 4, we

will use this general framework. Up to that point however, we assume the slightly

more restrictive framework of [8] in which there is an event subset · C E such

that we have complete control over events in · and no control over events in T, the

complement of A. In this case, we can take U = 2' and

e(x) = d(x[k]) n f (2.4)

Furthermore, we assume that D C r. These assumptions simplify the presenta-

tion of our results, but it is possible to get similar results, at a cost of additional

computational complexity, if our assumptions on controllable events are relaxed.

Our model of the output process is quite simple: whenever an event in r occurs,

we observe it; otherwise, we see nothing. Specifically, we define the output function

h E -r+ U {e}, where e is the "null transition", by

Ia ifcr Er
h(a) = (2.5)

e otherwise

Then, our output equation is

y[k + 1] = h(a[k + 1]) (2.6)

Note that h can be thought of as a map from E* to r*, where r* denotes the set

of all strings of finite length with elements in r, including the empty string c. In

particular, h(al · ·* a,) = h(al) -. - h(a,). The quadruple A = (G, f, d, h) representing

our system can also be visualized graphically as in Figure 2.1. Here, circles denote
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a: u/a a: u/a

a: u/a
a:u/a

Figure 2.1: A Simple Example

states, and events are represented by arcs. The first symbol in each arc label denotes

the event, while the symbol following "/" denotes the corresponding output. Finally,

we mark the controllable events by ":u". Thus, in this example, X = {0, 1,2, 3, 4},

z = la , F, a, r = {a, =}, and ( = {a}.

There are several basic notions that we will need in our investigation. The first is

the notion of liveness. Intuitively, a system is alive if it cannot reach a point at which

no event is possible. That is, A is alive if Vx E X, d(x) -$ 0. We will assume that

this is the case. A second notion that we need is the composition of two automata,

Ai = (G., fi, di, hi) which share some common events. Specifically, let S = E1 -E2

and, for simplicity, assume that rl-n S = r 2 n S (i.e., any shared event observable

in one system is also observable in the other). The dynamics of the composition

are specified by allowing each automaton to operate as it would in isolation except

that when a shared event occurs, it must occur in both systems. Mathematically, we



2 BACKGROUND AND PRELIMINARIES 7

denote the composition by A1 2 = Al 11 A2 = (G 12, f12, d12, h12 ), where

G12 = (X1 x X2 , El U E2, rl U r2) (2.7)

fi2(x,o ) = fi(xl,O) x f 2(x 2 , ) (2.8)

d12 (x) = (dl(x) n F) u (d2 (x 2) n s) u (di(xi) n d2(x 2)) (2.9)

hl(a) if a E r1

hl,2(0) = h2(cr) if E r2 (2.10)

e otherwise

Here we have extended each fi to all of E1UE2 in the trivial way, namely, fi(xi, a) = xi

if or f Ei. Note also that h1 2 given by (2.10) is well-defined.

2.2 Stability and Stabilizability

In [5], we define a notion of stability which requires that the trajectories go through

a given set E infinitely often:

Definition 2.1 Let E be a specified subset of X. A state x E X is E-pre-stable if there

exists some integer i such that every trajectory starting from x passes through E in at

most i transitions. The state x e X is E-stable if A is alive and every state reachable

from x is E-pre-stable. The DEDS is E-stable (respectively, E-pre-stable) if every x E X

is E-stable (respectively, E-pre-stable). Q

By a cycle, we mean a finite sequence of states x 1, x 2 ,... xk, with xk = xZ, so that

there exists an event sequence s that permits the system to follow this sequence of

states. Note that E-stability is equivalent to the absence of cycles that do not pass

through E [5]. We also need the following:
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Definition 2.2 The radius of A is the length of the longest cycle-free trajectory between

any two states of A. The E-radius of an E-stable system A is the maximum number of

transitions it takes any trajectory to enter E. 0

Note that an upper bound on both the radius and the E-radius, for any E, of an

E-stable system is n. We refer the reader to [5] for a more complete discussion of

this subject and for an O(n2 ) test for E-stability of a DEDS. Finally, we note that in

[5] and Definition 2.1, we require livenes in order for a system to be stable so that

trajectories can be continued indefinitely. While we will continue to require liveness

in this paper as we consider compensator design, there are occasions on which it is

useful to consider a notion of weak stability, in which all the conditions of Definition

2.1 are met except that A may not be alive. Thus, for a weakly E-stable system, all

trajectories pass through E and can only die in E. We note without proof that the

algorithm developed in [5] for stability can be used without change to test for weak

stability.

In [5], we study stabilization by state feedback. Here, a state feedback law is a

map K: X - U and the resulting closed-loop system is AK = (G, f, dK, h) where

dK(x) = (d(x) n K(x)) U (d(x) n ') (2.11)

Definition 2.3 A state x E X is E-pre-stabilizable (respectively, E-stabilizable) if there

exists a state feedback K such that x is E-pre-stable (respectively, E-stable) in AK. The

DEDS is E-stablilizable if every x E X is E-stabilizable. O

If A is E-stabilizable, then (as we show in [5]), there exists a state feedback K such

that every x E X is E-stable in AK. We refer the reader to [5] for a more complete

discussion of this subject and for an O(n3 ) test for E-stabilizability of a DEDS, which

also provides a construction for a stabilizing feedback.
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2.3 Observability and Observers

In [4], we term a system observable if the current state is known perfectly at inter-

mittent but not necessarily fixed intervals of time. Obviously, a necessary-condition.

for observability is that it is not possible for our DEDS to generate arbitrarily long

sequences of unobservable events, i.e., events in F, the complement of r. A neces-

sary and sufficient condition for checking this is that if we remove the observable

events, the resulting automaton AI = (G, f, d n F, h) must be weakly Do-stable,

where Do is the set of states that only have observable transitions defined, i.e.,

Do = {x E Xld(x) n F = 0}. This is not difficult to check and will be assumed.

Let us now introduce some notation that we will find useful:

* Let x -_' y denote the statement that state y is reached from x via the occurence

of event sequence s. Also, let x -- * y denote that x reaches y in any number of

transitions, including none. We also define the reach of x in A as:

R(A,x) = {y E Xlx -- * y} (2.12)

* Let

Yo = {x E XjI y E X,a E E, such that x E f(y,')} (2.13)

Y1 = {x E X13y E X,y E r, such that x E f(y,7)} (2.14)

Y = Y U Y1 (2.15)

Thus, Y is the set of states x such that either there exists an observable tran-

sition defined from some state y to x (as captured in Y1) or x has no transitions

defined to it (as captured in Yo). Let q = IYI.
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* Let L(A,x) denote the language generated by A, from the state x E X, i.e.,

L(A, x) is the set of all possible event trajectories of finite length that can be

generated if the system is started from the state x. Also, let Lf(A, x) be the set

of strings in L(A, x) that have an observable event as the last event, and let

T(A) = UnEx L(A, x) be the set of all event trajectories that can be generated

by A.

