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Abstract

The haptic interaction of lhumans with soft objects was studied from three perspectives:
softness discrimination, force control, and contact visualization. The abilities of humans in
actively discriminating softness was measured by using a specimen presenter system which
was built to randonmly present the specimens. Two experimental paradigms (1- and 2-finger)
and three finger conditions (normal, finger cot, and rigid thimble) were used to examine
the importance of various sources of information. When using 1 finger, the Just Noticeable
Difference (JND) was about 5/%o for normal and finger cot conditions and increased to about
50% with the thimble. The JND results from 2-finger discrimination were lower than the
1-finger results for both normal and finger cot conditions, but were higher with the thimble.
Examination of the forces exerted on the specimens during 2-finger discriminations revealed
possible underlying discrimination strategies. In the force control experiments, subjects were
asked to exert several levels of constant forces under various finger conditions. The results
indicated tha.t the errors from tracking with visual feedback was significa.ntly lower than
that without visual feedback. No significant differences in force control were found with
either different softnesses or under the three finger conditions. The absolute errors were
higher when controlling higher target forces. Significant difference in force control was found
between the two hands of the subject who showed handedness in the softness discrimination
experiments. For contact visualization, a real-time imaging setup was built which consisted
of a videomicroscopy system and a tactile stimulator system. By using this setup, real-time
images from the contact region as wvell as the contact forces were digitized. Various image
processing techniques were developed and applied in order to analyze and improve the contact
images to distinguish between the contact and non-contact regions. Contact variables such
as force, nominal contact area, actual contact area, nominal pressure and actual pressure
were analyzed. Based on the visualization of the active slip phenomenon, 'a hypothesis on
the contact pressure distribution was proposed. The developed hardware can be used for
evaluating human haptic abilities and providing biomechanical visualizations. The results
obtained have implications on the mechanisms of contact and find applications in dextrous
robot finger and haptic interface designs as well as in various steps involved in the automatic
fingerprint identification systems.

Thesis Supervisor: Dr. Ma.ndayam A. Srinivasan
Title: Principal Research Scientist
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Chapter 1

Introduction

1.1 Human haptic interaction with soft objects

Our hands are a. la.rt of the human haptic system which is comprised of the biomechanical,

sensoimnotor and cognitive subsystems. Complete understanding of the human haptic system

requires an analysis of the mechanics of contact together with other aspects of the system such

as physiology, neuroscience and psychophysics. \Vhen we interact with objects in an environ-

ment, useful information is gathered from information sources involving visual, auditory, and

haptic systems. Exploration or manipulation of objects generally involves multimodal per-

ception and intersensory integration [15][46][48]. Even though the interaction is multimodal,

we rely heavily on our hands to perceive object properties and control the interaction. This is

because the tactile information originates directly from the finger-object contact interface as

a result of contact forces imposed on the fingerpads. The mechanoreceptors underneath the

skin respond to the imposed loading and the generated neural signals are transmitted to the

brain through pathways of the central nervous system. To understand what information is

available to the sensors underneath the skin, visualizing the contact process is an important

step. In this study, therefore, a videomicroscopy system was built'to visualize the contact re-

gion of the fingerpad with transparent objects. The image sequences obtained from fingerpad

contact with rigid Plexiglas and transparent objects of different softnesses were observed and

analyzed by applying various image processing techniques to extract contact information.

At a behavioral level, human perception of the object properties related to the human

haptic system have been studied in terms of the detection, discrimination, and recognition

(see Sherrick & Cholewiak [37] and Loomis & Lederman [38] for a review). The stimuli that

15

�__1·_^____11_11_____·- 1(- I



have been used cover a wide variety such as point loads, surface irregularities, vibrotactile

threshold, patterns, roughness, and texture. However, not much is known about the human

discriminability of rubber-like soft objects. Early studies on softness perception existed

in forms of stimuli ranking, scaling, and psychophysical laws: for example, studies on the

skills of test bakers[27], cheese maker and grader craftsmanship, and on scaling, matching

and cross-modal comparisons of softness percepltion[20]. One severe problem that hinders

quantitative understanding in such studies is the lack of of high quality stimuli which differ

only in softness [28]. In this study, human softness discrimination ability was examined by

l)erforming discrimination experiments with visually identical, smooth, compliant objects that

had no perceivable surface features and differed only in softness which could be controlled

and characterized to a. high level of precision.

Two sources of information are available during haptic interaction with objects. Tactile

information is gathered from the sensors embedded in the skin during contact; kinesthetic

information is generated by the sensory receptors around joints, tendons and muscles [11][21].

In order to determine the relative importance of tactile information at both gross and detailed

level as well as that of kinesthetic information during softness discrimination, three different.

finger conditions were examined: normal finger, finger covered with a finger cot and with a

rigid thimble. \Vith normal finger and finger covered with a thin glove-like latex finger cot..

both tactile information and kinesthetic information are available. The presence of finger cot

can, however, be thought of as a thin layer on top of the finger ridges which would remove

some of the fine details that the finger would otherwise perceive with normal fingers. The

rigid thimble replaces the .fingerpad-object interface with thimble-object and thimble-finger

interfaces. Thus, when discriminating softness wvith the thimble on, useful tactile information

which would otherwise be obtained from the contact region are removed. Therefore, the

subjects would need to rely on the unperturbed kinesthetic information.

In an attempt to addressmultifinger interaction with objects, an experimental paradigm

that used the two index fingers from both hands was also tested in addition to one-finger soft-

ness discrimination experiments. Aside from analyzing the Just Noticeable Difference (JND)

results, the forces applied for discrimination were also examined to reveal the strategies ad-

opted by the subjects. To further understand the underlying limitations in the ability to

achieve fine discriminations of softness, force control experiments were conducted to examine

the subjects' abilities in controlling normal forces of contact with objects of different soft-
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nesses. Both left and right index fingers under normal, finger cot, and thimble conditions

were examined in following and controlling three different constant target force magnitudes

with and without visual force feedback available.

1.2 Specific aims of the thesis

The specific aims of this thesis are (1) to develop a videomicroscopy system for visualization

of the contact region of the human fingerpad during contact xwith transparent objects, (2)

to develop a single degree of freedom tactile stimulator capable of transporting stimulus

objects t.o indent the fingerpad at a. controlled velocity, (3) to develop a. specimen presenter

to plerform sychol)llhysical experimentl s on the human Ilaptic discrimination of object, softness,

(4) to characterize the human ability in controlling normal finger forces with specimens of

various soft. nesses under several contact. interface conditions, (5) to perform passive and act.i ve

touch expleriments involving the human finger and transparent soft specimens to characterize

how the contact region is affected by the parameters such as contact force and specimen

compliance, and (6) to gain a. deeper understanding of how contact information and force

control affect the ability to discriminate softness. It is hoped that the results of this study on

the human haptic performance and the underlying mechanisms will also provide useful data

and insights for the design of haptic interfaces and dextrous robot fingers.

1.3 Organization of the thesis

This thesis is organized as three parts: softness discrimination. force control, and con-

tact visualization. Background, devices, experiments, and results related to each topic are

provided in the corresponding chapters.

Chapter 2 describes the measurement of the human ability in softness discrimination.

Background information on the human haptic system and previous work on softness discrim-

ination are provided. A device for specimen presentation was designed and built to measure

the human ability in softness discrimination under various finger conditions and experimental

paradigms. The results are discussed and the forces used by subjects are examined.

In Chapter 3, the measurement of the human ability in normal force control with soft

objects is presented. Background information on the related human sensory abilities are

examined. Experiments to determine the human abilities in controlling normal forces of
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contact with objects of various softnesses and under various experimental conditions were

conducted. The performance of the subjects on force control under various conditions were

measured and compared.

The efforts on contact visualization is presented in Chapter 4. A videomicroscopy system

was built to enable visualization of the contact region of tile human finger with transparent

objects. A tactile stimulator system was built to conduct controlled contact experiments.

\\ith the integration of the two systems, real-time experiments to observe both contact region

and contact forces are now possible. The device was used to acquire images under both active

a.nd passive touch experiments to analyze contact. information. Various image processing

techniques were apl)lied to facilitate phenomenologica.l description and to qulantify tile image

data. for overall (nominal) and actual contact areas.

Chapter 5 concludes the main results from the three aspects of softness discrimination

detailed in the previous chapters. Imlplica.tions of the results on human haptic interactions

with soft. objects, possible pressure distribution, and slip cletection are described. In addition,

the apl)licability of the systems and results from this study to dexterous robot finger design,

bionlechanical visualization, and automated fingerprint identification systems is discussed.
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Chapter 2

Softness Discrimination

2.1 Abstract

Tile humlan ability to actively liscrimninate softness was measured. Pairs of silicon rubber

specimens with compliances from 0.293mm/N to 0.635mm/N were randomnly presented to

estimate the Just Noticeable Difference(J ND) of the subjects in softness dliscrimlnination. Two

experimental paradigms \with three different finger conditions were used to evaluate the mech-

anisms that were used (luring discrimination. Three finger conditions (normal, finger covered

with a finger cot, and finger covered with a. rigid thimble) were chosen to affect the sources

of information available to the subjects for making the discrimination. With finger cot, the

detailed ridge level mechanics of contact was filtered by the thin (0.06mm) latex finger cot.

With thimble on, the subject had to rely mostly on the kinestletic information. Two forced-

choice discrimination paradigms were the use of the index finger from the dominant hand

sequentially (1L-2AFC) and the use of both index fingers from both hands simultaneously

(S-2AFC). In the S-2AFC experiments, the two specimens were available during the whole

process of discrimination; thus the effect of memory was expected to be less than that in

the 1I-2AFC experiments. With the 1I-2AFC paradigm, the mean JND values for the three

subjects were 6%, 7%, and 17% under normal condition, 4%, 5%, and 14% under finger cot

condition, and 43%, 50%, and 70% under thimble conditions. Analysis of variance showed

that results from normal and finger cot conditions were not significantly different. With

S-2AFC paradigm, the mean JND values dropped for both normal and finger cot conditions

as expected (less memory effect) and the difference was significant at 1% level: the JND

values were 3o to 5% for two subjects and were 8% to 10% for the third. On the other
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hand, the resulting JND under the thimble condition increased. Analysis of force profiles

used during both 1I-2AFC and S-2AFC paradigms indicated that typica.l contact duration

wvas 0.5 sec to 1.0 sec. The peak force used ranged from about 10N to 40N. Comparing the

peak forces used on the two specimens in the S-2AFC experiments suggested three strategies

that might have been used by the subjects: (1) to achieve the same amount of deformation

of the two specimens by exerting higher forces on the harder specimen, (2) to compare the

contact information obtained by aplying the same amount of pressure on both specimens

(thus higher peak forces on the softer specimen), and (3) to apply the same amount of peak

forces on both specimens and compare the deformations.

2.2 Introduction

1-1umans use their hands to explore and manipulate objects. In both explora.tion andl nalilp-

ulation, the contact forces as well as the finger positions must be controlled. In addition,

properties of the object such as compliance, shape, and texture are sensed and used to avoid

droppling or crushing the objects.

Softness is a. subjective measure of the compliance of an object. To assess the softness

of an object, the object is squeezed with the hand or indented with the finger. During such

a. process, two sources of information are available: Tactile information is gathered from

the sensors embedded in the skin near the contact region; kinesthetic information is gener-

ated by the sensory receptors around joints, tendons and muscles (Srinivasan and LaMotte

[42][40][41]).

Researchers have conducted various experiments in measuring human sensory and motor

performance. Early studies on softness perception existed in the form of stimuli ranking, scal-

ing, and determination of psychophysical laws. For example, studies have been carried out on

the skills of test bakers[27], cheese maker and grader craftsmanship, and on scaling, matching

and cross-modal comparisons of softness perception[20]. Roland and Ladegaard-Pedersen[35]

found that the discrimina.bility of spring strength was unaffected by local anesthesia of skin

and joints when the springs were held between thumb and index finger. However, not much is

known about the human resolution and the discrimination mechanisms with rubber-like soft

objects. Just Noticeable Difference (JND) is a common measure of human sensory resolution

and has been measured for a. variety of physica.l quantities. The JND values for length (Dur-
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lach et al [13]), force (Pang et al [34]), compliance and work have been measured by various

researchers. Tan et al [45] have measured the JND in compliance between two rigid plates,

controlled by linear motors, grasped between the thumb and index finger. They found that

the JNDs ranged from about 8% to 99% depending on whether or not the subjects had cues

such as terminal grasp force or total work done. Jones and Hunter [26] performed experiments

where subjects actively mnoved the forearm about the elbow joint to sense the compliance of

a, preprogralmmed linear motor attached to one of the wrists, and to match its coml)liance

by Imodifving that of an identical linear motor attached to the other wrist. They estimated

the comlpliance JND to be about 23%t under those conditions. Srinivasa.n and Chen [39]

measuredc the hunlan ability to control the normal forces of contact with a. rigid plate under

a. variety of experimental conditions and found that performance degraded in the absence of

tactile information and visual feedback. Sriniva.san and LaMNIotte [42] investigated the ability

of hunans to tact.ually discriminate the softness of elastic objects with deformable (rubber

specimens) and rigid surfaces (spring cells). They performed three types of experiments: act-

ive touch with normal finger, active touch with local cutaneous anesthesia, and passive touch,

to measure the lhuimla.n discriminability and to isolate the associated information-processing

mechanisms. Thev found that tactile information was sufficient for discriminating the rubber

specimens used in their study. In some of their experiments, the peak forces were constrained

to 50, 75, and 90 gwt in order to study the effect of force on discrimination.

The work reported here was designed to look a.t the softness discrimination from a different

perspective. The subjects, with their eyes closed, were allowed to use any force to discriilla.te

the specimens. Two experimental paradigms together with three different finger conditions

were used to study the subjects' JND performance on softness discrimination for rubber

specimens.

2.3 Methods

2.3.1 Softness specimen preparation

The specimen casting procedure was similar to what Srinivasan and LaMotte [42] used in

their experiments, but the mounting method used here was improved to enable high volume

production of the specimens. A series of compliant specimens were cast by mixing different

proportions of General Electric (GE) SF96-50 silicon rubber diluent to fixed proportions of
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GE RTV615A and RTV615B components. The diluent GE SF96-50 is a replacement for the

discontinued GE RTV910 used by Srinivasan and LaMotte.

The component proportions were determined by weight using a digital scale and dispensed

via pipet. The mixtures were thoroughly mixed by hand and then poured into 30 mm cliameter

petri dishes to form transparent specimens. Depending on the proportions of the mixture, it,

took as long as 24 hours for some of the specimens to cure completely. At least 5 specimens

of the salme dliluent proportion were cast to allow for wear and tear from the experiments andll

for force control and contact visualization studies. The specimens were visually identical and

were mainly distinguished by the label on the side which indicated their batch and sequence

code.

Several batches of slpecimens were made for the pilot experiments on ranllking softness in

order to determine holw close the compliance of the specimens should be. It turned out that

specimens with much filner ifferences than those that Srinivasan and LaMotte used had to

be pIrepared for the JND experiments. The standard specimen chosen for the experiment had

an objective coinpliance (see next section) of 0.30 mm/N.

2.3.2 Specimen objective compliance

An objective measure of the specimen compliance was obtained by the characteristic force-

displacement relationship of each specimen. A linear stepper motor system with a micro-

stepping drive was used to indent the specimens at a constant velocity of 0.5 mm/sec with

the flat end of a 1/4 inch diameter circular probe. As the probe indented the specimen, a,

force sensor mounted between the probe and the motor was used to measure the indenta-

tion force at 1000 samples per second data rate. Since the stepper motor movement was

completely determined by the number of digital pulses received, its relative position can be

determined to better than 1lim accuracy. The indentations were repeated three times, and the

depth of indentation was 3 mm for the soft specimens and smaller for the harder specimens.

The resulting force-displacement curves were then used to compute the specimen objective

compliance by measuring the slope of a fitted straight line with least square error.

The objective compliance value computed from the characteristic line using least square

line fitting is significant to the third decimal place or 0.3% of the compliance value for the

specimen with the lowest objective compliance. The resulting values from the three repetitions

were averaged and used as the specimen compliance. Figure 2-1 shows the characteristic
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Compliance Calibration --- CR1 = 0.3041 mm/N
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Figure 2-1: Objective compliance data from three repetitions of the probe indenting the
standard specimen CR1. The numbers shown are the computed objective compliances in the
three trials.

curves for the standard specimen CR1 which shows that the force-displa.cement data. are

very repeatable and linear to a high precision. The specimens used in all the discrimination

experiments had compliances that ranged from 0.293mm/N to 0.635mm/N. Ta.ble 2.1 lists

the objective compliance of the batches of specimens used in the discrimination experiments.

Serial number shown indicates specimens with identical diluent proportions.

2.3.3 Specimen presenter

The measurement of abilities of human subjects requires experiments with a. large number

of trials. For conducting such experiments efficiently, a specimen presenter was designed. In

essence, the specimen presenter is a stepper motor based system controlled by a computer.

It is capable of recording the forces used by subjects during trials and switching specimens

between trials. The computer determined randomly how specimens were presented to the

subject with a pre-determined probability.

A block diagram of the specimen presenter system is shown in Figure 2-2. The specimens

were mounted vertically inside two specimen holders. The holder is slightly tapered to match

the shape of the petri dishes. Its bottom has a. circular opening but does not allow the

specimen to fall through. The specimens fit nicely tight and can also be taken out without
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Serial Number
Batch Code 1 2 3 4 5 6

CR 0.304 0.298 0.300 0.294 0.293 0.290
DR, 0.312 0.309 0.320 0.323 0.326 0.324
ER 0.34.5 0.347 0.348 0.337 0.341 0.340
FR 0.400 0.382 0.384 0.373 0.375 0.380
IHT 0.455 0.450 0.416 0.420 0.442 0.450
IT 0.52:3 0.514 0.518 0.528 0.531 0.529
JT 0.635 0.611 0.608 0.598 0.610 0.587

Table 2.1: Specimen Objective Con lpliance (m m/N). Serial number shown refers to specimens
with identical (cilllent proplortions.

too much effort. 1

An Eastern Air Devices model LA23BCIK-01 stepper motor was used to rotate the spe-

cimens. The Inotion of the motor was controlled from the parallel input/output interface of

the comlputer. The motor control signals were fed to a model 7006-DB motor driver from

American Scientific Instruments Corp. (ANISI) whicli drove the motor. Two custom made

strain gage based force sensors were designed and fabricated to measure the forces exerted

by the subjects on the specimens. A finite element analysis was conducted, by using ADINA

software, to compare the responses to a point load and a, distributed load from three differ-

ent force sensor designs: simple cantilever beam, cantilever beam with a hole, and cantilever

beam xwith two holes and a slot (binocular). Binocular spring element was chosen to con-

struct the sensors because it is more rigid and less sensitive to location of force application.

Four strain gages, made by Measurements Group, were mounted on the top and bottom

surfaces of each force sensor near the center of the two holes of the binocular to form a full

bridge. The force signals were amplified by a signal conditioner which consisted of an analog

module rack from AMSI and two Analog Device model 5B38-05 strain gage input modules.

These amplified force sensor signals were then digitized at 1000 samples per second rate by

a RTD-ADA3100 data acquisition board made by Real Time Devices Inc. under the control

of custom developed C programs.

The choice of having the specimens mounted vertically on the motor has two advantages.

'The machining of the force sensors and the specimen holder as well as other attachments for the experi-
ments was carried out at MIT ME student shop under the supervision of Norman Berube. The author wishes
to thank him for his patient guidance and advice on machining.
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Figure 2-2: The softness specimen presenter system.

First, since the motion of the finger during perception will be horizontal, the gravity effect

will be the same for the chosen exlperimental paradigms. Second, the force sensor offset value

need only be measured once and can be applied to the two possible specimen positions used

in the experiments.

2.3.4 Finger conditions

To further our understanding of the underlying mechanics of the softness discrimination task,

three finger conditions.were used: normal finger, finger covered with a 0.06mm thick latex

finger cot, and finger covered with a rigid thimble.

NWith normal finger, subjects have both tactile and kinesthetic information and possibly

the surface texture information if there is any. When the finger is covered with a thin latex

·finger cot, one can still feel tlie surface easily. It is similar to the glove worn by surgeons,

except that the finger cot here was just for a single finger. The compliance characteristics

of the finger with and without finger cot is similar as shown in Figure 2-3. However, the

finger ridge level contact information is degraded. When the finger wears a rigid thimble, the

deformation of the finger and the deformation of the specimen depends on the contact force

alone. The interactions between the finger and the specimen is replaced by the interactions

between thimble with the specimen and with the finger.
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Figutre 2-3: The force displacemlent curves for finger with and without finger cot.

By comparing the results from the three different conditions, we can infer how softness

discrimination is affected by the presence of information froin the three different information

sources: detailed finger ridge contact information, degraded tactile information, and the

kinesthetic information.

2.3.5 Experimental paradigms

Since humans interact with objects with multiple fingers most of the time. it is interesting

to look into how humans discriminate softness using either a single finger or two fingers.

Therefore, two paradigms were used: single finger from the dominant hand and one finger

from each hand.

In the single-finger case, the experiment consisted of a one-interval, two-alternative forced

choice (11-2AFC) paradigm with correct answer feedback. The subject moved the index

finger to indent the specimen mounted on the specimen presenter while the rest of the fingers

grasped a fix rod for achieving a standard posture. The subject had to decide whether the

specimen presented was the softer or the harder one of the two. In the two-finger case, the

experiment consisted of a two finger simultaneous, two-alternative forced-choice (S-2AFC)

paradigm with correct answer feedback. The two index fingers indented the two specimens

mounted on the specimen presenter and the subject had to decide whether the left or the
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Figure 2-4: Relative positions of the fingers and the specimens for the two experimental
paradigms.

right one was the softer specimen of the two. Figure 2-4 shows the relative position of the

specimens and the fingers in the two experimental paradigms.

One of the significant differences between the two paradigms is the information available

to the subject. In the 1I-2AFC case, subjects must remember how specimens felt like in order

to come up with a correct response. In the S-2AFC case, however, both specimens were

available to the subject during the discrimination. Therefore, the subject can compare both

specimens during the indentation. This will be an easier task if the ability to control and sense

at each hand is not reduced by the fact that both hands are involved at the same time. One

might expect that since humans use multiple fingers on a daily basis, that should not be too

bad an assumption. Clearly, we can squeeze two different rubber balls and distinguish them.

But, can we squeeze a rubber ball composed of two semi-spheres with different material

properties using fingers from two different hands and distinguish their relative softness ?
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2.3.6 Experimental procedures

To obtain statistically significant results, the discrimination experiments require a substantial

number of trials for each subject. One standard and four comparison specimens were used

for each experimental condition. The comparisons were selected depending on the subject's

performance and the finger conditions. Each subject was tested for only one lhoutr per day

to avoid bloredom or possible injuries from repeated motions. Also, finger exercises were

provided in between the four repeated runs of 64 trials. The first run was used as the

training run and the data were not used in the final JND calculations. However, it was

conducted just like a. normal run.

Before each run started, the subject was given an opportunity to touch the two specimens

when tlle were laying on the bench. Afterwards, the specimens were mounted horizontally

on t.le specimen presenlter. The subject rested their elbow on a. flat surface and the palm

grabbed onto a. roughly 3/4 inch diameter wooden rod for posture reference and kept their

eyes closed. An offset value of the force sensor was taken while the specimens were horizontal.

Afterwards, the motor moved to its vertical home position with the hard specimen located on

the top and the soft specimen at the bottom. Depending on the random number generated,

the motor rotated either clockwise or counterclockwise with an equal probability. Thus either

the soft or the hard specimen was located at the right after the motor stopped. During the 64

trials, the program controlled the motor to go to the two possible test configurations 32 times

each. After the motor reached its destination for a particular trial, a delay of 0.5 second was in

effect to avoid any vibration which might cause incorrect force sensor reading. Afterwards,

the computer speaker beeped to prompt the subject to move the finger for indenting the

specimen.

A circular buffer was used in the force data collection program which had a threshold force

of 0.5N. A total of two seconds of force data was collected for each trial, Which consisted

of 0.5 seconds before 0.5N force was reached and 1.5 seconds after. This data collection

scheme allowed force data from most of the trials to be recorded appropriately. Occasionally,

however, the subject would make multiple contacts using forces above the threshold; the

data collection was triggered on the first significant contact which might not have all the

appropriate data. Or, the subject might start indenting the specimen after the motor stopped

but a little before the computer beeped. In that case (less than 1% of the trials), the force
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trace showed a. sudden jump from zero at time equal to 0.5 second.

2.3.7 Data analysis

In the discrimination experiments, there were two stimuli Sl1, S2 and two possible responses

I1, R2. If f represents the number of trials the subject responded with Ri to a. stimulus

,Si, the results can be arranged in the following 2 by 2 confusion matrix format:

'S1

S2

R1 R2

fll .f12

.f21 122

The sum of the elements f should addl up to 64 for one run. If the subject was 100%X

correct. then fll = .f'22 32 and fl2 = .f21 = 0. If the subject made mistakes, the off-

diagonal elements would be higher. By applying the decision model that is used extenlsively

in psychol)hysics [12] based on signal detection theory [44], the sensitivity index d' and bias

/3 of the subject can be quantified. To get more reliable estimates, the data from the three

runs (excluding the training run) were pooled together for such calculations. The JND of

softness is the difference in the stimuli (percentage difference of the objective compliance)

that corresponds to a d' value of 1 and is estimated by dividing the percentage difference by

the calculated sensitivity index d'. To combine the data from different comparison softness,

the JND was obtained by employing the standard procedure of averaging the four individual

.JND estimates.

The analysis of variance (ANOVA) method was used to find out whether the results were

influenced by factors such as finger conditions and experimental paradigms. The individual

JND estimates from each comparison specimen run was used for the calculations of the

ANOVA table. To compare any two JND results obtained under different circumstances,

the Student's t test [31][24][36] was used. The statistical analysis was performed by using

MATLAB statistics toolbox. The results from different subjects were not averaged in order

to observe their differences and to analyze why such differences existed.

29

._ _I�__�_II _X� I__I



Specimen DRI DR5 ER1 FR1
Difference 2.6% 7.1% 13.5% 31.7%
Confusion 55 41 74 22 74 22 92 4

Matrix 29 67 20 76 17 79 1 95
d' 0.70 1.55 1.67 4.04
:/3 -0.17 -0.04 -0.09 -0.29

.JND (%) 3.8 4.6 8.1 7.8
MeanJND = 6.1%

Table 2.2: 11-2AFC discriminationi results for subject CH under normal condition (Standard:
CR1 [0.304mm/N])

2.4 Results

2.4.1 II-2AFC discrimination

In the 1I-2AFC d(iscrimination, , the subjects used the index finger from their dominant hand to

indent the specimen. Th ree subjects participated in the experiments: CH(male), CT(female),

and J (female). Three finger conditions were tested to see how different contact interface

conditions affect the performance of the subjects. The batches of trials for different conditions

and paradigms were randomized to minimize training effects.

JND results

The discrimination results from a.n experimental run was represented by a. confusion matrix.

The calculation of the sensitivity index, d', response bias , and JND for a. given comparison

specimen was performed by using the procedure outlined in the Methods section.

For example, table 2.2 shows the discrimination data and the calculated JND value for

subject CH under normal condition. Specimen CR1 was used as the standard and the four

comparison specimens and the differences in objective compliance from the standard are

listed. The confusion matrix was pooled from the three runs. The sensitivity index as well

as the response bias was calculated according to the decision theory. The d' value obtained

was then used to estimate a JND value by dividing the percentage difference in specimen

compliance by d'. Finally, the JND under normal condition for subject CH was obtained by

taking the mean of the JND estimates. Figure 2-5 shows how the sensitivity index d' varies

with the difference in objective compliance of the comparison specimen. A least square line
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Figure 2-5: A plot of sensitivity index (d') and the specimen objective co]mplia.llce difference
for subject CH under normal condition.

was drawn to show that tile relationship was a.pproxima.tely linear.

A summary table for the JND va.lues calculated using this method under various conditions

for all subjects are listed in Table 2.3 (Data used for these calculations are presented in

Appendix B). \Vith a thimble on the finger, the subjects' performance was a. lot worse than

the normal and finger cot conditions. For subject CH, the JND increased from 6.1% under

normal condition to 43.3% under thimble condition. Keeping in mind the spread of the JND

estimates in Table 2.2. we can observe that subjects CH and JIK had similar performance

under normal and finger cot conditions . The JND values for subject CT were higher than

the other two subjects in all three conditions. The JND increased from 17.4% for normal and

14% for finger cot to 70.2% with thimble on. Clearly, with thimble on, none of the subjects

were able to perform anywhere close to what they could under either normal or finger cot

conditions.

Analysis of variance (ANOVA) was used to test for the effects of subjects and finger con-

ditions and Student's t tests were used to compare the performances from different subjects

under normal and finger cot conditions. There was a significant difference between the sub-

jects at 1% significance level (the significance is the probability of observing the given result

by chance given that the hypothesis is true). However, the differences between normal and

finger cot conditions and the interaction between subject and condition factors were small.
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Subject Mean
Condition CH CT J I value

Normal 6.1 17.4 7.0 10.2
Finger cot 4.3 14.0 .5.0 7.8
Thimble 43.3 70.2 49.8 54.4

Ta.ble 2.3: 1.1-2AFC softness liscrimina.tionl mean JND (%)

Significant differences of the nean J.ND, at. 5 significance level, were found between subjects

(C'H,CT) under normal condition and between subjects (CH,CT) and (JIK,CT) under finger

cot condition. The complete analysis is presented in Appendix C.

Force profiles

A few raw data graphs are slownl here to illustrate how the applied forces varied during a. tria.l

and how tlhey varied across trials, conditions, and subjects. Figure 2-6 shows the force traces

during a. discrimination run tha.t consisted of 64 trials. In that particular run, the specimens

used were ERI (comparison) and CR1 (standard) and the finger condition was normal. Even

though the subject got 80% correct calls in the discrimination, the force traces varied from

trial to trial with a pea.k force ranging from I0N to 16N. The force traces intersect at 0.5

sec time mark with a. force magnitude of 0.5N because of the force data collection mechanism

explained in the experimental procedure. The duration of contact was about 500 msec to

800 msec during that run and the indentation phase seems to take a little longer than the

releasing phase.

Figure 2-7 shows the same force traces from the 64 trials separated according to the

stimuli and responses (the confusion matrix format). The title for each panel indicates which

stimulus (S) and response (R) group the force traces came from. The upper left and the

lower right graphs show the forces from the correct responses while the upper right and the

lower left graphs show the forces from the incorrect responses. The numbers on the upper

left corner of each panel indicates the number of force traces in that panel. Those numbers

together would make up a confusion matrix. The top row shows the forces used for the

softer specimen and the bottom row shows those used for the harder specimen. For the same

specimen (panels in the same row), the subject used forces which varied from trial to trial.

The force traces from the incorrect responses were similar to the ones from correct responses.
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Figure 2-6: Force traces from subject CH during a 11-2AFC
condition.
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Figure 2-7: Force traces from subject CH during a 1I-2AFC discrimination run under normal
condition plotted in the confusion matrix format.
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Figure 2-8: Force traces from subject C during a 1I-2AFC discrimination run under thimble
condition.

We cannot conclude that the subject responded incorrectly due to the force profiles applied.

The presence of finger cot and thimble did not seem to have much effect on the general

shape of the force profiles for subject CH. Figure 2-8 shows the force profiles from an exper-

imental run with the thimble condition during discrimination of the easiest specimen pair for

that condition. Comparing with Figure 2-7 for normal finger, the general shape of the traces

looked about the same. However, the forces used were somewhat higher than those used in

the normal condition.

Different subjects showed quite different force profiles in terms of peak forces used, dur-

ation of contact, and consistency. Figure 2-9 and Figure 2-10 show typical force traces from

subject CT and JK under normal, finger cot, and thimble conditions. For subject CT, the

shape of the forces was not as consistent as those of subjects CH and JK. Also, the duration

of contact, about 0.8 sec to 1 sec, was longer than what CH and JK used (about 0.5 to 0.8

seconds). The force profiles exerted on the specimens by subject JK was quite consistent

and the peak forces during each trial were generally higher than that used by the other two
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Cond.: Normal, Data: ctfrlcrl.fn2, Specimen Difference: 31.7%, Correct: 83%
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Cond.: Finger cot, Data: ctfr2cr2.fc2, Specimen Difference: 28.4%, Correct: 83%
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Figure 2-9: Force traces from subject CT during 1I-2AFC discrimination runs under nor-
mal(top graph), finger cot(middle graph), and thimble (bottom graph) conditions.
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Cond.: Normal, Data: jkerlcrl.fn3, Specimen Difference: 13.5%, Correct: 84%

Time (Sec)

Cond.: Finger cot, Data: jker2cr2.fc3, Specimen Difference: 16.7%, Correct: 86%
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Figure 2-10: Force traces from subject JK during 1I-2AFC discrimination runs under nor-
mal(top graph), finger cot(middle graph), and thimble (bottom graph) conditions.
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subjects.

2.4.2 S-2AFC discrimination

In the S-2AFC discrimination, the subjects simultaneously used the index fingers from both

hands to perform the discrimination. The same three subjects and finger conditions were

used. Again, the purpose of using three finger conditions were to see how different contact

interface conditions affect the performance of the subjects. The purpose of the simultaneous

contact was to reduce the role memory plays, since both specimens were available during the

discrimination. The experiments were conducted in parallel with the 1I-2AFC discrimination

experiments to reduce possible training effects. Since subjects applied forces on both speci-

mens, the analysis on the force profiles could possibly reveal the underlying strategies used

by the subjects for discrimination.

JND results

The JND values for the S-2AFC experiments listed in Table 2.4 were obtained by using the

same pooled data method used for calculating the JNDs for the 1I-2AFC experiments. The

JND values obtained were lower than the 1I-2AFC case under both normal and finger cot

conditions for all three subjects. However, the JND value for the thimble condition was higher

than the II-2AFC case for each of the three subjects.

Analysis of variance (ANOVA) was performed to determine the effects of subjects and

finger conditions and Student's t tests were used to compare the performances from different

subjects under normal and finger cot conditions. There was significant difference between

the subjects at 1% significance level as indicated by the high F ratio from the ANOVA

table. However, the differences between normal and finger cot conditions and the interactions

of subjects and conditions were small. T-test at 5% significance level revealed significant

differences of the mean JND between subjects (CH,CT),(JI(,CT) under both normal and

finger cot conditions. The complete analysis is presented in Appendix C.

Force profiles

The shape of the force profiles used by the subjects as well as the magnitude of the peak forces

are of interest. Figure 2-11 shows the force traces from subject CH during a discrimination run

under normal condition. The upper graph shows the forces exerted on the standard specimen
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Subject Mean
Condition CH CT JIK value

Normal 4.9 8.3 3.1 5.4
Finger cot 3.2 10.4 2.9 5.5
Thimble 57.9 78.4 56.1 64.1

Table 2.4: S-2AFC softness discrimination mean JND (%)

(CR3) whereas the lower graph shows the forces applied on the comparison specimen. Like

the 1I-2AFC experiments, the shapes of force profiles vary from trial to trial. The first 9

trials of that run is showni separately ill Figure 2-12 with the trial number labeled ill tlhe

l)ottom row of upl)per left cornler. Also shown in the upper left corner of each panel are the

softer stimulus location (labeled S) and the response of the subject (labeled R). The solid line

represents forces on the colnparison specimen (the softer one) and the dashed line represents

the forces on the standard. In the first trial, the softer specimen was located on the left hand

side and the subject correctly responded. The moment of contact on the standard specimen

was earlier than for the comparisoll (softer) specimen for trial 1. Some of the peak forces

were about the same for both specinlens (trials 2 and 3) while some were higher on the softer

specimen (solid line, trials 1,4,7,8,9) and others higher on the harder specimen (dashed line,

trials 5,6). The moment of contact Xwas sometimes earlier for the softer specimen and other

times earlier for the harder specimen.

To see whether or not the magnitudes of the peak forces exerted by the two fingers on

specimens were related to the correctness of discrimination, a plot of the peak forces on the soft

specimen versus that on the hard specimen for subject CH under normal condition was shown

in Figure 2-13. Symbols 'o' and 'x' were used for correct and incorrect responses, respectively.

The four panels are for the four different comparison specimens. The differences in objective

compliances for the specimen pairs are shown on top of each graph. The percentage correct

(pooled from 3 runs) and the confusion matrix (labeled CM) of the subject are shown in

the upper left corner. The numbers labeled FsM are the elements of the following force-

specimen-correctness matrix that arranges the correct and incorrect responses according to

whether or not the peak force on the hard (standard) specimen is higher than that on the soft

(comparison) specimen.
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Cond.: Normal, Data: chdr2cr3.f12, Specimen Difference: 3.0%, Correct: 70%
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Figure 2-11: Forces on hard and soft specimens from subject CH during a S-2AFC discrim-
ination run under normal condition.
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Figure 2-12: Forces exerted on soft (solid line) and hard (dashed line) from the first 9 trials
of subject CH during a S-2AFC discrimination run under normal condition.
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Far.d > Fso t

Flard Fsoft

Correct Incorrect

S1 1 S12

S21 S22

If the objective of the subject was to obtain the same amount of deformation from both

specimens to enable a. discrimination based on the peak force applied to achieve the deform-

ation, then the subject hlad to exert higher forces on the harder specimen pairs and higher

force on the ha.rd specimen than on the soft specimen for a. given pair. Such hypothesis can

be tested by looking at the FsNM matrix and comparing the occurrence of higher forces on

the hard specimen to that of higher forces on the soft specimen. So, wie can sum the first

two numbers of the FsNM matrix which were the number of trials that had higher pleak forces

on the hard specimens an(l compare it, to the sum of the last two numbers which were the

nuiber of trials that had higher peak forces on the soft. specimens. From the matrices shown

in Figure 2-1lt for subject Cli, the numbers from the easiest pair to the most difficult pair

were: (97,95), (94,98). (106,86), and (111,81).

For subject CT, plot. shown in Figure 2-14, the opposite was observed. The numbers

were (75,117), (81,111), (84,108), and (98,94) from the easiest to the most difficult pairs.

These numbers indicate that the subject used higher forces for the softer specimens than for

the harder specimens in a. given pair. This would be consistent with a different hypothesis,

na-mely that the subject was trying to obtain the same amount of pressure from the two

specimens. As will be shown in contact visualization, for a. given force, the percentage contact

area inside the contact region is lower for harder specimens. Thus, the actual pressures for

the harder specimens are higher than those for the softer specimens. To obtain the same

amount of pressure, therefore, the force on the softer specimen should be higher than that on

the harder specimen. As the difference between the two specimens got smaller, the applied

peak forces also got closer for this subject.

For subject J, it is completely different from the other two subjects. Unlike the plots

from subjects CH and CT which had data points clustered around the 45 degree line (the

two forces did not differ much), the data points separated into two clusters as shown in

Figure 2-15. When the difference between the specimen pair was large (16.2% difference),

the degree of separation of the two clusters was small. For the most difficult pair (3.0%

difference), the degree of separation was largest. Also, subject JIK used peak forces that

were much higher than the other pairs and saturated the input of the data acquisition system
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near 42N. If we look at the upper cluster of the 3% difference specimen pair, most of the

peak forces exerted on the harder specimen were within the range of 22N to 33N while most

of the peak forces on the softer specimen were more than 40N. The numbers from the FsM

matrix from easier to difficult specimen pairs were: (95,97), (96,96), (96,96), and (96,96).

It was very consistent, but did not fit either of the two hypothesis so far. This suggests a

third hypothesis, namely that the subject was trying to exert the same amount of force and

compare the contact information obtained in order to discriminate. If the subject was indeed

trying to exert the same force on the two specimens, the fact that Figure 2-15 showed dlata

points in two clusters could mean the subject had a different sensation of force on the two

fingers. So, if we plot the peak forces according to hands instead of according to specimens.

the data. points should be clustered near the hand which used higher forces. Figure 2-16

shows that subject JIK used higher forces from the right hand for the three specimen pairs

that are more difficult. The definition of the FhMI matrix is similar to FsNM matrix as shown

below:

Fr.ight > Fleft

Frtight _< Fleft

Correct Incorrect

h21 /12IL21 1122

For this subject, summing of the rows of the FhM matrix in a. manner similar to that

done for FsM above gives (192,0), (192,0), (192,0), and (191,1). These results clearly show

that this subject almost always applied higher forces with the right hand.

2.5 Discussion

2.5.1 Effects of finger conditions

The information available to the subjects for softness discrimination under the three different

finger conditions was not the same. With normal finger, the subject had detailed tactile as

well as kinesthetic information. When the finger were covered with a thin rubber finger cot,

the subject could still feel the surface of the specimen but the minute finger ridge level details

were degraded. The presence of finger cot acted just like another low-pass filter for the

mecha noreceptors underneath the skin which originally receive information already filtered

by the skin. When the finger had a rigid thimble on, the deformation of the fingerpads depend

only on the interaction force with thimble, and not on the specimen compliance. Thus, the
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Figure 2-13: Peak forces on soft versus hard specimens for subject CH under normal condi-
tion.
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Figure 2-14: Peak forces on soft versus hard specimens for subject CT under normal condition.
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Figure 2-15: Peak forces on soft versus hard specimens for subject JK under normal condition.
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Figure 2-16: Peak forces on left versus right specimens for subject J under normal condition.
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subjects' sense of object softness will have to come mainly from the kinesthetic information.

Because all the experiments involved active touch, the motor commands used during the

discrimination were also available to the subjects in all conditions.

In both 1I-2AFC and S-2AFC experiments, the presence of the thimble degraded the

performance of all three subjects dramatically. The general shape of the force profiles looked

similar to the ones from other conditions. However, the subjects were not able to discriminate

the specimen pairs at the level they had achieved under normal or finger cot conditions.

Therefore, even though the subjects were able to control their forces successfully to produce

similar force profiles, the absence of useful tactile information from lack of direct contact

with the specimens radically degraded their ability to discriminate.

Analysis of variance, detailed in Appendix C, did not show significant difference between

the JND results obtained under normal and finger cot conditions. This implies that Inissing

the detailed information from the ridge level mechanics of contact was not severe enough to

degrade the softness discrimination performance as indicated by the JND results.

In summary, by comparing the softness discrimination results from the three different

conditions, we see that tactile information was crucial for the softness discrimination based

on the poor performance with the thimble. The fact that the presence of finger cot did not

significantly affect the result of discrimination suggests that the information from the fine

finger ridge level mechanics of contact was not crucial for these experiments.

2.5.2 Effect of experimental paradigms

The main difference between the two experimental paradigms is the information available

to the subject. In the S-2AFC case, both specimens were available to the subject during

the discrimination. In the 1I-2AFC case, however, subjects had to remember how the other

specimen felt like in order to come up with a correct response.

The ,JND values obtained from S-2AFC paradigm under both normal and finger cot

conditions were smaller for all three subjects. This is consistent with our expectation since

the subjects had information from both specimens during a trial and thus it was an easier

task. The ANOVA analysis in Appendix C indicated that the JND data obtained from the

two paradigms are significantly different at 1% significance level.

From the box plots of the JND data from the two paradigms for all three subjects under

both normal and finger cot conditions given in Appendix C, the variations of the data from
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the S-2AFC experiments were smaller than those from the 1I-2AFC experiments. We cannot

treat the results from the one-interval S-2AFC experiments just like a traditional 2I-2AFC

experiment. The improvement in performance from these experiments under both normal and

finger cot conditions most likely should be attributed to the elimination of the 'role memory

played in the discrimination.

For the thimble condition, the S-2AFC performance was worse than the 1I-2AFC case.

This result was iiot surprising since the subjects had no direct contact with the specimens (no

useful tactile information) and the remaining information is from the kinesthetic sense and the

knowledge of motor comllmanlds executed. Any tactile information received could potentially

be misleading since the fingers were contacting the thimble, not the specimens. To control

two fingers carefully and at the saime time to ignore the mnisleading tactile information would

seem like a tougher job for subjects and it showed up as degraded performance.

2.5.3 Force profiles

The force profiles used by subjects during the discrimination varied across subjects and trials.

They were in general bell shaped curves with typical contact durations between 0.5 sec to 0.8

sec for subjects CHI and JIK. For subject CT. the contact was longer and ranging from 0.8 sec

to 1 sec. The profiles did not seem that different under finger cot and thimble conditions. The

peak forces exerted on the specimens by the subjects had a wide range, generally between

10N and 40N. Higher forces were used by subject JIK during the discrimination.

The force profiles exerted on the two specimens looked similar in the S-2AFC experiments

with two fingers. If they were identical, the subject might be able to discriminate based on

the resulting deformation of the fingers. However, if the force profiles from the two fingers

differed such that the resulting deformation of the two fingers were the same, then the subject

would have a hard time discriminating. For example, if higher force rate was exerted on the

harder specimen and lower force rate exerted on the softer specimen, the deformation of the

hard specimen may be similar or more than that of the softer specimen. In that case, the

subject might make mistakes.