* Given s E L(A, x) such that s = pr, p is termed a prefix of s and we use s/p to

denote the corresponding suffix r, i.e., the remaining part of s after p is taken

out.

In [4], we present a straightforward design of an observer that produces "esti-

mates" of the state of the system after each observation 7[k] E F. Each such estimate

is a subset of Y corresponding to the set of possible states into which A transi-

tioned when the last observable event occurred. Mathematically, if we let a function

': h(T(A)) -- 2Y denote the estimate of the current state given the observed output

string t E h(T(A)), then

x(t) = {x E Y[3y E X and s E Lf(A,y) such that h(s) = t and x E f(y,s)) (2.16)

The observer, for which the state space is a subset Z of 2Y, and the events and ob-

servable events are both F, is a DEDS which realizes this function. Suppose that the

present observer estimate is x[k] E Z and that the next observed event is y[k+ 1]. The

observer must then account for the possible occurence of one or more unobservable

events prior to A[k + 1] and then the occurrence of y[k + 1]:

i[k + 1] = w(i[k],7[k + 1]) A UER(AIr,i[k]) f(x, 7[k + 1]) (2.17)

A1[k + 1] E v(.[k]) - h(UxER(Alr,.[k]) d(x)) (2.18)
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0,1,2

, U

a: U

Figure 2.2: Observer for the system in Figure 2.1

The set Z is then in the reach of {Y} using these dynamics, i.e., we start the observer

in the state corresponding to a complete lack of state knowledge and let it evolve.

Our observer then is the DEDS 0 = (F, w, v, i), where F = (Z, F, F) and i is the

identity output function. In some cases, we will treat the observer as a controlled

system and discuss stabilizing it. Then, F = (Z, r, F, U) and Equation 2.18 becomes

?[k + 1] E v(4[k]) = h(U:ER(Alr,*[k])(d(x) n u[k]) U (d(x) n a)) (2.19)

The observer for the example in Figure 2.1 is illustrated in Figure 2.2. In [4], we

show that a system A is observable iff O stable with respect to its singleton states.

We also show that if A is observable then all trajectories from an observer state pass

through a singleton state in at most q2 transitions. Since also there can be at most q

singleton states, the radius of the observer is at most q3. This will play an important

role in determining the maximum number of transitions it takes a trajectory from a

state, in an output stabilizable system, to pass through E.
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2.4 Resiliency

An important aspect of our work is our -treatment of resiliency or error recovery.

Specifically, suppose that the observed sequence of transitions includes errors corre-

sponding to inserted events, missed events, or mistaken events. We term an observer

resilient if after a finite burst of such measurement errors, the observer resumes cor-

rect behavior in a finite number of transitions, i.e., the current observer estimate

includes the current state of the system. In [4], we construct a resilient observer as

follows: The observer O as specified in Equations 2.17 and 2.18 is defined only for

event sequences that can actually occur in the system. When measurement error oc-

curs, the resulting observed sequence may not be feasible. In this case, the observer

at some point will be in a state such that the next observed event is not defined. In

this case, we reset the observer state to {Y}, i.e., to the condition of knowing nothing

about the system state. Thus, for each state in Z and for all events that are not

defined at that state, we add a transiton to {Y}. In particular, we modify w and v

as follows:

w(:, (y) if y E v(x) (2.20)
wR(x, Y) = (2.20)

{Y} otherwise

vR(X) = r (2.21)

and we thus construct the observer OR = (F, WR, vR, i). As before, the initial state of

OR is the state {Y}. We show in [4] that OR is a resilient observer if A is observable.

2.5 Effect of State Feedback on Observability

As mentioned in the introduction, we will formulate the output stabilizability prob-

lem as a problem of stabilization of the observer by state feedback. Applying state
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System Observer

0 0,1U Ua: u /: u

Figure 2.3: Simple Example for Using Control in Observability

Figure 2.3: Simple Example for Using Control in Observability

feedback to the observer, while preserving liveness, can only enhance observability.

In particular, if A is not observable, then it may be possible to find a state feedback

for the observer such that the closed loop system is observable. For example, in Fig-

ure 2.3, where all the events are observable and a is controllable, if a is disabled at

state {0, 1 } of the obsever then the closed loop system is observable and still alive.

2.6 Compensators

We define a compensator as a map C: r* -- U. Then, the closed loop system Ac is

the same as A but with:

a[k + 1] E dc(x[k], s[k]) (d(x[k]) n C(h(s[k]))) U (d(x) n ~) (2.22)

where s[k] = o[0] ... a[k] with a[0] = e: For output stabilizability, we only need to

define compensators for strings in h(T(A)). However, when we talk about resiliency
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in Section 5, we need to worry about defining C for arbitrary strings in F*.

One constraint we wish to place on our compensators is that they preserve live-

ness. Thus, suppose that we have observed the output string s, so that our observer is

in x(s) and our control input is C(s). Then, we must make sure that any x reachable..

from any element of x(s) by unobservable events only is alive under the control input

C(s). That is, for all x E R(AlF,k(s)), dc(x,s) should not be empty. This leads to

the following:

Definition 2.4 Given Q c X, F C AI, F is Q-compatible if for all x E R(AIF, Q),

(d(x) n F) U (d(x) n T) =f 0. A compensator C is A-compatible if for all s E h(T(A)),

C(s) is R(s)-compatible. 0

Suppose that a compensator is such that for all output stings s and t such that

the estimate of the current state given s is the same as the estimate given t, the

compensator value given s is the same as the value given t. In this case, we can

represent C as a cascade of the observer and a map K: Z -- U, which can also be

thought of as a state feedback for the observer:

Definition 2.5 A compensator C is O-compatible if for all s,t E h(T(A)), such that

x(s) = x(t), C(s) = C(t). The corresponding map K: Z --+ U such that

C(s) = K(v({Y},s))

for s E h(L(A)), is termed the observer feedback for C. I

We will see in Section 3 that we can restrict attention to O-compatible compensators

in order to address the stabilization problem.
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3 Two Notions of Output Stabilizability

In this section, we present and analyze two notions of output stabilizability. While it

certainly is possible for a system to be output stabilizable without being observable

(for example, if it is stable), we will, for simplicity, assume observability. Also, while

a system must be stabilizable in order to be output stabilizable, we will not explicitly

assume stabilizability. Rather, checking stabilizability will be incorporated into our

test for output stabilizability.