A longer contact duration would mean lower force rates and if that information was used

during the discrimination then it would explain why the performance of subject CT was not

as good as the other two subjects.
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2.5.4 Possible softness discrimination mechanisms

If we were to design methodologies for a robot to use its fingers to determine the compliance

of an object, we can have strategies that utilize force and displacement information. In the

force based strategy, the displacement can be held constant by pushing against an object to

a certain deformation. The force developed during the contact can be used to calculate the

compliance of the object. On the other hand, the robot can push against the object until

a. certain ma.ximum force is reached. In that case, the robot finger position profile together

with the forces a.t every instant can be used to determine the object compliance.

In humlans, investigating the underlining mechanisms is more complicated. If we just look

at the force profiles from the 11-2AFC discrimination experiments, we would be lost even if

wve break down the trials according to the stimuli presented and the responses given by the

subject (see Figure 2-6). Althougll the shape of the force profiles was very consistent, the

pealk forces exerted on the specimens by the subjects varied from trial to trial and had a wide

range, generally between 10N and 40N. Also, the duration of contact varied from trial to trial

but generally ranged from 0.5 sec to 1.0 sec. It would not be easy, if at all possible, to see

the underlying softness discrimination strategies used by the subjects from the 1I-2AFC force

profiles. However, it did confirm that tactile information, degraded(finger cot condition) or

not(normal condition), was important for the tasks and that each subject's ability can be

significantly different from the others.

By looking closely into the peak forces in the force profiles used by the subjects during

S-2AFC experiments, it seems quite likely that the subjects were using different strategies

(see S-2AFC results). For subject CH, the trend was to exert higher forces on the harder

specimens. This would be consistent with trying to obtain the same amount of contact

information (through deforming the specimens) from both fingers and thus harder specimen

requires higher peak forces. For subject CT, the trend was to use higher forces on the

softer specimen. The strategy might be trying to apply the same amount of pressure on

the specimen. For softer specimen, higher peak forces were needed because the percentage

contact area inside the contact region was higher (see Contact Visualization chapter). Subject

JIK used a strategy based on exerting equal amount of force on both specimens. However,

subject J exerted very different forces from the two fingers which suggested that the brain

also needs to compensate for such differences to make correct discrimination.
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The lowest JND values obtained from these experiments were about 3% by subject JK

during S-2AFC discrimination under both normal and finger cot conditions. If force, dis-

placement, or their combination were the only cues used, such small JND number would not

be possible since the available literature report higher JND values for those physical ploper-

ties (see Introduction). However, the JND values reported by other researchers might have

ineitable memory effects depending on the para(ligms used. On the other hand, the subject

could also be using other types of information to achieve the discrimination. Even though tlhe

forces and strategies used were very different for all subjects, the percentage contact area i-

side the contact region were higher for softer specimens (see Contact Visualization chaplter).

The subjects could be using the spa.tio-temporal pressure distribution to discriminate the

specimens. In that case, the finger ridge level details under the finger cot condition might not

be very important and the absence of useful tactile information in thimble condition would

have a big impact on the JND results.

2.5.5 Important factors in discrimination

In a. general discrimination task, our ability to discriminate relies on sensing, control, and

cognition. It is only by conducting experiments under carefully designed conditions that the

relative role played by each component could be understood.

In the softness discrimination tasks reported here, the finger condition was a key factor

that had significant effect on the performance. Without the presence of useful tactile inform-

ation, the task was difficult as shown by the poor thimble perforrnance. The finger ridge

levei details of mechanics of contact, however, did not seem to be important in the softness

discrimination tasks examined here as shown by the excellent performance of subjects under

finger cot condition. A reasonable explanation lies in the fact that the mechanoreceptors

are underneath the skin and receive only low-pass filtered signals. The presence of the thin

(0.06mm) finger cot did not seem to change the input to the receptors much.

By conducting S-2AFC experiments, we had an opportunity to examine the underlying

strategies used by subjects and also effectively reduced the role memory played in the dis-

crimination. The peak force data suggested three different strategies used by three different

subjects: to obtain the same amount of deformation, to apply the same amount of pressure,

and to apply the same amount of force. No matter which strategies were used by the subjects,

the coordination between sensing, control, and cognition seems to be important for successful
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discrimination.
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Chapter 3

Force Control

3.1 Abstract

To study the ability of humans in controlling the forces of contact applied by the finger-

pads, constant normal force control experiments were conducted under several experimental

conditions. The experimental parameters were finger contact interface conditions, specimen

softness, target normal force magnitude, availability of visua.l feedback, and the fingers from

the left or right hand of the subjects. Three finger contact interface conditions were tested:

normal finger, finger covered with a finger cot, and finger covered with a rigid thimble. Four

different specimens were used: a rigid Plexiglas and three transparent silicon rubber speci-

mens with different compliance values. Target normal force magnitudes of 2N, 4N, and N

were used. The experiments consisted of controlling forces during three stages, 5 seconds

each, of force feedback: tracking with numerical force display, tracking with graphical force

display, and maintaining target force without visual feedback. The numerical feedback stage

was used to help the subjects to exert forces close to the target, and therefore the perform-

ance was not analyzed; only the data from graphical feedback stage and the maintaining

stage were analyzed. Index fingers from both the left hand and right hands were tested. The

statistical tests on the data collected indicate that the finger contact condition as well as the

specimen softness did not have significant effects on the results. Not surprisingly, when there

was visual force feedback, the error was smaller than without feedback for all the subjects.

For two subjects, the percentage error increased from less than 2% at SN target with visual

force feedback to about 4% and 6% without visual force feedback, respectively. For the other

subject, the increase, from 2% to 11% at SN, was more dramatic. The subject who had the
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highest error without visual feedback was the same one who had higher JND values (less

able to discriminate) in the softness discrimination experiments. In both stages analyzed, the

tests on the handedness showed that there was a significant difference between the results

obtained for the two hands of one of the subjects who also consistently showed han-ldedness

during softness discrimination experiments.

3.2 Introduction

The interaction of human hands with objects involves both sensing and control of the contact

interface. The human abilities of tactual perception and manipulationl are delpendent on the

lIal)tic systemi, consisting of tile imechlanical, sensory, motor, and cognitive sublsystems. ac-

tual sensory information conicerning contact with an object can be divided into lthree classes:

(1) tactile information, referring to the sense of the type of contact. with the oblject as well as

some of the physical properties of the object, mediated by the responses of receptors inler-

ating the skiln within and around the contact region; (2) kinesthetic information, referring to

the sense of position and motion of body segments along with the associated forces, conveyed

b)y the sensory receptors in the skin around the joints, joint capsules, tendons, and muscles:

(3) neural signals derived from motor commands. The motor subsystem complements the

sensory system by enabling control of body postures and motions together with the forces of

contact with objects.

In performing manual tasks in real or virtual environments, contact force is perhaps the

most important variable that affects both tactual sensory information and motor performance.

\'hen the hand is actively pressed against an object, the contact forces are sensed b both

the tactile and kinesthetic sensory systems. The Just Noticeable Difference (JND) in contact

force is about 7% over a wide range of conditions involving variations in force magnitude,

muscle system and experimental method, provided that the kinesthetic sense is involved

in the discrimination task (Pang et al[33]). In closely related experiments consisting of

distinguishing among different weights of objects, a slightly higher JND of about 10% has

been observed (see reviews by Clark and Horch [8] and Jones [25]). In experiments involving

grasping and lifting of objects using a two-finger pinch grasp, Johansson and NWestling [22]

have shown that subjects have exquisite control over maintaining the proper ratio between

grasping and lifting forces (i.e., the orientation of the contact force vector), so that the objects
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do not slip. However, when tactile information was blocked using local anesthesia, this ability

deteriorated significantly because the subjects could not sense contact conditions such as the

occurrence of slip, and hence did not apply appropriate compensating grasp forces. Thus,

performance in tasks involving contact require sensing of appropriate forces as well as using

them to control contact conditions. Srinivasa.n and Chen [39] measured the human abilities to

control the norma.l forces of contact exerted by the fingerpad on rigid objects under a. variety

of experimental conditions and found that performance degraded significantly in the absence

of tactile information (by using local anesthetized fingertips) and visual feedback (by using

a.n ee mask).

The goal in this study was to measure the human abilities in controlling normal force of

contact applied by the fingerpad on objects of various softnesses under several experimental

condlitions. Three contact interface conditions were used to study the effect of altered tactile

illformation on force control performance. The results of control with visua.l feedback was

compared with those without visually feeding back the applied forces to the subjects. The

same experiments were performed on index fingers from both hands of three subjects. The

absolute error between the target force and the forces exerted by the subjects were averaged

over three trials as a measure of human performance. In addition, the effect of performances

under various conditions were compared using analysis of variance (ANOVA).

3.3 Methods

3.3.1 Experimental setup

The same setup used for the softness discrimination experiments was used for the force control

experiments in order to study the abilities of humans in controlling normal forces of contact

with specimens of different softness. An illustrative diagram of the experimental setup is

shown in Figure 3-1.

The soft specimens(see Softness Discrimination Methods) were mounted vertically inside

one of the specimen holders depending on the finger being tested. The rigid specimen was

mounted on top of the specimen holder. The soft specimens fitted nicely tight in the specimen

holder and could also be taken out without too much effort. To record the forces exerted on

the specimens, a pair of custom made binocular force sensors, sufficiently stiff (see Softness

Discrimination Methods) and not sensitive to the location of load application were interfaced
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Figure 3-1: The force control experimental setup.

to an analog to digital (A/D) conversion board in a. 80486 personal computer. The forces

exerted onl the specimens were displayed differently in each of the three 5-second experimental

stages during each run. The force data. as well as the force display were updated at a rate

of 200 samples per second. The stepper motor was controlled through digital input/output

(1/0) port and was energized to hold the specimen at a vertical configuration during the

experiments. The subjects were sitting comfortably in front of the computer monitor with

their elbow rested and hands grasping the fixed rods provided for controlling hand posture

during the experiments, as shown in Figure 3-2 for left and right hands.

3.3.2 Experimental parameters

The five experimental parameters used were contact interface conditions, specimen softness,

target normal force magnitude, visual feedback availability, and the fingers used for experi-

ments. The same three subjects who participated in the softness discrimination experiments

were used for tests on all parameter combinations.

In order to determine the relative importance of tactile feedback in controlling the contact
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Figure 3-2: Relative
index fingers.

]

positions of the finger and the specimen for experiments on left and right
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force on the fingerpad, the tracking experiments were conducted with the subject's finger

under normal condition (both tactile and kinesthetic information available to the subject),

finger cot condition (fine finger ridge contact information is degraded by the thin rubber

finger cot). and thimble condition (the tactile information is derived from fingerpad contact

with a rigid thimble instead of direct fingerpad contact with the specimens).

Four different specimens were used: a. rigid Plexiglas plate and three transparent. silicon

rubber specimens with different softnesses. The soft specimens were cast by mixing different

proportions of General Electric (GE) SF96-50 silicon rubber diluent to fixed proportions of

GE RT6'G15A and RTV615B components. An objective measure of the specimen softness

was measured by using a, linear stepper motor system with incro-stepping drive to indent the

specimen at a constant velocity of 0.5 mm/sec with the flat circular end of a 1/4 inch cliameter

cylindrical probe. The characteristic force-displacement relationship of the specimens \\as

linear(Figure 2-1). The three specimens chosen had objective compliance of 0.304nlin/N

(hard). 0.455m1m/N (medium), and 0.608mm/N (soft). The variability in these compliance

measurement was only ±0.001mm/N.

Target normal force magnitudes of 2N, 4N, and SN were used as one of the experimental

parameters. Although 8N was not as high as the peak forces generally applied by the subjects

during tasks such as softness discrimination, it was close to the maximum constant force that

subjects could apply and still be comfortable after repeated experiments of 15 seconds each

for an hour. The other two reference force magnitudes were used in order to determine how

the performance varied with target force magnitude.

The experiments consisted .of applying and controlling forces with.the fingerpad for 15

seconds under three stages of force feedback: tracking with a numerical force display, tracking

with graphical force display, and maintaining target force without visual force feedback.

Subjects began the force application in each trial without any external triggering signal.

During the first 5 seconds, the force used by the subjects was displayed on the screen as a

number(unit:N). During the next 5 seconds, the display changed to a graphical display. A

horizontal bar extended out from the right(left) edge of the screen was shown in the middle

of the monitor and ended at a distance from the center which was proportional to the force

error for trials using right(left) hand. The subjects were instructed to try and maintain the

end of the force display bar to be as close as possible to the fixed target line drawn vertically

in the middle of the monitor. During the last 5 seconds, the graphical display of the contact
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force was deactivated and the bar displayed did not change according to the force applied.

Subjects had to maintain the target force based on their manual feel of it. The display of the

forces during these three stages are illustrated in Figure 3-3 for both fingers.

In the real world, we manipulate objects with fingers from both hands. To investigate

whether or not there is a significant difference in the control of forces for fingers from the

two hands, the same tests were conducted for the index fingers from both the dominant and

non-dominant hands.

3.3.3 Experimental procedures

Since there are too Imanyl parameters for the experiment to be randomized between paramlet-

ers. the experiments were conducted with a fixed parameter sequence. The experiments on

tilhe two different fingers were conducted in two different sessions. The parameter of force

feedback method was varied during the stages of each experimental run. The other three

parameters were varied in the following way. For each specimen tested, the finger contact

interface conditions were varied first. Under each finger condition, the target force was var-

ied from 2N to 4N and finally 8N. The same three subjects tested for softness discrimination

repeated the force control trials at each target force level three times.

Before a session started, the subjects were given practice runs with both hard and soft

specimens until the procedure was familiar. Each subject was seated so as to comfortably

press his/her index finger on specimens attached to the force sensor. The posture rod in

front of the specimen 'provided a good reference position for the subject's hand and finger

during the experiments. At the beginning of each trial a target force was shown as a iumber

in Newtons on the monitor and the subject was also informed by the experimenter about

the target force magnitude. The subject started the indentation on his/her own without any

external triggering signals. The control program written in C language had a circular buffer

that waited for the moment of contact to happen before it started logging the force data.

After the subject exerted significant amount of force (0.5N) on the specimen, the trial began.

During the first stage, the applied force was displayed in numerical format near the left or

right side of the screen depending on whether the finger from the left or right hand was

involved in the experiment. The first stage, which lasted 5 seconds, was needed to help the

subject get to the target force level. During the second 5 seconds, the force was fed back to

the subject through graphical force display as described before. A bar started from the sides
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(L- l)

(L-2)
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(R-2)
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Figure 3-3: Contact force display during the three stages of force control experiments for left
and right hands.
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of the screen and approached the center of the screen as the subjects exerted forces closer

to the ta.rget magnitude. After some pilot experiments, the range of the entire display was

chosen to be half of the target force range during the graphical feedback stage. The screen

resolution was set to VGA mode with 640 by 480 pixels. or the low force target (2N), each

pixel corresponds to about 0.0016N. At high target force (N), the force display resolution

was abl)out 0.006:3N per pixel. Such high force disl)lay resolution should allow tile subjects

to see the force difference clearly. During the final stage. the graphical bar occupied ha.lf the

screen and remained the same irrespective of the forces exerted by the subjects. In this stage,

the subject was instructed to maintain the target force for 5 seconds based on memory. After

the periodl ended, the screen changed back to the iitial state for the next run.

3.3.4 Data analysis

Several mlleasures of' the force error between the target, force ad the forces exerted by the

subjects were computed: (1) the standard leviation from the mean force exerted; (2) the

absolute error with respect to the target force; (3) the absolute error expressed as a. percentage

of the target force. The results described below are given in terms of the absolute errors. The

force data. sampled a.t 200 samples per second were filtered with a. low-pass filter that had a.

cut-off frequency of 50Hz for noise removal before the force error were calculated. The mean

absolute error and the pooled standard deviation [24] were tabulated. Also, only data. from

the second and third stage of each run were analyzed. The analysis of variance (ANOVA)

[31][24][36] was used to find out whether the results were significantly influenced by various

factors. The data averaged from three individual trials under each experimental conditions

were used for the calculations of the ANOVA table. The statistical analysis was performed

by using MATLAB statistics toolbox. The results from different subjects were not averaged

in order to observe their differences.

3.4 Results

3.4.1 Force profiles

Typical force exerted by the subjects during the experiments are shown in Figures 3-4, 3-5,

and 3-6. The rows of panels are force traces on different specimens whereas the different

columns are for different finger conditions. Three force traces are shown in each panel for
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the three target forces used. Any force variations at frequencies greater than about 50 Hz

are removed by low-pass filtering the recorded force data.

Visual inspection of the data suggests that the differences between data obtained from

different specimens are similar. The tracking force from the second stage (.5 to 10 seconds

from the start) of each run was quite close to the target, especially for the two loNw force

targets. H-lowever. the last. stage (10 to 1.5 seconds from the start) of the force traces seemed

to have Iore variability dlue to the fact tha.t no visual force feedback was given. IFor examl)le,

in Figure 3-4, the forces exerted by subject CH on the rigid specimen dropped considerably

during the third stage under finger cot condition. For subject CT, the visual inspection

on some trials shown in Figure 3-5 suggested that the data from the third stage (without

visual feedback) were considerably different from the second stage (with graphica.l visual

feedback). In almost all the 8N target trials, the force traces during the third stage dropp)ed

byv a noticeable amount, sometimes mnore than 2N (25%). This visual inspection suggested

that the subject CT had difficulty maintaining constant force without visual feedback. For

subject JIK, force traces from the third stage also shows considerable deviation from the target

force, but were not as severe as those observed for subject CT.

Although the error distributions obtained from the force traces would depend on particular

trials, there was a distinct difference between the distributions obtained from the second and

third stage for most trials. Shown in Figure 3-7 are distributions of error and absolute error

for stage 2 and stage 3 of a. typical run. The error distribution for the second stage was

typically shaped close to a normal distribution centered around zero. However, the error

distribution for the third stage was usually not centered around zero. The corresponding

absolute error distributions were shown in the bottom two panels. For trials with continuing

drift in the third stage, the error distribution would be quite flat and distributed on one side

of zero (see Figure 3-8).

3.4.2 Performance measurement

Due to the large number of experimental parameters involved, a single table which contains all

the performance data is not possible. Instead, the results have been grouped by the following

three factors: subject, visual feedback availability, and the hands used. The performance

measurement using absolute errors for each subject under various experimental parameters

are given in Appendix E.

59

1_�__1�_ IIIIIIII·II�Y�IC1 ·I�- ·III^·XI�---YI--1I 11-(1�-3111_ ·-- -.- C



Subject:CH Hand:R Trial:1

a,
0
o

lL

5 10 15

8

4

2

5 10 15

5 10 15
Time (sec)

.

5 10 15

5 10 15

5 10 15

8

4

2

5 10 15 5 10 15 5 10 15

8

4

2

5 10 15
Normal

8

4

2

5 10 15
Finger cot

Figure 3-4: Typical force versus time traces for subject CH under different finger conditions
on various specimens

60

8

0)

4

2

8

0

I
2

-
I

E
0
a)
2

8

N 40
(In

2

5 10
Thimble

15



Subject:CT Hand:R Trial:1

0

0
U-

5 10 15 5 10
Time (sec)

8

4

2

5 10 15

15

5 10 15

5 10 15

5 10 15

8

I

E 4
a

2 2

5 10 15 5 10 15

8

I-
co

2

8

4

2

8

4

2

5 10 15 5 10
Normal Finger cot

15 5 10
Thimble

15

Figure 3-5: Typical force versus time traces for subject CT under different finger conditions
on various specimens
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Figure 3-6: Typical force versus time traces for subject JK under different finger conditions
on various specimens
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Figure 3-7: A typical error and absolute error distribution for the two stages of an exper-
imental run from a trial conducted on rigid specimen with 2N target force under normal
condition by subject CH.
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imental run from a trial conducted on rigid specimen with SN target force under normal
condition by subject CH.
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Absolute Error (N)
Rigid Hard Medium Soft

Condition Force Mean S.D. MIean S.D. Mean S.D. Mean S.D.
Normal 2N 0.035 0.028 0.063 0.046 0.030 0.028 0.036 0.031
Normal 4N 0.054 0.040 0.030 0.023 0.056 0.043 0.067 0.051
Normal 8N 0.093 0.077 0.061 0.047 0.128 0.106 0.073 0.064

Finger cot 2N 0.051 0.046 0.037 0.031 0.032 0.028 0.035 0.035
Finger cot 4N 0.070 0.054 0.035 0.027 0.049 0.037 0.057 0.037
Finger cot. SN 0.165 0.122 0.100 0.089 0.108 0.093 0.160 0.129
Thimble 2N 0.05-7 0.045 0.057 0.042 0.030 0.024 0.041 0.034
Thimble 4N 0.048 0.041 0.032 0.026 0.060 0.052 0.042 0.030
Thimble SN 0.128 0.087 0.098 0.059 0.066 0.053 0.110 0.077

Table 3.1: Absolute error in force control for subject CI using right hand index finger witl
visual feedback.

The tables for the three subjects when visual feedback was present and the right hand

was used are shown here in Tables 3.1, 3.2, and 3.3. The mean absolute error was obtained

by averaging the mean absolute error of the three experimental runs, with the same number

of samples, under the same conditions. The standard deviation (s) was obtained by pooling

the standard deviations from the three experimental runs (sl, s2, and S3) using the following

formula: s = V(S12 + 2 + 3
2 )/3.

The performance of all the subjects with the softest specimen when using the right hand,

with and without visual force feedback are listed in Tables 3.4 and 3.5. With visual force

feedback, the mean absolute error of the three subjects did not differ much given the large

variations in the standard deviation. However, without visual feedback, the performance of

subject CT is seen to deteriorate more than the other two subjects in most of the conditions.

3.4.3 Statistical tests on experimental parameters

The analysis of variance (ANOVA) was used to find out whether the force control perform-

ance was influenced by parameters such as finger contact conditions, specimen compliance,

target force magnitude, visual feedback conditions, and the hands used. Data collected using

different parameters were grouped together whenever possible for more reliable tests. The

complete analysis is presented in Appendix F and the main results are summarized here.

The effects of both specimen softness and finger contact conditions were examined together

by using two-way ANOVA table. The data for the three target force magnitudes were grouped
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Absolute Error (N)
Rigid Hard Medium Soft

Condition Force Mean S.D. Mean S.D. Mean S.D. Mean S.D.
Normal 2N 0.034 0.043 0.066 0.043 0.043 0.028 0.021 0.016
Normal 4N 0.066 0.048 0.080 0.060 0.079 0.058 0.063 0.037
Normal 8N 0.147 0.102 0.078 0.063 0.098 0.062 0.171 0.098

Finger cot 2N 0.025 0.031 0.036 0.032 0.030 0.019 0.024 0.021
Finger cot 4N 0.071 0.053 0.171 0.149 0.065 0.045 0.051 0.039
Finger cot SN 0.1.88 0.114 0.099 0.051 0.172 0.114 0.1'22 0.073
Thimble 2N 0.041 0.032 0.027 0.019 0.028 0.024 0.025 0.016
Thimble 4N 0.074 0.065 0.082 0.072 0.048 0.033 0.042 0.024
Thimble SN 0.142 0.104 0.139 0.152 0.136 0.093 0.137 0.080

Table 3.2: Absolute error in force control for subject CT using right hand index finger with
visual feedback.

Absolute Error (N)
Rigid I Hard Medium Soft

Condition Force Mean S.D. Mean S.D. Mean S.D. Mean S.D.
Normal · 2N 0.033 0.029 0.024 0.019 0.037 0.028 0.029 0.023
Normal 4N 0.067 0.046 0.049 0.038 0.063 0.050 0.058 0.048
Normal SN 0.140 0.114 0.114 0.090 0.151 0.108 0.134 0.103

Finger cot 2N 0.040 0.034 0.027 0.022 0.046 0.037 0.034 0.030
Finger cot 4N 0.059 0.048 0.045 0.036 0.068 0.063 0.066 0.054
Finger cot SN 0.154 0.130 0.121 0.099 0.125 0.089 0.139 0.104
Thimble 2N 0.046 0.044 0.039 0.026 0.051 0.034 0.048 0.047
Thimble 4N 0.056 0.046 0.039 0.032 0.061 0.048 0.066 0.049
Thimble SN 0.097 0.081 0.094 0.073 0.116 0.088 0.103 0.080

using right hand index finger with
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Absolute Error (N)
Subject:CH Subject:CT Subject:JIK

Condition Force Mean S.D. Mean S.D. Mean S.D.
Normal 2N 0.036 0.031 0.021 0.016 0.029 0.023
Normal 4N 0.067 0.0.51 0.063 0.037 0.058 0.048
Normal 8N 0.073 0.064 0.171 0.098 0.134 0.103

Finger cot 2N 0.035 0.035 0.024 0.021 0.034 0.030
Finger cot 4N 0.057 0.037 0.051 0.039 0.066 0.054
Finger cot 8N 0.160 0.129 0.122 0.073 0.139 0.104
Thimble 2N 0.041 0.034 0.025 0.016 0.048 0.047
Thimble 4N 0.042 0.030 0.042 0.024 0.066 0.049
Thimble 8N 0.110 0.077 0.137 0.080 0.103 0.080

Table 3.4: Absolute error in force control
visual feedback on the softest specimen.

for all subjects using right hand index finger with

Absolute Error (N)
Subject:CH Subject:CT | Subject:JIK

Condition Force Mean S.D. Mean S.D. Mean S.D.
Normal 2N · 0.123 0.069 0.184 0.139 '0.06-5 0.034
Normal 4N 0.135 0.109 0.509 0.263 0.123 0.085
Normal 8N 0.164 0.132 0.875. 0.461 0.475 0.260

Finger cot 2N 0.157 0.119 0.202 0.113 0.117 0.098
Finger cot 4N 0.098 0.072 0.437 0.224 0.204 0.132
Finger cot 8N 0.594 0.265 0.642 0.331 0.306 0.184
Thimble 2N 0.214 0.091 0.127 0.083 0.125 0.121
Thimble 4N 0.104 0.095 0.532 0.335 0.094 0.062
Thimble 8N 0.415 0.321 0.833 0.406 0.455 0.368

Table 3.5: Absolute error in force control for all subjects
visual feedback on the softest specimen.

using right hand index finger without
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together in this analysis. To minimize the effect of target force in the analysis, the performance

data was expressed in terms of percentage of the target. Twelve ANOVA tables representing

data from different subjects, visual feedback conditions and hands were constructed. Based

on results of the overwhelming majority of the ANOVA tables (11/12), the likelihood that

the specimen softness and the finger contact conditions played important roles in these tasks

was small.

One-way ANOVA tables were constructed to compare target force magnitude factor. The

columns stand for the dlata. collected at three target force levels under various specimen and

contact interface conditions. For all subjects, there were significant differences between the

errors for 2N, 4N, and SN target force magnitudes. For subject CIt, the main difference caine

from the data for 8N target force. For subjects CT and JIK, the differences between 2N and

4N target force magnitudes were big enough to reject the hypothesis that their performance

were the same at 1% significance level under both visual force feedback conditions. ANONVA

tables using the errors expressed as a percentage of target force were also constructed. W\ith

visual force feedback for both subjects CH and JK, the percentage errors were significantly

lower when controlling 4N and SN target force than in controlling 2N target force. For

subject CT, the percentage errors were not significantly different under the three different

target force levels with visual feedback. However, without visual feedback, the percentage

error was significantly higher for subject CT at 8N target force.

To determine the effect of visual feedback, one-way ANOVA tables were constructed by

using the performance data, expressed as a percentage of target force, collected' from each

subject by pooling data from various finger conditions, target force magnitude, and specimen

softness. The results rejected the null hypothesis for all three subjects with very high F ratios

at 1% significance level and found significant differences between the performances with and

without visual force feedback.

To compare the factor of hand used, one-way ANOVA tables were constructed by using

the performance data, expressed as a percentage of target force, collected from each subject

by pooling data from various finger conditions, target forces, and specimen softness. The

results indicate that there was a significant difference between the performance of the two

hands of subject JK in controlling forces both with or without visual feedback. For subject

CT, there was a significant difference between the performances with the two hands only

when the visual feedback was not available. As far as subject CH is concerned, no significant
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difference in performance was found between the two hands.

3.5 Discussion

3.5.1 Effects of various experimental parameters

The force control experiments conducted had parameters including the specimen softness,

finger contact conditions, the target force magnitude, the hands used, and whether or not

the force exerted was visually fed back to the subjects. From the data. collected, not all

the parameters had significant effects on the controlling of norma.l contact force with the

specimens.

The statistical tests conducted indicate that the finger contact condition as well as the

specimen softness did not have significant effects on the results. The target force magnitude

(lid have significant effects when the mean absolute error in force was used in the tests. The

percentage error was also used in the statistical tests as the performance index to normalize

the error. Both subjects CH and JK had significantly lower percentage error controlling 4N

and SN targets. For subject CT, the difference was less significant among all three target

forces. Not surprisingly, when there was visual force feedback, the error was smaller than

without feedback for all the subjects. For both subject CH and J, the percentage error

increased from less than 2% at SN target with visual force feedback to about 6% and 4%

without visual force feedback, respectively. In the case of subject CT, the increase, from 2%

to 11% at SN, was more dramatic.

The tests on the hands used show that there were significant differences between the

results obtained from two hands of subject J, whether or not visual force feedback was

present. For subject CT, significant difference between the performance with the two hands

was found only when visual force feedback was not present. But the tests on subject CIi were

not able to reject the hypothesis that the performances with the two hands was the same.

In the experiments conducted by Srinivasan and Chen [39], the mean absolute error in

tracking constant normal forces up to 1.6N was about 0.04N. The results obtained from this

study were similar to that result at 2N (see Table 3.4) for not only the rigid specimen but

also for the compliant specimens. However, when the target force magnitude increased to 4N

and 8N, the mean absolute error increased for each subject but the mean percentage error

(about 2%) did not differ significantly for all the subjects.
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3.5.2 Force control in haptic interaction with objects

The objects that we interact with as well as the contact interface conditions can vary quite

a lot from one haptic task to another. From the results obtained in this study, we know that

our abilities in controlling normal forces of contact with objects of various softnesses under

different contact conditions did not differ much across the target forces tested (2N, 4N, and

SN).

The major differences in the abilities of subjects in terms of controlling contact forces

under various parameters seemed more obvious when there was no visual force feedback. As

observed from the force data of the experimental runs (from 10 to 15 seconds) which did not

have visual force feedback, subject CT had more error in controlling the applied force than

the other two subjects, even though this subject was as capable in controlling force as the

other two during visual feedback stage. The possible explanations include: (1) the subject

was not able to sense as well, but because of the visual feedback available at the second stage,

the subject performed as well as the other two during that stage; or (2) the subject was not

able to remember the forces as well as the other two subjects; thus maintaining a. contact force

without visual feedback was difficult. In a general haptic discrimination task which typically

involves force control without visual force feedback, one might expect that the subjects who

cannot control well in the tasks (as experimented here) would not perform as well as other

subjects. The softness discrimination experiments presented in the previous chapter shows

that the subject whose force control (without visual feedback) performance was not as good

as that of the other two subjects did not perform as well in the discrimination tasks also.

\We interact with objects daily using 'both of our hands. The abilities of our finger force

control from the two hands ma-y differ just as any other sense. It was found from the statistical

tests conducted on the results of these experiments that there were significant differences

between the two index fingers of subject JK in controlling normal forces of contact. As

pointed out in the Discussion section on softness discrimination, the forces used by the

two fingers on the pair of specimens were quite different for subject JIK, which is again

very consistent with the findings here. Although such differences exist, from the excellent

discrimination performance of JIK, it seems that our haptic system can compensate for it.
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Chapter 4

Contact Visualization

4.1 Abstract

\\hen a. finger contacts an object, the extend of the contact region depends on the force

applied. As the force increases, the contact grows and the mechanoreceptors under the skin

surface respond and convey information about the contact through the nerve pathways to the

central nervous system. Contact visualization is a. step towards understanding the process

of contact development. A real-time imaging setup which consisted of a videomicroscopy

system and a tactile stimulator system was developed to observe the region of contact and

to perform controlled experiments by using transparent objects. When the finger contacted

the transparent specimens, the contact developed gradually. Initially, there were islands of

contact. As the contact force increased, the islands got larger and then connected to form

finger ridge patterns. However, not all the regions inside the overall contact boundary were in

contact even at high forces. In order to analyze the contact images, various image processing

techniques were applied and developed to improve the contact images and to determine the

contact as distinct from non-contact regions in order to extract contact information. Vari-

ous contact variables, including nominal area, actual area, percentage contact area, nominal

mean pressure, and actual mean pressure, were calculated by using data obtained from the

active contact of the fingerpad with a rigid Plexiglass plate. During indentation, the nom-

inal area saturated quickly while the actual area inside the overall contact region increased

gradually. During retraction, both the nominal area and the actual area decreased slowly.

On the other hand, the variations of the nominal mean contact pressure were gradual during

both indentation and retraction. Surprisingly, there was almost a step change in the actual
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mean contact pressure at the beginning of contact, after which it was remained almost con-

stant during indentation and reduced gradually during retraction. The percentage contact

area, obtained by dividing the actual area by the nominal area., increased gradually during

indentation but remained almost constant during retraction. When soft specimens of varying

compliance were used, the nominal contact area observed using low magnification was about

the same for all the specimens when the forces were less than N. At high contact forces, low

magnification settings used to record the entire contact region resulted in poor image quality

due to the deformation of the specimens. When high magnifications were used to capture

only portions of the contact region, the percentage contact areas for the softer specimens were

found to be higher than those for harder specimens. From the visualization of the fingerpad

actively slipping against a flat Plexiglas plat, it was observed that the motions of the finger

ridges near the boundaries of contact moved relative to the plate, which caused the finger

ridges to stretch at the leading edge and compress at the trailing edge. These relative move-

inents of the finger ridges will most likely cause the mechanoreceptors underneath the skin

to respond and, through the central nervous system, convey to the brain information about

the incipience of slip. The brain can then activate the motor subsystem to take appropriate

actions to avoid objects from slipping through our fingers. One reasonable hypothesis for the

boundaries to slip first is that the pressure distribution on the contact region is in fact not

uniform. If the contact pressure in the middle was higher and decreased until it reached the

boundary of contact, the observed slip phenomenon can be explained in terms of Coulomb

friction. The visualization system and the image processing techniques developed in this

study can be applied to other biomechanical experiments involving fingers, such as for the

automated fingerprint identification system involving image capture, enhancement, and data

compression.

4.2 Introduction

In studying various aspects of the human sense of touch, it is important to understand the

biomechanics of contact during manual interactions with objects. During the process of

finger-object contact for exploration or manipulation, the mechanoreceptors underneath the

skin are an important source of information. Since these sensors are embedded underneath the

finger ridges, visualizing the contact region will help us understand what kind of mechanistic
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information is available to the tactile sensors. As the finger comes in contact with an object,

the contact region develops gradually. The overall area as well as the details inside the

contact boundary vary with properties of the object, properties of the finger, and the forces

of interaction. Therefore, the objective of this study were to develop systems to enable

visualization of the contact region and to find out how contact information such as contact

forces, the overall contact area., and the percentage contact area. change during the course of

contact.

After contact of the fingerpad with an object, a. fingerprint is often left on the surface of the

object. It is not too difficult to obtain a. latent fingerprint left behind by fingers on a. variety

of objects [19] [14]. In general, for latent fingerprinting, one will need tools and materials

such as some talcum powder, a. fine paintbrush, clear cellophane tape, and a. shiny black

paper. By dusting the object with talcum pow)der, blowing on the talcum power gently, and

brushing the powdered spots lightly, a. pattern will show and cellophane tape can be used to

lift it up and put it on the shiny black paper for examination. Although it is not too difficult,

one will have to practice this a. few times till one gets the hang of it. This simple procedure

takes a. lot of time and is only good for latent fingerprints and is not suitable for dynamic and

real-time observations which are necessary to capture the progress of contact. To find out

the contact area, ink fingerprinting would work just fine for some applications that requires

the overall contact area. For a more detailed level of study on the contact region, however,

a. more capable system is called for. Thus a videomicroscopy system which can achieve such

goals was developed. In addition. to perform controlled contact tasks, a. tactile stimulator

system was also developed, which was used- to control the motion of a transparent object to

indent a. finger which is stationary (passive touch). With the two systems integrated together,

the development of the contact region between the fingerpad and objects can be examined in

a controlled manner in real-time.

Studies on various aspects of haptic interactions have utilized the information obtained

from the contact region. For example, contact area estimation was used to relate to the

perceived curvature in the research conducted by Goodwin et al [18] on the tactile dis-

crimination of curvature. They estimated the area of contact between skin and objects with

different curvature by ink fingerprinting. They found that as the curvature increased, the con-

tact area decreased. And lower contact force resulted in a decrease in contact area.. In the

study on human discrimination of thickness, Ho [7] estimated the contact area between finger
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and plates of various thickness by ink fingerprinting and the data was used in finite element

analysis to compute the deformed plate curvature. By using the videomicroscopy system

developed in this study, Dandekar [10] conducted experiments to perform 3D reconstruction

of the >primate fingerpads for finite element analysis and also measured surface deformation

of human fingertip i vito with indenters of various sizes and shapes.

In this study, the focus was on the visualization of the contact region with objects of dif-

fering compliance. This chapter includes descriptions of the various devices dleveloped whicll

enable such observations, image processing techniques applied to enhance or visualize the

image data,, observations of the slip phenomenon between finger and rigid Plexiglas. and also

presents data obtained from controlled contact experiments with soft objects. The visualiz-

a.tion systells de\veloplecl in the study, the accompanying image processing and visualization

software. andl the results on contact region development can be applied to other biolecllhanical

experiments ivoleving fingers and also to the automated fingerprint identification systems [19]

for image capture, enhancement, and data compression.

4.3 Methods

4.3.1 Videomicroscopy system

A videomicroscopy system capable of real-time imaging was developed to observe the region

of the human finger in contact with transparent objects. Figure 4-1 is a schematic diagram

of the systeln which includes a fiber optic light source, a. gray scale CCD camera, a zoom

lens,' a video monitor, and a. frame grabber hosted by a 80486 personal computer.

The contact region is illuminated by a Fostec Model 8375 fiber optic light source. For

high magnification images, the light illuminates the contact region coaxially through the beam

splitter and zoom lens. For low magnification images, an alternative light is used as indicated

in the figure. The Unitron 1:6.5 zoom lens provides a range of magnifications of the contact

region, enabling the overall contact area as well as the details of islands of contact with a few

finger ridges to be imaged. The output of the high resolution Hitachi Model KP-M1U CCD

camera is displayed on a Hitachi video monitor. The camera output can also be digitized by

a BitFlow VESA local-bus VideoRaptor frame grabber in the 80486 personal computer.

Using this videomicroscopy system, video data can be digitized in real-time and trans-

ferred from the frame grabber to the computer system memory. The amount of digitized
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Beam
Splitter

Figure 4-1: The videomicroscopy system.

video data. is thus limited to the available memory in the computer system. For a typical

640x480 S-bit gray scale image resolution, the 16MIB memory inside the computer can hold

about 54 frames of video which amounts to about 1.8 seconds of data if digitized at a rate of

30 frames per second. Observations made from daily contact tasks suggest that the develop-

ment of a. typical finger-object contact usually has a time span of less than 2 seconds. For

slower contact speed (the contact region will also rvary slowly), the video acquisition rate can

be reduced to accommodate a longer period of contact without sacrificing either the duration

or the accuracy of the analysis.

4.3.2 Tactile stimulator system

A tactile stimulator was developed to investigate the contact phenomena in a controlled man-

ner. Figure 4-2 is a diagram of the tactile stimulator system. This linear stepper motor based

tactile stimulator is used to carry a specimen to indent a stationary finger at a given velocity.

The Industrial Device Corporation (IDC) NS2T205A-2 linear electric cylinder together with

a IDC S5101 micro-stepping drive has a step size of less than 1 micrometer which makes it

easy to achieve high precision.

As indicated in Figure 4-2, the motor is controlled by a 80386 personal computer with

a custom digital input/output interface. By changing the frequency of the step pulses sent

to the motor, the speed of indentation can be accurately controlled. The timing of the step
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Figure 4-2: The tactile stimulator system.

frequency is controlled via a IMHz custom timing interface.

In order to observe the contact forces between the specimen and the human finger, a.

strain gage based single degree of freedom force sensor was built and mounted between the

specimen holder and the motor cylinder. Binocular spring element was used to construct

the sensor because it is more rigid and less sensitive to location of force application. Four

strain gages, made by Measurements Group, were mounted on the top and bottom surfaces

of the force sensor near the center of the two holes of the binocular to form a full bridge. The

force signal was amplified by a signal conditioner before it was digitized by a data acqusition

system in a computer.

4.3.3 Real-time imaging setup

Both the videomicroscopy and the tactile stimulator systems can be used by themselves to

collect useful data. For example, the videomicroscopy system was used for the 3D reconstruc-

tion of the fingerpad and observe the surface deformation of the fingertips under a variety of

indentors [10]. The integration of the two systems which would provide synchronized force

and video data, collection is one of the important goals of this research.

Since digitizing the video data and controlling the stimulator both require constant at-

76

i
II

_J5 1"

---I I



tention of the central processing unit of the computer (CPU), two computers were used to

meet the two needs. In such a design, the synchronization of the two tasks was a major

concern. This problem can be solved by having an accurate custom timer interface on both

computers and use digital input/output interfaces to allow communication between them for

synchronization. Figure 4-3 shows a schematic of the integrated system. The conmmunica-

tion between the to comlputers is achieved by sending command data. through the custom

digital input/output interfaces installed on both computers. The 80386 PC' is dedicated to

the motion control of the stimulator while the 80486 PC records both video and force data

during contact. The 80386 PC receives parameters such as motor speed and travel distance

from the 80486 PC and executes the command accurately, by using the 1MHz timer, after

receiving the start signal. On the other hand, the 80486 PC coordinates the experiment and

collects video and force data. according to its own time base which is the same custom timing

interface as the one in thile 80386 PC.

As a result of this integration, the two computer systems work together with their own

control software and the setup is capable of a, video rate of at least 20 frames per second and

a force rate of 1000 samples per second. However, such high data rate can only be sustained

for a short period of time, usually a little less than 2 seconds, because of the amount of

system memory available on the 80486 computer to store the digitized image (about 300

IKByte per frame). Typical contact duration of tasks such as softness discrimination takes

about 1 second. Therefore, the 2 second capture time allowed by this setup is sufficient for

achieving the goals of the investigations.

4.3.4 Active and passive touch experiments

Performing active and passive touch experiments to obtain contact information is a crucial

step towards the understanding of the mechanical inputs to the mechanoreceptors under the

skin. The real-time imaging setup (Figure 4-3) was used to visualize the contact region and

record the contact forces. In passive touch experiments, the finger was attached to a stationary

finger holder and the tactile stimulator applied specimens to the finger at controlled velocity

of 2.4mm/sec. During active touch experiments, the subject's finger was not constrained.

Instead of moving the tactile stimulator, the subjects moved their finger to touch the stationary

specimen.

Transparent rigid Plexiglas and compliant silicon rubber specimens were used in the
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Figure 4-3: The real-time imaging setup.

experiments. By adjusting the amount of diluent GE SF96-50 mixed to fixed proportions

of GE RTV615A and RTV615B silicon rubber components, the compliance of the specimen

canl be varied. The procedure and method used to cast and calibrate the specimens are

described in detail in the Methods section on softness discrimination experiments. Three soft

specimens with objective compliance value of 0.086mm/N (specimen code AB4), 0.188mm/N

(code BA4), and 0.304mm/N (code CA4) were used. The transparent rigid Plexiglas used

had a thickness of 1/4 inch.

The custom-made binocular force sensor was used to record the contact force. The

sensor has a. range of 40N and- the data is digitized by a 12-bit data. acquisition board at

the rate of 1000 samples per second. Due to its binocular design, the sensor is not very

sensitive to the location of load application. The contact region was captured into the 80486

PC system memory at a rate of 20 frames per second. In passive touch experiments, the

recording was carried out for the indentation portion. In the active touch experiments, the

recording time span was about 2 seconds and required coordination between the subjects and

the experimenter for a good capture. Three repetitions were performed for the passive touch

experiments; the active touch experiments were repeated until three satisfactory sequences

were captured.
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4.3.5 Observations of slip

In addition to the recording of the contact region during passive indentation and active

touch experiments with compliant specimens, the videomicroscopy system can also be used

to visualize a variety of contact related phenomena. For example, the study of slip requires

visualization at the finger ridge level.