The obvious notion of output E-stabilizability is the existence of a compensator

C so that the closed-loop syatem Ac is E-stable. Because of the intermittent nature

of our observations, it is possible that such a stabilizing compensator may exist, so

that we are sure that the state goes through E infinitely often, but so that we never

know when the state is in E. For this reason, we define a stronger notion of output

stabilizability that not only requires that the state pass through E infinitely often

but that we regularly know when the state has moved into E. We begin with this

latter notion which is easier to analyze.

3.1 Strong Output Stabilizability

The key to our analysis of strong output stabilizability is that we will know that the

state is in E if and only if the observer state I is a subset of E:

Definition 3.1 A is strongly output stabilizable if there exists a compensator C and an

integer i such that Ac is alive and for all p E T(Ac) such that IPI > i, there exists

a prefix t of p such that Ip/tl < i and 1(h(t)) c E. We term such a compensator a

strongly output stabilizing compensator.
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What this definition states is that in addition to keeping the system alive, the com-

pensator C also forces the observer to a state corresponding to a subset of E at

intervals of at most i observable transitions. The next result shows that we can

restrict attention to observer feedback:

Proposition 3.2 A is strongly output stabilizable if there exists a state feedback K : Z --+ U

for the observer such that XI in A II OK is Eoc-stable, where XI = {(x, {Y})lx E X}

is the set of possible initial states in A II OK and where Eoc = {(x, X) E Y x ZI[ C E}

is the set of composite states for which the system is in E and we know that the current

state is in E.

Proof: (-) Obvious.

(-+) If we can find a strongly output stabilizing compensator C that is O-compatible

and construct the corresponding observer state feedback K, then XI is certainly Eoc-

stable in A 11 OK.

Let li be the set of length i elements of h(T(A)). Given any strongly output

stabilizing compensator C1 for A, we construct the desired one as follows:

Let Z1 = {{Y}} be the set that consists of the initial state {Y} of 0 and let

K({Y}) = C1(e). Let Si1,... Slk, be a collection of disjoint subsets of 11 such that

(a) UiSli = 11; (b) for all eo E Sli, v({Y},o) = xi for some xi E Z; and (c) for any

Sli, Slj, i 7 j, xi 7 xj. Let us term such a collection of subsets an 11-collection. For

each xi such that xi ~ Z1, pick some ai E Sli and let K(xi) = Ci(ai). Construct

a compensator C2 such that for all output strings of the form as, for some eO E Sli,

C2(cs) = Cl(acis). Clearly, C2 is a strongly output stabilizing compensator for A.

Also, let Z 2 = Z1 U Ui Xi which denotes the set of observer states for which we have

defined K so far.
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We repeat this construction for 12, 13 , etc. After step j - 1, Cj is a strongly output

stabilizing compensator for A, and we will have defined K for observer states Zj that

can be reached by {Y} with output strings of length at most j - 1. At step j, let

Sjl, .. Sjkj be the Ij-collection. For each xi such that v({Y}, Sji) = xi and xi f Zj,

pick some ai E Sji and let K(si) = Cj(ai). Construct a compensator Cj+l such that

for all output strings of the form ts, for some t E Sji, Cj+l(ts) = Cj(ris). Clearly,

Cj+1 is a strongly output stabilizing compensator for A. Also, let Zj+1 = Zj U Ui xi.

Proceed in this fashion until, at some step j, Zj = Z, which implies that we have

defined a feedback for all observer states. The reach of XI in A 11 OK is alive since

by construction K(x) is I-compatible. Since also Cj is a strongly output stabilizing

compensator for A, the compensator C defined by C(s) = K(v({Y}, s)) is a strongly

output stabilizing compensator for A. Therefore, XI in A 11 OK is Eoc-stable. ID

Since O describes all the behavior that can be generated by A, we have the following

which states that it is necessary and sufficient to check the stability of O with respect

to the observer states that are subsets of E, while paying attention to keeping the

system alive:

Proposition 3.3 A is strongly output stabilizable iff there exists a state feedback K : Z - U

for the observer such that OK is stable with respect to Eo = {X E Zli C E} and for all

X E Z, K(X) is I-compatible. Furthermore, if A is strongly output stabilizable then the

trajectories in the reach of XI in A 11 OK go through Eoc in at most nq3 transitions.

Proof: A straightforward consequence of Proposition 3.2 and the fact that the radius

of 0 is at most q3. Li

As an example, consider the system in Figure 3.1, where E = {1, 2} and where all

events are observable. Note that in this case, we need to check the stabilizability
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System

a

E P

Observer

Figure 3.1: Example for Strong Output Stabilizability (all the events are observable)
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of the observer with respect to Eo = {2}. We achieve stability if a is disabled

at the observer state {0,2}. Proposition 3.3 essentially tells us that we can test

strong output stabilizability by testing the observer for stabilizability. The following_

algorithm performs this test and constructs a feedback for strong output stabilization., 

It is very similar to our algorithm for pre-stabilizability in [4]:

Proposition 3.4 The following algorithm is a test for strong output stabilizability. It has

complexity O(q3 1ZI):

Algorithm Let Zo = Eo and iterate:

Pk+l = {X E Zl{-y E v()lw(,7y) E Pk} is x-compatible}

K(x) = {-y E v(x)w(,-y) E Pk} for E Pk+l

Zk+1 = Zk U Pk+l

Terminate when Zk+1 = Zk = Z*. A is strongly output stabilizable iff Z = Z*. The

corresponding feedback is K as computed above.

Proof: The proof is straightforward and based on the proof of the algorithm for testing

pre-stabilizability in [5]. Computational complexity follows from the fact that the

observer has IZI states and the algorithm terminates in at most q3 steps. O

3.2 Output Stabilizability

In this section, we study the following somewhat weaker notion:

Definition 3.5 A is output stabilizable (respectively, output pre-stabilizable) with respect

to E if there exists a compensator C such that Ac is E-stable (respectively, E-pre-stable).

We term such a compensator an output stabilizing (respectively, output pre-stabilizing)

com pensator. O
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Note that this definition implicitly assumes that there exists an integer i such that

the trajectories in Ac go through E in at most i transitions. Using this bound, we

can show that output pre-stabilizability and-liveness are necessary and sufficient for

output stabilizability, as is the case for stabilizability and pre-stabilizability (see [5]):

Proposition 3.6 A is output stabilizable iff A is output pre-stabilizable while preserving

liveness (i.e., the closed loop system is pre-stable and alive).

Proof: (-a) Obvious.