For observations on slip, the subject first contacted the rigid Plexiglas and then stroked

it back and forth with the fingerpad in the horizontally direction. The subject repeatedly

performed the actions and a. two second capture was initialized at the appropriate time to

record a. part of the process. Due to the setup limitations, only active touch experiments on

slip are possible. This is because, to have controlled passive slip, another motor to control

a second degree of freedom is required. Also, a. more quantitative study of slip requires

shear force measurements. In the experiments described here, the phenomenon of slip was

olbserved and the sequence of images obtained was analyzed. Even with limitation of the

available setup, the understanding of slip at the ridge level is enhanced by these observations.

It. also provided good evidence on the nature of force distribution over the contact region.

4.4 Contact image processing

In the context of tactile sense, the portion of the fingerpad that is in contact with the object

is especially important since the mechanoreceptors under that region will generate most of

the nerve impulses transmitted to the central nervous system. The images acquired from the

videomicroscopy system are of high enough contrast as to be visible to the human eye when

appropriate lighting is used. In order to provide qualitative visualization and to perform

quantitative analysis of the images, algorithms for enhancing and extracting the contact

regions were developed. This section is devoted to the techniques used in this study in order.

to enhance contact images, separate the contact area.from the non-contact area, and visualize

various contact phenomena.

4.4.1 Simple thresholding

When appropriate lighting is used, the regions of the finger that are in contact with the

specimen have lower image intensity than the regions that are not in contact. This suggests

the use of a simple thresholding of the image intensity to determine the contact area. The
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Figure 4-4: Application of simple thresholding to obtain the contact area..

threshold value can be picked out from the image histogram, which is the distribution of gray

levels in an image. A higher gray scale value in the distribution corresponds to a brighter

pixel. If the pixel at a particular location has a lower gray level than the threshold, it is in

contact. Otherwise, it is not.

A typical result of applying such a technique to obtain the contact area is shown in

Figure 4-4. The upper left graph shows a contact image of a fingerpad with rigid Plexiglas.

The histogram of the image is shown at the u'pper right. The simple thresholding method

requires one to pick a gray scale value to convert the original image into a binary image

consisting only of contact and non-contact pixels. Although human eyes can easily pick out

the contact region in the image because of our sophisticated visual system, it is difficult

to pick a gray level from the image histogram to perform the thresholding operation. The

bottom two graphs show the result of using two different threshold values. A threshold value

of 90 seems too low because it cannot convert the middle region into a binary image properly.

If the threshold value is increased to a higher value of 100 in order to convert the center part

properly, the boundaries become too dark.
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By taking a closer look at the original image and comparing the gray levels of the white

region in the center and that of the boundaries, one realizes that the background of the image

has non-uniform gray values. Since the illumination of the image is not perfectly uniform,

contact regions in an area of high illumination may have equal or greater intensity than non-

contact regions in the area of low illumination. Therefore, the simple operation of thresholding

cannot convert the pixels into contact or non-contact regions satisfactorily. However, if the

effect of non-uniform illumination can be eliminated by other techniques, then thresholding

can be applied to obtain the contact area reliably.

4.4.2 Homomorphic processing

One way of removing the non-uniform lighting is to apply homomorphic processing [29][17] 1

Homomorphic processing can be used to reduce the dynamic range of the image and enhance

the local contrast. The resulting image has uniform illumination, thereby facilitating the use

of the thresholding method to determine the area of contact.

The gray level of a contact image f(nl, 712) can be modeled as

f(nl, n2) = i(nl, n2 )z'(ni, n2), (4.1)

where i(nl, n2, ) represents the illumination of the image at location (nl, n2) and r(n1, 712)

represents the reflectance of the object. In this case, the illumination i(nl, n2) varies slowly

across the image with a low spatial frequency of one cycle per image. The reflectance r(nl, n2)

contains the details of the fingerprint whose fundamental frequency is determined by the

number of finger ridges present in the image. Since equation 4.1 cannot be used directly

to perform a Fourier transform operation in order to separate the two components, we can

convert it from a product to a sum by taking the logarithm of equation 4.1:

log(f(nl, n2)) = log(i(nl, n2 )) + log(r(nl, n2))- (4.2)

Now, because of linearity, we can filter the log of f(nl, 712) to remove the illumination

effects. After that, we can exponentiate the result to obtain r(nl, n2). A block diagram for

applying homomorphic processing is illustrated in Figure 4-5.

'The homomorphic processing technique was developed with the help of Eric Foxlin and Robert Stadler
and the author wishes to gratefully acknowledge their assistance.
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Figure 4-5: A block diagram for applying homomorphic processing to determine the contact
area.
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If the homomorphic processing successfully removes the illumination effects, the unimodal

histogram (Figure 4-4) of the original image should be in the form of a imodal histogram.

One mode represents the finger ridges that are in contact and the other mode represents

the regions that are not in contact. Wle can then choose a threshold value between the two

modes so that the contact areas in the image are black and non-contact areas are white. Any

significant. noise will be converted into impulsive noise by the thresholding. A mnedian filter

can serve to remove the noise before counting the pixels. The actual contact area can l)e

calculated by a.pplying a. calibration constant which represents the area of a single pixel. For

high magnification images which contain only a few finger ridges, the frequency of the ridges

is closer to the illumination frequency. In those cases, either a. filter with very sharp cutoff

must be used or a. decimation on the images must be performed in order to separate the two

a.reas(Figure 4-5).

The implementation of the algorithm is accomplished by using the software package MAT-

LAB in conjunction with custom developed C programs. The frequency transform method

was used for the filter design. It begins with the design of an optimal 1-dimensional filter

using the Parks-McClellan algorithm. For an image that is 640 pixels wide, the illumination

frequency is r,/320 (one cycle per image). If there are 10 finger ridges in the image, the

fundamental frequency will be rr/32. So, the filter must pass r/32 but filter /320. The

1-dimensional frequency response is later converted into a 2-dimensional frequency response

with the McClellan transformation. The high-pass filtering operation is performed in the fre-

quency domain by multiplying the Fourier transformed image and the high-pass filter. Then

the inverse Fourier transform operation converts the result back into the spatial domain.

Figure 4-6 shows the same original image shown in Figure 4-4 and the resulting image

after homQmorphic processing, its histograms and the thresholded image. In addition to

checking that the histogram is now bimodal, the results of the image processing can also be

verified by eye to see how well they represent the true contact area shown in the original

image.

4.4.3 Scan-line processing

In real-time applications, reducing the amount of time required to process the image data is

critical. For example, for a robot equipped with a vision system or a high resolution tactile

sensor array to manipulate an object like the humans do, the recognition time is critical.

83

��·__·_��X 1��_�_1 1__1_1___ � �_� I ____I__ ___



Homomorphic processed image

Thresholded image

Threshold value: 160

Image histogram

C
=3
0
4,

-a0
X
D.

100 200
Gray scale

Figure 4-6: Apply homomorphic processing to image.
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Figure 4-7: The scan-line processing on a fingerprint line.

The same is true for finger print security systems. In real-time inspection or target detection

applications, optical correlators are typically used to achieve the required speed [2][5][6]. If

using optical correlators is not practical, scan-line processing seems to be the best choice. By

processing the image line by line using simple operations, it is possible to achieve real-time

performance.

The idea of scan-line processing is generated from the image model used in homomorphic

processing, image calibration, and other techniques such as top-hat and well transform for

peak and valley detection [1]. In the case of top-hat transform, the bright peaks of an image

are revealed. The top-hat image is created by first applying an opening operation which

removes protruding peaks from the image. Then a dual-image point process is used to

subtract the top-hat image from the original image. The result is an image in which the

bright peaks appear.

The scan-line processing method used here first estimates the background image intensity

by bounding the scan-line to be processed. The first step is to find the location of the

maximum intensity value on the scan-line. Then a background is constructed from the history

of searching for the maximum location starting from both ends of the scan line. The result is
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Image Threshold = 0.95

Image Threshold = 0.90 Image Threshold = 0.85

Figure -1-8: Results of applying the scan-line processing to a. fingerprint image with different
threshold values.

usually a. dome shaped background with steps. The third step is to divide the original scan-

line by this estimated background. The result is a. gray scale ratio between 0 and 1. A high

contrast image would result in scan-lines in which the contact pixels would have gray scale

values closer to 0 than the result from a. low contrast image. Afterwards, a threshold ratio

can be used to convert the scan-line into binary images. Figure 4-7 illustrates an original

scan-line, a constructed background and their ratio. The results of the scan-line processing

and thresholding are shown in Figure 4-8 where three different threshold percentages values

were used.

When the borders contain finger ridges, error will occur from the method outlined above

because the gray scale ratio will be close to 1 when it should ideally be lower than 1. For

images containing a substantial amount of noise, a low-pass filtering on the scan-line would

improve the thresholding result. This technique is suitable when the fingerprint does not

occupy the whole image, as in the case of real-time automated fingerprint recognition or

security systems. It efficiently converts the gray-scale image into binary in real time, thus
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reducing the data size to one eighth of the original. For most applications, the size of the

resulting image can be reduced by compressing the binary image using algorithms such as

LZNW [30]. An image size reduction of about 30 was achieved in pilot trials with fingerprint

images. With the possibility of real-time binarization of the original fingerprint images, the

automated fingerprint recognition systems [32][9] could be speeded up.

4.4.4 Morphological processing

Image morphology involves pixel level processing that helps to clarify and simplify objects

of interest[1][17]. It can be applied to obtain outlines or skeletons of an object by emptying

the interior or reducing the thickness of the object. For binary images, binary morphological

processing uses logical operators such as AND and OR on neighboring pixels to obtain a

resulting image. In this study, it is used to obtain the boundaries of the finger ridges for the

purpose of visualization of contact phenomena.

Erosion and dilation are two fundamental morphological operations. A 3 x 3 mask size

is usually used for the operation. Suppose a binary image is composed of black and white

pixels, with the object represented by white pixels. To erode away the boundaries of the

object, the erosion operation is called for. If a pixel and its eight neighbors are all white,

the corresponding pixel is white in the eroded image; otherwise, the corresponding pixel in

the resulting image is black. When erosion is performed on a pixel inside an object, it has

no effect. However, if the pixel is on the boundary of an object, since its neighboring pixels

consists of both object and background, it will be converted into a background pixel. If there

is random noise consisting of only a few pixels, they will be eroded away also. Dilation does

the opposite to the image: a pixel in the dilated image is white if any of the pixels defined

by the mask is white in the original image. It helps to make the object bigger and fill in tiny

holes inside the object.

Different combinations of the erosion and dilation operations produce different effects.

The opening operation is an erosion operation followed by a dilation operation to remove

single-pixel noise spikes. The closing operation is a dilation operation followed by an erosion

to fill small holes and gaps. When an eroded image is subtracted from the original image

by using a dual-image point process, the result is the outline of the objects in an image.

Figure 4-9 shows the outline of the fingerprint images created by the outlining process. The

image shown was first thresholded by scan-line thresholding with a threshold value of 0.95.
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Original image: A

Original image: B Outline Image: B

Figure 4-9: Results of applying binary morphological processing to obtain the outline of the
fingerprint contact regions.
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A dilation followed by an erosion operation was used to reduce the noise. Two more erosion

operations were performed and the resulting image was subtracted from the noise reduced

binary image to create the outline image.

4.5 Implications on the mechanics of contact

4.5.1 Overall (Nominal) and actual contact areas

When the finger comes in contact with objects, the contact region gradually develops. At

first, there are islands of contact corresponding to contact points on each of the finger ridges.

As the normal force of contact increases, the islands grow bigger and the overall (nominal)

contact boundary grows as well. The islands of contact eventually get connect together result

in the fingerprint patterns. Figure 4-10 shows part of a sequence of images obtained when

a fingerpad actively contacted a Plexiglas plate. The image sequence was recorded at a rate

of 20 frames per second under low magnification and compressional force of contact was

recorded at 1000 samples per second. Therefore, there were 50 force samples within a single

frame. The corresponding mean forces exerted during an image frame are also shown in the

figure. The growth of the overall contact boundary can be seen by comparing consecutive

frames. To quantitatively describe the growth of the contact region, the overall area of the

contact boundary and the actual areas inside the contact region can be useful measures.

To obtain the overall area, the border of the image region occupied by the fingerprint needs

to be extracted. The border extraction was performed in two steps. First, the original contact

images were converted into binary images by using scan-line thresholding or homomorphic

processing. Then, an estimate of the border was obtained by using a technique similar to

the wedge-ring detection method broadly used in pattern recognition [9]. In this modified

wedge-ring method, the original image was partitioned by using wedges and rings formed

by concentric circles and radial lines. Figure 4-11 shows the wedge-ring pattern that was

used to count the contact pixels and obtain the contact region boundary. The actual pattern

consisted of more rings and wedges than in the one shown. The numbers were determined

by using typical images and by adjusting on the basis of visual inspection of the extracted

boundary smoothness. The contact pixels from a binary image were used to first calculate

the approximate center of the contact region by using the averaged coordinates. Then the

wedge-ring pattern centered around the contact center was superimposed to collect contact
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Figure 4-10: A sequence of images of contact between a fingerpad and Plexiglas specimen.
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Figure 4-11: The wedge-ring pattern used in contact region boundary extraction.

pixels within each cell. Once the pixels were assigned to the appropriate cells by determining

their distance and angles with respect to the center of the contact region, the cumulative sum

of contact pixels within the cells along each wedge starting from the center was obtained.

An estimate of the boundary can be made based on the ring radius inside which most of the

contact pixels reside. A typical ratio of 99% was used to avoid noise existing outside the

border, which also showed up as contact pixels. The number of wedges and rings used would

roughly determine the errors in the boundary estimation. Figure 4-12 shows a binary contact

image and the result of the boundary points estimated by using the above procedure. The

number of wedges and rings used were 48 and 80, respectively. In general, using more than

30 wedges and 60 rings will generate satisfactory estimates for the border. However, if the

number of wedges is too many, the resulting boundaries may not vary smoothly.

The total number of pixels inside the boundary were estimated from the coordinates

of the border points and that of the contact region center. Calibration of image size was

performed before the contact images were obtained. The calibration constants depend on

the magnification of the images and can be found by imaging a reticle which has calibration

patterns and by counting the corresponding number of pixels that occupy a known area.

The overall contact area estimates can then be obtained by applying the calibration constant

which represents a unit pixel area for a particular contact image sequence.

Although the overall contact area is a number which represents the nominal size of the
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Figure 4-12: An estimate of the overall contact region boundary using the modified wedge-
ring method.

contact region, the actual area of contact inside the contact boundary is as important. For

example, given a contact force, a nominal mean pressure can be determined if the overall

contact area is known. However, from results of visualizing the contact region, we know that

not all regions inside the contact boundary are actually in contact. Therefore, the nominal

mean pressure can be considerably less than the actual mean pressure if the actual contact

area is only a small portion of the overall area. The actual area in contact can be estimated by

counting the contact pixels after thresholding, although such estimates may have inherently

higher errors due to the fact that low magnification was used to acquire the overall area. By

using high magnification capture of the central portion of the contact images, the actual area

estimations will be more accurate owing to higher resolution. However, depending on the

locus of the image within the contact region, the percentage contact can vary since the finger

ridge pattern is different in different parts of the fingerpad.

The following illustrates various pieces of information available during contact by using

data from active touch experiments on fingerpad contacting with a rigid Plexiglas plate under

low magnification. Figures 4-13 and 4-14 show several variables plotted against time and
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force for subject CH. The profiles of the plotted variables are divided into two phases: the

indentation phase and the retraction phase. The indentation is marked with crosses whereas

the retraction portion is marked with circles. Since the first few frames digitized did not

contain contact images, the calculations were done for the frames which had a mean force

larger than 0.1N.

In Figure 4-13, the first graph shows the force profile which reached its maximum value

just before the 1 second time mark. The corresponding nominal contact area increased as the

force increased during the indentation with an initial rapid increase followed by a slower rate

as shown, it saturated even before the contact forces reached the maximum. By comparing

the nominal area witlh the actual contact area., it can be observed that during the later part

of the indentation, the actual area kept on increasing even after the overall contact saturated.

The actual area divided by the nominal area is shown as the percentage of contact inside the

nominal contact area.: it increased during the indentation phase and seemed to stay constant

in the figure during the retraction phase. The mean nominal contact pressure was obtained

by dividing the contact forces by the nominal contact area. The shape of the mean nominal

pressure is close to that of the force profile. On the other hand, when the actual contact area

was used for pressure calculations, the mean actual pressure obtained showed qualitatively

different characteristics from the mean nominal pressure. Unlike the nominal pressure which

rose very fast durint indentation, the increase in the actual pressure was slow. The pressure

drop-off rate for both nominal and actual was about the same during retraction. Since the

percentage contact inside the overall area ranged from 10 % a.t the beginning to 25 % during

the retraction, the actual pressure was at least 4 times as large as the nominal pressure.

Figure 4-14 provides a different view of the data obtained. The difference between the two

phases of contact is more dramatic when plotted against force. Given the same amount of

force, the contact information strongly depends on whether it was in the indentation phase

or the retraction phase. The only variable which was similar during the two phases was the

nominal contact pressure.

4.5.2 Contact areas with soft specimens

The real-time imaging setup was used to observe the contact areas of the fingerpad with

objects of various compliances during passive indentation. Passive touch experiments were

conducted by using the tactile stimulator to move the specimen by 3mm from the point of
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Figure 4-15: Nominal contact area versus contact force for specimens of various softnesses

for sbject . I.

barely touching to indent the stationary finger at a constant speed of 2.4mm/sec. The overall

contact. areas were obtained by using low magnification to capture the entire contact region

when the forces were less than IN. At higher contact forces, the low magnification images

obtained to capture the entire contact region were of poor quality due to the deformation of

the specimens. Therefore, the percentage contact areas were obtained separately using high

magnification. Since the real-time imaging setup does not have a large depth of focus a.t high

magnification, the focus was adjusted to about half of the range of specimen motion to obtain

acceptable images during indentation.

The overall contact boundaries were extracted manually since the automatic method did

not give satisfactory results for all the images due to the presence of noise and specimen

deformation. The area calculations were performed on the manually extracted borders which

were obtained by using MATLAB software GINPUT function. The overall area versus mean

contact force curves for all the specimens were about the same when the contact force was

less than about N. Figure 4-15 shows the results of nominal contact area versus the contact

forces from three trials, plotted with the same symbol, of passive touch experiments with

various specimens, plotted with different symbols, for subject JI(.

To have higher resolution in the data analysis, the percentage contact areas for soft spe-

cimens were obtained with higher magnification. By using homomorphic processing, the
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Figure 4-16: Percentage contact data from three trials for subject CH in contact with the
soft specimen CA4(0.304mm/N).
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Figure 4-17: Percentage contact data from three trials for subject CH in contact with the
hard specimen AB4(0.086mm/N).

portions that were in contact were separated from the portions that were not in contact.

Figure 4-16 shows the results of three trials, plotted using three different symbols, from

contact experiments using a, compliant object (CA4) which has an objective compliance of

0.304mnm/N. The mean contact force during each image frame increased as the specimen

was indented into the finger. by the stimulator. The corresponding percentage contact area

grew with increased depth of indentation. Since the data was processed using homomorphic

processing, the percentage results which are less than 15% or more than 85% are considered

unreliable because the processed image histogram was approximately unimodal in the corres-

ponding frames and an appropriate threshold value could not be found easily. Also, even if

the resulting histogram is bimodal, a threshold value which differs slightly would give slightly

different results. Therefore, errors of a few percent are expected and should be kept in mind

when interpreting the data. The data from the three trials, shown in different symbols, are

very consistent as indicated by the small variations in the results. The percentage contact

rose quickly to 40% with a contact force of only 0.25N. As the contact force increased to 3N,

the percentage contact rose more gradually to about 60%.
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The results of contact experiments with harder specimen AB4 which has an objective

compliance of only 0.086mm/N are shown in Figure 4-17. For the three trials conducted,

there is slightly more variability among the results compared to those for the soft specimen.

The resulting percenta.ge contact was only about 40% at 3N force, which is significantly less

than that for the soft specimen. The results for the three different soft specimens used are

compared in Figure 4-18 for subject CH. The results from subject CT and J for various

specimens are shown in Figures 4-19 and 4-20, respectively. The percentage contact area. is

generally lower for the specimens with lower objective complliance. Comparison of the results

for the three subjects in contact with various specimens used is shown in Figures 4-21 to

4-23. Although there is some variability among the results for different subjects, the effect of

subject was not as obvious as the effect of specimens.

4.5.3 Description of slip

To observe contact phenomena accompanying slip, the videomicroscopy system was setup to

record the contact region as the subject actively stroked the fixed Plexiglas specimen across

the field of view of the camera.. By viewing the image sequence composed of frames taken 50

msec apart, one realizes that as the shear force applied on the finger increases, slip between

the fingerpad and the plate starts from the border of the contact region. The region which

remains stationary in the center shrinks as time progresses. Eventually, the whole contact

region slides as a whole across the surface of the plate and the image of the contact region

remains unchanged as in rigid body translation. The figures described below illustrate this

phnenomenon in greater detail.

The relative motion of the finger ridges can be observed by comparing the scan-lines of

two adjacent frames. In Figure 4-24, images A and B are 50 msec apart in time. Although

they look very similar to the eye, there are slight differences in the locations of the finger

ridges, especially in the left and right portions of the image. The gray scale variations on

line 240, the middle horizontal line of the 640 by 480 size images, is plotted in the lower left

graph. The gray-scale variation from image A is plotted as a solid line and that from image B

is plotted as a dotted line. The dotted line mostly coincides with the solid line in the middle

portion of the scan line and leads the solid line on the two sides. The differences of the two

scan-lines are shown in the lower right graph.

The movement of the finger ridges in consecutive frames is depicted in Figure 4-25. The
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Figure 4-25: Comparison of gray scale values on a scan-line in a sequence of images at the
incipience of slip.

top three graphs consist of gray scale variation on a scan-line in the center of three consecutive

images while the bottom graph is a superposition of the three. Grid lines are provided for

easy comparison of finger ridges. By comparing the finger ridges, it is concluded that the

middle region has not moved yet in al! the three frames which occur over 150 msec in time.

whereas the two ends have already moved an observable amount. The distances between

ridges on the left side of the graph are stretched whereas the middle region is still stationary.

In contrast, the distances between the ridges on the right are compressed.

Although this phenomenon of slip starting from the boundary and propagating inwards

can be seen vividly by playing the recorded image sequences in real-time, it is difficult to

present such results in stationary pictures on a single page. By superimposing the finger ridge

outlines of the image sequences, such effects can be seen more easily. The left hand graphs

of Figure 4-26 are three images from the slip sequence. The outlines of the finger ridges are

obtained by morphological operations, as explained in the image processing section. In the

upper right graph, the outlines of the first image is shown. In the middle, the outlines of both

first and second images are shown. This is created by performing a logical OR operation
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from the two outline images. In the bottom, the outlines generated from the three frames are

shown. By comparing the three outline graphs, one sees immediately that the regions in the

middle have not moved while the borders have moved an appreciable amount.

4.6 Discussion

4.6.1 Contact phenomena

The development of contact

Based on the images and force data obtained from the low magnification experiments using a

rigid Plexiglas plate, our understanding of the development of contact has beenl enhanced. By

combining the information available in variables such as nominal (overall) contact, areas, ac-

tual contact areas, and contact forces, various pieces of information generated during contact

can be calculated (see Figures 4-13 and 4-14). Surprisingly, the actual contact area. increased

slowly as compared to the nominal area during the indentation, which indicates presence of

viscoelasticitv in the fingerpad. At the same time, the actual mean contact pressure did not

vary much as compared to the rate of change in nominal mean contact pressure. On the other

hand, the percentage contact increased during the indentation phase and remained roughly

constant during the retraction phase.

The results from visualization of contact region showed a considerable difference between

loading and unloading in terms of contact pressure, contact area and the percentage contact

inside the nominal contact region. Soft tissues which make up the fingerpad can be llodeled

according to Fung's [16] quasi-linear viscoelastic model, which was proposed to explain the

mechanical properties of biological tissues with a response consisting of an elastic response

and a reduced relaxation function. The increased actual area of contact during the loading

phase can also be thought of as more and more springs coming into contact from each of

the finger ridge (small contact islands growing bigger and getting connected and the ridges

growing fatter due to increases in the contact force applied). During the unloading phase,

however, the same springs do not retract due to viscoelastic effects (as shown by the slow

decrease of actual contact area in Figure 4-14). Instead, it is likely that the stiffness of

each spring reduces as the contact force is reduced. Eventually, the ridges get thinner and

disconnect and finally disappear.
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Figure 4-26: Visualizing the slip sequence in action by combining images processed by the
outlining procedure.
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The hypothesis of pressure distribution

Although the contact information discussed used mean pressure inside the contact region, the

actual distribution is quite likely to be non-uniform. Without high resolution pressure sensor

arrays, the pressure distribution cannot be measured directly. The pressure distribution

that one would expect from contact mechanics [23] is parabolic in nature, assuming that the

materials in contact are linear.

If we assume that the material properties of the individual finger ridges are similar, the

static friction coefficient between the finger ridges and the Plexiglas would also be similar.

During active slip, we observed that the boundaries of the contact region slipped first, whereas

the center of the contact region remained stationary. One reasonable hypothesis for the border

to slip first is that the pressure distribution on the contact region is in fact not uniform.

The pressure in the middle is probably higher than that in the surround, as expected from

mechanics. Therefore, the shear force overcomes the static friction at the borders first and

the middle slipped only when the shear force fully overcame the frictional forces. In addition,

during such a process, the finger ridge distances in the front portion of the motion get

stretched because the middle region has not moved yet and the ridges on the back portion of

the fingerpad get compressed. From a neurophysilogical viewpoint, the skin stretching and

compression could be sensed by the mechanoreptors in order to detect the incipience of slip

(Srinivasan et al [43]).

4.6.2 Contact information available for softness discrimination

During softness discrimination experiments using normal fingers to perform discrimination,

the subjects had tactile information from the contact region in addition to kinesthetic in-

formation. From the visualization of fingerpad contact with soft specimens, we know that the

overall contact areas were about the same for the hard (0.086mm/N), medium (0.188mm/N),

and soft (0.304mm/N) specimens when the contact forces were up to N (Figure 4-15). The

percentage contact areas were, however, significantly different (Figures 4-18, 4-19, and 4-20)

for specimens of various softness. Thus, if we assume that the overall contact areas were

about the same for the different specimens even for higher contact forces, the percentage

contact areas and/or the pressure distributions could be the cues for subjects to discriminate

object softness.
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Since the subjects reported that the discriminations were based on the indentation portion

of the contact, the retraction portion of the fingerpad contact was not important for this

task. When the subjects wore thimbles, the contact interface conditions were different from

the normal finger conditions. The tactile information which allowed the subjects to have fine

softness discriminability was eliminated and the subjects' performance degraded significantly.

\\hen the subjects had thin (0.06Gmn) finger cots on, the performance was not statistically

different from the normal finger, which suggests that the finger ridge level details are not

important for discriminating the specimens used.

4.6.3 The role of contact mechanics in haptic interaction

During haptic interaction with objects, be it exploration or manipulation, tactile sensory

information originates directly from the contact region. The development of contact region

depends not only o the gross properties of objects and fingers, but also on the detailed

mechanics of contact, the underlying pressure distributions, as well as the history of the

contact. For a seemingly simple task such as handling an egg during its transportation from

the refrigerator to the kitchen counter, our fingers need to exert the right amount of force to

not break or drop the egg.

From the visualization of the slip phenomenon, we see that slipping of the finger ridges

near the boundaries of contact occured first, which caused the finger ridges to stretch in front

and compress near the back. These relative movements of the finger ridges will most likely

cause the mechanoreceptors underneath the skin to respond and, through the central nervous

system, notify the brain about the incipience of slip, so that the brain can activate the motor

subsystem to take appropriate actions to avoid objects from slipping through our fingers.

During indentation, the fast growth of the overall (nominal) contact region allows the

contact forces to be distributed across a large region in. a short period of time to provide stable

contact. The actual area of contact developed more slowly in the meantime, as described

in the sections on contact areas. The retraction or unloading portion of the contact showed

mechanisms that provide as large an area of contact as possible by reducing the actual

pressure, but maintaining the overall contact area for a prolonged period of time to provide

stable contact.

With these additional insights provided by this study on contact visualization, it seems

clear that the same kind of contact process which depends a lot on the mechanics of contact
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has to happen in order to achieve successful haptic interaction with more complex objects

as well. It may also be helpful to design robotic fingers to have similar relationship among

contact forces, nominal areas, and actual areas.
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Chapter 5

Conclusions

5.1 Main results

5.1.1 Softness discrimination

To measure the abilities of humans in discriminating softness with their fingerpads by active

touch (with eyes closed), a specimen presenter system was built to randomly present the

softness specimens for the discrimination task. Two experimental paradigms involving one

and two index fingers were used; three finger-contact interface conditions were tested (normal,

finger cot, and rigid thimble). The results from the three different finger conditions show that

the fine detailed finger ridge level tactile information is not necessary for the task because

discrimination with the finger cot is as good as with the normal finger (see Tables 2.3 and 2.4).

But when thimbles were present, the dramatic degradation in discriminability demonstrated

the absolute necessity of tactile information to achieve normal resolution.

In order to look into the strategies and underlying mechanisms used during the softness

discrimination process, an experimental paradigm involving the two index fingers from both

hands was used. The performance under both normal and finger cot conditions improved,

which could be attributed to the fact that in this paradigm, the subjects need only to rely

on immediately available sensory information and not on memory. When the peak forces

applied with normal finger on the two specimens by each subject are compared, three different

strategies stand out: (1) to achieve the same amount of deformation of the two specimens

by exerting higher forces on the harder specimen, (2) to compare the contact information

obtained by applying the same amount of pressure on both specimens (thus higher peak
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forces on the softer specimen), and (3) to apply the same amount of peak forces on both

specimens and compare the deformations.

Although one of the subjects consistently applied higher forces with the right hand, the

subject's performance did not seem to be affected, implying that the brain can compensate

for such differences.

5.1.2 Force control

In the force control experiments, subjects were asked to achieve and maintain a constant

contact force by pressing their fingerpads on specimens with the following experimental para-

meters: object softness, contact interface condition (normal, finger cot, thilmble), target force

magnitude (2N, 4N, N), visual feedback availability, and the hand used. Statistical tests

on the results indicated that the errors from tracking with visual feedback was significantly

lower than wlhen the subjects had to maintain the force without visual feedback. The abil-

ities of the subjects to control forces on specimens of various softness under the three finger

contact interface conditions were not significantly different. The errors were higher when

controlling a. higher target force. In addition, significant differences were found between the

force control abilities of the two hands for the subject who showed handedness in the softness

discrimination experiments.

5.1.3 Contact visualization

A real-time imaging setup which integrated a. videomicroscopy system with a tactile st.inulator

system by means of a custom made communication interface was developed. This system

allowed both the contact images and the contact forces to be digitized in real-time. This

setup was used for visualizations of the overall and actual contact areas as well as for detailed

observation of the phenomenon of slip.

Various image processing techniques were developed and applied in order to obtain con-

tact information from the digitized images. The images of the contact regions were improved

by first applying homomorphic processing for contrast enhancement and then performing

a global thresholding or scan-line processing. Homomorphic processing is better suited for

images with larger contact regions, since it is likely to produce a a bimodal histogram which

benefits the thresholding step for converting the original image into a binary image consisting

of contact and non-contact regions. The overall contact area in each image was estimated
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by using a modified wedge-ring approach to determine the approximate boundaries of the

contact images obtained with low magnification.

Based on the images and force data obtained from the low magnification experiments us-

ing rigid Plexiglas, and examining the mean pressure on the contact regions, various sources

of tactile information such as overall contact areas, actual contact areas, percentage con-

tact, nominal mean pressure, and actual mean lpressure were calculated. Surprisingly, the

actual contact area. increased much more slowly than the nominal area. during the indenta-

tion. But the actual contact pressure did not vary as much as the nominal contact pressure

during indentation. On the other hand, the percentage contact increased steadily during the

indentation and remained roughly constant during retraction.

The results of visualization of the fingerpad in contact with soft specimens showed tha.t the

overall contact areas were about the same for various specimens for contact forces up to N.

However, the percentage contact area. inside the contact region obtained from high magnifica-

tion images showed significant differences for the hard (0.086mm/N), medium (0.188am/N),

and soft (0.304mm/N) specimens.

From the visualization of the slip between the fingerpad and a rigid Plexiglas plate, it

was shown that slipping first occured only near the boundaries of contact, which caused the

finger ridges to stretch in front and compress near the back. These relative movements of

the finger ridges most likely cause the mechanoreceptors underneath the skin to respond and,

through the central nervous system, notify the brain about the incipience of slip. The brain

can then activate the motor subsystem to take appropriate action to avoid slipping of objects

through our fingers.

5.2 Implications and applications

5.2.1 Human haptic interaction with soft objects

Although the process of the haptic interaction with objects, which generally involves mul-

timodal perception, and intersensory integration during exploration or manipulation, is com-

plicated, our understanding of the process has been improved by this investigation of the

phenomenon from three different perspectives: discriminability, force control, and contact

visualization.

The abilities, at the behavioral level, to distinguish fine differences in object softness

112



without useful visual and auditory information are likely to depend on both tactual percep-

tion and motor control. The subject with poorer performance in controlling forces without

visual feedback of force, also did not do as well in discrimination when compared to the

other subjects. Memory does play a, role in discriminability as shown from the significant

improvement in the results for all subjects when using both index fingers to discriminate the

two specimens. Although subjects may exhibit handedness as shown from the differences in

force control ability of the two fingers and the large difference of forces fised during discrim-

ination, the ability to discriminate was not impaired, which indicates that the brain was able

to accommodate for handedness during the cognition process.

Since tactile information is essential to achieve nornmal softness resolution, the mechanisms

for discrimination must rely on the spatio-temporal profiles of various contact variables.

However, as seen in the visualization experiments, our finger has the property of developing

the nominal contact area quickly even with a small force. The overall contact areas were

about the same for specimens of different softness for forces up to N. But the actual contact

areas were very different. based on high resolution images obtained with high magnification.

Assuming that the overall contact areas were also about the same for specimens of different

softnesses at higher contact forces, the information used during discrimination is probably

the spatio-temporal distribution of the pressure over the nominal contact region. According.

to Srinivasan and LaMotte [42][40][41], this information can be signaled by mechanoreceptors

of the type SAI (Merkel cells) and RAI (Meissner corpuscles).

5.2.2 The pressure distribution hypothesis

If the material properties of the individual finger ridges are assumed to be similar, the static

friction coefficient between individual finger ridges and the Plexiglas would also be similar.

In the visualization of the slip phenomenon, we observed that the boundaries of the contact

region moved first whereas the center of the contact slipped last. The slip front moved

gradually inwards during the process and then disappeared, at which time the finger ridges

seemed to translate as a rigid body. One reasonable hypothesis for the boundaries to slip first

is that the pressure distribution on the contact region is in fact not uniform. If the contact

pressure in the middle is higher and decreased either linearly or non-linearly until it reached

the edge, the observed slip phenomenon can be explained as due to Coulomb friction laws.
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5.2.3 Slip detection

During the slip process, the finger ridges at the boundaries overcome the static Coulomb

friction first and moved relative to the center of the contact region. The middle portion only

slipped when the total shear force overcame the total frictional force. The inter-ridge distance

in the front portion of the contact region got stretched because the middle region ha.d not

moved yet. In contrast, the ridges on the back portion of the fingerpad got compressed. From

a. neurophysiological viewpoint, the skin stretching and compressing could be the mechanical

stimulus sensed by the mechanoreceptors and the corresponding neural impulses transmitted

to the brain could be used for slip detection and prevention.

5.2.4 Dexterous robot finger design

If we inagine the human as the ultimate robot, then building a dexterous robot should borrow

as much of the human system design or functionality as possible. D'uiing object manipulation,

the control of contact forces is a. major concern. An ideal dexterous robot finger should be

able to maintain stable contact with objects having a wide range of properties. Although an

intelligent control system which drives such a robot can use force sensors available in the

various joints to sense the environmental properties and to perform dexterous manipulations,

it would be beneficial to construct robot fingers that can exhibit some of the desired contact

phenomena revealed in this study. The development of a robot fingerpad with a fast growth

of the overall (nominal) contact region as contact forces are increased allows the contact

forces to be distributed across a large region in a short period of time to provide stable

contact. The actual area of contact needs to develop gradually, in the meantime, so as to

provide a gradual increase in contact pressure. During the retraction or unloading portion

of the contact, if the mechanisms were to maintain a large area of contact even when force

dropped, the actual pressure would reduce and the contact would be more stable. The other

benefit of providing a large contact surface as opposed to a point contact (as in the case of

a rigid robot finger) is to simultaneously avoid crushing of objects with the same amount of

force but lower pressure and prevent slip with a lower force to conserve energy.
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5.2.5 Biomechanical visualization

The videomicroscopy and tactile stimulator systems developed during this study are powerful

tools to investigate the underlying mechanics of contact. The videomicroscopy system was

used by Dandekar [10], a recent Ph.D. from Touchlab, MIT, to successfully obtain images of

the fingertip required for 3D reconstruction and the surface deformation experiments which

were useful in verifying finite element models of the fingertip. The real-time imaging setup

has proven to be very useful in revealing the underlying mechanics of contact. Several pieces

of contact information, such as the overall contact area., actual contact area, nominal contact

pressure, and actual pressure, were measured based on the image and force data.. The

observations of slip led to the hypothesis of non--uniform pressure distribution within the

contact region which is yet to be proved in the future, possibly with high resolution tactile

sensor arrays. Other possible experiments include observations of the finger ridge deformation

as the fingerpad performs scanning motion to detect surface irregularities.

5.2.6 Automated fingerprint identification system

Automated fingerprint identification systems could benefit from the results of this study. In

terms of real-time fingerprint image acquisition, the developed videomicroscopy system is cap-

able of not only static images but also dynamic images. The slip phenomenon, prerecorded

for each individual using the system, can be used as test. Such operation reduces the risk of

beating the system with artificial impostor fingers, which would not have the same mechanical

properties as live, real, fingers of a particular individual. The scan-line processing techniques

can be implemented in real-time to convert the fingerprint images into binary format, for

identification or storage purposes. As for image storage, a typical compression ratio of 30

was obtained by applying LZW compression algorithms, widely used in Unix systems, to

the binary fingerpad images to achieve lossless compression. With lossless compression, the

minute details of the finger ridges, sweat pores, and the small islands between ridges can be

preserved. These techniques can be used to replace the high quality lossy compression stand-

ard, Wavelet Scalar Quantization (WSQ) [3] [4], currently adopted by the Federal Bureau of

Investigation (FBI).
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Appendix A

Softness Discrimination: Analysis of

Applied Forces

This section presents the graphs similar to Figure 2-13 for the peak forces used in S-2AFC

discrimination tasks. Pea.k forces on soft specimens versus peak forces on hard specimens for

subjects CHI, CT, and JIK under normal, finger cot, and thimble conditions are plotted. The

four panels are for the four specimen pairs. The data were pooled from 3 experimental runs,

64 trials each, conducted for each of the experimental conditions. The percentage of correct

calls, confusion matrix (labeled CNM), and force-specimen-correctness matrix (labeled FsM)

a.re also shown in each panel.
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Figure A-1: S-2AFC Peak force plot for subject CH under normal condition.
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Figure A-2: S-2AFC Peak force plot for subject CT under normal condition.
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Figure A-4: S-2AFC Peak force plot for subject CH under finger cot condition.
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Figure A-5: S-2AFC Peak force plot for subject CT under finger cot condition.
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Figure A-6: S-2AFC Peak force plot for subject JIK under finger cot condition.
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Figure A-7: S-2AFC Peak force plot for subject CH under thimble condition.
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Figure A-8: S-2AFC Peak force plot for subject CT under thimble condition.
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Figure A-9: S-2AFC Peak force plot for subject JK under thimble condition.
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Appendix B

Softness Discrimination: JND Data

The discrimination results from an experimental run was represented by a confusion matrix.

The matrices from three runs of 64 trials each was pooled together for the calculation of the

sensitivity index d' and the response bias for a given comparison specimen. Recall that

the JND value is defined as the difference of stimuli which corresponds to a d' value of 1.

The JND value for a particular subject under a given finger condition was then obtained

by averaging the estimates of JND from the four comparison specimens. The data points

which had a d' value less than 0.5 was not included in the mean JND calculations and their

estimated JND values are enclosed in brackets.
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Specimen DR1 DR5 ER1 FR1
Difference 2.6% 7.1% 13.5% 31.7%
Confusion 55 41 74 22 74 22 92 4

Matrix 29 67 20 76 17 79 1 95
0.70 1.55 1.67 4.04

/ -0.17 -0.04 -0.09 -0.29
JND (%) 3.8 4.6 8.1 7.8

MAeanJ D = 6.1%

Table B.1: 1I-2AFC
CR1 [0.304mm/N])

discrimination results for subject CH under normal condition (Standard:

Specimen DR2 DR4 ER4 ER2
Difference 3.7% 8.7% 13.1% 16.7%
Confusion 78 18 69 27 91 5 88 8

Matrix 13 83 14 82 6 90 7 89
d 1.99 1.63 3.16 2.84
/3 -0.11 -0.24 0.05 -0.04

JND (%) 1.9 5.3 4.1 5.9
MearnJND = 4.3%

Table B.2: 1I-2AFC discrimination results for subject CH under finger cot
ard: CR2 [0.298mm/N])

Specimen ER4 FR4 HT2 IT2
Difference 14.7% 27.2% 53.3% 75.2%
Confusion 54 42 54 42 68 28 76 20

Matrix 37 59 27 69 28 68 18 78
- 0.45 0.74 1.10 1.70

/3 -0.08 -0.21 -0.00 -0.04
JND (%) [32.7] 36.9 48.7 44.3

MeanJND = 43.3%

condition (Stand-

Table B.3: 1I-2AFC discrimination results for subject CH under thimble
CR4 [0.293mm/N])

condition (Standard:
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Specimen DR2 DR3 ER3 FR3
Difference 3.0% 6.7% 16.2% 28.1%
Confusion 72 24 72 24 86 10 96 0

hMatrix 25 71 22 74 8 88 3 93
1.32 1.42 2.64 4.43

'3 0.02 -0.03 -0.06 0.35
JND (%) 2.3 4.8 6.1 6.3

AleanJND = 4.9%

Table B.4: S-2AFC
CR3 [0.300mm/N])

discrimination results for subject CH under normal condition (Standard:

Specimen DR2 DR1 DR4 ER4
Difference 3.7% 4.9% 8.7% 13.1%
Confusion 76 20 80 16 85 11 90 6

Matrix 21 75 23 73 12 84 4 92
d 1.59 1.68 2.35 3.27
13 0.02 0.13 0.03 -0.10

JND (%) 2.4 2.9 3.7 4.0
AMeanJND = 3.2%

Table B.5: S-2AFC discrimination
ard: CR2 [0.298mm/N])

Table B.6: S-2AFC
CR6 [0.290mm/N])

results for subject CH under finger cot condition (Stand-

Specimen FR6 HT2 IT2 JT2
Difference 30.8% 55.0% 77.1% 110.3%
Confusion 51 45 65 31 66 30 82 14

Matrix 41 55 30 66 26 70 8 88
0.26 0.95 1.10 2.44

______ -0.05 -0.02 -0.06 -0.16
JND (%) [117.7] 58.1 70.2 45.3

MeanJND = 57.9%

discrimination results for subject CH under thimble condition (Standard:
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Specimen DR1 ER1 FR1 HT6
Difference 2.6% 13.5% 31.7% 47.9%
Confusion 46 50 55 41 77 19 92 4

Matrix 32 64 28 68 22 74 4 92
d 0.38 0.73 1.59 3.64
/ -0.24 -0.18 0.05 0.00

JND (%) [7.0] 18.5 19.9 13.8
MleanJND = 17.4%o

Table B.7: 1I-2AFC
CR1 [0.304mnlm/N])

discrimination results for subject CT under normal condition (Standard:

Specimen DR4 ER4 ER2 FR2
Difference 8.7% 13.1% 16.7% 28.4%
Confusion 60 36 67 29 70 26 72 24

Matrix 35 61 22 74 29 67 17 79
ld 0.66 1.26 1.13 1.60

/ _ -0.01 -0.11 0.05 -0.13
JND (%) 13.1 10.4 14.8 17.7

MleanJND = 14.0%

Table B.8: 1I-2AFC discrimination results for subject CT under finger
ard: CR2 [0.298mm/N])

Specimen FR4 HT2 IT2 JT2
Difference 27.2% 53.3% 75.2% 108.0%
Confusion 58 38 52 44 63 33 72 24