(--) Let C be an output pre-stabilizing compensator that preserves liveness. Then,

for each x E X, there exists an integer i such that the trajectories from x in Ac go

though E in at most i transitions. Thanks to our assumption that A cannot generate

arbitrarily long sequences of unobservable events, for each x E X, there exists an

integer j such that the trajectories from x in Ac go through E in at most j observable

transitions. Let j* be the maximum over all j. Then, we know that the trajectories

in Ac go through E in at most j* observable transitions independently of the initial

state. In order to prove our result, we will construct a stabilizing compensator C'

using C and j*. Specifically, given s E h(L(Ac)), let s* denote the suffix of s for which

1s*1 = Isi mod j*, and let C'(s) = C(s*). Clearly, AC, is alive. Also, Ac, is E-stable

since it is guaranteed to go through E at least once every j* observable transitions.

Therefore, A is output stabilizable. O

This result shows us that in order to design a stabilizing compensator, we only need

to design a pre-stabilizing compensator. Our construction of a pre-stabilizing com-

pensator involves (a) constructing a modified observer which keeps track of the states

the system can be in if the trajectory has not yet passed through E, (b) formulating the

problem of pre-stabilizing A by ouput feedback as a problem of stabilizing this ob-
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server by state feedback, and (c) constructing a pre-stabilizing compensator by using

this observer and the state feedback constructed in (b).

To provide the motivation behind our approach, consider the system in Figure 3.1.

For output stabilizability, we do not really need to disable a (as we had to for strong

output stabilizability).- Consider the loop in the observer that consists of the states

{1, 3} and {0, 2}. If the system is in state 1 (respectively, state 2), it is already in

E. If the system is in state 3 (respectively, state 0), it makes a transition into E

after the next event. Therefore, A is stable and thus is trivially output stabilizable

(without disabling any event). This example illustrates the key idea in our analysis

of output stabilizability: we must keep track of those state trajectories that have not

yet passed through E; if that set becomes empty at some point, we will know that

the system has passed through E, although we may not know the point in time at

which it did.

The following construction allows us to perform this function: Delete all events in

A that originate from the states in E and construct the corresponding observer. Let

AE denote this system and let OE = (FE, WE, VE) denote its observer. For example,

Figure 3.2 illustrates such an automaton and observer for the system in Figure 3.1.

The observer OE captures all the behavior of A until its trajectories enter E. When

we look at the states of OE, we see that there are some "trapping" states, each of

which is a subset of E and thus has no events defined. Let us consider an event

trajectory s in A and the corresponding trajectory h(s) in OE that starts from the

initial state {Y}. If the trajectory ever evolves to a "trapping" state in OE, then we

know that it has passed through E in A. Other states of OE may have some elements

in E and some elements that are not in E. Let x be such a state of OE, then for a
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AE OE

a: 2

Figure 3.2: Example for AE and OE (all the events are observable)

trajectory that evolves to x, the system can be in one of the states in x n E only if that

trajectory has not passed through E yet. Even though OE keeps track of trajectories

that have not passed through E yet, it does not keep track of enough information

to design a pre-stabilizing compensator, since, in order to preserve liveness, we also

need to know all the states that the system can be in so that we can check if our

control input keeps the system alive: The automaton

Q = (FQ,WQ,VQ) = OE 1[ 0 (3.1)

together with the initial state (Y, Y) keeps track of all the information we need for

designing an output stabilizing compensator. Note that

WQ((yl, Y2), ) = (E(Y1l,), W(Y2, o)) (3.2)

and vQ((y1, Y2)) = vE(Y1). The state space of Q, is W = R(Q, (Y, Y)). Figure 3.3

illustrates the automaton Q for the system in Figure 3.1. Note that the number of

states of Q is the same as that of OE. For each state of Q, the second component
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(Y,Y)

Figure 3.3: Example of the Automaton Q (all the events are observable)

denotes the set of states that the system can be in, whereas the first component

denotes the set of states that the system can be in if the trajectory has not gone

through E yet.

The following lemma shows that the problem of output pre-stabilization can be

formulated as a problem of pre-stabilization of Q. The key is to find a state feedback

K for Q, which we can then adapt to a corresponding compensator for A, and which

forces all trajectories in QK to have finite length. This in turn will force corresponding

trajectories in A to go through E in a finite number of transitions. In doing this,

however, we need to make sure that the compensator for A keeps A alive:

Lemma 3.7 A is output pre-stabilizable with respect to E while preserving liveness iff

there exists a feedback K : W -+ U such that for all

(Y, Y2) E R(QK, (Y, Y))

K((y1,y 2)) is y2-compatible, and QK is pre-stable with respect to its dead states, i.e.,

with respect to the states y such that vQK(y) = 0.

Proof: (--) Straightforward by assuming the contrary.
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(-) We claim that the compensator defined by

C(s) = K(WQK((Y, Y),s))

for s E L(QK, (Y, Y)) and C(s) = D for all other s, pre-stabilizes A and we prove

this as follows: Thanks to the compatibility condition, Ac is alive. Also,

h(L(Ac)) C L(QK, (Y, Y))r*

Given s E L(Ac), if s E L(QK, (Y, Y)) then the trajectory may not have passed

through E yet. If s q L(QK, (Y, Y)), suppose that s = pa for some p E L(QK, (Y, Y))

and oa E r. Since o is not defined at WQK ((Y, Y), p), a could have occured only if the

trajectory has already passed through E. Since also all strings in L(QK, (Y, Y)) are

finite and C preserves liveness, Ac is E-pre-stable. O

In order to construct a compensator as proposed by the above lemma, let us first

characterize the states in Q that we can "kill" while preserving liveness in A. In

particular, let EQ be the set of states y = (Y1, Y2) E W so that we can find a Y2-

compatible set of events F C /4 which, if used as a control input at y, disables all

events defined from y, i.e.,

EQ = {y = (Y1, Y2) E W13F C ED such that vQF(y) = 0 and F is y2 -compatible}

(3.3)

where VQF(y) = (vQ(y) nfF) u (vQ(y) n f). For example, consider the system in Figure

3.4, where Figure 3.4(a) illustrates A, (b) illustrates AE, (c) illustrates the observer O

for A and (d) illustrates the observer OE for AE. The automaton Q for this example

is illustrated in Figure 3.5(a). Note that we can disable /3 at both of the states (2,123)

and (2,2) so that no transitions are enabled in Q at these states, but the states 1, 2,
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(a) A (b) AE

a:u/a a:u/a

P:U/ Up p:m/

a:u/a

(C) O (d) OE

0 for A, and (d) the observer OE for AE-
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(a) (b)

' Eg

Figure 3.5: Output Pre-stabilization of Figure 3.4 (recall that a and P are both con-
trollable and observable): (a) Automaton Q, and (b) QK as computed by Algorithm
3.9.
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and 3 remain alive in A. Thus, EQ = {(2, 123), (2, 2)}. Therefore, for this example,

if we can find a feedback K so that QK is EQ-pre-stable and alive, then, using Q and

this feedback, we can construcut a compensator that pre-stabilizes A, as we did in

the proof of Lemma 3.7:

Proposition 3.8 A is ouput pre-stabilizable while preserving liveness iff there exists-a state

feedback Ko such that QKO is EQ-pre-stable and for all (yl,Y2) E W, K((yi,y 2)) is y2-

compatible in A. Furthermore, the compensator defined by

C(s) = K(WQK ((Y, Y), ))

for s E L(QK, (Y, Y)) and C(s) = · for all other s, pre-stabilizes A, where

K(y = (Y1,Y2)) = F F C IVQF(y ) = 0 and F is y2 -compatible if y E EQ{K0o(y) otherwise

Finally, the trajectories in Ac go through E in at most nq3 transitions.

Proof: Straightforward using Lemma 3.7 and the fact that the radius of the observer

is at most q3. °

We now present an algorithm to test for output pre-stabilizability and to construct

the corresponding feedback by appropriately modifying Algorithm 3.4 for Q:

Proposition 3.9 The following algorithm is a test for output pre-stabilizability while pre-

serving liveness. It has complexity O(q3 1Wl):

Algorithm Let Zo = EQ and for y = (yl,Y2) e EQ, let K(y) = F C ·4 where F is such

that VQF(Y) = 0 and F is y2-compatible. Iterate:

Pk+1 = {y E Wj{ 7 E vQ(y)jwQ(y,") E Pk} is y2-compatible in A}

K(y) = { E vQ(y)lwQ(y,)Y) e Pk} for y e Pk+l

Zk+1 = ZkUPk+l
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Terminate when Zk+l = Zk = Z*. A is output pre-stabilizable iff (Y,Y) E Z*. The

corresponding feedback is K as computed above. I

Figure 3.5(b) illustrates the closed loop system QK after this algorithm is applied to

Q in Figure 3.5(a). In order to construct a compensator that pre-stabilizes the system

in Figure 3.4(a), we use the range of (123,123) in QK as follows: Initially (i.e., before

any observable events are seen so that we are in (123,123) of QK), we disable P. After

a is observed (so that the state in QK is (1,12)), a is disabled, while P is enabled, and

finally, after P is observed (corresponding to a transition to the state (2,123)), / is

disabled while a is enabled. When a occurs again, we know that all the trajectories

have passed through E, and thus we do not care about what the control input is after

this point as long as it keeps the system alive.

In [5] we have termed a feedback to be maximally restrictive if we cannot dis-

able any other event at any state while preserving liveness. We can generate such

a feedback using the algorithm in Proposition 3.9 if we choose K(y) such that re-

moving any event from K(y) violates compatibility. In [5], we have also defined a

feedback to be minimally restrictive if, for each state, enabling any event, which is

otherwise disabled, violates pre-stability. We have also shown that, a minimally re-

strictive feedback can be generated from a maximally restrictive one by arbitrarily

enabling events (that are otherwise disabled) until pre-stability is violated. In the

same manner, we can generate a minimally restrictive feedback from the feedback

generated by the algorithm in Proposition 3.9.

We now turn our attention to output stabilizing compensators. Note that if, at

some point, we are certain that the trajectory has passed through E then we can

force the trajectory to go through E again by starting the compensator over, i.e., by
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ignoring all the observations to date and using the pre-stabilizing compensator on the

new observations (see the proof of Proposition 3.6). In the proof of Proposition 3.6, we

computed an integer j* so thatall the trajectories are guaranteed to go through E in

at most j* transitions independently of the initial state of the system, and so that we:

can "reset" the output pre-stabilizing compensator after every set of j* transitions.

However, in some cases, it may not be necessary to wait for j* transitions. In what

follows, we present an approach which allows us to detect, as soon as possible, that

the trajectory has passed though E.

Given an output pre-stabilizable A, suppose that C is the corresponding com-

pensator and K is the corresponding Q-feedback for C. Recall that for QK, no

events are defined at states (yl, Y2) E EQ, and in general, given some y = (Y1, y2) E

R(QK, (Y, Y)), not all events defined at Y2 are defined at y. Given an output trajec-

tory of Ac, let us trace the corresponding trajectory in QK starting from the state

(Y, Y). Suppose that we observe a transition which is not defined at the current

state of QK. By the way we have constructed QK we know that the occurence of

such a transition implies that the trajectory has already passed through E. This

is precisely the mechanism which we use to detect that the trajectory has passed

through E. So, given s E h(L(Ac) n L(QK, (Y, Y)), let y = wQK((Y, Y), s) and sup-

pose that the next observation is a transition a V vQK(y), and thus we know that

the trajectory has passed through E. At this point, we wish to force the trajectory to

pass through E again, but in doing so, we can use our knowledge of the set of states

that the system can be in at the time we have detected that the trajectory has passed

through E, i.e., w(y 2, a). What we would then like to do is to have Q transition to

the state z = (w(y2, a), w(y 2, a)). However, as we have defined it so far, z may not
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be in W. What we must do in this case is to augment W with all such z's and any

new subsequent states that might be visited starting from such a z and using an

extension of the dynamics of Q. Specifically, the dynamics of Q given-in (3.2) can

be defined for arbitrary subsets yl, Y2 C Y, as can its restriction WQK by feedback.

We modify this definition as follows: if WEK(y1, a) = 0, then we set WQK((y1, y2), a)

to (w(y 2, a), w(y 2, a)). Let Wa be the union of the reaches of all states of the form

(Y', Y') with Y' C Y and define Qa = (Fa, w, v) where F a = (Wa, r,r). Note that

EQ C Wa and R(QK, (Y, Y)) C Wa. If in fact any z = (Y', Y') is pre-stabilizable

with respect to R(QK, (Y, Y)) in Qa, then we can force the trajectory to pass through

E. The next result states that pre-stabilizability of Q is sufficient for being able to

do this:

Proposition 3.10 If there exists a feedback K for Q such that QK is EQ-pre-stable and

K(y) is y2-compatible, then there exists a feedback K' such that for any Y' C Y, z =

(Y', Y') is pre-stable with respect to R(QK, (Y, Y)) in QK, and K'(y) is y2-compatible

for each y = (y1, y2) E R(Q ,,z).

Proof: Straightforward by assuming the contrary. O

Note that K' can be chosen so that K'(y) = K(y) for all y E R(QK, (Y, Y)) and the

algorithm in Proposition 3.9 can be used for constructing such a K'.