Matrix 48 48 36 60 22 74 17 79
-d 0.26 0.42 1.14 1.45

_ 0.13 -0.11 -0.17 -0.05
JND (%) [102.99] [126.06] 65.8 74.5

MeanJND = 70.2%

cot condition (Stand-

Table B.9: 11-2AFC discrimination results for subject CH under
CR4 [0.293mm/N])

thimble condition (Standard:

125

-I--·-1IIY�-�--�U-P il� ̂ Il-�LII_ I_ I--- -



Specimen DR3 ER4 ER3 FR3
Difference 6.7% 12.2% 16.2% 28.1%
Confusion 73 23 76 20 80 16 86 10

Matrix 44 52 14 82 17 79 5 91
Id 0.81 .87s 1.89 2.88

/3 0.30 -0.12 0.02 -0.18
JND (%) 8.3 6.6 8.6 9.7

AMeanJND = 8.3%

Table B.10: S-2AFC
CR3 [0.300mm/N])

discrimination results for subject CT under normal condition (Standard:

Specimen DR4 ER4 ER2 FR2
Difference 8.7% 13.1% 16.7% 28.4%
Confusion 69 27 72 24 80 16 85 11

Matrix 42 54 17 79 15 81 16 80
d1' 0.74 1.60 1.98 2.17
/3 0.21 -0.13 0.02 0.12

JND (%) 11.8 8.2 8.5 13.1
AMean JND = 10.4%

Table B.11: S-2AFC discrimination results for subject CT under
ard: CR2 [0.298mm/N])

Specimen FR6 HT2 IT2 JT2
Difference 30.8% 55.0% 77.1% 110.3%
Confusion 53 43 68 28 60 36 74 22

Matrix 5;4 42 35 61 27 69 29 67
d_ -0.03 0.89 0.90 1.26
/ 0.14 0.10 -0.13 0.11

JND (%) [*] 61.5 86.0 87.6
MeanJND = 78.4%

finger cot condition (Stand-

Table B.12: S-2AFC discrimination results for subject CT under thimble condition (Standard:
CR6 [0.290mm/N])

126



Specimen DRI DR5 ER1 FR1
Difference 2.6% 7.1% 13.5% 31.7%
Confusion 69 27 64 32 77 19 88 8

Matrix 29 67 28 68 9 87 10 86
d'I 1.10 0.98 2.17 2.64

0.03 -0.06 -0.24 0.06
.JND (%) 2.4 7.3 6.2 12.0

AleanJ'ND = 7.0%

Table B.13: 1I-2AFC discrimination results for subject JK under normal condition (Standard:
CR1 [0.304mm/N])

Specimen DR2 DR4 ER4 I ER2
Difference 3.7% 8.7% 13.1% 16.7%
Confusion 61 35 68 28 86 10 86 10

Matrix 20 76 19 77 3 93 9 87
d _ 1.16 1.40 3.12 2.58
fi -0.23 -0.15 -0.30 -0.03

JND (%) 3.2 6.2 4.2 6.5
AMeanJND = 5.0%

Table B.14: 1I-2AFC discrimination results for subject JK under finger cot condition (Stand-
ard: CR2 [0.298mm/N])

Specimen FR4 HT2 IT2 JT2
Difference 27.2% 55.0% 75.2% 108.0%
Confusion 42 54 57 39 66 30 69 27

Matrix 23 73 19 77 15 81 5 91
d 0.55 1.09 1.50 2.20
/3 -0.43 -0.31 -0.26 -0.52

JND (%) 49.4 50.7 50.2 49.0
MeanJND = 49.8%

Table B.15: I-2AFC discrimination results for subject JK under thimble condition (Standard:
CR4 [0.293mm/N])
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Specimen DR2 DR3 ER4 ER3
Difference 3.0% 6.7% 12.2% 16.2%
Confusion 67 29 76 20 83 13 89 7

Matrix 12 84 10 86 0 96 0 96
d 1.67 2.07 3.67 4.02
______3 -0.32 -0.22 -0.73 -0.55

JND (%) 1.8 3.3 3.3 4.0
AMlean JND = 3.1%

Table B.16: S-2AFC discrimination results for subject J under
CR3 [0.300mm/N])

Specimen DR2 DR1 DR4 ER4
Difference 3.7% 4.9% 8.7% 13.1%
Confusion 75 21 77 19 85 11 90 6

Matrix 11 85 14 82 7 89 2 94
d' 1.98 1.90 2.66 3.57
/3 -0.20 -0.10 -0.13 -0.25

JND (%) 1.9 2.6 3.3 3.7
AleanJND = 2.9%

normal condition (Standard:

Table B.17: S-2AFC discrimination results for subject JI under finger cot condition (Stand-
ard: CR2 [0.298mm/N])

Specimen FR6 HT2 IT2 JT2
Difference 30.8% 55.0% 77.1% 110.3%
Confusion 55 41 68 28 75 21 78 18

Matrix 36 60 31 65 19 77 17 79
d 0.50 1.01 1.62 1.81
/ -0.07 0.05 -0.04 -0.02

JND (%) 61.4 54.6 47.5 60.9
MeanJND = 56.1%

Table B.18: S-2AFC
CR6 [0.290mm/N])

discrimination results for subject JK under thimble condition (Standard:
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Appendix C

Statistical Tests on Softness

Discrimination JND Data

The analysis of variance (ANOVA) method [31][24][36] was used to find out whether the

results on softness discrimination were influenced by factors such as finger conditions and

experimental paradigms. The JND estimates from the pooled data for each of the comparison

specimens were used for the calculations of the ANOVA table. To compare any two JND

results obtained under different circumstances, the Student's t test was used. The statistical

analysis was performed by using MATLAB statistics toolbox.

C.1 1I-2AFC experiments

A two-way ANOVA was performed using subjects and conditions as the two factors. The

thimble condition was not included because the data range is very different and it is clear

that there is a significant difference between thimble and the other two conditions. Table C.1

lists the data used for the ANOVA analysis. The ANOVA table genierated by using MATLAB

software function anova2 is shown in Table C.2. The ANOVA analysis provided tests for the

following three hypotheses. First, the conditions differ in performance. Second, the subjects

differ in performance. Third, there is an interaction between the subjects and conditions.

The ANOVA table provides a means to look at variations between groups and variations

within groups. The column SS in the table stands for sum of squares. The df column is

the degrees of freedom for the factors. There are 3 subjects, therefore the df for columns

is 2 (3 - 1). There are 2 conditions, so the df for rows is 1 (2 - 1). The column MS was
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Subject
Condition CH CT J 

Normal 3.8/4.6/8.1/7.8 7.0/18.5/19.9/13.8 2.4/7.3/6.2/12.0
Finger cot 1.9/5.3/4.1/5.9 13.1/10.4/14.8/17.7 3.2/6.2/4.2/6.5

Table C.1: 1I-2AFC data used for the two-way ANOVA table.

ANOVA Table

Source SS df MS F

Columns 416.3 2 208.2 17.92

Rows 13.37 1 13.37 1.151

Interaction 1.558 2 0.7791 0.06707

Error 209.1 18 11.62

Total 640.3 23

Table C.2: 11-2AFC ANOV'A table. The rows represent the conditions and the columns
represent the subjects.

obtained by dividing S,S b df. The F ratio was obtained by dividing the AlS value for

Columns, Rows, and Interaction by the MS value for Error. By looking up F-distribution

table [47] with degree of freedom pairs of (2,18), (1,18), and (2,18), the 1% points of F ratios

from the table were 6.01, 8.28, and 6.01. Therefore, only the first hypothesis was rejected

because the F value from the ANOVA table (18.46) was larger than the F value (6.01) from

the F distribution. There was significant difference between the subjects at 1% significance

level (the significance is the probability of observing the given result by chance given that the

hypothesis is true). However, the differences between normal and finger cot conditions and

the interactions of subjects and conditions were small, as shown by the small F ratio from

analysis of variance.

A box plot of the softness discrimination JND values obtained under normal and finger

cot conditions of the 1I-2AFC paradigm is shown in Figure C-1. The box has lines at the

lower quartile, median, and upper quartile values. The whiskers are lines extending from

each end of the box to show the extent of data.

Three t tests were performed on the data given in Table C.1 between the subjects' perform-

ance under normal and finger cot conditions by using the ttest2 function of the MIATLAB

software. Significant differences of the mean JNDs, at 5% significance level, were repor-
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1 -2AFC Box Plot

CT-N CT-C
Subject-Condition

Figure C-1: A box plot of the softness discrimination JND
and finger cot(C) conditions of the 1I-2AFC paradigm.

values obtained under normal(N)

ted between subjects (CH,CT) under normal condition and between subjects (CH,CT) and

(JIK,CT) under finger cot condition.

C.2 S-2AFC. experiments

The same type of analysis used on the 1I-2AFC data was performed on the data from S-2AFC

experiments. A two-way ANOVA was performed by using subjects and conditions as the two

factors. The thimble condition was not included because the data range is very different and

it is clear that there is a significant difference between thimble and the other two conditions.

Table C.3 lists the data used for the ANOVA analysis. The ANOVA table generated by using

MATLAB software function anova2 is shown in table C.4. There was significant difference

between the subjects at 1% significance level (the significance is the probability of observing

the given result by chance given that the hypothesis is true). However, the differences between

normal and finger cot conditions and the interactions of subjects and conditions were small
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Subject
Condition CH CT JIK

Normal 2.3/4.8/6.1/6.3 8.3/6.6/8.6/9.7 1.8/3.3/3.3/4.0
Finger cot 2.4/2.9/3.7/4.0 11.8/8.2/8.5/13.1 1.9/2.6/3.3/3.7

Table C.3: S-2AFC data, used for the two-way ANOVA table.

ANOVA Table

Source

Columns

Rows

Interaction

Error

Total

SS

185.6

0.04167

14.16

38.88

238.7

df

2

1

2

18

23

MS

92.79

0.04167

7.08

2.16

F

42.95

0.01929

3.278

Table C.4: S-2AFC ANOVA
represent the subjects.

table. The rows represent the conditions and the columns

as shown by the small F ratio from the analysis of variance.

A box plot of the softness discrimination JND values obtained under normal and finger

cot conditions of the S-2AFC paradigm is shown in Figure C-2. Three t tests were performed

on the data given in Table C.3 between the subjects performance under normal and finger

cot conditions by using the ttest2 function of the MATLAB software. Significant differences

of the mean JNDs, at 5% significance level, were reported between subjects (CH,CT) and

(JIK,CT) under both normal and finger cot conditions.

C.3 Comparison of JND among different paradigms

To compare the effect of the two experimental paradigms, data from the three subjects under

both normal and finger cot conditions were used. Pooling data from all the subjects together

allows us to examine the differences between the two paradigms with higher reliability.

The ANOVA table generated is shown in Table C.5. The two paradigms are represented

by the rows in the table. The columns represent the six groups of data from the three subjects

under both normal and finger cot conditions. The F ratio (16.21) obtained was higher than the

value (7.39) from the F distribution table with degrees of freedom (1,36) at 1% significance
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S-2AFC Box Plot

CT-N CT-C
Subject-Condition

Figure C-2: A box plot of the softness discrimination JND
and finger cot(C) conditions of the S-2AFC paradigm.

values obtained under normal(N)

level. Therefore, we conclude the results from the 1-2AFC experiments are significantly

different from the results from S-2AFC experiments at 1% significance level.

The individual box plots that compare JNDs from the two paradigms for the three subjects

are graphed in Figure C-3, Figure C-4, and Figure C-5, respectively. The results from the

two different experimental paradigms are plotted side by side for both normal and finger cot

conditions. From the box lines (indicating the lower quartile, median, and the upper quartile)

and the whiskers (indicating the extent of the data), we can see that the variation in the

JND values are lower in the S-2AFC paradigm than in the 1-2AFC paradigm. Therefore,

S-2AFC experiments is different from a hypothetical two interval, two alternative, forced

choice paradigm (2I-2AFC) which would have higher variations in the JND values than the

11-2AFC experiments.
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ANOVA Table

Source

Columns

Rows

Interaction

Error

Total

SS

591.5

110.1

43.79

244.5

989.9

df

5

1

5

36

47

MS

118.3

110.1

8.758

6.791

F

17.42

16.21

1.29

Table C.5: ANOVA table to compare 1I-2AFC and S-2AFC paradigms. The rows represent

the experimental paradigms and the six columns represent three sulbjects ulnder both normal

and finger cot conditions.

Box Plot: 11-2AFC vs. S-2AFC

CH-N-1 CH-N-2 CH-C-1 CH-C-2
Subject-Condition-Paradigm

Figure C-3: Box plot of the
conditions using 1I-2AFC(1)

JND values obtained under both normal(N) and finger cot(C)
and S-2AFC(2) paradigms for subject CH.
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Box Plot: 11-2AFC vs. S-2AFC

CH-N-1 CH-N-2 CH-C-1
Subject-Condition-Paradigm

CH-C-2

Figure C-4: Box plot of the JND values obtained under both normal(N) and finger cot(C)
conditions using 1I-2AFC(1) and S-2AFC(2) paradigms for subject CT.

Box Plot: 1I-2AFC vs. S-2AFC

1

1

1

0
z

JK-N-1 JK-N-2 JK-C-1 JK-C-2
Subject-Condition-Paradigm

Figure C-5: Box plot of the JND values obtained under both normal(N) and finger cot(C)
conditions using 11I-2AFC(1) and S-2AFC(2) paradigms for subject J.
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Appendix D

Force Control Data

Presented in this appendix are the data recorded during the force control experiments under

various conditions. For each subject, three trials of force data. under the same conditions

a.re plotted on three separa.te pages. There are four rows to each graph which represent the

specimens used. Going from top to bottom are rigid, hard, medium, and soft. specimens.

The Plexiglas was used as the rigid specimen and the three compliant slpecimens chosen had

objective compliances of 0.304lmm/N (hard), 0.455mmnn/N (medium), a.nd 0.608minnl/N (soft).

The three columns represent the data from normal, finger cot, and thimble conditions. The

subject, hand, and trial number are printed on the upper-left corner of the force versus time

graphs.
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Appendix E

Force Control Performance Measures

The force data digitized at 200 samples per second were filtered with a low-pass filter which

had a cut-off frequency of 50Hz for noise removal before the force error was calculated. Also,

only the data from the second and third stage of each run were analyzed. During the second

stage, the subject had visual force feedback; during the third stage, the visual feedback was

turned off. The mean absolute error and the pooled standard deviation were tabulated.

The mean absolute error was obtained from 3 experimental runs of 1000 data points during

each stage. The standard deviation (s) was obtained by pooling the standard deviations

from the three experimental runs (s l , s 2, and S3 ) according to the following formula: s =

I(s12 + S2
2 + S3

2 )/3.
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Absolute Error (N)
Rigid Hard Medium Soft

Condition Force Mean S.D. Mean S.D. Mean S.D. Mean S.D.
Normal 2N 0.035 0.028 0.063 0.046 0.030 0.028 0.036 0.031
Normal 4N 0.054 0.040 0.030 0.023 0.056 0.043 0.067 0.051
Normal SN 0.093 0.077 0.061 0.047 0.128 0.106 0.073 0.064

Finger cot 2N 0.051 0.046 0.037 0.031 0.032 0.028 0.035 0.035
Finger cot 4N 0.070 0.054 0.035 0.027 0.049 0.037 0.057 0.037
Finger cot SN 0.165 0.122 0.100 0.089 0.108 0.093 0.160 0.129
Thimble 2N 0.057 0.045 0.057 0.042 0.030 0.024 0.041 0.034
Thimble 4N 0.048 0.041 0.032 0.026 0.060 0.052 0.042 0.030
Thimble SN 0.128 0.087 0.098 0.059 0.066 0.053 0.110 0.077

Table E.i: Absolute error
visual feedback.

in force control for subject CH using right hand index finger with

Absolute Error (N)
Rigid Hard Medium Soft

Condition Force Mean S.D. Mean S.D. Mean S.D. Mean S.D.
Normal 2N 0.162 0.094 0.191 0.090 0.150 0.101 0.123 0.069
Normal 4N 0.093 0.050 0.261 0.133 0.107 0.059 0.135 0.109
Normal SN 0.586 0.301 0.210 0.218 0.331 0.182 0.164 0.132

Finger cot 2N 0.148 0.144 0.182 0.096 0.111 0.083 0.157 0.119
Finger cot 4N 0.171 0.098 0.107 0.067 0.062 0.038 0.098 0.072
Finger cot 8N 0.519 0.341 0.314 0.267 0.400 0.247 0.594 0.265
Thimble 2N 0.121 0.053 0.266 0.120 0.082 0.051 0.214 0.091
Thimble 4N 0.105 0.054 0.090 0.041 0.195 0.121 0.104 0.095
Thimble 8N 0.533 0.274 0.520 0.264 0.506 0.336 0.415 0.321

Table E.2: Absolute error in force control
visual feedback.

for subject CH using right hand index finger without
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Absolute Error (N)
Rigid Hard Medium Soft

Condition Force Mean S.D. Mean S.D. Mean S.D. Mean S.D.
Normal 2N 0.037 0.026 0.033 0.026 0.035 0.025 0.038 0.031
Normal 4N 0.054 0.045 0.048 0.044 0.047 0.039 0.069 0.077
Normal SN 0.125 0.104 0.086 0.079 0.106 0.083 0.107 0.117

Finger cot 2N 0.048 0.039 0.043 0.039 0.033 0.030 0.041 0.033
Finger cot 4N 0.062 0.058 0.065 0.040 0.056 0.043 0.071 0.075
Finger cot 8N 0.136 0.095 0.069 0.058 0.100 0.113 0.081 0.069
Thimble 2N 0.040 0.041 0.029 0.025 0.041 0.034 0.048 0.027
Thimble 4N 0.074 0.052 0.037 0.035 0.065 0.044 0.071 0.047
Thimble SN 0.110 0.080 0.076 0.057 0.068 0.052 0.108 0.090

Table E.3: Absolute error in force control for su
visual feedback.

bject CH using left hand index finger with

Absolute Error (N)
Rigid Hard Medium Soft

I Condition Force Mean S.D. Mean S.D. Mean S.D. Mean S.D.
Normal 2N 0.188 0.076 0.138 0.056 0.175 0.068 0.168 0.083
Normal 4N 0.252 0.144 0.069 0.060 0.091 0.056 0.111 0.073
Normal 8N 0.218 0.174 0.178 0.155 0.237 0.193 0.129 0.101

Finger cot 2N 0.324 0.160 0.113 0.052 0.154 0.086 0.210 0.135
Finger cot 4N 0.204 0.102 0.263 0.119 0.176 0.074 0.345 0.162
Finger cot 8N 0.314 0.172 0.329 0.286 0.335 0.262 0.256 0.150
Thimble 2N 0.182 0.117 0.051 0.044 0.167 0.113 0.316 0.158
Thimble 4N 0.280 0.124 0.092 0.057 0.375 0.193 0.326 0.103
Thimble 8N 0.180 0.121 0.168 0.132 0.227 0.130 0.351 0.171

Table E.4: Absolute error in force control for subject CH using left hand index finger without
visual feedback.
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Absolute Error (N)
Rigid Hard Medium Soft

Condition Force Mean S.D. Mean S.D. Mean S.D. Mean S.D.
Normal 2N 0.034 0.043 0.066 0.043 0.043 0.028 0.021 0.016
Normal 4N 0.066 0.048 0.080 0.060 0.079 0.058 0.063 0.037
Normal 8N 0.147 0.102 0.078 0.063 0.098 0.062 0.171 0.098

Finger cot 2N 0.025 0.031 0.036 0.032 0.030 0.019 0.024 0.021
Finger cot 4N 0.071 0.053 0.171 0.149 0.065 0.045 0.051 0.039
Finger cot SN 0.188 0.114 0.099 0.051 0.172 0.114 0.122 0.073
Thimble 2N 0.041 0.032 0.027 0.019 0.028 0.024 0.025 0.016
Thimble 4N 0.074 0.065 0.082 0.072 0.048 0.033 0.042 0.024
Thimble SN 0.142 0.104 0.139 0.152 0.136 0.093 0.137 0.080

Table E.5: Absolute error in force control for subject CT using right hand index finger with
visual feedback.