In order to construct an output stabilizing compensator, we use the above proposi-

tion recursively as follows: Let Ko be a feedback that pre-stabilizes Q and preserves

liveness, as can be constructed using the algorithm in Proposition 3.9. Let Zo repre-

sent the initial state of QKO and let Wo represent the range of Zo, i.e., the states we

may be in when we know that the trajectory has already passed through E:

Zo = (Y, Y) (3.4)
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Wo = R(QKo,Zo) (3.5)

We then augment Zo to include the states to which we may "reset" our compensator, -

i.e.,

Z1 = ZO U {((x, ) I = w(y 2,oa) for some y = (Y1,Y2) E WO and a E 9(y 2, Ko(y))}

(3.6)

where O(y2, Ko(y)) = (v(y2 ) n Ko(y)) U (v(y2 )n T). Next, we find a feedback K1 that

satisfies Proposition 3.10 for each (Y', Y') E Z1. Finally, we let W1 = R(QK1, Z 1).

Proceeding in this fashion, we construct W 2, W 3, etc., until Wk+1 = Wk = W' for some

k (note that k must necessarily be finite). Let K' be the corresponding feedback, then

* QK' is EQ-pre-stable,

* K'(y) is y2 -compatible for all y E W', and

* for all y E EQ n W' and a E 9(y2, K'(y)),

(w(y 2, a), W(y 2 , o)) E W'

Finally, we construct an automaton Q' = (F', w', v') where F' = (W', r, r) which

includes the transitions to states in Z', i.e.,

w'(y,'c) = wQ(y, a) if a E VQK,(Y) (3.7)

(w(y 2, a), w(y 2, a)) otherwise

v'(y) = 9(y 2 , K(y)) (3.8)

Then, the compensator defined by

C(s) = K'(w'((Y, Y), s)) (3.9)
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Figure 3.6: Output Stabilization of Figure 3.4(recall that both a and P are control-
lable: (a) Adding the new states (through the dashed arcs), (b) Q'.

for all s E L(Q', (Y, Y)) stabilizes A. Thus the compensator consists of the automaton

Q', started in (Y, Y) and the feedback K': W' -, 2' so that the desired compensator

is given by the Equation (3.9). For example, for the system in Figure 3.4, we need

to pre-stabilize the state (12,12) (see Figure 3.6(a)). The resulting automaton Q' that

produces the desired compensator is shown in Figure 3.6(b).
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Figure 4.1: Stabilizable, Observable, But Not Output Stabilizable System (all the
events are controllable and observable)

4 Sufficient Conditions Testable in Polynomial Time

The previous section presented necessary and sufficient conditions for output stabi-

lizability that can be tested in polynomial time in the cardinality of the state space of

the observer O (note that the cardinality of the state space of Q is polynomial in the

cardinality of the state space of O). However, while in many cases the observer state

space may be sufficiently compact, there are worst cases in which the cardinality of

the state space of O is exponential in q (see [4]). In this section, we present sufficient

conditions that can always be tested in polynomial time in q.

It is well known in linear sytem theory that controllability and observability im-

ply stabilizability using dynamic output feedback. Unfortunately, stabilizability and

observability do not imply output stabilizability in our framework. For example, con-

sider the system in Figure 4.1, where all the events are controllable and observable.

This system is stabilizable by disabling 3 at state 1 and a at 2, and it is also observ-

able. However, it is not output stabilizable, since we can never distinguish between

states 1 and 2, and thus we cannot selectively disable a or 6.
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The reason for this phenomenon is that our notion of observability is much weaker

than the corresponding system theory notion, since we only require that the state is

known intermittently. We start this section by showing that a result similar to that in

system theory can be achieved if we assume that after a finite number of transitions,

and for each transition after that, we have perfect knowledge of the current state

(this condition is equivalent to the notion of observability of Ramadge [6]). Later in

this section, we also show how this condition may sometimes be satisfied by choice

of feedback. Finally, we present a weaker sufficient condition based on a notion of

always observability that we have defined in [4].

To formalize the first sufficient condition, we need the following notion of transition-

function-invariance that we have defined in [5]: Given A and Q c X, Q is f-invariant

in A if all state trajectories from Q stay in Q. In [5], we also show that a maximal

f-invariant subset of a given set exists and we present an algorithm that computes

it. Let EW be the maximal w-invariant subset of the set of singleton states of 0. If

E,, = 0 and if 0 is E&-stable, then at some finite point the observer state will enter

E, and never leave, so that the state will be known perfectly from that point on.

Proposition 4.1 Suppose that (i) E n EW = 0; (ii) A is E n E,-stabilizable; (iii) 0 is

E,-stable, then A is output-stabilizable.

Proof: Let K be a state feedback such that AK is E n Em-stable. We then construct

a feedback K on 0 by applying K only when the observer state has moved into Ew,

i.e.,

IK(x) if ={x}eE E

4) ¢ otherwise

This feedback clearly stabilizes A, and thus, A is output stabilizable. O
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As an example, consider the system in Figure 2.1 where E = {O}. Note that

E, = {0, 2, E n Eo = {0), and the observer, illustrated in Figure 2.2 is E,-stable.

A E n E,-stabilizing feedback is one that disables a at state 2. Thus, an output

stabilizing feedback is one that disables a when the observer estimate is {2}.

To show that the computational complexity of testing Proposition 4.1 is polynomial

in q, we proceed as we did in [4] for testing observability. First, we construct an

automaton A' over Y by appropriately eliminating transitions that are not observable,

i.e., this automaton models the state transition behavior sampled at the times at

which observable events occur. Thus:

A' = (G',f',d',i) (4.1)

C' = (Yr, r,U) (4.2)

f'(y, ) = f(R(AJF, y), ) (4.3)

d'(y) = U h(d(x)) (4.4)
xER(AIr,y)

and the output function is identity. Note also that the observers for A and A' are

identical. Next, we construct an automaton that captures the ambiguity in the cur-

rent state of the system. Let P = Y x Y and construct the pair automaton Op with

state space P and event set r such that

Wp(p = (x, y), 7) = (f'(x, -) U f'(y, Y)) X (f'(x, 7) U f'(y, 7)) (4.5)

vp(p) = d'(x)Ud'(y) (4.6)

where p = (x, y) E P and y E r. For example, the corresponding automaton Op for

the system in Figure 2.1 is illustrated in Figure 4.2.

As developed in [4], although Op is a nondeterministic automaton and therefore

is certainly not an observer for A, Op can be used to check the observability of A, or



4 SUFFICIENT CONDITIONS TESTABLE IN POLYNOMIAL TIME 36

a: U

S = f'(xy) Uf'(y,-y) (4.7)U : e,, a: U

a: u

Figure 4.2: Example for the Automaton Op

equivalently A'. Specifically, the dynamics of Op have the following interpretation.

Suppose that the system might be in either state x or state y, and suppose that the

event occurs w-invariant. Thusen, ate of A' could be any element of

S = f'(X, y) U f'(y, /) (4.7)

The pair automaton dynamics captures this possible ambiguity by moving from (x, y)

to any (x', y') with x', y' E S. Also, there are some special states in Op. namely those

in Ep = {(x, x) Ix e Y1, corresponding to no -ambiguity. It is not difficult to see that

observability of A is then equivalent to the Ep-stability of Op. Similarly, if a set of

states of Op of the form (x, x) is wp-invariant, then the corresponding set of states

in the observer is w-invariant. Thus, we can compute EW using Op: We first find Vp,

the maximal wp-invariant subset of Ep, which will be of the form {(x, x) Ix E Y'} for

some Y' C Y. It then follows that E, = {{x}Ix E Y'}:
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Proposition 4.2 E, is the maximal w-invariant subset of the singleton states of 0 iff

{(x,x)I{x} E E ,} is the maximal wp-invariant subset of Ep in Op.

Proof: Straightforward by assuming contrary in each direction. O

As an example, compare Figure 2.2 and Figure 4.2.

Furhermore, it follows from the work we did in [4] that 0 is E,-stable iff Op is

{(x, x) {x} E Ew }-stable. Since testing a system for stability is equivalent to testing

a system for pre-stability (see [5]) which takes quadratic time in the number of states

in the sytem, Proposition 4.1 can be tested in O(q4 ) time.

If the conditions of Proposition 4.1 are not satisfied, we can test a weaker sufficient

condition for output stabilizability while keeping polynomial complexity. Instead of

the maximal w-invariant subset of the singleton states, we can use a notion of achiev-

ing invariance using state feedback, that we have defined in [5]: Given A and Q c X,

Q is sustainably (f, u)-invariant in A if there exists a state feedback such that Q is

alive and f-invariant in the closed loop system. In [5], we also show that a maximal

sustainable (f, u)-invariant subset of a given set exists and we present an algorithm

that computes it. Let E, be the maximal sustainable (w, u)-invariant subset of the

singleton states and let IK, be the associated state feedback. Note that Ku only needs

to act on the singleton states, and thus it can also be thought of as a feedback for

A. Note also that Ku needs to disable those events that take states in Eu outside of

E,, and it is unique provided that it only disables such events. As before, if AK. is

E n Eu-stabilizable and 0 is E,-stable, then A is output stabilizable:

Proposition 4.3 Suppose that (i) E n EU = 0; (ii) A is E n Eu-stabilizable; and (iii) 0
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is En-stable. Then if Ks(x) is a stabilizing feedback, the feedback

=) I .(x)) n KS(x) if = x} E E(4.8)

D = otherwise

is an output stabilizing feedback for A.

Proof: Straightforward. O

As an example, in Figure 4.3, where all events are observable, E,, = 0, but EU =

{{O}, {2}} and the associated feedback disables a when the observer is in state {O}.

Furthermore, E nEu = {O} and if we disable a at state 2 then we can stabilize A with

respect to state 0. Finally, note that O is En-stable. Thus, A is output stabilizable,

and an output stabilizing feedback is one that disables ca when the observer estimate

is 0 or 2.

This sufficient condition can also be tested in polynomial time since, similar to

Proposition 4.2, E. is the maximal sustainable (w, u)-invariant subset of the singleton

states of 0 iff {(x, x) Ix E E, } is the maximal sustainable (wp, u)-invariant subset of

Ep in Op. Furhermore, 0 is E,-stable iff Op is {(x, x){x} E E,}-stable. Therefore,

this sufficient condition for output stabilizability can also be tested in O(q4 ) time.

We conclude this section by presenting an even weaker sufficient condition that

can also be tested in polynomial time. This condition is based on a notion of always

observability that we define in [4]: We term a state x always observable if whenever

the system is in x, the observer estimate is {x}. We term a system a-observable if it

is stable with respect to its always observable states. Suppose that A is a-observable

and let us construct the automaton Aa which is the same as A except that only events

in always observable states can be controllable, i.e., ea(x) = d(x) for all states x that

are not always observable. If Aa is stabilizable then A is also output stabilizable
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System

2 X

Observer

O~'U8 c:uu

6: u

Figure 4.3: Simple Example for Using Control in Observer (all the events are observ-
able)
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since whenever we need to exercise control, we have prefect knowledge of the state

and thus we can simply use the feedback that stabilizes Aa on those singleton states

of the observer that are always observable:

Proposition 4.4 Given an a-observable system A, if Aa is E-stabilizable then A is output .

sta biliza ble. 0

As we show in [4], a-observability can be tested in O(q4 ) time, and thus this sufficient

condition can also be tested in O(q4 ) time.
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5 Resiliency

As we did with observability in [41, we can address a problem of robustness. Specif-.

ically, in this section we study the property of resilient output stabilizability in the

sense that in spite of a burst of observation errors, the system stays alive and goes

through E infinitely often.

In order to define what we mean by a resilient stabilizability, we also need to

define a notion to represent the discrepancy between two strings. Since the actual

point that the burst ends is important for our definition of resiliency, we compare two

strings from their beginning and we represent their discrepancy by how much they

differ at the end. In particular, we say that the discrepancy between two strings s

and t is of length at most i, denoted by

~(s,t)___i (5.1)

if there exists a prefix, p, of s and t such that Is/pl < i and It/pl < i.

Definition 5.1 Given a strongly output stabilizable A, A is resiliently, strongly output

stabilizable if there exists a strongly output stabilizing compensator C: F* -+ U and an

integer i such that for all strings s that can be generated by Ac, i.e.,

* Vx EX,

* Vs E Lf(Ac,x),

for all possible ouput strings t which can be generated by corrupting h(s) with a finite

length burst, i.e.,

* V positive integers i,
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*t E r* such that S(t, h(s)) < i,

the compensator acting on such corrupted strings still strongly stabilizes the system after

the error burst has ended. That is, for each such x, s, and t, the compensator C'(h(s')) =

C(th(s')), defined for s' E h(L(A, f(x, s))) is such that

* the range of f(x,s) is alive in Ac,, i.e., for all x E R(Ac', f(x,s)), dc,(x) $ 0,

and

* for all p E L(Ac,, f(x, s)) such that IpI > i, there exists a prefix p' of p such that

IP/p'l < i and f(x,sp) C wcR({Y},th(p')) C E, where WCR is the transition

function of the resilient observer OCR for Ac.