Absolute Error (N)
Rigid Hard Medium Soft

Condition Force Mean S.D. Mean S.D. Mean S.D. Mean S.D.
Normal 2N 0.157 0.103 0.179 0.105 0.079 0.073 0.184 0.139
Normal 4N 0.565 0.275 0.308 0.140 0.311 0.160 0.509 0.263
Normal 8N 1.400 0.849 0.931 0.436 0.609 0.371 0.875 0.461

Finger cot 2N 0.130 0.075 0.082 0.058 0.098 0.068 0.202 0.113
Finger cot 4N 0.646 0.338 0.507 0.207 0.568 0.304 0.437 0.224
Finger cot 8N 1.303 0.560 0.833 0.441 0.957 0.520 0.642 0.331
Thimble 2N 0.101 0.058 0.100 0.054 0.060 0.038 0.127 0.083
Thimble 4N 0.156 0.110 0.541 0.240 0.221 0.135 0.532 0.335
Thimble 8N 1.137 0.568 0.742 0.360 1.156 0.660 0.833 0.406

Table E.6: Absolute error in force control for subject CT
visual feedback.

using right hand index finger without
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Absolute Error (N)
Rigid Hard Medium Soft

Condition Force Mlean S.D. Mean S.D. Mean S.D. Mean S.D.
Normal 2N 0.029 0.020 0.032 0.030 0.035 0.023 0.040 0.044
Normal 4N 0.051 0.042 0.066 0.057 0.045 0.034 0.054 0.034
Normal 8N 0.132 0.080 0.133 0.083 0.106 0.077 0.145 0.086

Finger cot 2N 0.045 0.051 0.034 0.034 0.053 0.076 0.036 0.038
Finger cot 4N 0.048 0.036 0.065 0.039 0.063 0.054 0.057 0.053
Finger cot 8N 0.154 0.083 0.114 0.087 0.105 0.071 0.113 0.075
Thimble 2N 0.044 0.046 0.038 0.034 0.042 0.040 0.034 0.033
Thimble 4N 0.069 0.058 0.056 0.043 0.048 0.029 0.053 0.041
Thimble SN 0.162 0.094 0.132 0.081 0.117 0.073 0.105 0.063

Table E.7: Absolute error
visua.l feedback.

in force control for subject CT using left hand index finger with

Absolute Error (N)
Rigid Hard Medium Soft

Condition Force Mean S.D. Mean S.D. Mean S.D. Mean S.D.
Normal 2N 0.055 0.046 0.053 0.033 0.087 0.062 0.074 0.044
Normal 4N 0.206 0.126 0.283 0.127 0.267 0.157 0.320 0.160
Normal 8N 0.821 0.375 0.537 0.283 0.830 0.432 1.011 0.598

Finger cot 2N 0.104 0.040 0.036 0.023 0.073 0.047 0.057 0.033
Finger cot 4N 0.149 0.102 0.155 0.139 0.207 0.141 0.207 0.144
Finger cot 8N 0.902 0.565 1.111 0.562 0.896 0.530 0.682 0.380
Thimble 2N 0.051 0.031 0.063 0.031 0.096 0.080 0.033 0.024
Thimble 4N 0.166 0.103 0.262 0.176 0.158 0.095 0.193 0.137
Thimble SN 0.998 0.531 0.878 0.519 0.872 0.557 0.607 0.407

Table E.8: Absolute error in force control
visual feedback.

for subject CT using left hand index finger without
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Table E.9: Absolute error in force control for su
visual feedback.

bject JIK using right hand index finger with

Absolute Error (N)
Rigid I Hard Medium Soft

Condition Force Mean S.D. Mean S.D. Mean S.D. Mean S.D.
Normal 2N 0.114 0.074 0.087 0.080 0.084 0.054 '0.065 0.034
Normal 4N 0.230 0.173 0.221 0.176 0.124 0.087 0.123 0.085
Normal 8N 0.344 0.254 0.311 0.212 0.217 0.148 0.475 0.260

Finger cot 2N 0.072 0.048 0.173 0.160 0.098 0.070 0.117 0.098
Finger cot 4N 0.109 0.081 0.125 0.087 0.186 0.144 0.204 0.132
Finger cot 8N 0.513 0.292 0.330 0.187 0.289 0.177 0.306 0.184
Thimble 2N 0.151 0.104 0.078 0.046 0.128 0.068 0.125 0.121
Thimble 4N 0.158 0.106 0.105 0.067 0.156 0.117 0.094 0.062
Thimble 8N 0.299 0.207 0.291 0.149 0.213 0.156 0.455 0.368

Table E.10: Absolute error in
without visual feedback.

force control for subject JK using right hand index finger
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Absolute Error (N)
Rigid Hard Medium Soft

Condition Force Mean S.D. Mean S.D. Mean S.D. Mean S.D.
Normal 2N 0.033 0.029 0.024 0.019 0.037 0.028 0.029 0.023
Normal 4N 0.067 0.046 0.049 0.038 0.063 0.050 0.058 0.048
Normal SN 0.140 0.114 0.114 0.090 0.151 0.108 0.134 0.103

Finger cot 2N 0.040 0.034 0.027 0.022 0.046 0.037 0.034 0.030
Finger cot 4N 0.059 0.048 0.045 0.036 0.068 0.063 0.066 0.054
Finger cot SN 0.154 0.130 0.121 0.099 0.125 0.089 0.139 0.104
Thimble 2N 0.046 0.044 0.039 0.026 0.051 0.034 0.048 0.047
Thimble 4N 0.056 0.046 0.039 0.032 0.061 0.048 0.066 0.049
Thimble 8N 0.097 0.081 0.094 0.073 0.116 0.088 0.103 0.080



Absolute Error (N)
Rigid Hard Medium Soft

Condition Force Mean S.D. Mean S.D. Mean S.D. ,Mean S.D.
Normal 2N 0.044 0.037 0.036 0.030 0.042 0.034 0.059 0.051
Normal 4N 0.075 0.070 0.054 0.043 0.089 0.090 0.084 0.067
Normal SN 0.170 0.121 0.174 0.158 0.166 0.144 0.195 0.152

Finger cot 2N 0.047 0.038 0.044 0.036 0.049 0.033 0.059 0.042
Finger cot 4N 0.071 0.056 0.069 0.060 0.067 0.052 0.083 0.064
Finger cot SN 0.140 0.118 0.159 0.131 0.141 0.131 0.149 0.118
Thimble 2N 0.065 0.050 0.046 0.040 0.060 0.039 0.044 0.033
Thimble 4N 0.082 0.050 0.064 0.048 0.061 0.043 0.071 0.054
Thimble 8N 0.116 0.098 0.149 0.126 0.115 0.097 0.150 0.125

Table E.11: Absolute error
visual feedback.

in force control for subject JIK using left hand index finger with

Absolute Error (N)
Rigid [ Hard Medium Soft

Condition Force Mean S.D. Mean. S.D.. Mean S.D. Mean S.D.
Normal 2N 0.101 0.084 0.088 0.072 0.139 0.114 0.199 0.165
Normal 4N 0.240 0.155 0.174 0.171 0.206 0.146 0.389 0.255
Normal 8N 0.839 0.506 0.828 0.511 0.575 0.352 0.972 0.617

Finger cot 2N 0.145 0.097 0.138 0.104 0.085 0.059 0.169 0.110
Finger cot 4N 0.266 0.187 0.307 0.229 0.208 0.159 0.291 0.225
Finger cot 8N 1-.016 0.536 0.585 0.341 0.648 0.399 1.041 0.613
Thimble 2N 0.195 0.100 0.198 0.145 0.130 0.072 0.071 0.048
Thimble 4N 0.227 0.141 0.132 0.080 0.156 0.125 0.258 0.248
Thimble 8N 0.416 0.331 0.489 0.393 0.777 0.533 1.009 0.523

Table E.12: Absolute error in force control for subject JK using left hand index finger without
visual feedback.
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Appendix F

Statistical Tests on Force Control

Performance Measures

The analysis of variance (ANOVA) method was used to find out whether the force control

performance was influenced by factors such as target force magnitude, finger contact con-

ditions, and specimens. The performance data from Appendix E were used for all the tests

performed. All the statistical analyses were performed by using MATLAB statistics toolbox.

F.1 Specimen softness and finger contact conditions

The effects of both specimen softness and finger contact conditions were examined together

by using two-way ANOVA. The data from the three subjects for the two visual force feedback

conditions and two hands were analyzed separately (a total of 12 combinations). In other

words, the data for the three target force magnitudes were grouped together in this analysis.

Visual observations of the subjects' performance indicated that they seemed to have higher

error at high target force magnitude. To minimize the effect of target force in the analysis,

the performance data was expressed in terms of percentage of the target.

The results of the analysis could not reject the hypothesis that there was no effects of

specimen softness and of the contact conditions in all but one circumstances (1 out of 12 tests).

In that only circumstance, the ANOVA resulted in rejecting the hypothesis of no specimen

effect for subject JK under visual force feedback. Based on results of the majority of the

conditions tested, the likelihood that the specimen softness and the finger contact conditions

played important roles in the force control tasks was small. Therefore, the following analysis
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used data, pooled from the different specimen softnesses as well as various contact interface

conditions.

F.2 Target force magnitude

One-way ANOVA tables were constructed to compare target force magnitude factor. The

columns stands for the data collected at three target force levels under various specimens

and contact interface conditions. The reason for pooling data. from those two factors is to

increase the reliability of the analysis. Table F.1 and Table F.2 list the data pooled for the

two visual force feedback conditions. The resulting ANOVA tables are shown in Tables F.3

and Table F.4. The hypothesis tested here is that target force magnitude did not significantly

affect the results in either conditions. Taking the F ratios obtained from the two ANOVA

tables (32.06 and 36.59) and conlparing them to the F distribution with the same degree of

freedoms (2,33), both hypotheses were rejected at 1 % significance level. The target force

magnitude was found to be a. significant factor that affected control performance. However,

when only comparing data. from 2N and 4N target force, the hypothesis could not be rejected

under both visual force feedback conditions. Thus, the main differences came from the 8N

target force runs for subject CH.

The corresponding box plots which show the spread of the data for the two tables.are

shown in Figure F-1 and Figure F-2. The box has lines at the lower quartile, median, and

upper quartile values. The whiskers are lines extending from each end of the box to show the

extent of the rest of the data if they were less than 1.5 times the interquartile ranges (IQR).

Otherwise, whiskers end at the most extreme observations, still lie within 1.5 times IQR of

the quartiles and the remaining observations were plotted as outliers.

For subjects CT and JK, there were also significant differences between 2N, 4N, and

8N target force magnitudes. In addition, the differences between 2N and 4N target force

magnitudes were big enough to reject the hypothesis that their performance were the same

at 1% significance level with and without visual force feedback. The box plots for the two

subjects under those two conditions are shown in Figure F-3, Figure F-4, and Figure F-5,

Figure F-6, respectively.

On the other hand, comparison can be made after the absolute errors were divided by the

target force magnitudes and the performance is measured in terms of the percentage error.
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Finger Mean Absolute Error (N)
Specimen Condition Target: 2N Target: 4N Target: 8N

Rigid Normal 0.035 0.054 0.093
Rigid Finger cot 0.051 0.070 0.165
Rigid Thimble 0.057 0.048 0.128
Hard Normal 0.063 0.030 0.061
Hard Finger cot 0.037 0.035 0.100
Hard Thimble 0.057 0.032 0.098

Medium Normal 0.030 0.056 0.128
Medium Finger cot 0.032 0.049 0.108
Medium Thimble 0.030 0.060 0.066

Soft Normal 0.036 0.067 0.073
Soft Finger cot 0.035 0.057 0.160
Soft Thimble 0.041 0.042 0.110

Table F.1: Data used for computing a one-way ANOVA table to determine the significance
of target force magnitude for subject CHI with visual feedback when using the right hland.

For both subjects CIH and JK, the percentage errors were significantly lower when controlling

4N and SN target force than when controlling 2N target force with visual force feedback (see

Figure F-7 and Figure F-9). For subject CT, the percentage errors were not significantly

different under the three different target force levels with visual feedback (see Figure F-8).

The comparisons for the performance achieved at different target force magnitude without

visual feedback were conducted in a similar fashion. The results are shown in Figure F-10,

Figure F-11, and Figure F-12.

The qualitative effect of target force magnitude as observed from the box plots can be

summarized as follows: When the mean absolute error is used as the performance index,

higher target force generally increases both the mean absolute error and the standard deviation

of the absolute error. However, for subject CH, the performance at 2N and 4N with or without

visual feedback were about the'same. When the mean absolute error expressed in percentage

is used as the performance index, higher target force did not increase the error in general,

except for subject CT without visual force feedback.

F.3 Visual feedback

One-way ANOVA tables were constructed using the performance data, expressed in percent-

age of target force, collected from each subject, to compare the effect of visual feedback
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Finger Mean Absolute Error (N)
Specimen Condition Target: 2N Target: 4N Target: 8N

Rigid Normal 0.162 0.093 0.586
Rigid Finger cot 0.148 0.171 0.519
Rigid Thimble 0.121 0.105 0.533
Hard Normal 0.191 0.261 0.210
Hard Finger cot 0.182 0.107 0.314
Hard Thimble 0.266 0.090 0.520

Medium Normal 0.150 0.107 0.331
Medium Finger cot 0.111 0.062 0.400
Medium Thimble 0.082 0.195 0.506

Soft Normal 0.123 0.135 0.164
Soft Finger cot 0.157 0.098 0.594
Soft Thimble 0.214 0.104 0.415

Table F.2: Data used for computing one-way ANONVA table to determine the significance of
target force magnitude for subject CH without visual feedback when using the right hand.

ANOVA Table

Source

Columns

Error

Total

SS

0.03064

0.01577

0.04641

df MS F

2 0.01532 32.06

33 0.0004778

35

Table F.3: ANOVA table to determine the significance of target force magnitude for subject
CII with visual feedback when using right hand. The columns represent the data'obtained
from three target forces under various finger and specimen conditions.

ANOVA Table

Source

Columns

Error

Total

SS

0.6386

0.288

0.9266

df MS

2 0.3193

F

36.59

33 0.008727

35

Table F.4: ANOVA table to determine the significance of target force magnitude for subject
CH without visual feedback when using right hand. The columns represent the data obtained
from three target forces under various finger and specimen conditions.
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Subject CH with Visual Feedback

4N
Target Force

Figure F-1: Box plot of data pooled from various finger
CH with visual feedback when using the right hand.

and specimen conditions for subject

Subject CH without Visual Feedback
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Figure F-2: Box plot of data pooled from various finger and specimen conditions for subject
CH without visual feedback when using the right hand.
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Subject CT with Visual Feedback
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2N 4N 8N
Target Force

Figure F-3: Box plot of data pooled from various finger and specimen conditions for subject
CT with visual feedback when using the right hand.
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Figure F-4: Box plot of data pooled from various finger and specimen conditions for subject

CT without visual feedback when using the right hand.
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Subject JK with Visual Feedback
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~0.16
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Figure F-5: Box plot of data pooled from various finger and specimen conditions for subject
JIK with visual feedback when using the right hand.
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Figure F-6: Box plot of data pooled from various finger and specimen conditions for subject
JI without visual feedback when using the right hand.
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Subject CH with Visual Feedback

4N
Target Force

Figure F-7: Box plot of data, expressed in
men conditions for subject CH with visual

percentage, pooled from various finger and speci-
feedback when using the right hand.
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Figure F-8: Box plot of data, expressed in
men conditions for subject CT with visual

percentage, pooled from various finger and speci-
feedback when using the right hand.
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Subject JK with Visual Feedback
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Figure F-9: Box plot of data, expressed in
men conditions for subject JIK with visual

4N
Target Force

percentage, pooled from
feedback when using the

8N

various finger and speci-
right hand.
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Figure F-10: Box plot of data, expressed in percentage, pooled from various finger and
specimen conditions for subject CH without visual feedback when using the right hand.
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Subject CT without Visual Feedback
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Figure F-11: Box plot of data, expressed in percentage, pooled from various finger and
specimen conditions for subject CT without visual feedback when using the right hand.
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Figure F-12: Box plot of data, expressed in percentage, pooled from various finger and
specimen conditions for subject JK without visual feedback when using the right hand.
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Subject CH with Right Hand
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Figure F-13: Box plot of data, expressed in percentage, pooled from various interface, force,
and specimen conditions for subject CH when using the right hand.

by pooling data from various finger conditions, target forces, and specimen softnesses. The

columns stand for the data collected with different force feedback conditions. The hypothesis

tested here is that the presence or absence of feedback did not significantly affect the results.

The ANOVA results rejected the hypothesis for all three subjects with very high F ratios

at 1% significance level. Therefore, there is a significant difference between whether or not

visual force feedback was available. Figure F-13, Figure F-14, and Figure F-15 show the box

plots for the right hand of the three subjects.

F.4 Hand used

One-way ANOVA tables were constructed using the performance data, expressed in percent-

age of target force, collected from each subject to compare the effect of visual feedback by

pooling data from various finger conditions, target forces, and specimen softness with visual

feedback. The columns stand for the data collected with different hands. The hypothesis

tested here is that the two hands did not significantly affect the results. The resulting AN-

OVA tables which reject the hypothesis at 1% significance level are listed in Tables F.5, F.6,
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Figure F-14: Box plot of data, expressed in percentage, pooled from various interface, force,
and specimen conditions for subject CT when using the right hand.
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Figure F-15: Box plot of data., expressed in percentage, pooled from various interface, force,
and specimen conditions for subject JIK when using the right hand.
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ANOVA Table

Source SS df MS F

Columns 199.9 1 199.9 14.3

Error 978.6 70 13.98

Total 1179 71

Table F.5: ANOVA table to determine the significance of the hand used for subject CT
without visual feedback. The columns represent data,, in percentage, obtained from various
target forces under various finger and specimen conditions.

ANOVA Table

Source SS df MS F

Columns 3.369 1 3.369 20.17

Error 11.69 70 0.167

Total 15.06 71

Table F.6: ANOVA table to determine the significance of the hand used for subject JI with
visual feedback. The columns represent data, in percentage, obtained from various target
forces under various finger and specimen conditions.

and F.7. The tables correspond to the data of subject CT without visual feedback and

subject JI with and without visual feedback.

Therefore, there was a significant difference between the performance of the two hands

of subject J in force control with and without visual feedback. For subject CT, there was

a difference when the visual feedback was not available. As far as subject CH is concerned,

the performance was not significantly different for the two hands. Figure F-16 to Figure F-

21 show the box plots for the three subjects using different hands with and without visual

feedback.
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ANOVA Table

df

1

MS

162.5

70 4.813

71

Table F.7: ANONVA table to determine the significance of the hand used for subject JIK
without visual feedback. Tile columns represent data, in percentage, obta.ined from various
target forces under various finger and specimen conditions.

Subject CH with Visual Feedback
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Figure F-16: Box plot of data, expressed in percentage, pooled from various interface, force,
and specimen conditions for subject CH when using the right hand.
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Subject CH without Visual Feedback
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Figure F-17: Box plot of data, expressed in percentage, pooled from various interface, force,
and specimen conditions for subject CH when using the left hand.
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Figure F-18: Box plot of data, expressed in percentage, pooled from various
and specimen conditions for subject CT when using the right hand.
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Subject CT without Visual Feedback
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Figure F-19: Box plot of data., expressed in percentage, pooled from
and specimen conditions for subject CT when using the left hand.
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Figure F-20: Box plot of data, expressed in percentage,
and specimen conditions for subject JK when using the

pooled from various
right hand.
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Subject JK without Visual Feedback

Hand Used

Figure F-21: Box plot of data, expressed in percentage, pooled from various
and specimen conditions for subject J when using the right hand.
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Appendix G

Contact Visualization Analysis

Presented in this appendix are the data analyzed during the contact visualization experiments

under various conditions. For the low magnification experiments on overall contact regions,

the results are plotted in two ways. In the first figure, the various pieces of contact information

are plotted against time; in the second, the same information is plotted against force. The

video a.nd force data. were collected a.t a. rate of 20 and 1000 samples per seconds, respectively.

In the figures, the mean force during each frame was used as the force magnitude.
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Figure G-1: Various contact variables, plotted against time, calculated from the image and
force data obtained using low magnification (Subject:CH, Trial:1).
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Figure G-2: Various contact variables, plotted against contact force, calculated from the
image and force data obtained using low magnification (Subject:CH, Trial:1).
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Figure G-3: Various contact variables, plotted against time, calculated from the image and
force data obtained using low magnification (Subject:CH, Trial:2).
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Figure G-5: Various contact variables, plotted against time, calculated from the image and
force data obtained using low magnification (Subject:CH, Trial:3).
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Figure G-6: Various contact variables, plotted against contact force, calculated from the
image and force data obtained using low magnification (Subject:CH, Trial:3).
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Figure G-7: Various contact variables, plotted against time, calculated from the image and
force data obtained using low magnification (Subject:CT, Trial:1).

186

2.5

2

1.5a)

o
LL

1

........ ..... ,>
00

X~~~~X2< ::I.\,x
x .. .......

x

x - 00.5

25

20

15

c)

10

5

0
1

n
0

x:
xx

xX

0 0.5 1
Time (sec)

1.5 2

- ......... .....Xxx:

x

c,

E
z

m

a)
0~

.C_

E
o
z

Do

o

0

x

x~~~~

0
.x~ ~ ~~~~~ . .~~~~~~~

x : : :~~

. . .~~

· ·

i . . .

I

.

�e�ec

.. "I ,,

I

-

I

.....

... .....

.· ................. -:.



3

2.5

2

(' 1.5
o
LU-

1

0.5

0

1 60q

140
c'

E 120
E
co 100
a)

< 80
c-
E 60
0
z

40

Oh r

U.UZ

E o.oE 0.015

a)

U) 0.01
co
a)
Q-

.C 0.005
E
z

Subject:ct Specimen:rig Trial:l

x
x

j x -0

0 0.5 1 1.5 2
Time (sec)

1 2 3
Force (N)

fu

0 

0
Force (N)

21

20

15
o
a)
0c 10
c-
a)

00C

3

3

2
E

a)

<1

3

v0

0.4

EE0.3

z

a)

0' 0.1
- o)0.1

0

1

1

1

Force (N)

Force (N)

Force (N)

2 3

2 3

2 3

Figure G-8: Various contact variables, plotted against contact force, calculated from the
image and force data obtained using low magnification (Subject:CT, Trial:1).
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Figure G-9: Various contact variables, plotted against time, calculated from the image and
force data obtained using low magnification (Subject:CT, Trial:2).
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Figure G-10: Various contact variables, plotted against contact force, calculated from the
image and force data obtained using low magnification (Subject:CT, Trial:2).
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Figure G-11: Various contact variables, plotted against time, calculated from the image and

force data obtained using low magnification (Subject:CT, Trial:3).
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Figure G-12: Various contact variables, plotted against contact force, calculated from the
image and force data obtained using low magnification (Subject:CT, Trial:3).
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Figure G-13: Various contact variables, plotted against time, calculated from the image and
force data obtained using low magnification (Subject:JK, Trial:l).
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Figure G-14: Various contact variables, plotted against contact force, calculated from the
image and force data obtained using low magnification (Subject:JK, Trial:1).
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Figure G-15: Various contact variables, plotted against time, calculated from the image and
force data obtained using low magnification (Subject:JK, Trial:2).
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Figure G-16: Various contact variables, plotted against contact force, calculated from the
image and force data obtained using low magnification (Subject:JK, Trial:2).
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Figure G-17: Various contact variables, plotted against time, calculated from the image and
force data obtained using low magnification (Subject:JIK, Trial:3).
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Figure G-18: Various contact variables, plotted against contact force, calculated from the
image and force data obtained using low magnification (Subject:JK, Trial:3).
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Figure G-19: Percentage contact area calculated from the image and force data obtained
using high magnification (Subject:CH, Specimen: rigid).
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Figure G-20: Percentage contact area calculated from the image and force data obtained
using high magnification (Subject:CH, Specimen:hard).
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Figure G-23: Percentage contact area calculated from the image and force data obtained
using high magnification (Subject:CT, Specimen: rigid).
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Figure G-24: Percentage contact area calculated from the image and force data obtained
using high magnification (Subject:CT, Specimen:hard).
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Figure G-25: Percentage contact area calculated from the image and force data obtained
using high magnification (Subject:CT, Specimen:medium).
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Figure G-26: Percentage contact area calculated from the image and force data obtained
using high magnification (Subject:CT, Specimen:soft).
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Figure G-27: Percentage contact area calculated from the image and force
using high magnification (Subject:JIK, Specimen: rigid).
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Figure G-28: Percentage contact area calculated from the image and force data obtained
using high magnification (Subject:JK, Specimen:hard).
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Figure G-29: Percentage contact area calculated from the image and force data obtained
using high magnification (Subject:JK, Specimen:medium).
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Figure G-30: Percentage contact area calculated from the image and force data obtained
using high magnification (Subject:JK, Specimen:soft).
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