We say that C is a resiliently, strongly stabilizing compensator for A. i

In the above definition, the requirements on C' ensure that the compensator C acting

on the corrupted output string (a) preserves liveness (as stated in the first bullet),

and (b) stabilizes A following the burst (as stated in the second bullet).

Let us return to the characterization of strong output stabilizability in Proposition

3.3, but note that we can no longer use O as a basis for constructing a stabilizing

compensator since the burst may be an arbitrary string in r*. Therefore, as we did for

resilient observability in [4] and explained in Section 2, we will use OR. In particular,

given the observer O and an observer feedback K, define OKR = (FKR, WKR, VKR) SO

that

WKR(, ) = K( ) if vK( (5.2)

{Y} otherwise

VKR(X) = r (5.3)
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We can then define a compensator C(s) = K(WKR({Y},S)) for all s E r*. If an

error burst now occurs, it may put the system and observer in arbitrary states not

necessarily within the reach of the initial states XI defined in Proposition 3.3. As

the following result shows, we can characterize resilient output stabilizability as the

stablity of A II OKR for some observer feedback K. In fact, since A II OKR = A II OK,

we can use A 11 OK instead:

Proposition 5.2 A is resiliently, strongly output stabilizable if there exists a state feedback

K : Z -+ U for the observer such that A II OK is Eoc-stable.

Proof: (--) Straightforward by assuming the contrary.

(-) Straightforward since then C(s) = K(WKR({Y, }, s)) resiliently, strongly stabi-

lizes A. 4

Finally, we have the following companion of Proposition 3.2 which states that it

is necessary and sufficient to test 0 for Eo-stability, but since the burst may put the

system and the observer in arbitrary states, we need to use X-compatible feedback,

in order to preserve liveness:

Proposition 5.3 A is resiliently, strongly output stabilizable with respect to E iff there

exists a state feedback K for the observer such that OK is Eo-stable and for all x E Z,

K(X) is X-compatible.

Proof: - (-) Assume contrary, then for each K such that OK is Eo-stable, there exists

some x E Z and x E Y such that (d(x) n K(X)) U e(x) = 0. Let s be a string such that

- = w({Y}, s). Suppose that the system started in state x and although no event

has occured, the observer observed a burst s. Then, while the system is still in x, the

observer is in x and no other transition can occur. Therefore, A cannot be resiliently,
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strongly output stabilizable and we establish a contradiction.

(I-) Straightforward. O

An algorithm for testing resilient, strong output stabilizability and constructing a

feedback is identical to Algorithm 3.4 except that when we search for a feedback, we

search for one that is X-compatible, as opposed to i-compatible, and the computa-

tional complexity is again O(q3 lZ). Thus, if we can find K that satisfies Proposition

5.3, then C(s) = K(WKR({Y, }, S)) is a resiliently, strongly stabilizing compensator

for A.

We define resilient output stabilizability similarly:

Definition 5.4 Given output stabilizable A, A is resiliently output stabilizable if there ex-

ists an output stabilizing compensator C such that for all strings s that can be generated

by Ac, i.e.,

* Vx EX,

* Vs E Lf(Ac, x),

for all possible ouput strings t which can be generated by corrupting h(s) with a finite

length burst, i.e.,

* V positive integers i,

* Vt E r* such that ((t, h(s)) < i,

the trajectories starting from f(x,s) visit E infinitely often, i.e., f(x,s) is E-stable in

Ac,, where

C'(h(s')) = C(th(s'))

for all s' E h(L(A, f(x, s))). We say that C is a resiliently stabilizing compensator for A.

rJ
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The following result immediately follows from this definition:

Lemma 5.5 If C is-a resilient output stabilizing compensator then C(s) is X-compatible

for all s E T(A). 0

Similar to resilient strong output stabilizability, necessary and sufficient conditions

for resilient output stabilizability parallel those of output stabilizability except that

we need to use X-compatible feedback. Since, a resilient output stabilizing compen-

sator needs to be defined for all strings in F*, given a feedback K for the automaton

Q defined in Section 3.2, we define QKR = (GKR, WKR, VKR) SO that

WKR(Y,) WQK(Y'1) if E VQK(y) (5.4)
(Y, Y) otherwise

VKR(y) = F (5.5)

We can then define a compensator C(s) = K(WKR((Y, Y), S)) for all s E r*. We state

the following companion of Proposition 3.8 where

EQR = (Y = (Y1, Y2) E W13F C · such that VQF(y) = 0 and F is X-compatible}

(5.6)

Proposition 5.6 A is resiliently ouput stabilizable iff there exists a state feedback K such

that QK is EQ-pre-stable and for all y E W, K(y) is X-compatible in A. Furthermore,

the compensator defined by

C(s) = K(WKR((Y, Y), S))

for all s E r* resiliently stabilizes A.

Proof: (--+) Clearly, a feedback K which pre-stabilizes Q exists. By Lemma 5.5, the

second condition is satisfied.

(-) Straightforward O
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(123, disable p

disable a (1,12)

disable a (1,1 2,123

disable disable

disable B (2,2)

Figure 5.1: Resilient Output Stabilizing Compensator for Figure 3.4

An algorithm for testing resilient output stabilizability and constructing a feedback

can be generated from Algorithm 3.4 in a straightforward fashion. In particular, we

use EQR in place of EQ in Algorithm 3.4 and we check X-compatibility, instead of

y2-compatibility.

For example, the feedback we computed for Q in order to stabilize the system

in Figure 3.4 is also X-compatible (see Figure 3.6(b)), since, in this case, disabling,

either, but only one of, ao or p does not disable all the events in any state of the

system. A resilient output stabilizing compensator for the system in Figure 3.4 is

illustrated in Figure 5.1 for which the initial state is (123,123).
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6 Conclusions

In this paper, we have introduced notions of output stabilizability and- resiliency.

for discrete-event systems described by finite-state automata, and-we have developed

algorithms to test for output stabilizablity, resiliency, and to construct resilient output

stabilizing compensators. These algorithms are polynomial in the cardinality of the

state space of the observer. We have also presented sufficient conditions which can

be tested in polynomial time in the cardinality of the state space of the system.

The results presented in this paper provide us with methods for stabilizing DEDS

and for ensuring robustsness to observation errors so that catastrophic error propoga-

tion is avoided. They also provide the basis for our work in controlling a DEDS so

that particular sets of desired strings are tracked. In a subsequent paper, we address

this problem and formulate it as the stabilization of the composite of A and an au-

tomaton which generates the string or the set of strings that we wish the system to

track. Using the results in this paper, we can, in a straightforward way, also address

tracking problems in the case of partial observations and observation errors.
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